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We compare three methods for computing invariant Lyapunov exponents (LEs) in general relativity.
These methods involve the geodesic deviation vector technique (M1), the two-nearby-orbits method with
projection operations and with coordinate time as the independant variable (M2), and the two-nearby-
orbits method without projection operations and with proper time as the independent variable (M3). An
analysis indicates that M1 and M3 do not need any projection operation. In general, the values of LEs from
the three methods are almost the same. However, M2 fails for some specific cases. As a result, M3 is the
most preferable to calculate LEs in most cases. In addition, we propose to construct the invariant fast
Lyapunov indictor (FLI) with two-nearby-trajectories and give its algorithm in order to quickly distinguish
chaos from order. Taking a static axisymmetric spacetime as a physical model, we apply different
algorithms of the FLI to explore the global dynamics of phase space of the system where regions of chaos
and order are clearly identified.
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I. INTRODUCTION

Chaos is often visible in nonlinear systems. General
relativity as a nonlinear theory is potentially chaotic.
Although many features of chaos in Newtonian dynamics
have been known clearly for over 40 years, their applica-
tion in relativistic astrophysics began to be widely appre-
ciated only within the last decade or so [1]. One main
interest lies in studying the difference of dynamics between
Newtonian and relativistic trajectories. Varadi et al. [2]
noted that the general relativity effects are small for the
outer planets but not negligible. Additionally, Wanex [3]
revealed the chaotic amplification effect in the relativistic
restricted three-body problem (namely, the ideal
spacecraft-earth-moon orbital system). In particular, sev-
eral authors found chaos in two relativistic systems includ-
ing the two fixed black holes [4] and the Schwarzschild
black hole plus a dipolar shell [5,6], which does not appear
in their corresponding Newtonian counterparts at all.
Another important problem that has been developed in
recent years is to question whether spinning compact bi-
naries [7–15] as promising sources of gravitational waves
exhibit chaotic behavior because the gravitational-wave
detection can not succeed when chaos is present. In prac-
tice, all the examples are attributed to the geodesic or
nongeodesic motion of particles in a given gravitational
field. On the other hand, the time evolution of the gravita-
tional field itself, such as the mixmaster cosmology
[4,16,17], is also of great interest.

In general, the methods for quantifying the ordered or
chaotic nature of orbits in general relativity follow those
widely applied in classical physics. Let us recall a fraction
of these classical methods briefly. Poincaré’s surface of

section is one of the most common qualitative tools in the
analysis of conservative Newtonian dynamical systems of
not more than 2 degrees of freedom or with 3 degrees of
freedom and axial symmetry. However, this technique is
difficult to describe a higher dimensional phase space.
Certainly, the principal Lyapunov exponent (LE), as a
measure of the average exponential deviation of two
nearby orbits, is frequently used. There are two different
algorithms for the calculation of LE: the variational
method and the two-particle one [18] (see Sec. II). The
algorithm of LE is applicable to a phase space with any
dimension, but a high dimension would cause extremely
expensive computation to get a reliable value of LE. There
are also other qualitative methods for multidimensional
systems, such as the power spectra, smaller alignment
index (SALI) [19,20] and fast Lyapunov indicators
(FLIs) [21,22] etc. The power spectra display a finite
number of discrete frequencies for regular orbits, whereas
they are continuous for chaotic ones. One of its problems is
that it is ambiguous to differentiate among complicated
periodic orbits, quasiperiodic orbits and weakly chaotic
orbits. As far as the SALI method is concerned, it is based
on the difference or the sum of two normalized deviation
vectors at the same points of an orbit. If the dimension of
phase space is larger than 2, the indicator changes around
nonzero values for regular orbits, while it tends exponen-
tially to zero for chaotic orbits. The FLI uses the logarithm
of the length of a deviation vector, which increases follow-
ing completely different time rates for different orbits thus
allowing one to distinguish between the ordered and cha-
otic cases (see Sec. III for some details). Both the SALI and
the FLI are not only very fast tools to find chaos, but also
can sketch out the global structure of phase space.
Obviously it takes more CPU time for the former than
for the latter since the former requires two deviation vec-
tors, while the latter needs only one.
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Considering the above various cases, we are mainly in
favor of applying two Lyapunov indices, the LE and the
FLI, to study the geodesic or nongeodesic motion of par-
ticles in relativistic gravitational systems with at least 2
degrees of freedom. As is well known, the classical defi-
nition of LE depends on the choice of time and space
coordinates in general relativity, because a coordinate
gauge in relativity can be arbitrarily adopted so that time
and space coordinates are not necessarily physical. In other
words, there would be different values of the classical LEs
in different coordinate systems. Even such LEs may pro-
vide wrong information on the dynamical features of a
system. For instance, the maximum LE of a chaotic system
turns out to be zero after a logarithmic time transformation,
that is to say, chaos becomes hidden. Consequently, it is
strongly desirable to develop a coordinate independent
definition of LEs for the study of relativistic dynamics.

In general relativity, one can still follow the two ap-
proaches to calculate LEs as in the Newtonian case. As a
counterpart of the variational technique, a geodesic devia-
tion vector can be obtained from the geodesic deviation
equation for a given geodesic flow in general relativity.
Using it, one can easily get a method (M1) for the invariant
LEs in the configuration space as well as in the phase
space. In addition, Imponente and Montani [17] presented
an invariant treatment by projecting a geodesic deviation
vector for the Jacobi metric on an orthogonal tetradic basis.
In this way they can succeed in gaining an insight into the
dynamics of the mixmaster cosmology. On the contrary, it
is seldom to see in the references that LEs are directly
computed by use of the geodesic deviation equation.
Perhaps it is rather troublesome to derive the complicated
curvature tensor. In this sense, it is very natural to extend
the two-particle method from the classical to the relativis-
tic case. It is convenient to employ the method (M2)
introduced by Wu and Huang [23]. They compute gauge
invariant Lyapunov exponents by calculating the space
separation between an ‘‘observer’’ and a ‘‘neighbor’’ par-
ticles that move along two neighboring orbits in the phase
space. Here it is necessary to make use of a ‘‘1� 3’’ split of
the observer’s spacetime and its space projected operator.
Meanwhile, Wu and Huang [23] use coordinate time as the
time variable of the equations of motion. Besides M2, there
is another invariant two-particle method (M3), in which the
integration time variables are the individual proper times of
the two particles instead of the common coordinate time
and the projection operation is not used. A method like M3
can be seen in many references (for example, see [8,12])
where the proper time and the Euclidian distance in the
phase space are adopted, but we prefer to utilize the
Riemannian distance in the configuration space than the
Euclidian one in the phase space for conceptual clarity.

Tancredi et al. [24] have compared the two approaches
for the calculation of LEs in Newtonian dynamics. It is still
necessary to do a comparison of the three methods because

general relativity is much different from the Newtonian
dynamics. A fundamental task is to select an optimal and
valid algorithm to compute LEs. Another aim of our work
is to provide a simple, rapid and efficient indicator of chaos
which is independent of the dimension of phase space and
the choice of time and space coordinates. It is assumed that
this indicator not only can tell us some information about
the global motion in a complicated multidimensional rela-
tivistic system, but also study the transition from regular
motion to chaos as certain physical parameters alter.

In principle, it is possible to fulfill the two purposes in
terms of LE. Udry and Pfenniger [25] made a detailed
quantitative estimate of chaos in a series of 24 triaxial
models of elliptical galaxies by means of LEs. They
claimed that an interval of about 2 Hubble times corre-
sponding to 66 periods or so is sufficient to get stable
values of LEs for each of 100 randomly selected orbits in
every model. However, as Contopoulos and Barbanis [26]
found, lots of these orbits must be calculated for 12 500
periods, and sometimes up to 250 000 periods for the
accomplishment of reliable values of LEs. On the basis
of the values of the LEs, they displayed the structure of
phase space of the systems. In addition, Caranicolas and
Papadopoulos [27] studied the transition from regular mo-
tion to chaos in a 2-dimensional logarithmic potential of
elliptical galaxies by observing the Poincaré surface of
section as some dynamical parameters change. Of course,
it is necessary to calculate thousands of orbits in the above
cases, and each of them must be computed for long enough
time in general. Consequently, the time required to com-
pute such numbers is rather expensive, even would reach
the limit of the present numerical experiments. Under these
circumstances, one had better take advantage of the FLI as
a quicker and more sensitive indicator to separate chaotic
orbits from regular ones. As is mentioned above, the
indicator is originally based on the tangential vectors
from the variational equations of Newtonian dynamics
[21]. Pondering the difficulty and complicacy to derive
variational equations in general relativity, we shall be
interested in developing the FLI method with the two
particles approach—the FLI computed with two-nearby-
orbits. It should be emphasized that this approach would
meet difficulty without renormalization in the numerical
calculation, different from the original approach of FLIs
[21] with the tangential vector. An algorithm of FLI in the
present paper will be provided.

This paper is organized as follows. The classical defini-
tion of LE is reviewed briefly, and the three methods M1,
M2, and M3 in relativistic systems are introduced in
Sec. II. Meanwhile, we offer a theoretical analysis of M1
and M3 to explain why they do not need projection opera-
tions. In addition, we discuss the scope of application of
M2. In Sec. III the FLI with two nearby orbits and its
algorithm are presented. Setting a static axisymmetric
spacetime composed of a Schwarzchild black hole and an
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octopolar shell as a test model, we investigate the global
dynamics of this system. Finally, the summary follows in
Sec. IV.

Throughout the work we use units c � G � 1, and take
the signature of the metric as ��;�;�;��. Greek sub-
scripts run from 0 to 3 and Latin indexes from 1 to 3. The
symbol � denotes the Euclidian inner product; while jaj is
the length of the vector a in the Euclidian space. The
symbol jaj represents the absolute value of a scalar a. In
addition, � stands for the Riemannian inner product, and
k � k is the Riemannian norm of the vector � correspond-
ing to the tensor �� or ��. f is a set of functions. We
specify t as a time coordinate variable, and �, a proper time
variable. D=D� denotes a covariant derivative operator vs
�.

II. COMPARISONS OF THREE METHODS FOR
COMPUTING LE IN GENERAL RELATIVITY

A. LE in classical physics

In classical physics the LE is to characterize the mean
exponential rate of divergence of trajectories surrounding a
given trajectory in the phase space. For a compact autono-
mous n-dimensional system

 

_X � f�X� (1)

with the solution X�t� � �x; _x� and its corresponding varia-
tional equation

 

_Y�t� �
@f
@X
� Y (2)

with a solution Y�t� � ��; _�� at time t, the maximum LE is
given by

 �1 � lim
t!1

1

t
ln
jY�t�j
jY�0�j

: (3)

This is called as the variational method. The system is
chaotic if �1 > 0, otherwise it is regular. This way is
rigorous to get the tangent vector Y�t�, but it is rather
cumbersome to derive Eq. (2) in general. Because of that
people usually use the deviation vector �X�t� between a
reference trajectory X�t� and a shadow one ~X�t� as the
approximate tangent vector. This is a less rigorous but still
useful technique, so-called the two-particle method [18,24]
or two-nearby-trajectories method, in which the LE in the
expression of Eq. (3) is to be replaced by

 �2 � lim
t!1

1

t
ln
j�X�t�j
j�X�0�j

: (4)

Here an initial separation j�X�0�j relative to jX�0�j not
larger than 10�8 is viewed as the best choice to guarantee
�X as a good approximation to Y and to avoid the over-
estimation of LE [24].

As was mentioned in Ref. [23], it is preferable to com-
pute the LE in the configuration space instead of in the

phase space as LEs in the two spaces are both effective in
detecting the long-term dynamical behavior of orbits. In
this case, Eqs. (3) and (4) are, respectively, modified as
follows

 �1 � lim
t!1

1

t
ln
j��t�j
j��0�j

; (5)

 �2 � lim
t!1

1

t
ln
j�x�t�j
j�x�0�j

: (6)

For the two particles method, it is necessary to scale the
distance j�x�t�j down from time to time. In this way, the
shadow trajectory returns to the neighborhood of the ref-
erence one along the deviation vector �x�t�. The magni-
tude of �x�t� shrinks to the initial distance j�x�0�j after
each renormalization, and the velocity deviation vector
� _x�t� should be multiplied by the same factor
j�x�0�j=j�x�t�j. Meanwhile, it is also vital to avoid satu-
ration of orbits in a bounded chaotic region.

The time t and coordinate x in Eq. (5) or Eq. (6) are not
necessary physical and meaningful in general relativity.
Thus, it is desirable to define covariant LE.

B. LEs in general relativity

For a given 4-dimensional spacetime with the metric
ds2 � g��dx�dx�, first we consider a rigorous definition
of LEs by using a geodesic deviation vector.

1. Geodesic deviation vector technique

In the spacetime, a free particle moves along the geode-
sic equation DU�=D� � 0, that is to say,

 �x � � ����� _x� _x�; (7)

and its geodesic deviation equation is

 

D2��

D�2
� �R�����

�U�U�; (8)

where ����, U��� _x��, and R���� stand for the Christoffel
symbol, 4-velocity, and the Riemannian curvature tensor,
respectively.

From Eq. (5), it is easy to get an invariant definition of
LE if the Riemannian norm and proper time � substitute the
Euclidian norm and coordinate time t, respectively. In the
geodesic deviation vector method (M1) the LE is given in
the form

 �1 � lim
�!1

1

�
ln
k ���� k
k ��0� k

; (9)

 k ���� k�
���������������
j� � �j

q
�

����������������������
jg������j

q
: (10)

As an illustration, a similar method given in the phase
space can be seen in Ref. [28]. It is easily shown that the
Riemannian inner product � � � is positive definite be-
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cause ���� is always spacelike when ��0� is spacelike for a
given geodesic flow.

On the other hand, there is not a variational equation like
the form (8) for a nongeodesic flow. However, it is still
possible to derive the variational equation similar to Eq. (2)
for the nongeodesic flow. For example, Nieto et al. [29]
gave a relativistic top deviation equation as a generaliza-
tion of the geodesic deviation equation for a pair of nearby
point particles. Thus M1 remains valid if the spacetime
background is ds2 � g��dx

�dx�.

2. Two-nearby-orbits method with projection operations

The derivation of the geodesic deviation equation is
usually a rather hard task. In particular, it is much arduous
to obtain the variational equation of a nongeodesic flow.
Thus, it is a good idea to refine the classical definition by
Eq. (6) using an invariant version of it, introduced by Wu
and Huang [23] (method M2).

Let two particles, an observer and his ‘‘neighbor,’’ move
on two nearby- trajectories in a curved spacetime. At a
coordinate time t the observer is at the point O with
coordinate x� and 4-velocity U�, and his neighbor reaches
the point ~O with coordinate ~x�. The deviation vector

 �x�t� � �x��t� � ~x��t� � x��t� (11)

from O to ~O is projected to the observer’s local space and
the resulting projected vector is �x�? � h���x�, where
h�� � g�� �U�U� is the space projection operator of
the observer. The space distance of the neighbor measured
by the observer at time t is

 �L �
���������������������������
g���x�?�x�?

q
�

��������������������������
h���x��x�

q
: (12)

Hence we define an invariant LE (M2) as

 �2 � lim
�!1

1

�
ln

�L���
�L�0�

; (13)

where the proper time � corresponds to the coordinate time
t according to the metric. Obviously, this LE is indepen-
dent of coordinate transformations [23].

There are detailed implementations of M2 in [23]. Here
we emphasize that the coordinate time is adopted as the
common independent variable for both particles in their
equations of motion and one has to construct an equation
for d�=dt, which is to be integrated together with the
motion equations to get the proper time of the observer.
The reason for doing this is that the two particles have their
own and different proper times but the numerical integra-
tion demands a common time variable.

3. Two-nearby-orbits method without projection
operations

On the other hand, if we integrate directly the equations
of motion, Eq. (7), for two slightly distinct initial condi-

tions with the proper time as an integration variable, we
attain the deviation vector

 �x��� � �x���� � ~x���� � x���� (14)

at the proper time � of the observer. Here a difference
between Eq. (11) and (14) should not be neglected. The
difference is that �x is a function of t in Eq. (11), while
being a function of � in Eq. (14). In this case, we can give
another two-nearby-orbits method (M3) as follows:

 �3 � lim
�!1

1

�
ln
k �x��� k
k �x�0� k

; (15)

 k �x��� k�
����������������������
j�x � �xj

p
�

�����������������������������
jg���x��x�j

q
: (16)

Next let us study the three methods from the theoretical
and numerical points of view.

C. The reason why M1 and M3 do not need projection
operations

Obviously, projection operations do not appear in M1.
Similarly, Hartl noted this fact in his Ph.D. thesis [8]. Now,
we give a discussion on this issue. It has been shown
without any difficulty that ���� is always perpendicular
to the 4-velocity U��� at any (proper) time provided that
��0� and D��0�=D� are both perpendicular to U�0�, re-
spectively [28]. What would happen if ��0� � U�0� � 0 or
D��0�=D� � U�0� � 0? Let us explore the question in the
following.

Noting that � � U and D�=D� � U are scalars, we can
operate a covariant derivative in place of an ordinary one.
The demonstration is

 

d
d�
�� � U� �

D
D�
�� � U� �

D�
D�
� U� � �

DU
D�

�
D�
D�
� U; (17)

 

d
d�

�
D�
D�
� U

�
� U �

D2�

D�2 � �R
�
����

�U�U�U�

� �R����U�U�U���: (18)

The result of Eq. (18) is obviously identical to zero because
it is both symmetric and antisymmetric with respect to the
indicies � and �. Consequently, it can be inferred that the
right side of Eq. (17) is a constant C, which turns out to be
the value of D��0�=D� � U�0�. As was stated above, � �
U � 0 if C � 0. Otherwise we have

 � � U � C�� ~C; (19)

where ~C is another constant corresponding to the initial
value of � � U. Now let us investigate the physical signifi-
cance of j� � Uj. Obviously it is no other than the length of
the projected vector ��� � U�U, the time component of �
as measured by the particle. Equation (19) shows that the
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evolution of � along the time direction of the particle is
linear, therefore, the LE in this direction vanishes. In fact,
the result is very naturally due to the integralU�U� � �1.
Therefore, � and its projected vector along the space
direction of the particle change at the same rate with its
proper time. This implies that it is not necessary to project
� into the space direction in the calculation of the principal
LE. In other words, it is reasonable to use M1 as the
standard definition of the maximum LE in general
relativity.

As to M3, the deviation vector �x��� in Eq. (14) is
viewed as an approximation to the geodesic deviation
vector � by Eq. (8). Therefore, M3 is nearly the same as
M1 as long as the length of � is kept small enough.

For M2, we use the projected vector �x�? rather than
�x�t� used in Eq. (11) as an approximation of �. �x�t� in
Eq. (11) is the deviation vector between the observer and
his neighbor at the same coordinate time t, therefore it is
necessary for �x�t� to be projected along the space direc-
tion of the observer. On the other hand, �x�t� and U do not
necessarily obey the relation (19) when t and � have large
difference. Then in the observer’s in-track direction he may
find LE in the form

 �in-track � lim
�!1

1

�
ln

�T���
�T�0�

; (20)

where �T��� � j�x�t� � Uj is the projection of �x�t�
along the observer’s time direction. This shows that one
may find chaos in the observer’s time direction if �in-track is
used as an index for chaos. This displays it necessary to
employ the projection norm for M2.

We shall check the validity of the three methods through
practical calculations further.

D. Scope of application of M2

Let us take a Weyl spacetime as a physical model (see
the appendix), and choose parameters as E � 0:9679, L �
3:8, and O � 7:012	 10�7. The initial conditions of two
variables r and _r are arbitrarily given within their respec-
tive admissible intervals except 	 � 
=2, while _	 is de-
rived from Eq. (A4). First order differential systems from
the geodesic Eqs. (A5) and (A6) are computed with a 7–8
order Runge-Kutta-Fehlberg algorithm of variable time-
step [RKF7(8)]. A proper time output interval is 0.1, and
the Poincaré surface of section is at the plane 	 � 


2 ( _	 <
0) in Fig. 1. The intersections of the orbits by this Poincaré
surface of section describe the global dynamical feature of
the system. There are two regions in the �r; _r� plane. One
region with randomly distributed points is regarded as a
chaotic one, while the other, a regular one consisting of
many tori and islands.

Next we shall quantitatively describe the dynamics of
particles moving in this spacetime by employing the LEs
above.

For M1, it is necessary to integrate the dynamical
Eqs. (A2)–(A6) numerically with their geodesic deviation
equations together so that we obtain their solution �x�;U��

and their variational solution ��; _�� in the forms � �
��t; �r; �	; ��� and _� � �� _t; � _r; � _	; � _��. Here the proper
time � is chosen as an integration variable. In addition, the
renormalization technique is used if necessary. As far as
M2 is concerned, we numerically trace the trajectories of
the observer and his neighbor with the Eqs. (A7) and (A8)
and the equations involving d�=dt and d�=dtwith slightly
different initial conditions. The initial conditions of the
observer are the same as the above. As to his neighbor, an
initial separation in the order of 10�8 is adopted only on the
r direction, regarded as the best choice [24], and the other
coordinates remain the same as the observer’s except _	.
This process also fits M3, but only Eqs. (A2)–(A6) are
integrated numerically.

Choosing many ordered and chaotic orbits as numerical
tests, we found that the three methods M1, M2 and M3
almost give the same final values of LEs for each orbit.
There are only a few differences on the transition phases of
the orbits. However, we found that M2 is not suitable for
the study of some specific trajectories.

As a further test, we choose a chaotic orbit with the
initial conditions: t � 0, 	 � 
=2, r � 9, � � 0, _r �
0:025, and the initial value of _	 derived from Eq. (A4).
Let the initial deviation vector satisfy �t � �	 � �� �
� _r � � _	 � 0 and �r � 1=

�������
g11
p

. As is shown in Fig. 2, M1
(A) is very close to M3 (C). Whereas the curve B does not
converge at a certain value. This means the absence of a
limit in Eq. (13), i.e. the failure of M2.

Here we give an explanation to the above puzzle. For the
ordered orbit with the starting point M�15; 0� in the plane
r� _r or the chaotic one with the initial point N�7; 0�, it can
be found that the observer’s proper time � runs about 9:2	
105 when t passes through 106, namely � 
 t. But in

FIG. 1. Poincaré surface of section at the plane 	 � 

2 ( _	 < 0)

for the full relativistic core-shell configuration consisting of a
Schwarzschild black hole and a purely octopolar shell with
parameters E � 0:9679, L � 3:8, and O � 7:012	 10�7.
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Fig. 2(b) � spans 104 or so when t runs 106. In other words,
the coordinate clock runs too fast so that M2 becomes
useless. On the contrary, M2 is still successful in
Ref. [23] although � reaches only about 9:168	 105

when the coordinate time  is equal to 107 even 109 (see
Fig. 3 in [23]). In practice, the two aspects are not para-
doxical. Here is a detailed analysis. For the observer,
Eq. (A2) is rewritten as d�=dt � ��r� 2�=r=E�eP. On
the basis of the above background, we know that �r�
2�=r=E 
 1. Thus d�=dt 
 eP. In the case P � 0, M2 is
explicitly valid in the spacetime (A1) that corresponds to a
Schwarzschild field. For a system consisting of a black
hole plus a dipolar shell with P � 2Duv (D, a positive
dipolar parameter) [5], the sign of d�=dt� 1 changes
frequently. Although there is a much larger t corresponding
to a smaller � from a long-time point of view, M2 is still
significant. Now recalling our problem above, we can
easily infer that P keeps the same sign as v�5v2 � 3�.
Assume P  0, then we can get arccos

�������
0:6
p

 	  
�
arccos

�������
0:6
p

(i.e. 	 2 �0:68; 2:46�) without any difficulty.
The practical calculation in Fig. 2(d) gives 	 2 �1; 2� �
�0:68; 2:46�. This seems to show that d�=dt has an expo-
nential decay (note: the decay relation seems to be de-
scribed as d� � e�F�t�dt, where F�t�> 0.) so that � grows
much more slowly than t although � is a monotone in-
creasing function of t. In addition, there are some key
effects from numerical errors. All these factors may lead
to the invalidity of M2.

For conceptual clarity it is of the physical significance to
define LE as a coordinate gauge invariant in general rela-

tivity. For this purpose, there are the above three methods
(M1, M2 and M3) to compute LEs. M1 is more rigorous
than M2 or M3. On the contrary, M2 is more convenient to
use than M1, and M3 is the simplest. In addition, M2 and
M3 are easier to treat a nongeodesic flow as well as a
geodesic flow than M1. Numerical experiments display
that M1, M2, and M3 not only can obtain the same final
values but also have small differences in the transition
phase for the calculation of LEs. In addition, we found
that M2 fails for some orbits. Considering the application
of convenience and validity, we conclude that M3 should
be the most preferable and is worth to be recommended for
the calculation of LE in a relativistic gravitational system
in most cases. It is useful to accept some advice on a proper
choice of the initial separation and a renormalization time
step introduced by Tancredi et al. [24].

Although the LEs have been widely used to distinguish
between regular and chaotic orbits, especially for systems
with more than 2 degrees of freedom, they are not easy to
use to explore the global structure of phase space. In view
of this fact, we shall modify M3 and adopt its correspond-
ing FLI in the following section.

III. DESCRIPTION OF THE STRUCTURE OF
PHASE SPACE BY USING FLI WITH TWO-

NEARBY-TRAJECTORIES

A. Fast Lyapunov indicators

The time interval that is necessary to reach a given value
of either the length of a tangential vector or the angle

b

d

c

a

FIG. 2. LEs for a chaotic orbit with the initial conditions r � 9 and _r � 0:025. (a) (M1) coincides nearly with (c) (M3), and (b)
describes the failure of M2 for computing LEs. (d) denotes the domain admissible for the motion of 	, as an interpretation for an
obstacle to the application of M2. For more details, see the text.
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between two tangential vectors can be taken as an indicator
of stochasticity of a Newtonian dynamical system.
Following this idea, Froeschlé et al. [21] defined three
different FLIs in 1997. However two of these methods
need to solve the variational Eq. (2) for n times when a
set of n independent initial tangential vectors with the same
initial conditions are chosen. In this circumstance,
Froeschlé and Lega [22] improved the FLI as follows

  �t� � lnjY�t�j; (21)

where Y is a tangential vector from Eq. (2) and jY�0�j � 1.
Given a threshold, the indicator  reaches a value fast for a
chaotic orbit, but it would take a rather long time for an
ordered one. Conversely, in the same time interval the
indicator tends to different values for ordered and chaotic
orbits. Namely it grows exponentially with time for the
chaotic orbit, but only algebraically with time in the regu-
lar case. This allows one to distinguish between the two
cases. There is a close relation between the FLI ( ) and the
LE [Eq. (3)]: the FLI divided by time t tends to the LE
when the time is sufficiently large. Besides, overflow of the
lengths of tangential vectors in the case of a chaotic orbit
can be avoided because the integration time is not long
enough. This is the reason why the indicator is classified as
a ‘‘fast’’ method.

Following the idea above and the coordinate gauge
invariance, in a curved spacetime we could easily define
an invariant FLI corresponding to the LE in Eqs. (9) and
(15). As far as the geodesic deviation vector method M1 is
concerned, its corresponding FLI is

 ���� � log10 k ���� k : (22)

In the light of Eq. (15), we define the FLI with two-nearby-
trajectories as follows:

 FLI ��� � log10
k �x��� k
k �x�0� k

: (23)

Next we shall mainly describe the numerical implementa-
tion of the FLI and test its validity in the description of
dynamics.

B. The algorithm in detail

The original FLI proposed by Froeschlé and Lega [22]
requires to compute the expansion rate of a tangential
vector in the variational equations and it does not need
any renormalization. We now reform it in general relativity
into a coordinate invariant and compute it with the two
particles approach. The FLI��� in Eq. (23) can not be
computed without renormalization because the distance
between the two particles, k �x k , would expand so fast
in the case of chaos as to it could reach the chaotic
boundary to cause saturation.

In our numerical model (see the appendix) we choose k
�x�0� k� 10�9. We found saturation when k �x k� 1,
therefore we choose k �x k� 0:1 as the critical value to

implement the renormalization. In this way, the number of
renormalization for computing FLI is less than that for LE.
This brings an advantage to guarantee the speed of com-
putation. Let k�k � 0; 1; 2; � � �� be the sequential number
of renormalization, then we calculate the FLI with the
following expression:
 

FLIk��� � �k � �1� log10 k �x�0� k�

� log10
k �x��� k
k �x�0� k

; (24)

where k �x�0� kk �x��� k 0:1. This technique de-
pends on the choice of the initial deviation k �x�0� k ,
and fails when k �x�0� k is too small or too large. After
many numerical experiments, we found that k �x�0� k

10�7–10�9 works well.

C. Numerical tests of FLI

We take the initial separation �r � 10�9 and choose the
regular orbit M and the chaotic one N in Fig. 1 to test the
sensitivity of the FLI as well as �. As is expected, Fig. 3
(colored light gray) displays that there is a drastic differ-
ence of the FLIs between the regular orbit and the chaotic
one. For the ordered orbit, within a time span of 105

(equivalent to about 100 periods), the FLI is smaller than
1. However, we clearly see a sharp increase up to 24 of the
FLI for the chaotic orbit. In other words, the length of the
geodesic deviation vector � reaches the value 1024. As
mentioned above, the vector increases in an algebraic law
for quasiperiodic orbits, but it does with an exponential law
for chaotic orbits. Indeed the chaos of the orbit in the right
of Fig. 3 becomes explicit after a time span 4:5	 104. The
FLI is a cheaper way to distinguish between chaotic and
regular orbits and explore the global qualitative structure of
the phase space of a system.

Another thing to emphasize is that the values of FLI are
very analogous to that of � (see black dots in Fig. 3). The
values of FLIs by use of the two methods for the regular
case have no difference in a long time since renormaliza-
tion is not used. For the chaotic case we use only 2 times of
renormalization. In general, it is enough to take small
numbers of renormalization to calculate the FLIs in the
orbits with weak chaos. This shows sufficiently the validity
of our FLI with two-nearby-trajectories.

To examine the validity of the FLI further, in the left of
Fig. 4 we have plotted the running maximum of FLIs as a
function of the initial action r for a set of 1657 orbits that
are regularly spaced in the interval [5.77, 22.34] on the axis
_r � 0 in Fig. 1. Here each orbit is integrated until the time
reaches 105. As is described in Fig. 1, the regular region is
located in one interval between R�8:45; 0� and S�21; 0� and
another interval between R�22:15; 0� and the point (22.34,
0) on the straight line _r � 0. Obviously we find that all the
FLIs in the two intervals are not larger than 6, but all the
FLIs in the two intervals [5.77, 8.45] and [21, 22.14] on the
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straight line _r � 0 are larger. This method displays the set
of chaos, although it does not give the final values of LEs.
In a similar way, the orbits along the straight line r � 9 in
Fig. 1 are also separated into regular and chaotic intervals
(see the right of Fig. 4). These facts show sufficiently that
the FLI is rather successful to distinguish between the
regularity and the chaoticity. However, we must point out
a problem that the FLI does not provide more details about
ordered orbits containing quasiperiodic and resonant peri-
odic orbits. Here we give an illustration in detail.

On the basis of Froeschlé and Lega [22], the orbit with
the starting point M�15; 0� in Fig. 1 corresponds to a
resonance since the maximum value of FLI arrives at about
0.68 as the smallest value in the left of Fig. 4. However this
is not a resonant periodic orbit but just a quasiperiodic one.
Actually the point I�14:00349;�0:0312004� of the
Poincaré map in the middle of tori is a fixed point. We
found that all tori between the torusM and the point I have
almost the same values of FLI. We cannot say that FLI is
appropriate to identify the resonance categories. As an-
other example, let us focus a trajectory made up of three
little loops or islands surrounding three invariant points
J1�9:0975;�0:0281�, J2�17:13931; 0:04913� and
J3�13:94246;�0:08936� in Fig. 1, respectively. An impor-
tant point to mention lies in the manner where the three
little loops appear on the plot as the same trajectory. Rather
than tracing one loop at a time, successive points occur at

each of the three loops in turn. In this sense, the three fixed
points are inhabited in the same periodic orbit. The maxi-
mum value of FLI we computed for this periodic (resonant)
orbit after a time span of 105 turns out to be 1.75 or so.
Obviously the value of FLI for the resonant orbit is larger
than that for the quasiperiodic orbit M. In a word, it is
difficult to apply values of FLI to distinguish various
regular orbits.

D. Classification of orbits by FLI

Many experiments above have shown that our FLI is a
very sensitive tool for detecting the regular and chaotic
orbits. Next we shall follow this FLI to scan the global
structure of phase space in the spacetime (A1). This op-
eration is realized by calculating thousands of orbits in
practice. First we fix _	 � 0, meanwhile we let r run from
rmin � 5:77 to rmax � 22:34 with a span of �r � 0:1.
Then, for each given r we can solve for _r and find two
roots _r� and _r� ( _r� < 0 and _r� > 0) from the Eq. (A4).
Finally we take _r from _r� to _r� with a sampling interval
� _r � 0:01. Once r and _r are given initially, _	 should be
derived by the relation (A4). As is shown in Fig. 5, we have
plotted all the starting points on the r� _r plane (	 � 
=2).
According to different values of FLI, we classify orbits by
some dynamical features. This is called as the description
of the global structure of phase-space for the system.

FIG. 4. Left: the evolution of the FLIs with the initial values of r ranging from the interval [5.77, 22.34] when the indicator (23) is
used and _r � 0 is fixed at the initial time. Each orbit is integrated numerically till � reaches 105. Two types of orbits consisting of
regular and chaotic orbits are obtained according to distinct values of FLIs. Right: the same as the left, but r � 9 is fixed first, and _r
takes values from the interval ��0:1428; 0:1428�.

τ

FIG. 3. The relation of FLIs with proper time by use of the index (23) for the regular orbit M in the left (colored light gray). The
black dots correspond to the result obtained from Eq. (22). The right is the same as the left but for the chaotic orbit N in Fig. 1.
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By a comparison of Fig. 5 with Fig. 1, it is clear that the
global dynamical features they depicted are nearly com-
patible. As an emphasis, an advantage to use FLI becomes
more apparent because it applies to systems with an arbi-
trary number of dimensions. Without doubt, it is handy to
study the global dynamics of the spinning compact binaries
[10] by virtue of FLI. It is also easier to probe the variation
of the dynamical characteristics as certain parameters of
the system vary.

IV. SUMMARY

We compared three methods for computing LEs with
coordinate gauge invariance in general relativity. The three
methods are the geodesic deviation vector technique (M1),
the two-nearby-orbits method with projection operations
and with coordinate time as the integration independent
variable (M2), and the two-nearby-orbits method without
projection operations and with proper time as the integra-
tion independent variable (M3). The contributions of this
work are as follows.

It is unnecessary to adopt the projection operators for
M1 and M3 from the theoretical point of view. In addition,
M2 works badly in some cases. As a result, M3 is the most
preferable and worth to be recommended for the calcula-
tion of LEs in a relativistic gravitational system in most
cases.

As another important contribution, we extended FLI to a
coordinate invariant form in relativistic dynamics, and
proposed its algorithm with the two-nearby-trajectories
method. This indicator can rapidly, reliably and accurately
distinguish between ordered and chaotic motions in rela-
tivistic astrophysics. Only when the initial separation and
renormalization within a reasonable amount of time span
are chosen appropriately, is this FLI nearly consistent with

the FLI computed with the geodesic deviation vector tech-
nique. However, the former is rather simpler to use than the
latter. As a characteristic, our FLI grows exponentially
with time in the chaotic case, while it grows algebraically
in the case of quasiperiodic trajectories. Evaluating the
different behaviors of this FLI, we successfully explored
the global dynamics of phase space where regions of chaos
and order are clearly identified.

It should be pointed out that a main advantage of the LE
and FLI with two-nearby-trajectories is their easier appli-
cation in treating complicated relativistic gravitational sys-
tems with high degrees of freedom, such as multibody
problems and spinning compact binaries. In the future
work, we shall employ an appropriate numerical integrator
and the FLI to find out what happens in the spinning
compact binaries. The global dynamics of the binary sys-
tems will be explored, and the transition from regular
motion to chaos will be considered as some dynamical
parameters of the system vary.
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APPENDIX A: CORE-SHELL SYSTEM AND THE
EQUATIONS OF MOTION

A Weyl spacetime including a nonrotating black hole
surrounded by an axially symmetric shell in Schwarzchild
coordinates �t; r; 	; �� is expressed as [6]

 

ds2 � �

�
1�

2

r

�
ePdt2 � eQ�P

��
1�

2

r

�
�1
dr2 � r2d	2

�

� e�Pr2sin2	d�2; (A1)

where P and Q are the functions of r and 	 only. This
system obviously has two integrals, the energy E and the
angular momentum L in the forms

 

_t � Er�r� 2��1e�P; (A2)

 

_� � LePr�2sin�2	: (A3)

In addition, the 4-velocity of a particle always satisfies the
constraint

FIG. 5. Regions of different values of the FLIs on the plane
	 � 


2 . Initial conditions are colored white if their FLIs  6, and
black if FLIs> 6, which are corresponded to the regular
region I, and chaotic region II, respectively. Here, all intersection
points of an orbit with the plane should be regarded to have the
same final value of the FLI.
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U�U� � �

�
1�

2

r

�
eP _t2 � eQ�P

��
1�

2

r

�
�1

_r2 � r2 _	2

�

� e�Pr2sin2	 _�2 � �1: (A4)

If a fourth integral holds, the system is integrable.
Otherwise, it is possible to yield chaos. However, it is not
easy to deduce whether the fourth integral exists or not. To
study the dynamics of a geodesic particle in this system
further, we need the following geodesic equations
 

�r �
�

1

r�r� 2�
�

1

2

�
@P
@r
�
@Q
@r

��
_r2 �

�
@Q
@	
�
@P
@	

�
_r _	

� �r� 2�
�

1�
r
2

�
@Q
@r
�
@P
@r

��
_	2 � f1�r; 	�; (A5)

 

�	 �
1

2r�r� 2�

�
@Q
@	
�
@P
@	

�
_r2 �

�
2

r
�
@Q
@r
�
@P
@r

�
_r _	

�
1

2

�
@Q
@	
�
@P
@	

�
_	2 � f2�r; 	�; (A6)

where
 

f1�r; 	� � �
1

2

�
1�

2

r

�
e2P�Q

�
2

r2 �

�
1�

2

r

�
@P
@r

�
_t2

�
1

2
�r� 2�e�Qsin2	 �

�
2� r

@P
@r

�
_�2;

f2�r; 	� � �
1

2r2

�
1�

2

r

�
e2P�Q @P

@	
� _t2 �

1

2
e�Q � sin	

�

�
�
@P
@	

sin	� 2 cos	
�

_�2:

We now have to do the tedious derivation of the geodesic
deviation equations. The result is too complex and will not
be written here. If we take a0 as the derivative of a with
respect to coordinate time t, the above geodesic equations

are readjusted as follows:

 r00 �
�r
_t2
�
r0

_t
d _t
dt
; (A7)

 	00 �
�	
_t2
�
	0

_t
d _t
dt
; (A8)

 

d _t
dt
� �Er�r� 2��1e�P

�
@P
@r
r0 �

@P
@	

	0
�

� 2E�r� 2��2e�Pr0:

Here _r and _	 in Eqs. (A5) and (A6) should be changed into
_r � r0 _t and _	 � 	0 _t respectively, while _t and _� remain the
original expressions of Eqs. (A2) and (A3) because they do
not contain coordinate time t explicitly.

Given two metric functions P andQ, the spacetime (A1)
is determined at once. Now we reexamine the full relativ-
istic core-shell configuration involving a Schwarzschild
black hole plus a pure octopole shell studied by Vieira
and Letelier [6]. In this model, we have
 

P�u; v� �
1

5
Ouv�5u2 � 3��5v2 � 3�;

Q�u; v� � �
2

5
Ov�5�3u2 � 1��1� v2� � 4�

�
3

100
O2��25u6�1� v2� � �5v2 � 2v� 1�

	 �5v2 � 2v� 1� � 15u4�1� v2�

	 �65v4 � 40v2 � 3� � 3u2�1� v2��25v2 � 3�

	 �5v2 � 3� � v2�25v4 � 45v2 � 27��;

where u � r� 1, v � cos	, and O is an octopolar
parameter.
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