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We put forward a new model-independent reconstruction scheme for dark energy which utilizes the
expected geometrical features of the luminosity-distance relation. The important advantage of this scheme
is that it does not assume explicit ansatzes for cosmological parameters but only some very general
cosmological properties via the geometrical features of the reconstructed luminosity-distance relation.
Using the recently released supernovae data by the Supernova Legacy Survey together with a phase space
representation, we show that the reconstructed luminosity-distance curves best fitting the data correspond
to a slightly varying dark energy density with the Universe expanding slightly slower than the �CDM
model. However, the �CDM model fits the data at 1� significance level and the fact that our best fitting
luminosity-distance curve is lower than that of the corresponding �CDM model could be due to
systematics. The transition from an accelerating to a decelerating expansion occurs at a redshift larger
than z � 0:35. Interpreting the dark energy as a minimally coupled scalar field we also reconstruct the
scalar field and its potential. We constrain �m0

using the baryon acoustic oscillation peak in the SDSS
luminous red galaxy sample and find that the best fit is obtained with �m0

� 0:27, in agreement with the
CMB data.
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I. INTRODUCTION

There is now overwhelming evidence from Supernovae
data [1,2] as well as CMB measurements [3,4] and obser-
vations of large scale structure [5,6] which suggests that
the Universe is at present undergoing a phase of acceler-
ated expansion. These data also provide evidence that
nearly two thirds of the total density of the Universe is in
the form of an effective fluid with a negative pressure.

Determining the underlying mechanism for this late-
time acceleration constitutes one of the fundamental chal-
lenges facing cosmology today. A large number of models
have been proposed to account for this acceleration. These
fall into two main categories: those that involve the intro-
duction of an exotic matter source, which include the
cosmological constant and the quintessence scalar fields
and those that involve changes to the gravitational sector of
GR, either motivated by String/M- theory, or through ad
hoc modifications of the Hilbert action.

Among these models some of the most commonly
studied have been the so called ‘‘dark energy‘‘ scenarios,
which model the underlying accelerating agent as an ef-
fective perfect fluid with a negative equation of state
(EOS). In addition to their simplicity, one of the main
reasons for their popularity has been the fact that an
effective model of this type can mimic a very wide variety
of models, ranging from the cosmological constant with
EOS equal to �1 to models with variable EOS such as
quintessence models and brane inspired models such as
that due to Dvali-Gabadadze-Porrati [7,8].

Given the multiplicity of such model candidates, an
urgent question at present is how to distinguish between
them observationally. Of particular interest is the nature of
the EOS of dark energy and importantly whether it is
variable and different from �1.

An important approach to this problem has been to
reconstruct the properties of the dark energy, including
its equation of state, from the Supernovae [2], and more
recently the baryon acoustic oscillation (BAO) data [9]. A
large number of attempts have recently been made at such
reconstructions. These include schemes that rely on spe-
cific functional ansatzes for the cosmological parameters to
be reconstructed, such as, for example, the Hubble parame-
ter [10,11] or the deceleration parameter [12]. Other
schemes employ more general parametrised forms such
as interpolating fits with right behaviours at small and large
redshifts [13,14]. There are also the so called model-
independent schemes which attempt to recover the cosmo-
logical parameters directly from the data without assuming
their forms by using more general statistical tools, such as
Markov Chain Monte Carlo techniques [15] or Gaussian
Kernels [16].

In this paper we put forward a new model-independent
reconstruction scheme which utilizes the expected geomet-
rical features of the luminosity-distance relation while
fitting the observational data including the recently re-
leased Supernova Legacy Survey (SNLS) and baryon
acoustic oscillation data. Using a phase space representa-
tion we reconstruct the luminosity-distance curves best
fitting the data and hence the corresponding cosmological
parameters including the Hubble parameter and the EOS.

The plan of the paper is as follows. In Sec. II we describe
our reconstruction scheme. In Sec. III we give a brief
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account of the data sets used in our reconstructions.
Section IV contains our results: in subsection IVA, we
present the results of our reconstructions of the cosmologi-
cal parameters, assuming the cold dark matter density
parameter to be �m0

� 0:27. In subsection IV B we give
a discussion of the degeneracy of the luminosity distance
with respect to �m0

and use the baryon acoustic oscillation
data to constrain �m0

. In Subsec. IV C we discuss the
robustness of our results, and finally we conclude in Sec. V.

II. THE RECONSTRUCTION METHOD

A natural starting point in reconstruction schemes em-
ploying Supernova observations is the luminosity-distance
dl�z� expressed in terms of the Hubble parameter H:

 dl�z� � c�1� z�
Z z

0

dz
H
: (1)

Such reconstructions have taken a variety of forms, often
relying on specific functional ansatzes for various cosmo-
logical parameters. Here we propose an alternative method
which instead of specifying precise functional ansatz for
the luminosity-distance relation dl�z�, imposes weak ob-
servationally motivated constraints on its geometry given
by:

(a) d0l � 0,
(b) d00l � 0,
(c) d000l � 0,

where a prime denotes a derivative with respect to the
redshift z. These are rather natural and weak constraints
motivated by current observations. In particular con-
dition (a) is satisfied for any expanding Universe (d0l < 0
always implies a contracting Universe). Condition (b) is
satisfied by any Universe that is currently accelerating
(with a negative deceleration parameter q < 0) and which
in the past tends to an Einstein-de Sitter model with q �
1=2. This can be seen by noting that using dH=dt �
�H2�1� q�, the positivity of d00l implies q < 1. Finally
condition (c) is satisfied by both Einstein-de Sitter and
�CDM models, for all redshifts z. This can be seen by
employing the statefinder parameter r � �a=�aH3� [10],
and using it to express the inequality (c) as r � 3q2 � q�
1. This inequality is satisfied, for all z, by the
�CDM model (for which using the Hubble function
H2 � �0a

�3 �� we have q � �1� 24�0e
3
���
�
p
�t�t0�=

�e3
���
�
p
�t�t0� � 4�0�

2 and r � 1, where �0 and t0 correspond
to values at present time). The condition saturates for de
Sitter space asymptotically and is satisfied by the Einstein-
de Sitter model (for which we have q � 1=2 and r � 1). In
terms of the deceleration parameter, condition (c) imposes
a lower bound q0 on q such that q0 > q2�1

1�z .
Thus these conditions are compatible with current ob-

servations and are satisfied, for all z, by both Einstein-de
Sitter and �CDM models which are the most commonly
accepted models representing the early and late dynamics

of the Universe. Together these features provide justifica-
tion for their use in constraining the reconstructed
luminosity-distance curves, which is the approach we shall
take in the following.

Before we proceed with our reconstructions we recall
that even though the reconstruction process itself does not
require a theoretical framework, the physical interpretation
of the reconstructed cosmological parameters does so.
Given that the true underlying theory is not known a priori,
it is important that such a framework is general enough to
accommodate a large enough range of possible candidates
and yet at the same time is sufficiently simple to make it
convenient to work with. Here as our theoretical frame-
work we shall adopt general relativity plus a minimally
coupled scalar field � with a potential V���. This
simple framework includes an important set of candidates
including GR plus a cosmological constant and quintes-
sence models. For simplicity we shall consider a flat
Friedmann-Lemaı̂tre-Robertson-Walker metric. The dark
energy can then be viewed as a perfect fluid with the
corresponding density, pressure and EOS given by

 �� �
1

2
_�2 � V; p� �

1

2
_�2 � V; w� �

p�
��

;

(2)

where a dot denotes a derivative with respect to the proper
time t.

To facilitate the interpretation of our results, we define
the following well behaved expansion-normalised varia-
bles often used in the dynamical systems analysis of such
models [17,18]

 u �
�

3H2 ; v �

����
V
p

���
3
p
H
; w �

_����
6
p
H
; (3)

where � is the matter (cold dark matter plus baryon)
density. In terms of these variables, the Friedmann and
the _H equations can be written as

 u� v2 � w2 � 1; (4)

 

_H

H2
�

3

2
u� 3v2 � 3; (5)

with the equation of state taking the form

 w � �
�w2 � v2�

�w2 � v2�
: (6)

The reconstruction then proceeds by generating a large
discrete set, Sdl, of luminosity-distance curves whose ge-
ometries are free apart from satisfying the weak constraints
(a)–(c) given above as well as fitting the SNLS supernovae
data set (see the next Section for the details). More pre-
cisely, each luminosity-distance curve dl 2 Sdl is con-
structed by a discrete set of points Pi � �zi; dli�
satisfying the constraints (a)–(c). Let us assume for sim-
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plicity that Pi are equally spaced points, such that dzi �
zi�1 � zi is a constant interval for all i. Then each succes-
sive point Pi of a luminosity-distance curve dl 2 Sdl must
satisfy the constraints (a)–(c), which when discretized are,
respectively, given by

 dli�1
� dli dli�2

� dli�1
� dli�1

� dli

dli�3
� 2dli�2

� dli�1
� dli�2

� 2dli�1
� dli

(7)

Thus the reconstruction consists of finding all the
luminosity-distance curves defined by the discrete set of
points Pi respecting the above rules and fitting the super-
novae data. In practice we divided the interval z 2 �0; 1	
into steps of dzi � 0:07 for small z and larger steps for
larger z since the slope of dl varies faster for the smaller z.

To reconstruct the discrete set of luminosity-distance
curves, we used an iterative scheme. The starting point is
a luminosity-distance curve defined by the points Pi and
located in the neighborhood of and below the SNSL data.
Then, following the above rules, the iterative scheme re-
sults in the next luminosity-distance curve by moving up
one of the points Pi. Hence, step by step, the slopes of the
reconstructed curves increase. Each curve thus defined is
then transformed, using an interpolation to go from the
discrete form in terms of Pi to a continuous one. We then
check if the reconstructed curve fits the data. If so, it is
added to the set Sdl. The iterations stop when the slope of
the reconstructed curve is sufficiently large to place it
everywhere above the data points, so that they are no
longer fitted. Note that in the figures presented below,
interpolation is used to give the reconstructed values at
equally spaced steps of dzi � 0:07. Once the set of curves
Sdl is determined, we calculate for each curve

 H � c
��
d0l �

dl
1� z

�
1

1� z

�
�1
; (8)

and

 H0 � �c�1� z�
2dl � �1� z���2d0l � �1� z�d

00
l 	

�dl� �1� z�d0l�
2 : (9)

Expression (8) together with (3) can then be used to
reconstruct u�z� once �m0

is specified. Similarly the use
of expression (9) together with the relation d=dt � ��1�
z�Hd=dz allows _H

H2 to be reconstructed. Equations (4) and
(5) can then be used to reconstruct the variables v and w
and hence from (6) the EOS w�. Thus the use of this
scheme allows the cosmological parameters to be recon-
structed, without assuming specific ansatzes but only the
well defined cosmological properties encoded in condi-
tions (a)–(c).

A similar but technically different approach was used in
[19]. These authors reconstruct the coordinate distance
y�z�, which is related to luminosity-distance dl by the
relation dl � H�1

0 y�1� z�, from supernovae and radio
galaxy data. In this scheme y is fitted locally, over redshift

windows of typical length �z 
 0:4, by using a quadratic
fit to reconstruct the curves y�z� [20]. The first and second
derivatives of y are then used to reconstruct the potential
and kinetic energy density. As noted in [20], a simpler
approach would consist of fitting a polynomial to the entire
set of data. However, low order polynomials would not be
flexible enough whereas higher order polynomials could
induce unphysical oscillatory behaviors. The main differ-
ence between our scheme and the one used by these
authors is that we fit the entire data set by imposing a
number of geometrical constraints on the dl curves (and
hence implicitly on y) which is not necessarily represent-
able by a polynomial in z. This allows sufficient flexibility
in order to fit the entire data set while providing enough
constraints to eliminate unphysical oscillations of dl. As
we shall see though similar our results do not totally agree.
For example we obtain a much weaker deviation from the
�CDM model.

III. DATA

In this section we briefly describe the cosmological data
sets that were used in our reconstructions in the next
section.

(1) As our primary supernovae sample we took the first
year data set from the Supernova Legacy Survey
(SNLS) [2] with 71 new supernovae below z �
1:01, together with another 44 low z supernovae
already available, i.e. a total of 115 SNe.

(2) To check the ability of our scheme to reconstruct
data, we employed a set of mock data. This consists
of 115 supernovae with the same distribution in
redshift and error bars as the SNLS data but with
the luminosity-distances replaced by those corre-
sponding to the �CDM model plus a gaussian noise.

(3) To constrain �m0
we also employed the baryon

acoustic oscillation peak (BAO) recently detected
in the correlation function of luminous red galaxies
(LRG) in the Sloan Digital Sky Survey [9]. This
peak corresponds to the first acoustic peak at recom-
bination and is determined by the sound horizon.
The observed scale of the peak effectively con-
strains the quantity

 A0:35 � Dv�0:35�

���������������
�m0

H2
0

q
0:35c

� 0:469� 0:017;

where z � 0:35 is the typical LRG redshift and
Dv�z� is the comoving angular diameter distance
defined as

 Dv�z� �
�
DM�z�2

cz
H�z�

�
1=3
;

with

 DM � c
Z z

0

dz
H
:
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To test the goodness of fit of our reconstructions we
employ the standard �2 minimization. For the supernovae
data, �2 is defined by

 �2 �
Xn
i�1

�mobs
i �m

th
i �

2

�2
i

;

where n is the number of data, mobs and mth are, respec-
tively, the observed and the theoretically reconstructed
magnitudes and �i is the uncertainty in the individual
mobsi .

IV. RESULTS

To generate the set of luminosity-distance curves, Sdl,
we need to choose the number of points Pi in order to
describe the curves. We found 7 points to be sufficient for
the results represented here. See, however, the
subsection IV C below for further discussion of this choice.

In our reconstructions, each luminosity-distance curve
was fitted to the SNLS data. Among the reconstructed
curves Sdl we only considered those with �2 < 136:8.
This upper bound on �2 was chosen since for a model
with one free parameter, such as a flat �CDM model, it
corresponds to a reasonable value of �2 per degree of
freedom of �2

DOF � 1:20 [21]. This would clearly be larger
if �2 > 136:8.

In the following we shall proceed in two steps. In
Subsec. IVA we shall assume �m0

� 0:27 and reconstruct
the cosmological parameters using the weak constraints
(a)–(c) given above. In the subsequent subsection IV B we
use the BAO data to constrain �m0

and show that 0:27 is
indeed the best fitting value. Finally in subsection IV C we
study the robustness of our results with respect to the
number of points used to define the luminosity-distance
curves, as well as the supernovae data set employed and the
precise value of �m0

used.

A. Reconstruction assuming �m0
� 0:27

The supernovae data alone do not constrain the present
values of the Hubble function H0 and its derivative H00.
This is due to the fact that there is no data available, and
hence no constraints, from the future. Consequently, if no
further information is used, the luminosity-distance curves
can have any slope at present, subject to the constraints
(a)–(c). Thus one needs to assume reasonable priors on H0

and H00 when making reconstructions using only the super-
novae data, without assuming additional information.

Here we shall make the following reasonable assump-
tions. For the present value of the Hubble parameter we
assume 60<H0 < 80, which from (8) implies that initially
3750< d0l0 �

c
H0
< 5000 Mpc. Since the derivative of the

Hubble parameter is given by H00 � �c��2d0l0 � d
00
l0
�=d02l0

and d0l0 can take very small values, H00 can take large

negative values at present. From H0H�1� z� � 1=2 _�2 �
1=2�, this would correspond to high negative values for the
EOS [22]. Thus in order to have a reasonable lower bound
on the present value of the EOS, we choose H00 >�40,
which from (9) implies 9375< d00l0 � 2d0l0 �H

0
0d
02
l0
=c <

13333 Mpc or using (4) and (5) corresponds to w�0
>

�2 for the present value of the EOS.
The results presented below were obtained by recon-

structing more than 23000 luminosity-distance curves fit-
ting the data. To show that all the reconstructed curves
respect the Friedmann constraint (4), we have depicted in
Fig. 1 a plot of v2 � w2 versus u for these curves, which as
can be seen provides a very good confirmation of the
constraint u� v2 � w2 � 1. Note that some reconstruc-
tions with negative energy density (v2 � w2 < 0) are also
in agreement with the data, but these correspond to the
larger values of �2. This raises the interesting question of
physicality of such solutions. We shall not consider this
issue further here, but recall that negative energy densities
sometimes arise, for instance in quantum cosmology or in
considerations of braneworld models whose bulks possess
a negative cosmological constant.

In Fig. 2 we have plotted the reconstructed luminosity-
distance curves (top panel) and the corresponding Hubble
parameters (bottom panel) together with their 1� confi-
dence levels (dashed lines), respectively. As can be seen
from the top panel, the dl curves best fitting the data have a

FIG. 1. Plot depicting v2 � w2 versus u for the reconstructed
curves. The perfect straight line provides a good confirmation for
the constraint u� v2 � w2 � 1. The reconstructed points are
shaded (colored: references to color refer to the web version with
color figures) according to their corresponding �2 values, with
the deepest shade of gray (red), representing the smallest values
of �2.
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slightly smaller �2 (with the smallest having �2 � 113:85)
than the �CDM model (with �2 � 114). Hence, none of
the reconstructed models rules out the �CDM model at
1�. The difference between our best fitting luminosity-
distance curve and that of the �CDM model becomes
noticeable at large redshifts where the former curve is
slightly lower. This deviation could come from systematics
such as the Malmquist bias. Testing our reconstruction

method with several samples of mock data, we obtain
curves which very closely agree with the �CDM model
even at large redshifts. However, they are very similar to
the curves obtained using the real data. This is due to the
fact that the real data are themselves very close to the
�CDM model, despite very small deviations for large
redshifts. An example of the luminosity-distance recon-
struction with mock data is displayed in Fig. 3. We do not
show the plots for the other physical quantities, including
the EOS, since they look very similar to the plots with real
data.

We also find the reconstructed Hubble parameters (bot-
tom panel) to have amplitudes which are in qualitative
agreement with those found by other authors using differ-
ent reconstruction techniques [13]. Here again, mock data
produces similar results.

Taking as our theoretical framework GR plus a mini-
mally coupled scalar field, we also reconstructed the ki-
netic and potential energies corresponding to the scalar
field �, together with their 1� confidence levels [23].
These are depicted in Fig. 4 for the reconstructed dl.
However, to be able to interpret these reconstructions
within the framework of a minimally coupled scalar field,
a number of physical constraints need to be taken into
account [24], such as those concerning the signs of the
potential and kinetic terms. To be cautions, we have ex-
tracted from the reconstructions the curves corresponding
to the quintessence scalar field models with a positive
potential. These are depicted in Fig. 5 showing that the
best fitting curves, in the context of quintessence scalar
field interpretation, are very close to the �CDM model.
This is particularly striking for z < 0:6 where the degen-

FIG. 3. Plot depicting the reconstruction of the luminosity-
distance relations using the mock data.

FIG. 2. Plots of the reconstructed luminosity-distance (top
panel) and Hubble function (bottom panel) with respect to
redshift. The dotted white (solid black) line represents the
�CDM model and the white line, the reconstructed
luminosity-distance best fitting the data. For the Hubble function
we have, for sake of clarity, plotted the points obtained numeri-
cally without joining them.
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eracy is very weak. For larger redshifts, some degeneracy
appears due to larger error bars but remains relatively
weak.

We also reconstructed the dark energy EOS (for all the
reconstructed luminosity-distance curves) whose evolution
with redshift is depicted in Fig. 6. To obtain a compact
representation of the EOS, we found it more convenient to
have a �v2; w2� plane representation instead of the usual
plot of EOS as a function of z. This choice of variables is
well suited to the particular form (6) of the EOS in this
case, whose denominator can take small values (for in-
stance when the kinetic and potential terms take similar
values but with different signs) resulting in large variations
in the EOS as the redshift increases. As can be seen from
Fig. 6 this allows a compact representation of the EOS,
with the diverging values of EOS corresponding to the
dashed line. In this Fig. the horizontal line (w2 � 0) rep-
resents the EOS for the cosmological constant (w� � �1)

and the vertical line (v2 � 0) the EOS for a stiff fluid
(w� � 1). The remaining line defines the w� � �1=3
line which demarcates the limit between the accelerated
and decelerated expansion.

The shaded (colored) patches in the panels of Fig. 6
represent, from top to bottom, the reconstructed values of
the EOS at increasing values of the redshift given by z � 0,
0.28, 0.63, 0.98. Each point constituting the shaded (col-
ored) patches corresponds to a reconstructed luminosity-
distance curve, with the deepest shades of gray (red)
representing the best fits (lowest �2 values). The top panel
depicts a cloud of initial points in the �v2; w2� plane, which
since we are initially assuming u0 � �m0

� 0:27, are
forced to lie on a straight line by the Friedmann constraint
u� v2 � w2 � 1. As we go to lower panels (higher red-
shifts), �m evolves differently for each point, resulting in
the dispersal of the initial straight line into different clouds

FIG. 5. Plots of the reconstructed positive scalar field kinetic
(top panel) and positive potential (bottom panel) energies versus
the redshift. The horizontal black lines represent the �CDM
model.

FIG. 4. Plots of all the reconstructed scalar field kinetic (top
panel) and potential (bottom panel) energies versus the redshift.
The horizontal black lines represent the �CDM model.
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of points. Now since we are assuming d000l � 0, d00l becomes
smaller as the redshift increases, but always stays positive.
As a result the initial straight line configuration of points
spreads and eventually gets attracted to the neighborhood
of the line w2 � v2 � 1=3 which corresponds to d00l � 0.
To see this, recall that using (1) and (5) we have H

c d
00
l �

2� _HH�2. This together with (4) and (9) then shows that
d00l � 0 implies w2 � v2 � 1=3. As can be seen from the
bottom panel, this line acts as the accumulation end state of
the initial cloud of points.

To summarize, the evolution of EOS with z depicted in
these panels demonstrates that as z increases, the points
corresponding to the dl best fitting the data stay well
centered around the cosmological constant line (w2 � 0)
in agreement with the behavior found for the scalar field
kinetic and potential energies.

We have also depicted in Fig. 7 the superposition of
panels similar to those depicted in Fig. 6 for intermediate
values of the redshift considered in the range z 2 �0; 1	, in
steps of z � 0:07. We note that some possible variation of
dark energy has been reported using reconstruction tech-
niques different from that employed in this paper
[13,14,25]. Such variations are also possible according to
our results at 1� confidence level, but are severely con-

strained in the context of quintessence scalar field models,
as can be seen from Fig. 5.

We have also plotted in (top panel of) Fig. 8 the best
fitting reconstructions for the EOS as a function of redshift
with the 1� confidence level. As can be seen, initially

FIG. 7. Fig. showing the superposition of similar panels to
Fig. 6 for all intermediate values of z 2 �0; 1	 in steps of dz �
0:07. As can be seen the distribution of the points with the
deepest shade of gray (red), corresponding to the best fits, is well
centered around the cosmological constant line.

FIG. 6. Fig.s demonstrating the evolution of the reconstructed EOS (6) versus the redshift in the phase plane �v2; w2�. The top panel,
corresponding to redshift 0, shows the initial points which are forced into a linear configuration due to the choice of u0 � �m0

� 0:27
and the constraint equation u� v2 � w2 � 1. As the redshift increases (lower panels), the initial straight line configuration of points
spreads and eventually gets attracted to the neighborhood of the line w2 � v2 � 1=3 which corresponds to d00l � 0.
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(z� 0) the EOS takes values around �� 1. Then, around
the redshift of 0.45, the degeneracy increases becoming
very large beyond z � 0:8. This follows the evolution of
error bars and noise levels in the data. We have also plotted
the evolution of the associated deceleration parameter
(depicted in the bottom panel of the Fig. 8). This shows
that a transition from an accelerated to a decelerated ex-
pansion would occur after the redshift of 0.35. There can,
nevertheless, exist solutions which do not undergo such a
transition, even at 1� confidence level, in agreement with
[12]. This shows that constant as well as negative decel-
eration parameters are also compatible with the supernovae
data, thus indicating that at present the supernova data does
not establish with certainty a transition from accelerated to
decelerated expansion.

The panels in Fig. 9 also show the reconstructed EOS
and the associated deceleration parameter when the recon-
structions were confined to the quintessence scalar field
models with positive potentials. As can be seen at 1�
confidence level, the reconstructed EOS is very close to
that of the �CDM model but could vary weakly beyond
z ’ 0:6. Moreover the deceleration can begin for a redshift
z > 0:65.

B. Constraining �m0

Our reconstructions in the previous subsection did not
provide any information about the CDM density parameter
�m0

which was assumed to be 0.27. This is due to the fact
that the luminosity-distance relation is determined purely
by the Friedmann equation which is highly degenerate with
respect to this parameter. To see this, let us consider a dark
energy model with a constant EOS, w� � �� 1, and the
corresponding Friedmann equation

 �H=H0�
2 � �m0

�1� z�3 ���0
�1� z�3�

Rewriting the CDM density parameter as �m0
� �1m0

�

�2m0
, the Friedmann equation becomes

 

�H=H0�
2 � �1m0

�1� z�3 ��2m0
�1� z�3 ���0

�1� z�3�

This form of H�z� may be viewed as a new dark energy
model with a different CDM density parameter �1m0

, and a
different dark energy density �� represented by the last
two terms in this expression. Hence without changing the
Hubble function we can regroup the last two terms as a new
dark energy term thus:

FIG. 9. The evolutions of the reconstructed EOS correspond-
ing to the luminosity-distance curves best fitting the data as a
function of the redshift (top panel) and the corresponding
deceleration parameter (bottom panel) with their 1� confidence
levels (dashed lines), using the scalar field representation con-
fined to quintessence models.

FIG. 8. The evolutions of the reconstructed EOS correspond-
ing to the luminosity-distance curves best fitting the data as a
function of the redshift (top panel) and the corresponding
deceleration parameter (bottom panel) with their 1� confidence
levels (dashed lines).
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 �H=H0�
2 � �1m0

�1� z�3 ��1�0

��
��0

with a corresponding equation of state given by

 p�=�� �
�2m0

�1� z�3 � ���0
�1� z�3�

�2m0
�1� z�3 ���0

�1� z�3�
� 1

Thus given a Hubble function we can construct different
representations with different effective CDM density pa-
rameters and dark energy components, but with identical
luminosity-distance functions dl. This makes transparent
the fact that the luminosity-distance dl is potentially highly
degenerate with respect to the CDM density in Universe. It
also illustrates the fact that a constant EOS can mislead-
ingly become time-dependent if the matter density is in-
correctly chosen, as is shown in [16]. We should, however,
add that since in practice �m0

cannot be determined pre-
cisely, this demonstrates that a real observer can never
prove that w� is truly constant, similar to the limitations
that exist in determining the exact flatness of the Universe
from observations. In practice one can only take the most
likely value for �m0

given by the most accurate available
observations in order to determine the corresponding EOS.

To constrain �m0
, we need further input from observa-

tions. Here we used the recent baryon oscillation data [9]
(discussed in Sec. III), to further constrain each luminosity-
distance curve. We found that for our reconstructed set of
curves Sdl, �m0

lies in the range 0:16<�m0
< 0:41, with

the best fit obtained for �m0
� 0:27. This can be seen

clearly from the plot of �m0
versus �2 shown in Fig. 10

which justifies the choice of the specific value �m0
� 0:27

in the previous subsection.

C. Robustness of the reconstruction

In this subsection we study the robustness of our results
obtained in the previous subsections.

In our reconstructions so far we have used 7 points �dl; z�
to describe the luminosity-distance curves. This choice was

made by trial and error. We find that by taking too many
points we can ‘‘over-fit’’ the data, in the sense that we can
always obtain a perfect but artificial match to any set of
data. In that case one would in effect be fitting noise with
an anomalously low best �2 which can, among other
things, rule out the �CDM model at 1�. On the other
hand, taking too few points would amount to ‘‘under-
fitting’’ the data. Thus one would not be able to fit the
model represented by the data and the best �2 can be
anomalously high. For example, it could make it impos-
sible to fit the �CDM model. In order to determine the
optimal number of points, the use of mock data is ex-
tremely useful. We have tested our reconstruction scheme
with several sets of mock data, all based on the �CDM
model. Using seven points we were able to recover, in all
cases, the �CDM model at 1� with a best �2 (typically
around 113.7) only a few tenths of percent smaller than 114
(which is close to the corresponding value for the �CDM
model). This demonstrates that, given the distribution of
the SNLS data and the corresponding error bars, our re-
construction process works well (although a slight over-
fitting is unavoidable in practice as one is not expected to
recover the best fit value exactly). We checked that our
results remain robust with small changes in the number of
points.

To summarize, care must be taken in choosing the
number of points taken to define a luminosity-distance
curve. We found that the employment of the mock data
together with our conditions (a)–(c) allow an appropriate
number of points to be chosen, i.e. around 7.

We note that the number of points defining a luminosity-
distance curve is not related to the degrees of freedom of
the underlying theory giving rise to that curve. Thus, a
straight line can be defined by 7 points even though only 2
points are necessary to construct the line, while analyti-
cally the equation of a straight line passing through the
origin only has 1 degree of freedom.

We also checked that reasonable changes in the value of
�m0

does not alter the qualitative behavior of dark energy
EOS found here.

V. CONCLUSION

We have proposed a model-independent reconstruction
scheme which is compatible with current observations and
shares a number of geometrical features with the Einstein-
de Sitter and �CDM models, which are the most com-
monly accepted models representing the early and late
dynamics of the Universe. Together these features provide
justification for our proposed scheme.

Using this scheme, and assuming �m0
� 0:27 together

with the SNLS supernovae data, we have reconstructed a
large set of luminosity-distance curves. Using these curves
we have reconstructed the cosmological parameters, in-
cluding the EOS. Our reconstructions show that the
luminosity-distance curves best fitting the data correspond

FIG. 10. Fig. depicting the variation of reconstructed �m0
with

respect to �2, using the SNLS and BAO data.
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to a slightly varying dark energy density with the Universe
expanding slightly slower than the �CDM model.
However, the �CDM model fits the data at 1� and the
fact that our best fitting luminosity-distance curve is lower
than that of the corresponding �CDM model could be due
to systematics such as Malmquist bias. Reconstructing the
EOS, large degeneracy appears around z � 0:6 in agree-
ment with increasing error bars and noise levels in the
distribution of data. The reconstructed deceleration pa-
rameter shows that the transition redshift to a decelerating
Universe should be larger than z � 0:35.

Assuming the theoretical framework to be GR plus a
minimally coupled scalar field, we also considered recon-
structions confined to quintessence models with positive
potentials. In that case we find the best fitting reconstructed
curves to be very close to those corresponding to the
�CDM model, in particular, for low redshifts z < 0:6.
For larger redshifts, larger error bars in the data allow a
small increase in the kinetic term and EOS and a small
decrease in the potential term at 1�. However, in the
context of quintessence interpretation, it seems rather
hard to find a model fitting the data better than the
�CDM model at 1�.

We also used the BAO data to constrain �m0
and found

that �m0
takes values in the range 0:16<�m0

< 0:41 with
a best fit given by �m0

� 0:27, in close agreement with
CMB data [3,4].

Using different techniques, and employing supernovae
as well as other data, other authors [13–15,25] also find
evidence for a possible variation of dark energy density.
However, a constant dark energy density is again never
ruled out to a satisfactory confidence level and thus the
important question of whether the EOS varies in time or
not still remains open.

The present paper takes a new step in reconstructing the
equation of state by providing a new model-independent
reconstruction scheme of the cosmological parameters.
Our approach can be applied to other theoretical frame-
works which can be cast into GR plus a perfect fluid. It
would be interesting to repeat these reconstructions with
the next set of SNLS data to determine whether the best
fitting curves move closer or further away from the �CDM
model.
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