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The properties of string networks at scales well below the horizon are poorly understood, but they enter
critically into many observables. We argue that in some regimes, stretching will be the only relevant
process governing the evolution. In this case, the string two-point function is determined up to
normalization: the fractal dimension approaches one at short distance, but the rate of approach is
characterized by an exponent that plays an essential role in network properties. The smoothness at short
distance implies, for example, that cosmic string lensing images are almost undistorted. We then add in
loop production as a perturbation and find that it diverges at small scales. This need not invalidate the
stretching model, since the loop production occurs in localized regions, but it implies a complicated
fragmentation process. Our ability to model this process is limited, but we argue that loop production
peaks a few orders of magnitude below the horizon scale, without the inclusion of gravitational radiation.
We find agreement with some features of simulations, and interesting discrepancies that must be resolved
by future work.
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I. INTRODUCTION

The evolution of cosmic string networks is a challenging
problem. The need to consider large ratios of length and
time scales makes a complete numerical analysis impos-
sible, while the nonlinearity of the process defeats a purely
analytic treatment. Thus a full understanding of most of
the signatures of cosmic strings will require a careful
combination of analytic and numerical approaches. This
is needed both to establish precisely the current bounds
on the dimensionless cosmic string tension G�, and to
anticipate what will be the most sensitive future measure-
ments. Also, if cosmic strings are one day discovered, a
precise understanding of the network properties will be
needed in order to distinguish different microscopic
models.

On scales close to the horizon size, the networks are
reasonably well understood from simulations [1–3].1 In
particular, there are a few dozen long strings crossing any
horizon volume. On shorter scales, however, the situation
is far less clear. There is a nontrivial short-distance struc-
ture on the strings, which arises because the intercommu-
tation process produces kinks [6]. There have been many
previous analytic and numerical studies of this, but there is
no general consensus as to its nature.

In particular, the size at which typical loops form is
uncertain to tens of orders of magnitude. One widely
held assumption has been that gravitational radiation is

necessary in order for cosmic string networks to scale
[7], and that it determines the size of loops. If so, the loops
will be parametrically smaller than the horizon scale, by
a power of G� [8] (even shorter scales have been sug-
gested [9]). More recent work appears to be converging
on loop sizes at a fixed fraction of the horizon scale, but
even here there are significant differences. Reference [10]
suggests that loops form at around 0.1 times the horizon
scale, whereas Refs. [11,12] (and some portion of the
conventional wisdom) suggest a scale several orders of
magnitude smaller. The larger loops would lead to en-
hanced signatures of several types, and tighter bounds on
G� [13].

In a system with a large hierarchy of scales, one might
hope that analytic methods would be particularly useful in
separating the processes occurring at different scales, while
numerical methods would be needed to understand the
nonlinearities at a given scale. This is the philosophy that
we will attempt to implement. We focus on a microscopic
description, similar in spirit to Ref. [14] and, in particular,
Ref. [7]. An important difference from Ref. [7] is that we
are less ambitious: that work was largely directed at under-
standing the horizon scale structure quantitatively, whereas
we are only interested in shorter scales. Also, we do not
attempt to reduce the dynamics to a parametrized model
but rather focus on the full two-point function; this two-
point function appears to be characterized by a critical
exponent, which did not enter into previous work.
Finally, our (tentative) conclusions are opposite to
Ref. [7], in that we believe that the network scales even
without gravitational radiation.

The full microscopic equations for the string network
[7,14] appear to be too complicated to solve, and so we
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model what we hope are the essential physical processes.
We have had some success in matching results from simu-
lations, but there are also some discrepancies which may
indicate additional processes that must be included.

In Sec. II we consider the evolution of a small segment
on a long string. If the rate of string intercommutations is
fixed in horizon units, then over a range of scales the only
important effect would be stretching due to the expansion
of the Universe. We are then able to determine the two-
point functions characterizing the small scale structure. We
find that the string is actually rather smooth, in agreement
with recent simulations [12]: its fractal dimension ap-
proaches one as we go to smaller scales. There is a non-
trivial power law, but this appears in the approach of the
fractal dimension to one; that is, the critical exponent � is
related to the power spectrum of perturbations on the long
string. The two-point functions depend on two parameters
that must be taken from simulations. One of these is the
mean v2 of an element of the long string; this determines
the exponent �. The second parameter is the normalization
of the two-point function. Our results for the two-point
function match reasonably well with the simulations [12]
over a range of scales, but there is substantial deviation at
the shortest scales. It remains to be seen whether this is due
to transient effects in the simulations, or real effects that we
have omitted.

In Sec. III we study the effects of the small scale
structure on string lensing. Because the string is fairly
smooth, these effects are not as dramatic as has been
considered in some previous work. However, there are
calculable deviations from perfect lensing. We also con-
sider, for lensing by a long string, the likely trajectory of
the string relative to the axis of a given lensed object. We
discuss some deviations from Gaussianity in the small
scale structure, due to kinks.

In Sec. IV we add in loop production as a perturbation.
Even though the strings are relatively smooth at short
distance, we find that the total rate of loop production
diverges for small loops; the rate of divergence appears
to agree with recent simulations [11]. This divergence does
not invalidate our stretching model, because the loop pro-
duction is localized to regions where the left- and right-
moving tangents p� are approximately equal, but it points
to a complicated fragmentation process, cascading to
smaller and smaller loops. We are not able to follow the
fragmentation process analytically at present, but we give
an analytic argument as to why the cascade should termi-
nate, leaving loops at some small but fixed multiple of the
horizon scale. We also point out an interesting puzzle
related to loop velocities, which again points to a compli-
cated fragmentation process.

In Sec. V we discuss various applications and future
directions. The behavior of string networks is notoriously
complicated, and it appears to remain so even when one
focusses on small scales. Thus we view our work as part of
an ongoing dialogue between analytic calculations and

simulations, which we hope will lead to a more complete
and precise picture.

II. THE STRETCHING REGIME

A. Assumptions

We consider ‘‘vanilla’’ cosmic strings, a single species
of local string without superconducting or other extra
internal degrees of freedom. The evolution of a network
of such strings is dictated by three distinct processes. First,
the expansion of the Universe stretches the strings: on
scales larger than the horizon scale dH irregularities on a
string are just conformally amplified, but on smaller scales
the string effectively straightens [15]. This is described by
the Nambu action in curved spacetime. Second, gravita-
tional radiation also has the effect of straightening the
strings, but it is significant only below a length scale
proportional to dH and to a positive power of the dimen-
sionless string coupling G� [8,16–18]. Since this is para-
metrically small at small G�, we will ignore this effect for
the present purposes. Finally, intercommutations play an
important role in reaching a scaling solution, in particular
through the formation of closed loops of string. At first we
shall neglect this effect but we will be forced to return to
this issue in Sec. IV.

Let us consider the evolution of a small segment on a
long string. We take the segment to be very short compared
to the horizon scale, but long compared to the scale at
which gravitational radiation is relevant. The scaling prop-
erty of the network implies that the probability per Hubble
time for this segment to be involved in a long-string
intercommutation event is proportional to its length di-
vided by dH, and so for short segments the intercommuta-
tion rate per Hubble time will be small. Formation of a loop
much larger than the segment might remove the entire
segment from the long string, but this should have little
correlation with the configuration of the segment itself, and
so will not affect the probability distribution for the en-
semble of short segments. Formation of loops at the size of
the segment and smaller could affect this distribution, and
the results of Sec. IV will indicate that the production of
small loops is large, but this process takes place only in
localized regions where the left- and right-moving tangents
are approximately equal. Thus, there is a regime where
stretching is the only relevant process.

If we follow a segment forward in time, its length
increases but certainly does so more slowly than the hori-
zon scale dH, which is proportional to the Friedmann-
Robertson-Walker (FRW) time t. Thus the length divided
by dH decreases, and therefore so does the rate of inter-
commutation. If we follow the segment backward in time,
its length eventually begins to approach the horizon scale,
and the probability becomes large that we encounter an
intercommutation event. Our strategy is therefore clear. For
the highly nonlinear processes near the horizon scale we
must trust simulations. At a somewhat lower scale we can
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read off the various correlators describing the behavior of
the string, and then evolve them forward in time using the
Nambu action until we reach the gravitational radiation
scale. The small probability of an intercommutation in-
volving the short segment can be added as a perturbation.
This approach is in the spirit of the renormalization group,
though with long and short distances reversed.

B. Two-point functions at short distance

In a FRW spacetime,

 ds2 � �dt2 � a�t�2dx � dx � a���2��d�2 � dx � dx�;
(2.1)

the equation of motion governing the evolution of a cosmic
string is [19]

 

�x� 2
_a
a
�1� _x2� _x �

1

�

�
x0

�

�
0

: (2.2)

Here � is given by

 � �
�

x02

1� _x2

�
1=2
: (2.3)

These equations hold in the transverse gauge, where _x �
x0 � 0. Dots and primes refer to derivatives relative to the
conformal time � and the spatial parameter � along the
string, respectively. The evolution of the parameter � fol-
lows from Eq. (2.2),

 

_�
�
� �2

_a
a

_x2: (2.4)

From the second derivative terms it follows that signals
on the string propagate to the right and left with d� �
�d�=�. Thus the structure on a short piece of string at a
given time is a superposition of left- and right-moving
segments, and it is these that we follow in time. In an
expanding spacetime the left- and right-moving waves
interact—they are not free as in flat spacetime.

From Eq. (2.4) it follows that the time scale of variation
of � is the Hubble time, and so to good approximation we
can replace _x2 with the time-averaged �v2 (bars will always
refer to root-mean-square (RMS) averages), giving � /
a�2 �v2

as a function of time only.2 From the definition of
� it then follows that the energy of a segment of string of
coordinate length � is E � �a��������. For simplicity we
will refer to E=� as the length l of a segment,

 l � a��������; (2.5)

though this is literally true only in the rest frame. The scale
factor is

 a / t� / ��
0
; �0 � �=�1� ��; (2.6)

where

 radiation domination :��1=2; �0 �1; �v2	0:41;

matter domination: ��2=3; �0 �2; �v2	0:35:

(2.7)

The RMS velocities for points on long strings are taken
from simulations [12]. It follows that

 l / ��
0
/ t� ; � 0 � �1� 2 �v2��0; � � �1� 2 �v2��:

(2.8)

In the radiation era, �r 
 0:1 and in the matter era �m 

0:2. Thus the physical length of the segment grows in time,
but more slowly than the comoving length [15], and much
more slowly than the horizon length dH / t.

For illustration, consider a segment of length (10�6 to
10�7)dH, as would be relevant for lensing at a separation of
a few seconds and a redshift of the order of z ’ 0:1.
According to the discussion above, l=dH depends on time
as t��1 
 t�0:8 in the matter era. Thus the length of the
segment would have been around a hundredth of the hori-
zon scale at the radiation-to-matter transition. In other
words, it is the nonlinear horizon scale dynamics in the
radiation epoch that produces the short-distance structure
that is relevant for lensing today, in this model. This makes
clear the limitation of simulations by themselves for study-
ing the small scale structure on strings, as they are re-
stricted to much smaller dynamical ranges.

In terms of left- and right-moving unit vectors p� �
_x� 1

�x0, the equation of motion (2.2) can be written as [1]

 

_p� �
1

�
p0� � �

_a
a
�p� � �p� � p��p�: (2.9)

We will study the time evolution of the left-moving product
p���; �� � p���; �0�. For this it is useful to change varia-
bles from (�, �) to (�, s) where s is constant along the left-
moving characteristics, _s� s0=� � 0. Then

 @��p��s; �� � p��s0; ��� � �
_a
a
�p��s; �� � p��s0; ��

� p��s; �� � p��s0; ��

� ��s; ��p��s; �� � p��s0; ��

� ��s0; ��p��s; �� � p��s0; ���;

(2.10)

where � � �p� � p� � 1� 2v2.
The equations of motion (2.9) and (2.10) are nonlinear

and do not admit an analytic solution, but they simplify
when we focus on the small scale structure. If p��s; ��
were a smooth function on the unit sphere, we would have
1� p��s; �� � p��s0; �� � O��s� s02� as s0 approaches s.
We are interested in any structure that is less smooth than
this, meaning that it goes to zero more slowly than �s�

2The transverse gauge choice leaves a gauge freedom of time-
independent � reparametrizations. A convenient choice is to take
� to be independent of � at the final time, and then � will be
�-independent to good approximation on any horizon length
scale in the past.

ANALYTIC STUDY OF SMALL SCALE STRUCTURE ON . . . PHYSICAL REVIEW D 74, 083504 (2006)

083504-3



s02. For this purpose we can drop any term of order �s�
s02 or higher in the equation of motion (smooth terms of
order s� s0 cancel because the function is even).

Consider the product p��s; �� � p��s0; ��. The right-
moving characteristic through (s, �) and the left-moving
characteristic through (s0, �) meet at a point (s; �� 	)
where 	 is of order s� s0.3 Eq. (2.9) states that p� is
slowly varying along left-moving characteristics (that is,
the time scale of its variation is the FRW time t), and p� is
slowly varying along right-moving characteristics. Thus
we can approximate their product at nearby points by the
local product where the two geodesics intersect,

 p��s; �� � p��s0; �� � ���s0; �� 	� �O�s� s0�:

(2.11)

Then
 

@��p��s; �� � p��s0; ��� �
_a
a
���s0; �� 	� � ��s; �� 	�

� ��s; ��p��s; �� � p��s0; ��

� ��s0; ��p��s; �� � p��s0; ���

�O��s� s02�: (2.12)

When we integrate over a scale of order of the Hubble time,
the 	 shifts in the arguments have a negligible effect O�	�
and so we ignore them. Defining

 h���s; s0; �� � 1� p��s; �� � p��s0; ��; (2.13)

we have
 

@�h���s; s
0; �� � �

_a
a
h���s; s

0; �����s0; �� � ��s; ��

�O��s� s02�: (2.14)

Thus
 

h���s; s
0; �1� � h���s; s

0; �0� exp
�
��0

Z �1

�0

d�
�
���s0; ��

� ��s; �� �O��s� s02�
�
: (2.15)

Averaging over an ensemble of segments, and integrat-
ing over many Hubble times (and therefore a rather large
number of correlation times) the fluctuations in the expo-
nent average out and we can replace ��s; �� with �� � 1�
2 �v2,

 hh���s; s0; �1�i 	 hh���s; s0; �0�i��1=�0�
�2�0 ��: (2.16)

Note that in contrast to previous equations the approxima-
tion here is less controlled. We do not at present have a
good means to estimate the error. It depends on the corre-
lation between the small scale and large scale structure (the

latter determines the distribution of �), and so would
require an extension of our methods. We do expect that
the error is numerically small; note that if we were to
consider instead hlnh���s; s0; ��i then the product in
Eq. (2.15) would become a sum and the averaging would
involve no approximation at all.

Averaging over a translationally invariant ensemble of
solutions, we have

 hh����� �0; �1�i 	 ��1=�0�
�2�0 ��hh����� �0; �0�i:

(2.17)

We have used the fact that to good approximation (again in
the sense of Eq. (2.16)), � is only a function of time, and so
we can choose � � s�

R
d�=� and �� �0 � s� s0.

Equivalently,

 hh����� �0; ��i 	
f��� �0�

�2�0 ��
: (2.18)

The ratio of the segment length to dH � �1� �0�t is

 

l
dH
/
a���� �0�

t
/
�� �0

�1�2�0 �v2 : (2.19)

The logic of our earlier discussion is that we use simula-
tions to determine the value of h�� at l=dH somewhat less
than one, and then evolve to smaller scales using the
Nambu action. That is,

 h����� �0; �� � h0 when �� �0 � x0�1�2�0 �v2
;

(2.20)

for some constants x0 and h0. We assume scaling behavior
near horizon scale, so that h0 is independent of time. Using
this as an initial condition for the solution (2.18) gives
 

hh����� �0; ��i 	 h0

�
�� �0

x0�1�2�0 �v2

�
2�
	 A�l=t�2�;

� �
�0 ��

1� 2�0 �v2 �
� ��

1� � ��
: (2.21)

In the last form we have expressed the correlator in terms
of physical quantities, the segment length l defined earlier,
and the FRW time t.4

Equation (2.21) is our main result. Equivalently (and
using � parity),

 hp���; �� � p���0; ��i � hp���; �� � p���0; ��i

	 1� A�l=t�2�: (2.22)

In the radiation era �r 
 0:10 and in the matter era �m 

0:25. There can be no short-distance structure in the corre-
lator p� � p�, because the left- and right-moving segments
begin far separated, and the order _a=a interaction between

3Explicitly, for given � we could choose coordinates where
���� � 1 and s��0; �� � �� �0 � ��O���0 � �2�, and then
	 � �s� s0�=2.

4We have not yet needed to specify numerical normalizations
for � and �, or equivalently for � and a. The value of h0 depends
on this choice, but the value of A does not.
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them is too small to produce significant nonsmooth corre-
lation. Thus, from (2.11) we get

 hp���; �� � p���0; ��i � � ���O��� �0�: (2.23)

C. Small fluctuation approximation

Before interpreting these results, let us present the deri-
vation in a slightly different way. The exponent � is
positive, so for points close together the vectors p���; ��
and p���0; �� are nearly parallel. Thus we can write the
structure on a small segment as a large term that is constant
along the segment and a small fluctuation:

 p���; �� � P���� � w���; �� � 1
2P����w

2
���; �� � . . . ;

(2.24)

with P����2 � 1 and P���� � w���;�� � 0. Inserting this
into the equation of motion (2.9) and expanding in powers
of w� gives

 

_P� � �
_a
a
�P� � �P� � P��P�; (2.25)

 

_w� �
1

�
w0� �

_a
a
��w� � P��P� � �P� � P��w�

� ��w� � _P��P� �
_a
a
�P� � P��w�:

(2.26)

Since the right-moving p� is essentially constant during
the period when it crosses the short left-moving segment,
we have replaced it in the first line of (2.26) with a
�-independent P�. In the second line of (2.26) we have
used w� � P� � 0. In the final equation for w�, the first
term is simply a precession: P� rotates around an axis
perpendicular to both P� and P�, and this term implies an
equal rotation of w� so as to keep w� perpendicular to P�.
Equation (2.26) then implies that in a coordinate system
that rotates with P�, w� is simply proportional to a��.

It follows that

 hp���; �� � p���0; ��i � 1 � �1
2h�w���; ��

� w���0; ��2i (2.27)

scales as a�2 �� as found above (again we are approximating
as in Eq. (2.16), and again this statement would be exact if
we instead took the average of the logarithm). Similarly the
four-point function of w� scales as a�4 ��. We have not
assumed that the field w� is Gaussian; the n-point func-
tions, just like the two-point function, can be matched to
simulations near the horizon scale. We can anticipate some
degree of non-Gaussianity due to the kinked structure; we
will discuss this further in Sec. III B.

D. Discussion

Now let us discuss our results for the two-point func-
tions. We can also write them as

 corr x�l; t� �
hx0��; �� � x0��0; ��i
hx0��; �� � x0��; ��i

	 1�
A

2�1� �v2�
�l=t�2�;

corrt�l; t� �
h _x��; �� � _x��0; ��i
h _x��; �� � _x��; ��i

	 1�
A

2 �v2 �l=t�
2�:

(2.28)

These are determined up to two parameters �v2 and A that
must be obtained from simulations. A first observation is
that these scale: they are functions only of the ratio of l to
the horizon scale. This is simply a consequence of our
assumptions that the horizon scale structure scales and that
stretching is the only relevant effect at shorter scales. We
emphasize that these results are for segments on long
strings; we will discuss loops in Sec. IV.

It is natural to characterize the distribution of long
strings in terms of a fractal dimension. The RMS spatial
distance between two points separated by coordinate dis-
tance � is

 hr2�l; t�i � hx0 � x0i
Z l

0
dl0

Z l

0
dl00corrx�l

0 � l00; t�

	 �1� �v2�l2
�

1�
A�l=t�2�

�2�� 1��2�� 2��1� �v2�

�
:

(2.29)

We can then define the fractal dimension df (which is 1 for
a straight line and 2 for a random walk),

 df �
2d lnl

d lnhr2�l; t�i

	 1�
A��l=t�2�

�2�� 1��2�� 2��1� �v2�
�O��l=t�4��:

(2.30)

The fractal dimension approaches 1 at small scales: the
strings are rather smooth. There is a nontrivial scaling
property, not in the fractal dimension but rather in the
deviation of the string from straightness,

 1� corrx�l; t� / �l=t�
2�; 1� corrt�l; t� / �l=t�

2�:

(2.31)

We define the scaling dimension ds � 2�. Note that ds is
not large, roughly 0.2 in the radiation era and 0.5 in the
matter era, so the approach to smoothness is rather slow.

Our general conclusions are in agreement with the re-
cent simulations of Ref. [12], in that the fractal dimension
approaches 1 at short distance. To make a more detailed
comparison it is useful to consider a log-log plot of 1�
corrx�l; t� versus l, as suggested by the scaling behavior
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(2.31); we thank C. Martins for replotting the results of
Ref. [12] in this form. The comparison is interesting. At
scales larger than dH (which is 
6:7
 in the radiation era
and 
4:3
 in the matter era) the correlation goes to zero.
Rather abruptly below dH the slope changes and agrees
reasonably well with our result. It is surprising to find
agreement at such long scales where our approximations
do not seem very precise. On the other hand, at shorter
scales where our result should become more accurate, the
model and the simulations diverge; this is especially clear
at the shortest scales in the radiation-dominated era
(Fig. 1).

One possible explanation for the discrepancy is transient
behavior in the simulations. We have argued that the
structure on the string is formed at the horizon scale and
‘‘propagates’’ to smaller scales (in horizon units) as the
Universe expands. In Ref. [12] the horizon size increases
by a factor of order 3, and so even if the horizon scale
structure forms essentially at once, the maximum length
scale over which it can have propagated is 31�� , less than
half an order of magnitude. At smaller scales, the small
scale structure seen numerically would be almost entirely
determined by the initial conditions. On the other hand, the
authors of Ref. [12] (private communication) argue that
their result appears to be an attractor, independent of the
initial conditions, and that loop production may be the
dominant effect. Motivated by this we will examine loop
production in Sec. IV. Indeed, we will find that this is in
some ways a large perturbation, but we are still unable to
identify a mechanism that would produce the two-point
function seen in the simulations. This is an important issue
to be resolved in future work.

Thus far we have discussed corrx. Our result (2.28)
implies a linear relation between corrx and corrt. In fact,
this holds more generally from the argument that there is
no short-distance correlation between p� and p�,
Eq. (2.23):
 

�1� �v2�corrx�l; t� � �v2corrt�l; t�

� �1
2hp���; �� � p���0; ��

� p���; �� � p���0; ��i ! ��: (2.32)

Inspection of Fig. 2 of Ref. [12] indicates that this relation
holds rather well at all scales below 
.

The small scale structure on strings is sometimes pa-
rametrized in terms of an effective tension [20,21]. For a
segment of length l the effective tension is given by

 

�eff

� �

��������������
1� �v2
p

l
hr�l�i

	 1�
A

2�1� �v2��2�� 1��2�� 2�

�
l
t

�
2�
; (2.33)

where we have made use of result (2.29). Note that this is
strongly dependent on the scale l of the coarse-graining.

In conclusion, let us emphasize the usefulness of the log-
log plot of 1� corrx. In a plot of the fractal dimension, all
the curves would approach one at short distance, though at
slightly different rates. The difference is much more evi-
dent in Figs. 1 and 2, and gives a clear indication either of
transient effects or of some physics omitted from the
model.

E. The matter-radiation transition

In this subsection we will assume that our stretching
model is actually valid down to the scale where gravita-
tional radiation sets in. If loop production or other rela-
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χ 

log (l/ξ)

1  
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r x

FIG. 1 (color online). Comparison of the model (dashed line)
with the data provided by [12] (solid line) in the radiation-
dominated era, for which the correlation length is 
 ’ 0:30t.
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FIG. 2 (color online). Comparison of the model (dashed line)
with the data provided by [12] (solid line) in the matter-
dominated era, for which the correlation length is 
 ’ 0:69t.

JOSEPH POLCHINSKI AND JORGE V. ROCHA PHYSICAL REVIEW D 74, 083504 (2006)

083504-6



tively rapid processes are actually determining the small
scale structure then this subsection is moot.

We have noted that at very short scales we see structure
that actually emerged from the horizon dynamics during
the radiation era. Thus we should take the radiation-to-
matter transition into account in our calculation of the
small scale structure. At the time of equal matter and
radiation densities,

 1� hp���; �eq� � p���0; �eq�i 	 Ar�leq=teq�
2�r ; (2.34)

where leq is the length of the segment between � and �0 at
teq. Assuming that the transition from radiation-dominated
to matter-dominated behavior is sharp (which is certainly
an oversimplification), we evolve forward to today using
the result (2.18). The right-hand side of Eq. (2.34) is then
multiplied by a factor �t=teq�

�2�m ��m . In terms of the length
today, l � leq�t=teq�

�m , we have

 1� hp���; �� � p���0; ��i 	 Ar�l=t�2�r

��t=teq�
�2�m�2�r�m�2�r :

(2.35)

This expression applies to scales l�t� that, evolved back-
ward in time, reached the horizon scale dH before the
transition occurred, i.e. at a time t� defined by l�t�� 
 dH
such that t� < teq. For longer scales, which formed during
the matter era (for which t� > teq), we have simply

 1� hp���; �� � p���0; ��i 	 Am�l=t�
2�m : (2.36)

The transition between the two forms occurs along the
curve determined by the intersection of the two surfaces

(2.35) and (2.36). This determines the critical length at the
time of equal matter and radiation densities, lc�teq� �

�Ar=Am�
1=�2�m�2�r�teq. In terms of the length at some later

time t, the transition occurs at

 

lc�t�
t
	

�
Ar

Am

�
1=�2�m�2�r�

�
t
teq

�
�m�1

; (2.37)

so that the transition scale at the present time is lc 
 3�
10�5dH (Fig. 3). The transition result (2.35) implies more
structure at the smallest scales than would be obtained
from the matter era result, by a factor �lc=l�2��m��r� 

�lc=l�

0:3.
Of course, precise studies of the small scale structure

must include also the effect of the recent transition to
vacuum domination; this period has been brief so the effect
should be rather small.

III. LENSING

Let us now consider the effect of the small scale struc-
ture on the images produced by a cosmic string lens.
Previous work has discussed possible dramatic effects
[22,23], including multiple images and large distortions.
We can anticipate that the rather smooth structure that we
have found, which again we note is subject to our assump-
tions, will produce images with only small distortion. We
will use our stretching model of the two-point function. If
this proves incorrect one could apply the analysis using
phenomenological values of � and A; for example, the
extrapolation of the results of Ref. [12] give a smoother
string, and even less distorted images.

A. Distortion of images

We quote the result of Ref. [24] for the angular deflec-
tion of a light ray by a string,

0.002

0.004

0.006

0.008

0.01

l/10-5dH

<
h +

+
(l
,t

0
)>

0
0 1 2 3 4 5 6 7 8 9 10

FIG. 3. Structure on the string, hh��i, as a function of the
length l at present time (solid curve). On scales larger than the
critical length lc 
 3� 10�5dH the structure is determined by
the matter era expression. On scales below lc the transition result
(2.35) gives an enhanced effect. The dashed curves show the
extrapolations of the two relevant expressions: on small scales
the actual structure is enhanced relative to the pure matter era
result.
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FIG. 4 (color online). Schematic representation of the system
considered, with the string lens displayed along the x1-axis and
the distant source and the observer located at points S and O,
respectively.
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 �?�y?� � 4G�
Z
d�

�F�����0����0�
1� _xk

x? � y?
jx? � y?j2

�
t�t0���

:

(3.1)

Here ��
�0� is the four-velocity of the unperturbed light ray,

which we take to be (1, 0, 0, 1) as shown in Fig. 4, y� is a
reference point on this ray, and subscripts? and k are with
respect to the spatial direction of the ray. Also, x���; t� is
the string coordinate,5 in terms of which

 F�� � _x� _x� � x�0x�0 � 1
2�

��� _x _x � x0x0�; (3.2)

and t0��� is defined by t0��� � x3��; t0� � y3.
In keeping with Sec. II C we separate the string locally

into a straight part and a fluctuation; we will keep the
deflection only to first order in the fluctuation. We consider
here only the simplest geometry, in which the straight
string is perpendicular to the light ray and at rest, so that
P� � �P� � �1; 0; 0�. To first order in the fluctuation,
x���; t� � �t; �; x2��; t�; x3��; t��. One then finds

 �1�y?� � 4G�
Z
d�
� _x3��; t0���� y1� � x

0
2��; t0�y2

��� y1�
2 � y2

2

;

�2�y?� � �sgn�y2��

� 4G�
Z
d�

_x3��; t0�y2 � x
0
2��; t0���� y1�

��� y1�
2 � y2

2

;

(3.3)

with � � 4�G� being half the deficit angle of the string.
To the order that we work t0 is a constant, corresponding to
the time when the light ray is perpendicular to the straight
string.

We can use our results for the small scale structure to
calculate the two-point functions of the deflection. Let us
focus on the local magnifications parallel and perpendicu-
lar to the string, given by basic lensing theory as

 M1�y?� � 1�
Dl�Do �Dl�

Do

@�1

@y1
�y?�;

M2�y?� � 1�
Dl�Do �Dl�

Do

@�2

@y2
�y?�:

(3.4)

Here Do and Dl are the distances of the source from the
observer and the lens, respectively, (these would be the
angular diameter distances on cosmological scales). It is
particularly interesting to consider the differential magni-
fications for the two images produced by a string,

 	M1 � M1�y?� �M1�y0?�;

	M2 � M2�y?� �M2�y0?�:
(3.5)

We take for simplicity y? � �0; b� and y0? � �0;�b� for

b � �Dl�Do �Dl�=Do; this corresponds to the symmetric
images of an object directly behind the string. Then

 	M1 � �	M2 � �
2b2

�

Z
d�x02��; t0�@�

�
1

�2 � b2

�
:

(3.6)

From Sec. II we obtain
 

hw���; t� � w���0; t�i � hw���; t� � w���0; t�i

� 4hx02��; t�x
0
2��

0; t�i

� Af��=t�2� � ��0=t�2�

� ���� �0=t�2�g: (3.7)

Note that Eq. (2.27) does not fully determine the two-point
functions (3.7), and in fact that the latter cannot be trans-
lation invariant. We have fixed the ambiguity by defining
the expectation value to vanish when� or �0 vanishes (that
is, at the point on the string nearest to the light ray); this
amounts to a choice of how one splits p� into P� and w�.

As it stands, Eq. (3.7) applies only when j�� �0j is
larger than the critical length lc. If this is not the case, one
must take into account the radiation-to-matter transition as
discussed in Sec. II E. According to Eq. (2.35), the right-
hand side (RHS) of (3.7) gets multiplied by a power of
t=teq. From hx02x

0
2i we obtain6

 h	M2
1i � h	M

2
2i

�
�r�1� 2�r�

2 cos���r�
Ar�2b=t0�2�r�t0=teq�

�2�m�2�r�m�2�r :

(3.8)

Plugging in the numeric values for �, A, and � and using a
representative value for the dimensionless parameter
G�
 10�7, we obtain a RMS differential magnification
slightly below 1%:

 h	M2i1=2 ’ 0:009: (3.9)

B. Alignment of lenses and non-Gaussianity

Another question related to short-distance structure is
the alignment of lenses. Suppose we see a lens due to a
long string, with a certain alignment. Where should we
look for additional lens candidates? Previous discussions
[25,26] have considered the two extreme cases of a string
that is nearly straight, and a string that is a random walk on
short scales; clearly the networks that we are considering
are very close to the first case.

5The region where the light ray passes the string is small on a
cosmological scale, so to use our earlier results we can locally
set a � � � 1, dl � d�, @t � @�.

6The lensing scale, which is provided by b, is typically of the
order of 10�7dH, thus much smaller than the critical length lc.
We can then safely use the formula for hx02x

0
2i valid for the

smallest scales over the full range of integration. Corrections
from the longest scales will increase the final result, but not
significantly.
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We keep the frame of the previous section, with the lens
at the origin in x? and aligned along the 1-axis. Then as we
move along the string, the RMS transverse deviation is

 hx2
2�l�i �

Z l

0
d�0

Z l

0
d�00hx02���x

0
2��

0�i

�
Al2

4��� 1�
�l=t�2�: (3.10)

The extension in the x direction is just l, so the RMS
angular deviation is

 	’

������������������������
A=4��� 1�

q
�l=t�� � 	’: (3.11)

If we put in representative numbers, looking at an apparent
separation on the scale of arc-minutes for a lens at a
redshift of order 0.1, we obtain with the matter era parame-
ters a deviation 	’
 0:05 radians. That is, any additional
lenses should be rather well aligned with the axis of the
first. If the string is tilted by an angle  to the line of sight,
then projection effects increase 	� and 	’ by a factor
1= cos . Of course, for lensing by a loop, the bending
will be large at lengths comparable to the size of the loop.

Lens alignment provides an interesting setting for dis-
cussing the non-Gaussianity of the structure on the string.
If the fluctuations of x02 were Gaussian, then the probability
of finding a second lens at an angle 	’ to the axis of the
first would be proportional to e�	’

2=2	’2

, and therefore
very small at large angles. However, we have considered
thus far a typical string segment, which undergoes only
stretching. There will be a small fraction of segments that
contain a large kink, and one might expect that it is these
that dominate the tail of the distribution of bending angles.

Let us work this out explicitly. Consider a left-moving
segment of coordinate length �, and let P��; �; k�dk be the
probability that it contains a kink for which the disconti-
nuity jp� � p0�j lies between k and k� dk (0< k< 2).
There are two main contributions to the evolution of P.
Intercommutations introduce kinks at a rate that we assume
to scale, so that it is proportional to the world sheet volume
in horizon units, a2����2�0=�d�, and to some unknown
function g�k�. Also, the expansion of the Universe straight-
ens the kink, k / a� �� [16]. Then7

 

@P
@�
� �2�0�1� �v2�1=���g�k� � ��

_a
a
@
@k
�kP�: (3.12)

We set P to zero at the matching time �0 defined by

 � � x0�1�2�0 �v2

0 ; (3.13)

as in Eq. (2.20): earlier kinks are treated as part of the
typical distribution, while P identifies kinks that form later.

For simplicity we assume that x0 is small enough that the
probability of more than one kink can be neglected.

To solve this, define

 � � k��
0
; Q��; �; �� � kP��; �; ��: (3.14)

Then

 �@�Q � �g�����
0
����1��0 : (3.15)

This can now be integrated to give

 P��; �; �� � ���
0
Z �

�0

d�0

�0
�0�1��0g�k��

0
=�0�

0
�

�
~�
� 0
k�1=�

Z k0

k

dk0

k0
k01=�g�k0�: (3.16)

Here k0 � k�x0=~���
0=�1�2�0 �v2� and ~� � �=�1�2�0 �v2

. Note
that ~� is just a constant times l=t, so the probability
distribution scales. The source g�k� vanishes by definition
for k > 2, so k0 > 2 is equivalent to k0 � 2.

Rather than the angle 	’ between the axis of the first
lens and the position of the second lens, it is slightly
simpler to consider the angle 	� between the two axes.
In the small fluctuation approximation this is just x02���,
and so the RMS fluctuation is

 	� �
���������
A=2

p
�l=t��: (3.17)

In the Gaussian approximation, the probability distribution
is e�	�

2=2	�2

and so it is very small for large angles. On the
other hand, a large angle might also arise from a segment
that happens to contain a single recent kink. Treating the
segment as straight on each side of the kink, the probability
density is then precisely the function P��; �; k�dk just
obtained, with k � 	�. If we consider angles that are large
compared to 	� but still small compared to 1, the range of
integration in the solution (3.16) extends essentially to the
full range 0 to 2 and so the integral gives a constant. Then

 P��; �; k�dk / k�1=�dk � 	��1=�d	�: (3.18)

Thus the tail of the distribution is not Gaussian but a power
law, dominated by segments with a ‘‘recent’’ kink. One
finds the same for the distribution of 	’. It is notable
however that the exponent in the distribution is rather large,
roughly 4 in the matter era and 10 in the radiation era. Thus
the earlier conclusion that the string is rather straight still
holds. The sharp falloff of the distribution also suggests
that a Gaussian model might work reasonably well, and
indeed we will employ this in the next section.

IV. LOOP FORMATION

The model presented thus far assumes that stretching is
the dominant mechanism governing the evolution of the
small scale structure. Motivated by the discrepancy with
Ref. [12] (and at the suggestion of those authors), we now
consider the production of small loops. Given the smooth-

7Other effects are often included in the discussion of kink
density, such as the removal of kinky regions by loop formation
[27], but these have a small effect.
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ness of the strings on short distances as found above, one
might have thought that loop production on small scales
would be suppressed, but we will see that this is not the
case. We will ignore loop reconnection, based on the
standard argument that this is rare for small loops [2].

We will treat the stretching model as a leading approxi-
mation, and add in the loop production as a perturbation.
However, we will find that the loop production diverges at
small scales, and so the problem becomes nonlinear and
our analytic approach breaks down. Ultimately we would
expect that some sort of improved scaling argument can be
used to follow the structure to still smaller scales, but this is
beyond our current methods; it is necessary first to identify
the relevant processes.

A. The rate of loop production

In this section we aim to determine the rate of loop
production, which occurs when a string self-intersects.
That is, we want to compute the number of loops dN
with invariant length between l and l� dl originating from
a self-intersection at a string coordinate between � and
�� d� during a time interval (t; t� dt). Loops much
smaller than the horizon size evolve in an essentially flat
space so we are able to use null coordinates u � t� � and
v � t� �. In this case the left- and right-moving vectors
p� depend only on u or v, respectively, and the condition
for the formation of a loop of length l is L� � L� with

 L��u; l� �
Z u�l

u
du0p��u0�;

L��v; l� �
Z v

v�l
dv0p��v0�:

(4.1)

Hence the number of loops formed is given by

 dN � 	�3��L��u; l� �L��v; l��j detJjdudvdl; (4.2)

where J is the Jacobian for the transformation �u; v; l� !
L� �L�. This formalism is as in Refs. [7,14].

Expanding around the stretching result in the form of
Sec. II C, we have the functional probability distribution

 P �p�;p� 	 P 0�P�;P��P��w�P��w�: (4.3)

That is, with stretching alone the left- and right-movers
cannot be correlated on small scales. We will further
assume that P� are Gaussian with variance given by the
two-point function. As discussed in Sec. III A this two-
point function is not completely determined by Eq. (2.27),
and in general we have
 

hw��u0� � w��u00�i � �Aju0 � u00j2�=t2� � f�u0� � f�u00�

� 2G�u0; u00�: (4.4)

The function G is defined for later reference, with the
factor of 2 representing the sum over transverse directions.
To specify the function f one needs to choose how to split

p� into P� and w�. The natural choice here is to make P�
parallel to L�, i.e. P� � L�=L�. The transverse fluctua-
tions along the segment that forms the loop, say 0<�< l,
then have vanishing average,

 

Z u�l

u
du0w��u0� �

Z v

v�l
dv0w��v0� � 0: (4.5)

Integrating Eq. (4.4)
R
u�l
u du0 and using the condition (4.5)

to set this to zero gives f�u0� � ��u0 � u� where

 ���� �
A

�2�� 1�lt2�

�
�2��1 � �l� ��2��1 �

l2��1

2�� 2

�
:

(4.6)

Similarly, hw��v0� � w��v00�i � 2G�v0; v00� with f�v0� �
��v� v0�.

The three-dimensional 	-function in Eq. (4.2) can be
expressed in spherical coordinates as

 	�3��L� �L�� �
1

L2
�

	�L� � L��	
�2��P� � P��: (4.7)

We take the z-direction to be aligned along P� � P�, in
which case the Jacobian matrix is given by

 J �
wx��l��w

x
��0� w

y
��l��w

y
��0�

1
2�w

2
��0��w

2
��l�

wx��0��w
x
��l� w

y
��0��w

y
��l�

1
2�w

2
��l��w

2
��0�

wx��l��w
x
��0� w

y
��l��w

y
��0�

1
2�w

2
��0��w2

��l�

0
B@

1
CA:

(4.8)

For notational simplicity we have, after differentiating, set
u � 0 and v � l. The fluctuations w� effectively live in
the x-y plane due to the orthogonality condition P� � w� �
0.

Let us first estimate the scaling of dN with l. We have

 L� � L� �
1

2

Z l

0
d��w2

���� � w
2
����� � O�l2��1=t2��:

(4.9)

The width of the distribution of L� � L� is of order l1�2�

and so the average of 	�L� � L�� is a density of order
l�1�2�. The 	-function (4.7) then scales as l�3�2� while
the Jacobian scales as l4� (the columns are, respectively, of
orders l�, l�, l2�), giving in all

 dN /
dl

l3�2� ; ldN /
dl

l2�2� : (4.10)

Thus, for 2� � 1 (as found in both the matter and radiation
eras), the total rate of string loss diverges at small l: the
calculation breaks down.

We will discuss this cutoff further in the next subsection,
but first we estimate the numerical coefficient. We see no
reason for a strong correlation between the 	-function and
Jacobian factors in dN , so we take the product of their
averages. For the radial part of the 	-function, a Gaussian
average gives
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h	�L� � L��i �
Z 1
�1

dy
2�
heiy�L��L��i

�
Z 1
�1

dy
2�

eiyh�L��L��ic��y
2=2�h�L��L��2ic�i�y3=6�h�L��L��3ic�...

�
Z 1
�1

dy
2�

e�y
2R����O�y3� 	

1�����������������
4�R���

p : (4.11)

The subscripts c in the second line refer to the connected
expectation values, obtained by contracting the Gaussian
fields w� with the propagator (4.4). We have defined

 R��� �
Z l

0
d�

Z l

0
d�0G2��;�0; t� �

l2�4�

t4�
A2C���;

(4.12)

 

C��� �
1

4�1� 2��2

�
1� 2�
1� 4�

�
1

�1� ��2
�

4

3� 4�

�
4�2�2� 2��
��4� 4��

�
: (4.13)

Numerically C��� � �0:0049; 0:0106; 0:0111� for � �
�0:1; 0:25; 0:5�.

We now turn to the angular part of the probability
distribution function. This must be a function of P� � P�,
and we will take it to have exponential form [7]:

 P �P�;P�� �
�

�4��2 sinh�
e��P��P� : (4.14)

The prefactor normalizes the distribution. The parameter �
can be determined from the requirement that hP� � P�i �
� ��, or equivalently

 

1

�
�

cosh�
sinh�

’ � ��: (4.15)

Thus, �
 3 ��. More precisely, � is 0.55 in the radiation
epoch and 0.95 in the matter epoch.

We are now able to calculate the average value of (4.7).
Recognizing that hL2

�i ’ l
2 we have

 

h	�3��L��L��i	
�h	�L��L��i

�4�l�2 sinh�

�
Z
d2P�d2P�e��P��P�	�2��P��P��

	
�e��

4�A
�����������������
4�C���

p
sinh�

t2�

l3�2� : (4.16)

We now consider hj detJji. In the Gaussian approxima-
tion the relevant probability distribution is

 P ��w��l�;w��0�� �
detM�

�2��2
exp

�
�

1

2
�Vi
��

TM�Vi
�

�
;

(4.17)

where the index i is summed over the two coordinates x
and y, and

 V i
� �

wi��l�
wi��0�

� �
: (4.18)

(That is, the columns and rows of the 2� 2 matrix M
correspond to the points 0 and l, not the index i.) As usual,
the whole distribution is determined solely by the two-
point functions which have already been determined in
(4.4) and (4.6), M�1

� 	
ij � hVi

��V
j
��

Ti. Thus, one finds that

 M� �
2�t=l�2�

A�1� ��
1 �
� 1

� �
;

detM� �

�
2

A

�
2
�
t
l

�
4� 1� �

1� �
:

(4.19)

We now have all we need to write down an expression
for hj detJji. Before we do so, let us perform a simplifying
change of variables:

 X� �

��������������������
1� �
1� �

1

2A

s
�t=l���wx��l� � w

x
��0�;

Y� �

������
1

2A

s
�t=l���wx��l� � w

x
��0�;

Z� �

��������������������
1� �
1� �

1

2A

s
�t=l���wy��l� � w

y
��0�;

W� �

������
1

2A

s
�t=l���wy��l� � w

y
��0�;

(4.20)

under which the expectation value of the loop Jacobian
takes a compact form:

 hjdetJji�
A2

2�4

�
l
t

�
4�Z

d8Xe�X2

��������F�X��1��
1��

G�X�
��������:

(4.21)

Here we have defined an 8-dimensional vector X �
�X�; X�; Y�; Y�; Z�; Z�; W�; W�� and two functions of it:
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F�X� � �Y�W� � Y�W���Y2
� �W

2
� � Y

2
� �W

2
��;

G�X� � 2�W�W� � Y�Y���X� � X���Z� � Z��

� �Y�W� � Y�W����X� � X��2

� �Z� � Z��2: (4.22)

Numerically the integral is ’ 110 for the radiation epoch
and ’ 94 for the matter epoch; analytic estimates agree.

Finally, we can combine results (4.16) and (4.21).
Noticing that du dv � 2d�dt, we get

 dhN i �
c

t3

�
l
t

�
2��3

d�dt dl (4.23)

with c � 0:121 in the radiation epoch and c � 0:042 in the
matter epoch.

B. The small-loop divergence and fragmentation

The total rate of string loss
R
ldhN i diverges at small l

for � � 0:5, as is the case in both the radiation and matter
eras. The fractal dimension approaches 1 at short distance,
but the exponent �, which characterizes the approach to
this limit, indicates a relatively large amount of short-
distance structure. For example, if we consider the func-
tions p� on the unit sphere, then 	� / 	p1=�

� : the effective
fractal dimension is 1=�, though the path is not continuous,
there are gaps due to kinks.

Of course, the total rate of string loss is bounded, and so
for small loops we must be multiply counting. A precise
account of this effect will be very complicated; see, for
example, Ref. [7], which parametrizes it in terms of a
modification of the exponential distribution (4.14) taking
the form of a ‘‘hole’’ in the forward direction p� � p�.
For the present we just determine the scale at which our
calculation must break down. In a scaling solution, the total
amount of long string in a comoving volume scales as ‘1 /
a3=t2, while stretching alone would give ‘1 / a ��. The rate
of string lost to loops must be

 

1

‘1

�
@‘1
@t

�
loops
�

2� 2��1� �v2�

t
: (4.24)

Our result for the same quantity, with a cutoff l > l�, is

 

1

‘1

�
@‘1
@t

�
loops
�
Z 1
l�
dl
cl

t3

�
l
t

�
2��3

�
c

�1� 2��t

�
l�
t

�
2��1

:

(4.25)

Equating these gives

 l� 
 0:18t (4.26)

in both eras.
The cutoff (4.26) is rather large, just an order of magni-

tude below the horizon scale. However, this is just the
beginning of the story. The formation of these large loops
does not terminate the process of loop production on
smaller scales; this continues on the large loop, unaffected

at least initially by the separation of the loop from the
infinite string.8 Thus we must expect a rather dramatic
fragmentation process. The divergence of the rate of loop
loss implies that at scales l well below l� the naı̈ve number
density of loops of size 
l is greater than 1=l: these
become dense on the string. Thus we might come to the
conclusion that the fragmentation process continues until
we end up with all loops at the gravitational radiation scale,
the opposite of the naı̈ve result (4.26) above.9

In fact, we believe that this is not precisely the situation
either. Rather, a nonself-intersecting loop will occasionally
form, likely an order of magnitude or more smaller than the
primary loop, and this length of loop will then be lost to the
fragmentation process on smaller scales. If a fraction 1=k
of the string is lost in this way at each scale, then the total
length of string in loops of size less than lwill scale as l1=k.
The exponent may be rather small, so there could be a
substantial production of small loops. The divergent rate of
loop production implies that our initial attempt to use
analytic methods to separate scales has been too simple,
but we might hope that a more sophisticated scaling model
along the lines just indicated will be successful.

Let us briefly describe an analytic model of the forma-
tion of nonself-intersecting loops. When the loop forms,
we can define the distributions

 ��p� �
1

l

I
d�	2�p� p�����: (4.27)

Because of the high fractal dimensions of the curves
p����, we might think of these distributions as reasonably
smooth functions. The structure on the high harmonics of
the loop will tend to smear these distributions into
Gaussians, but they will be skewed by the particular ran-
dom values of the lowest harmonics. Thus the distributions
� and � will differ. The production of the smallest loops
is roughly local in p, and so it can only continue until
whichever of the two densities is smaller has been de-
pleted. This leaves residual distributions

 ��p� � ��p� � �r��p� or � r��p� (4.28)

8By the same token, the fragmentation process begins even
before the large loop pinches off. By causality the reconnection
that forms the loop cannot immediately have an effect on the
fragmentation process in its interior. Thus the large scale (4.26)
may not be seen in the primary loops as usually defined. Rather,
we should follow null rays from the two world sheet points of
primary loop formation backwards to the point where they meet,
and define the length of the ‘‘causal primary’’ loop as twice the
time difference so as to enclose the entire causally disconnected
region.

9The previous study [28] may provide little guidance. The
small scale structure there was limited to 10 harmonics, and
neither of the two spectra studied corresponds closely to our
case: the less noisy was equivalent to � � 0:5, where the loop
production is only logarithmically divergent, while the more
noisy is dominated by harmonics near the cutoff and does not
resemble our distribution.
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according to the sign of the difference at each point. This
nonvanishing difference implies a cutoff on the production
of the smallest loops, and allows nonself-intersecting loops
of finite size to form.

C. Comparison with simulations

The results that we have found have some notable agree-
ments, and disagreements, with simulations. One success is
an apparent agreement with the recent simulations of
Ref. [11] for the distribution of loop sizes: that reference
finds a number density of loops per volume and per length
dn=dl / l�p with p � 2:5� 0:1 in the matter era and p �
3:0� 0:1 in the radiation era. We have exponents 3�
2� � 2:5 and 2.8, respectively. Our exponent is for the
production rate rather than the density, but in this regime
the density is dominated by recently produced loops and so
these are the same.

Let us verify this, and also obtain the relative normal-
izations for the two quantities. The number of loops per
comoving volume of length between l and l� dl is un-
affected by the expansion of the Universe, and we are
assuming that we are at scales where gravitational radia-
tion can be neglected. The number then changes only due
to production:

 

d
dt

�
a3 dn
dl

�
�

a3

�2t2
c

l3

�
l
t

�
2�
; (4.29)

where we have inserted the string scaling density 1=�2t2.
This integral is dominated by recent times as long as 3��
1� 2�> 0, as holds in both eras (again, a / t�).
Integrating over time then gives

 

dn
dl
�

c

�3�� 1� 2���2t4

�
l
t

�
�3�2�

: (4.30)

In the notation of Ref. [11],

 C� �
c

�3�� 1� 2���2 �1� ��
�1�2�; (4.31)

where the last factor is from the conversion from dH to t.
Using � � 0:59, 0.30, respectively, in the matter and ra-
diation eras [12], this gives C� � 1:25, 10.3. These are
larger than those found in Ref. [11] by factors of 20 and
260, respectively. A large difference is not surprising, as
we have argued that there will be substantial fragmentation
which will move the loops to smaller l where the distribu-
tions are larger. However, it remains to be seen whether this
can account for such an enormous difference. The frag-
mentation need not change the scaling as long as the long-
string correlation functions remain a power law, because
the shapes of the produced loops, and the resulting frag-
mentation, all scale; thus the agreement of the loop pro-
duction exponents may be real.

As we have noted, the loop scaling must eventually
break down due to conservation of string, but with these
reduced normalizations this happens at much lower scales,

�l� 
 4� 10�4t and 2� 10�4t, respectively. Below these
scales we expect the distribution to fall as discussed in the
fragmentation discussion. Thus we might expect the dis-
tribution to peak near these scales, but perhaps to be rather
broad in both directions. A possible phenomenological
formula for loop production after fragmentation would be

 

dN
d�dt dl

�
�c

t3
x2��3

1� �x=x��2��1�1=k
; x � l=t: (4.32)

The constant �c is the reduced value of our c, determined by
comparison with simulations such as Ref. [11], the expo-
nent 1=k, which is likely to be small, must be determined
by improved simulations of fragmentation, and the value
x� 
 �l�=t is determined by conservation of total string.
Specific signatures, however, might be dominated by the
tails, either at large loops or small.

The relatively large scale (4.26) is similar to that found
in the recent paper [10]. As discussed in Sec. IV B, we
expect that the final loop size is much smaller because of
extensive fragmentation; the divergence that we have
found for small-loop formation will be equally present in
the calculation of fragmentation of a large loop into smaller
ones. Reference [10] finds a much less extensive fragmen-
tation. This points up the need for more complete studies of
this process. This should be possible within the context of
flat spacetime simulations, beginning with long strings
having the small scale structure as input (this does depend
on resolving first the issue of the long-string two-point
function, to which we return below).

The production of very small loops takes place when
p� 
 p�: that is, near cusps on the long strings as pro-
posed in Refs. [29,30]. Indeed, all the loops that we con-
sider are rather smaller than the correlation length, so the
functions p� and p� are each somewhat localized on the
unit sphere, and necessarily in the same region since L� �
L�. In this sense all of our loops are produced near cusps.
It is possible that there is a second population of loops that
form at scales much longer than the correlation length,
though most of these will quickly reconnect with long
strings.

The picture of a complicated fragmentation process is
consistent with the results of Ref. [12]. Now let us return to
the two-point functions as found there. The partial agree-
ment with our stretching model might now seem surpris-
ing, given the large production of small loops. If the loop
formation were distributed on the long strings, there would
be at least one additional effect, where the string shortens
due to loop emission and more distant (and therefore less
correlated) segments are brought closer together. However,
the loop production is not distributed: it occurs when the
functions p����, as they wander on the unit sphere, come
close together. Our picture is that whole segments of order
l� (4.26) are then excised. Thus, most of the segments that
remain on a long string at given time would have been little
affected by loop production.
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The discrepancy at short scales, which is particularly
evident in the radiation era (Fig. 1), remains a puzzle. Let
us first note that at the shortest scales in Figs. 1 and 2 the
slope of the curve approaches and possibly even exceeds
unity, corresponding to the critical value � � 0:5: if the
two-point function is of this form then the small-loop
production converges. Thus it is appealing to assume that
it is feedback from production of short loops that accounts
for the break in the curve in Fig. 1.10 This is distinctly
different from the cutoff via a p� � p� hole as discussed
in Sec. IV B and in Ref. [7]: the latter is a modification of
the �� correlations (though one that would have little
effect on the two-point function), whereas Fig. 1 shows a
modification of the �� correlation.

We are unable to identify a physical mechanism that
would account for the observed two-point function.
Consider a very short segment on a long string. With
time, its size as a fraction of the horizon size decreases,
so it moves to the left on Figs. 1 and 2. If it experiences
only stretching, it will follow the slope of the dashed line.
The loop production must have a strong bias toward re-
moving segments with large fluctuations to account for the
simulations. However, the general picture above is that the
initial loop formation occurs at the scale l�, and so any
small segments will be carried away without any bias on
their own internal configuration. Thus we would expect the
two-point function to be given by the stretching power law
down to arbitrarily small scales, until gravitational radia-
tion enters.11

We will not attempt to connect with the flat spacetime
simulations of Refs. [10,31] because our approach requires
expansion to drive the fractal dimension to 1 at short
distance.

Finally we would like to note a significant puzzle re-
garding the loop velocities. For a loop of length l, the mean
velocity is

 v �
1

2l
�L��u; l� �L��v; l�� �

1

l
L��u; l�: (4.33)

Then

 hv2�l�i �
1

l2
Z l

0

Z l

0
d�d�0hp���� � p���0�i

� 1�
2A

�2�� 1��2�� 2�
�l=t�2�: (4.34)

Looking, for example, at loops with l � 10�2t, we obtain a

typical velocity 0.985 in the matter era and 0.90 in the
radiation era. These are significantly larger than are gen-
erally expected; Ref. [32] gives values around 0.75 and
0.81 for loops of this size. We emphasize that this is not a
consequence of our dynamical assumptions, but can be
seen directly by using the two-point functions of
Ref. [12] (the discrepancy is then even greater in the
radiation era). Assuming that both simulations are correct,
we must conclude that the two-point function on loops is
very different from that on long strings, in fact less corre-
lated. One possible explanation is that loop formation is
biased in this way, but this seems unlikely: loops form
when right- and left-moving segments of equal L�l� meet,
and this will happen most often in the center of the distri-
bution. Rather, this seems to be another indication of the
complicated nature of the fragmentation: the final nonself-
intersecting loops must contain segments which began on
the long string many times further separated than the final
loop size.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Our attempt to isolate the physics on different scales has
not been completely successful, but it suggests some in-
teresting directions for future work. First of all, the two-
point function on long strings must be better understood: is
the discrepancy in Fig. 1 a result of omitted physics or
numerical transients? This question can be settled numeri-
cally, by studying sensitivity to initial conditions, and by
studying the time-dependence of an ensemble of small
segments. A good understanding of the two-point function
would then allow extrapolation to much smaller scales, for
application to lensing (as in Sec. III), gravitational radia-
tion [10], and possible interference between short-distance
structure and cusps [30].

Second, our work points to correlations among the two-
point function, loop production, fragmentation, and loop
velocity. In particular, our conjecture of a very complicated
fragmentation process can be tested—for example, the
argument that nonself-intersecting loops must contain seg-
ments that originated far apart on the long string. Also, the
normalization difference between our loop production and
that in Ref. [11] must presumably be understood in terms
of fragmentation.

In conclusion, cosmic string networks are probably not
as complicated as turbulence, but they share the property
that a rather simple set of classical equations leads to a
complicated dynamics that challenges both numerical and
analytical attacks. We hope that our work is a step toward a
more unified understanding of the properties of these
networks.
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