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A precision measurement of the gravitational constant G has been made using a beam balance. Special
attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance
and the zero-point variation of the balance. The equipment, the measurements, and the analysis are
described in detail. The value obtained for G is 6:674 252�109��54� � 10�11 m3 kg�1 s�2. The relative
statistical and systematic uncertainties of this result are 16:3� 10�6 and 8:1� 10�6, respectively.
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I. INTRODUCTION

The gravitational constant G has proved to be a very
difficult quantity for experimenters to measure accurately.
In 1998, the Committee on Data Science and Technology
(CODATA) recommended a value of 6:673�10� �
10�11 m3 kg�1 s�2. Surprisingly, the uncertainty,
1500 ppm (ppm), had been increased by a factor of 12
over the previously adjusted value of 1986. This was due to
the fact that no explanation had been found for the large
differences obtained in the presumably more accurate
measurements carried out since 1986. Obviously, the dif-
ferences were due to very large systematic errors. The most
recent revision [1] of the CODATA Task Group gives for
the 2002 recommended value G � 6:6742�10� �
10�11 m3 kg�1 s�2. The uncertainty (150 ppm) has been
reduced by a factor of 10 from the 1998 value, but the
agreement among the measured values considered in this
compilation is still somewhat worse than quoted
uncertainties.

Initial interest in the gravitational constant at our insti-
tute had been motivated by reports [2] suggesting the
existence of a ‘‘fifth’’ force which was thought to be
important at large distances. This prompted measurements
at a Swiss storage lake in which the water level varied by
44 m. The experiment involved weighing two test masses
(TM’s) suspended next to the lake at different heights. No
evidence [3,4] was found for the proposed fifth force, but,
considering the large distances involved, a reasonably
accurate value (750 ppm) was obtained for G. It was
realized that the same type of measurement could be
made in the laboratory with much better accuracy with
the lake being replaced by the well-defined geometry of a
vessel containing a dense liquid such as mercury.
Equipment for this purpose was designed and constructed

in which two 1.1 kg TM’s were alternately weighed in the
presence of two moveable field masses (FM’s) each with a
mass of 7.5 t. A first series of measurements [5–9] with this
equipment resulted in a value for G with an uncertainty of
220 ppm due primarily to a possible nonlinearity of the
balance response function. A second series of measure-
ments was undertaken to eliminate this problem. A brief
report of this latter series of measurements has been given
in Ref. [10] and a more detailed description in a thesis [11].
Since terminating the measurements, the following four
years have been spent on improving the analysis and
checking for possible systematic errors.

Following a brief overview of the experiment, the mea-
surement and the analysis of the data are presented in
Secs. III entitled Measurement of the Gravitational
Signal and Sec. IV entitled Determination of the Mass-
Integration Constant. In Sec. V, the present result is dis-
cussed and compared with other recent measurements of
the gravitational constant.

II. GENERAL CONSIDERATIONS

The design goal of this experiment was that the uncer-
tainty in the measured value ofG should be less than about
20 ppm. This is comparable to the quoted accuracy of
recent G measurements made with a torsion balance. It
is, however, several orders of magnitude better than pre-
vious measurements of the gravitational constant (made
after 1898) employing a beam balance [4,12,13].

The experimental setup is illustrated in Fig. 1. Two
nearly identical 1.1 kg TM’s hanging on long wires are
alternately weighed on a beam balance in the presence of
the two movable FM’s weighing 7.5 t each. The position of
the FM’s relative to the TM’s influence the measured
weights. The geometry is such that when the FM are in
the position labeled ‘‘together,’’ the weight of the upper
TM is increased and that of the lower TM is decreased. The
opposite change in the TM weights occurs when the FM
are in the position labeled ‘‘apart.’’ One measures the
difference of TM weights first with one position of the
FM’s and then with the other. The difference between the
TM weight differences for the two FM positions is the
gravitational signal.
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The use of two TM’s and two FM’s has several advan-
tages over a single TM and a single movable FM.
Comparing two nearly equivalent TM’s tends to cancel
slow variations such as zero-point drift of the balance
and the effect of tidal variations. Using the difference of
the two TM weights doubles the signal. In addition, it
causes the influence of the FM motion on the counter
weight of the balance to be completely cancelled. Use of
two FM’s with equal and opposite motion reduces the
power required to that of overcoming friction. This also
simplified somewhat the mechanical construction.

The geometry has been designed such that the TM being
weighed is positioned at (or near) an extremum of the
vertical force field in both the vertical and horizontal
directions for both positions of the FM’s. The extremum
is a maximum for the vertical position and a minimum for
the horizontal position. This double extremum greatly
reduces the positional accuracy required in the present
experiment.

The measurement took place at the Paul Scherrer Institut
(PSI) in Villigen. The apparatus was installed in a pit with
thick concrete walls which provided good thermal stability
and isolation from vibrations. The arrangement of the
equipment is shown in Fig. 2. The system involving the
FM’s was supported by a rigid steel structure mounted on
the floor of the pit. Steel girders fastened to the walls of the
pit supported the balance, the massive (200 kg) granite
plate employed to reduce high frequency vibrations, and

the vacuum system enclosing the balance and the TM’s. A
vacuum of better than 10�4 Pa was produced by a turbo-
molecular pump located at a distance of 2 m from the
balance.

The pit was divided into an upper and a lower room
separated by a working platform 3.5 m above the floor of
the pit. All heat producing electrical equipment was lo-
cated in the upper measuring room. Both rooms had their
own separate temperature stabilizing systems. The long
term temperature stability in both rooms was better than
0.1 �C. No one was allowed in either room during the
measurements in order to avoid perturbing effects.

The equipment was fully automated. Measurements
lasting up to 7 weeks were essentially unattended. The
experiment was controlled from our Zurich office via the
internet with data transfer occurring once a day.

III. MEASUREMENT OF THE GRAVITATIONAL
SIGNAL

We begin this section with a description of the devices
employed in determining the gravitational signal.
Following the descriptions of these devices, the detailed
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FIG. 2. A side view of the experiment. Legend: 1 measuring
room enclosure, 2 thermally insulated chamber, 3 balance, 4 con-
crete walls of the pit, 5 granite plate, 6 steel girder, 7 vacuum
pumps, 8 gear drive, 9 motor, 10 working platform, 11 spindle,
12 steel girder of the main support, 13 upper TM, 14 FM’s,
15 lower TM, 16 vacuum tube.
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FIG. 1. Principle of the measurement. The FM’s are shown in
the position together (Pos. T) and the position apart (Pos. A).
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schedule of the various weighings and their analysis are
given. Balance weighings will be expressed in mass units
rather than force units. The value of local gravity was
determined for us by E. E. Klingelé of the geology depart-
ment of the Swiss Federal Institute. The measurement was
made near the balance on Sept. 11, 1996 using a commer-
cial gravimeter (model G #317 made by the company
LaCoste-Romberg). The value found was
9:807 233 5�6� m s�2. This value was used to convert the
balance readings into force units.

A. The balance

The beam balance was a modified commercial mass
comparator of the type AT1006 produced by the Mettler-
Toledo company. The mass being measured is compen-
sated by a counter weight and a small magnetic force
between a permanent magnet and the current flowing in a
coil mounted on the balance arm. An opto-electrical feed-
back system controlling the coil current maintains the
balance arm in essentially a fixed position independent of
the mass being weighed. The digitized coil current is used
as the output reading of the balance.

The balance arm is supported by two flexure strips
which act as the pivot. The pan of the balance is supported
by a parallelogram guide attached to the balance frame.
This guide allows only vertical motion of the pan to be
coupled to the arm of the balance. Horizontal forces pro-
duced by the load are transmitted to the frame and have
almost no influence on the arm.

As supplied by the manufacturer, the balance had a
measuring range of 24 g above the 1 kg offset determined
by the counter weight. The original readout resolution was
1 �g and the specified reproducibility was 2 �g. The
balance was designed especially for weighing a 1 kg stan-
dard mass such as is maintained in many national metrol-
ogy institutes.

In the present experiment, the balance was modified by
removing some nonessential parts of the balance pan which
resulted in its weighing range being centered on 1.1 kg
instead of the 1 kg of a standard mass. Therefore, 1.1 kg
TM’s were employed. In order to obtain higher sensitivity
required for measuring the approximately 0.8 mg differ-
ence between TM weighings, the number of turns on the
coil was reduced by a factor of 6, thus reducing the range to
4 g for the same maximum coil current. The balance was
operated at an output value near 0.6 g which gave a good
signal-to-noise ratio with low internal heating. For the
present measurements, a mass range of only 0.2 g was
required. The full readout resolution of the analog to digital
converter (ADC) measuring the coil current was employed
which resulted in a readout-mass resolution of 12.5 ng.

An 8th order low-pass, digital filter with various time
constants was available on the balance. Because of the
many weighings required by the procedure employed to
cancel nonlinearity (see Sec. III D), it was advantageous to

make the time taken for each weighing as short as possible.
Therefore, the shortest filter time constant (approximately
7.8 s) was employed and output readings were taken at the
maximum repetition rate allowed by the balance (about
0.38 s between readings).

Pendulum oscillations were excited by the TM ex-
changes. Small oscillation amplitudes (less than 0.2 mm)
of the TM’s corresponding to 1 and 2 times the frequency
for pendulum oscillations (approximately 0.26 Hz for the
lower TM and 0.33 Hz for the upper TM’s) were observed.
They were essentially undamped with decay times of
several days. The unwanted output amplitudes of these
pendulum oscillations were not strongly attenuated by
the filter (half-power frequency of 0.13 Hz) and therefore
had to be taken into account in determining the equilibrium
value of a weighing.

The equilibrium value of a weighing was determined in
an online, 5-parameter, linear least-squares fit made to 103
consecutive readings of the balance starting 40 s after a
load change. The parameters of the fit were 2 sine ampli-
tudes, 2 cosine amplitudes, and the average weight. The
pendulum frequencies were known from other measure-
ments and were not parameters of the online fit. The 40 s
delay before beginning data taking was required in order to
allow the balance to reach its equilibrium value (except for
oscillations) after a load change. This procedure (including
the 40 s wait) is what we call a ‘‘weighing.’’ A weighing
thus required about 80 s.

Data of a typical weighing and the fit function used to
describe their time distribution are shown in the upper part
of Fig. 3. The residuals � divided by a normalization
constant � are shown in the lower part of this figure. The
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FIG. 3. Shown in the upper plot are the balance readings for a
typical weighing illustrating the oscillatory signal due to pen-
dulum oscillations. The output is the uncalibrated balance read-
ing corresponding to approximately 1.1 kg with a magnetic
compensation of 0.6 g. The amplitude of the oscillatory signal
corresponds to about 1:5 �g. The lower plot shows the normal-
ized residuals. The normalization has been chosen such that their
rms value is 1.
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normalization constant has been chosen such that the rms
value of the residuals is 1. Since the balance readings are
correlated due to the action of the digital filter, the value of
� does not represent the uncertainty of the readings. It is
seen that the residuals show only rather wide peaks. These
peaks are probably due to very short random bursts of
electronic noise which have been widened by the digital
filter. With the sensitivity of our modified balance, they
represent a sizable contribution to the statistical variations
of the weighings. They are of no importance for the normal
use of the AT1006 balance.

A direct calibration of the balance in the range of the
780 �g gravitation signal cannot be made with the accu-
racy required in the present experiment (< 20 ppm) since
calibration masses of this size are not available with an
absolute accuracy of better than about 300 ppm. Instead,
we have employed a method in which an accurate, coarse
grain calibration was made using two 0.1 g calibration
masses (CM’s). The CM’s were each known with an abso-
lute accuracy of 4 ppm. A number of auxiliary masses
(AM’s) having approximate weights of either 783 �g or
16� 783 � 12 528 �g were weighed along with each TM
in steps of 783 �g covering the 0.2 g range of the CM.
Although the AM’s were known with an absolute accuracy
of only 800 ng (relative uncertainty 1000 ppm), the method
allowed balance nonlinearity effects to be almost entirely
cancelled. Thus, the effective calibration accuracy for the
average of the TM difference measurements was essen-
tially that of the CM’s. A detailed description of this
method is given in Sec. III J.

In our measurements, the balance was operated in vac-
uum. The balance proved to be extremely temperature
sensitive which was exacerbated by the lack of convection
cooling in vacuum. The measured zero-point drift was
5.5 mg/�C. The sensitivity of the balance changed by
220 ppm/�C. To reduce these effects, the air temperature
of the room was stabilized to about 0.1 �C. A second
stabilized region near the balance was maintained at a
constant temperature to 0.01 �C. Inside the vacuum, the
balance was surrounded by a massive (45 kg) copper box
which resulted in a temperature stability of about 1 mK.
Although zero-point drift under constant load for a 1 mK
temperature change was only 5:5 �g, the effects of self-
heating of the balance due to load changes during the
measurement of the gravitational signal were much larger.
Details of this effect and how they were corrected are
described in Sec. III G.

B. The test masses

One series of measurements was made using copper
TM’s and two with tantalum TM’s. Various problems
with the mass handler occurred during the measurements
with the tantalum TM’s which resulted in large systematic
errors. Although the tantalum results were consistent with
the measurements with the copper TM’s, the large system-

atic errors resulted in large total errors. The tantalum
measurements were included in our first publication, but
we now believe that better accuracy is obtained overall
with the copper measurements alone. We therefore de-
scribe only the measurements made with the copper
TM’s in the present work.

A drawing of a copper TM is shown in Fig. 4. The
45 mm diameter, 77 mm high copper cylinders were plated
with a 10 �m gold layer to avoid oxidation. The gold
plating was made without the use of nickel in order to
avoid magnetic effects. Near the top of each TM on oppo-
site sides of the cylinder were two short horizontal posts.
The posts were made of Cu-Be (Berylco 25). The tungsten
wires used to attach the TM’s to the balance were looped
around these posts in grooves provided for this purpose.
The wires had a diameter of 0.1 mm and lengths of 2.3 m
for the upper TM and 3.7 m for the lower. The loop was
made by crimping the tungsten wire together in a thin
copper tube. A thin, accurately machined, copper washer
was placed in a cylindrical indentation on the top surface of
the lower TM in order to trim its weight (including sus-
pension) to within about 400 �g of that of the upper TM
and suspension.

Measurement of the TM’s dimensions was made with an
accuracy of 5 �m using the coordinate measuring machine
(CMM) at PSI. The weight of the gold plating was deter-
mined from the specified thickness of the layer. The weight
of the tungsten wires was determined from the dimensions
and the density of tungsten. The thin tubing used to crimp
the tungsten wires was weighed directly. The weight of the
complete TM’s was determined at the Mettler-Toledo labo-
ratory with an accuracy of 25 �g (0.022 ppm) before and
after the gravitational measurement. It was found that the
mass of both TM’s had increased by a negligible amount
(0.5 ppm) during the measurement.

An estimate of possible density gradients in the TM’s
was determined by measuring the density of copper

FIG. 4. Drawing of TM inside the vacuum tube. Dimensions
are given in mm.
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samples bordering the material used for making the TM’s.
It was found that the variation of the relative density
gradients over the dimensions of either TM was less than
2� 10�4 in both the longitudinal and the radial directions.

C. TM exchanger

In weighing the TM’s, it was necessary to remove the
suspension supporting one TM from the balance and re-
place it by the other supporting the other TM. The ex-
change was accomplished by step-motor driven hydraulic
systems to raise the suspension of one TM while lowering
the other. A piezo-electric transducer mounted above the
pan of the balance was used to keep the load on the balance
during the exchange as constant as possible. This was done
in order to avoid excessive heating due to the coil current
and to reduce anelastic effects in the flexure strips support-
ing the balance arm. The output excursions were typically
less than 0.1 g. The exchange of the TM’s required about
4 min.

The TM suspension rested on a thin metal arm designed
to bend through 0.6 mm when loaded with 1.1 kg.
Therefore, the transfer of TM’s was accomplished with a
vertical movement of typically 2 mm (0.6 mm bending of
the spring plus an additional 1.4 mm to avoid electrostatic
forces). The metal arm was attached to a parallelogram
guide (similar to that of the balance) to assure only vertical
motion.

Although the parallelogram reduced the error resulting
from the positioning of the load, it was nevertheless im-
portant to have the TM load always suspended from the
same point on the balance pan. This was accomplished by
means of a kinematic coupling [14,15]. The coupling con-
sisted of three pointed titanium pins attached to each TM
suspension which would come to rest in three titanium V
grooves mounted on the balance pan. The reproducibility
of this positioning was 10 �m. The pieces of the coupling
were coated with tungsten carbide to avoid electrical
charging and reduce friction.

D. Auxiliary masses

In order to correct for any nonlinearity of the balance in
the range of the signal, use was made of many auxiliary
masses (AM’s) spanning the 200 mg range of the CM’s in
steps of approximately 783 �g. Although the AM’s could
not be measured with sufficient accuracy to calibrate the
balance absolutely, they were accurate enough to correct
the measured gravitational signal for a possible nonlinear-
ity of the balance. Each TM was weighed along with
various combinations of AM’s. One essentially averaged
the nonlinearity over the 200 mg range of the CM’s in 256
load steps of 200 mg=256 � 783 �g. A weighing of both
100 mg CM’s was then used to determine the absolute
calibration of the balance which is valid for the TM weigh-
ings averaged over this range. The effect of any nonline-
arity essentially cancels due to the averaging process. The

accuracy of the nonlinearity correction is described in
Sec. III J.

The 256 load steps were accomplished using 15 AM’s
with a mass of approximately 783 �g called AM1’s and
15 AM’s with 16 times this mass (12 528 �g) called
AM16’s. They were made from short pieces of stainless
steel wire with diameters of 0.1 mm and 0.3 mm. The wires
were bent through about 70� on both ends leaving a
straight middle section of about 6 mm. The mass of the
AM’s were electrochemically etched to obtain as closely as
possible the desired masses. The RMS deviation was
1:5 �g for the AM1’s and 2:3 �g for the AM16’s.

By weighing a TM together with various AM combina-
tions, one obtains the value of the TM weight simulta-
neously with the linearity information. The only additional
time required for this procedure over that of weighing only
the TM’s is the time necessary to change an AM combi-
nation (10 to 30 s).

E. Mass handler

The mass handler is the device which placed the AM’s
and the CM’s on the balance or removed them from the
balance. The mass handler was designed by the firm
Metrotec AG. The operation of this device is illustrated
in the somewhat simplified drawing of Fig. 5 showing how
the AM1’s and the CM1 are placed on the metal strip
attached to the balance pan. Only 6 of the 14 steps are
shown in this illustration for clarity. The portion of the
handler used for the AM’16 and the CM2 (not shown) is
similar except that the AM’16’s are placed on a metal strip
located below the one used for the AM1’s. All of the
AM1’s pictured in Fig. 5 are lying on the steps of a pair
of parallel double staircases. The staircases are separated
by 6 mm which is the width of the AM’s between the bent
regions on both ends. The spacing between the staircases is
such that they could pass on either side of the horizontal
metal strip fastened to the balance pan as the staircases
were moved up or down. The motion of each staircase pair
was constrained to the vertical direction by a parallelogram
(similar to those of the balance) fastened to the frame of the
mass handler. The staircases for AM1’s and AM16’s were
moved by two separate step motors located outside the
vacuum system. The step motors were surrounded by mu
metal shielding to reduce the magnetic field in the neigh-
borhood of the balance. Moving the staircases down de-
posited one AM after another onto the metal strip. Moving
the staircases up removed the AM’s lying on the strip. The
steps of the staircase had hand filed, saddle shaped inden-
tations to facilitate the positioning of the AM’s. The
heights of the steps were 2 mm and the steps on the left
side of the double staircase were displaced in height by
1 mm from those on the right. Thus, the AM1’s were
alternately placed on the balance to the left and to the right
of the center of the main pan in order to minimize the
torque which they produced on the balance.
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Raising the staircase structure above the position shown
in the figure caused a rod to push against a pivoted lever
holding CM1. With this operation, CM1 was placed on the
upper strip attached to the balance. Reversing the operation
allowed the spring to move the lever in the opposite
direction and remove CM1 from the balance.

Because of the very small mass of the AM1’s, difficulty
was occasionally experienced with the AM1’s sticking to
one side of the staircase or the other. The staircases were
made of aluminum and were coated with a conductive
layer of tungsten carbide to reduce the sticking probability.
Sticking nevertheless did occur. The sticking would cause
an AM1 to rest partly on the staircase and partly on the pan,
thus giving a false balance reading. In extreme cases, the
AM1 would fall from the holder and therefore be lost for
the rest of the measurement. No problem was experienced
with the heavier AM16’s and the CM’s.

F. Weighing schedule

The experiment was planned so that the zero-point (ZP)
drift and the linearity of the balance could be determined
while weighing a TM. In principle one needs just 4 weigh-
ings (upper and lower TM with FM’s together and apart) to
determine the signal for each AM placed on the balance.
Repeating these 4 weighings allows one to determine how
much the zero point has changed and thereby correct for
the drift. Since there are 256 AM values required to correct
the nonlinearity of the balance, a minimum of 2048 weigh-
ings is needed for a complete determination of the signal
corrected for ZP drift and linearity. One also wishes to
make a number of calibration measurements during the
series of measurements.

The order in which the measurements are performed
influences greatly the ZP drift correction of measurements.
Changing AM’s requires only 6 to 30 s, while exchanging
TM on the balance takes about 230 s and moving the FM
from one position to the other requires about 600 s. These
times are to be compared with the 80 s required for a
weighing and about 1 hr for a complete calibration mea-
surement (see Sec. III I). One therefore wishes to measure a
number of AM values before exchanging TM, and repeat
these measurements for the other TM before changing the
FM positions or making a calibration.

The schedule of weighing adopted is based on several
basic series for the weighing of the different TM’s with
different FM positions. The series are defined as follows:

(1) An S4 series is defined as the weighing of four
successive AM values with a particular TM and
with all weighing made for the same FM positions.

(2) An S12 series involves three S4 series all with the
same four AM values and the same FM positions.
The S4 series are measured first for one TM, then
the other TM, and finally with the original TM.

(3) An S96 is eight S12 series, all made with the same
FM positions and with the AM values incremented
by four units between each S12 series. A TM ex-
change is also made between each S12 series. An
S96 series represents the weighings with 32 succes-
sive AM values for both TM all with the same FM
positions.

(4) An S288 series is three S96 series, first with one FM
position, then the other, and finally with the original
FM position. A calibration measurement is made at
the beginning of each S288 series. Thus, the S288
series represents the weighings with 32 successive
AM values for both TM’s and both FM positions and
includes its own calibration.

(5) An S2304 series is made up of eight S288 series
with the AM values incremented by 32 between
each S288 series. An S2304 series completes the
full 256 AM values with weighings of both TM’s
and both FM positions.

A total of eight valid S2304 series were made over a
period of 43 days. Alternate S2304 series were intended to
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FIG. 5. Simplified drawing of the mass handler illustrating the
principle of operation. Legend: 1 pivoted-lever pair holding a
CM, 2 narrow strip to receive the CM, 3 double-staircase pair
holding AM’s, 4 narrow strip to receive AM’s, 5 balance pan,
6 flat spring, 7 frame, 8 step-motor driven cogwheel, and 9 coil
spring. The pivoted-lever pair and the double-staircase pair are
spaced such that they can pass on either side of the narrow strips
2 and 4 fastened to the balance pan. The two flat springs 6 form
two sides of a parallelogram which assures vertical motion of the
double-staircase pair.
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be made with increasing and decreasing AM values.
Unfortunately, the restart after a malfunction of the tem-
perature stabilization in the measuring room was made
with the wrong incrementing sign. This resulted in five
S2304 series being made with increasing AM values and
three with decreasing.

G. Analysis of the weighings

In Refs. [10,11], the so-called ABA method was used to
analyze the data obtained from the balance and thereby
obtain the difference between the mass of the A and B TM.
This method assumes a linear time dependence of the
weight that would be obtained for the A TM at the time
when the B TM was measured based on the weights
measured for A at an earlier and a later time. However, a
careful examination of the data showed that the curvature
of the ZP drift was quite large and was influenced by the
previous load history of the balance. This indicated that the
linear approximation was not a particularly good approxi-
mation. We have therefore reanalyzed the data using a
fitting procedure to determine a continuous ZP function
of time for each S96 series. The data and fit function for a
typical S96 series starting with a calibration measurement
is shown in Fig. 6. The procedure used to determine the ZP
data and fit is described in the following. The criterion for a
valid weighing is described in Sec. III H.

The data of Fig. 6 show a slow rise during the first hour
after the calibration measurement followed by a continu-
ous decrease with a time constant of several hours. These
slow variations are attributed to thermal variations result-
ing principally from the different loading of the balance
during the calibration measurement. Superposed on the
slow variations are rapid variations which are synchronous

with the exchange of the TM’s. The rapid variations peak
immediately after the TM exchange and decrease there-
after with a typical slope of 0:3 �g=hr. The cause of the
rapid variations is unknown.

The data employed in the ZP determination were the
weighings of the upper and lower TM’s for the S96 series.
The known AM load for each weighing was first subtracted
to obtain a net weight for either TM plus the unknown
zero-point function at the time of each weighing. A series
of Legendre polynomials was used to describe the slow
variations of the zero-point function. A separate P0 coef-
ficient was employed for each TM. The rapid variations
were described by a sawtooth function starting at the time
of each TM exchange. The fit parameters were the coeffi-
cient of the Legendre polynomials and the amplitude of the
sawtooth function. The sawtooth amplitude was assumed
to be the same for all rapid peaks of an S96 series. The
sawtooth function was used principally to reduce the �2 of
the fit and had almost no effect on the results obtained
when using the ZP function. All parameters are linear
parameters so that no iteration is required. The actual ZP
function is the sawtooth function and the polynomial series
exclusive of the time independent terms (i.e. the sum of the
coefficients times Pn�0� for even n).

Such calculations were made for various numbers of
Legendre coefficients in the ZP function. It was found
that the gravitational signal was essentially constant for a
maximum order of Legendre polynomials between 8 and
36. In this range of polynomials, the minimum calculated
signal was 784:8976�91� �g for a maximum order equal to
22 and a maximum signal of 784:9025�93� �g for a maxi-
mum order equal to 36 (i.e. a very small difference). In all
following results, we shall use the signal 784:8994�91� �g
obtained with a maximum polynomial order of 15.

It has been implicitly assumed in the above ZP determi-
nation that the AM load values were known with much
better accuracy than the reproducibility of the balance
producing the data used in the ZP fit. Although the AM
values were sufficiently accurate for determining the gen-
eral shape of the ZP function, their relative uncertainties
were comparable to the uncertainties of the balance data
used in the fit. The P0 mass parameters of the TM’s
obtained from the fit were therefore not used for the TM
differences at the two FM positions which are needed in
order to determine the gravitational signal. Instead, the
value of the ZP function was subtracted from each weigh-
ing, and an ABA mass difference was determined for each
triplet of weighings having the same AM load. Since the
mass of the AM’s do not occur in this TM difference, they
do not influence the calculation. The ABA calculation is
valid for this purpose since the ZP-corrected weighings
have essentially no curvature. Such TM differences deter-
mined for the apart-together positions of the FM’s are then
used to calculate the gravitational signal.

The TM differences for the apart-together positions of
the FM’s as a function of time are shown for a ZP-corrected
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FIG. 6. The zero-point variation as a function of time for a
typical S96 series including calibration is shown in the upper
part of this figure. The solid curve is the fit function starting after
the last dummy weighing. The fit function for this S96 series has
76 degrees of freedom. The normalized residuals �=� are shown
in the lower plot. The normalization of the residuals has been
chosen such that their rms value is 1.
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S288 series in Fig. 7. Individual data points are resolved in
the magnified insert of this figure. Each data point is the B
member of a TM difference obtained from an ABA triplet
in which all weighings have the same load value.

All of the TM differences (ZP-corrected) for the entire
experiment are shown in Fig. 8. The data labeled apart have
been shifted by 782 �g in order to allow both data sets to
be presented in the same figure. A slow variation of 2:5 �g
in both TM differences occurred during the 43 d measure-
ment. Also seen in this figure is a 0:7 �g jump which
occurred in the data for both the apart and together posi-
tions of the FM’s on day 222. The slow variation is proba-
bly due to sorption-effect differences of the upper and
lower TM’s. The jump was caused by the loss or gain of
a small particle such as a dust particle by one of the TM’s.
In order to determine the gravitational signal, an ABA
difference was calculated for apart-together values having
the same AM load. The slow variation seen in Fig. 8 is
sufficiently linear so that essentially no error results from
the use of the ABA method. The jump in the apart-together
differences caused no variation of the gravitational signal.

In Fig. 9 is shown a plot of the binned difference
between the FM apart-together positions for all valid data
(see Sec. III H). The differences were determined using the
ABA method applied to weighings made with the same
AM loads. Also shown in the figure is a Gaussian function
fit to the data. The data are seen to agree well with the
Gaussian shape which is a good test for the quality of
experimental data. The root-mean-square (RMS) width of
the data is 1.03 times the width of the Gaussian function.
The true resolution for these weighings may be somewhat
different than shown in Fig. 9 due to the fact that the data
have not been corrected for nonlinearity of the balance (see
Sec. III J) and for correlations due to the common ZP
function. Nevertheless, these effects would not be expected
to influence the general Gaussian form of the distribution.

A plot of the signal obtained for the S2304 series with
increasing and decreasing load is shown in Fig. 10. The
average signal for the increasing load is 784:9121�125� �g
and the average for the decreasing load is
784:8850�133� �g. The common average for both is
784:8994�91� �g. The averages for the increasing load
and for the decreasing load lie within the uncertainty of
the combined average. This shows that the direction of load
incrementing did not appreciably influence the result.

Although the weighings making up an S96 series are
correlated due to the common ZP function determined for
each S96 series, the results of each S96 series, in particular,
the TM parameter, are independent. The 32 signal values
obtained from the three S96 series making each S288 series
are also independent. However, since the nonlinearity cor-
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FIG. 7. The measured weight difference in �g between TM’s
obtained from an S288 series. The magnified insert shows the
individual TM differences which are not resolved in the main
part of the figure.
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rection (see Sec. III J) being employed is applicable only to
an entire S2304 series (not to an individual S288 series), it
is only the eight S2304 series which should be compared
with one another. This restricts the way in which the
average signal is to be calculated for the entire measure-
ment, namely, the way in which the data are to be weighted.

We have investigated two weighting procedures. In the
first, each S2304 series average was weighted by the
number of valid triplets in that series. This assumes that
the weighings measured in all S2304 series have the same a
priori accuracy. In the second method, it was assumed that
the accuracy for each weighing in a series was the same but
might be different for different series. We believe the
second method is the better method since it takes into
account changes that occur during the long, 43 d measure-
ment (e.g. the not completely compensated effects of vi-
bration, tidal forces, and temperature). The averages
obtained with the two methods differ by approximately
6 ng with the second method giving the smaller average
signal. This is a rather large effect. It is only slightly
smaller than the statistical uncertainty of 9 to 10 ng ob-
tained for either method. In the rest of this work, we shall
discuss only the results obtained with the second method.

H. Criterion for valid data

Two tests were used to determine whether a measured
weighing was valid. An online test checked whether the �2

value of the fit to the pendulum oscillations was reason-
able. A large value caused a repeat of the weighing. After
two repeats with large �2, the measurement for this AM
value was aborted. An aborted weighing usually indicated
that the AM was resting on the mass handler and on the
balance pan in an unstable way.

A more frequent occurrence was that of an AM which
rested on both the mass handler and the balance was almost

stable thereby giving a reasonable �2. In order to reject
such weighings, an offline calculation was made to check
whether the measured weight was within 10 �g of the
expected weight. The statistical noise of a valid weighing
was typically about 0:15 �g (see Fig. 9 showing ABA
difference involving 3 weighings). Excursions of more
than 10 �g were thus a clear indication of a malfunction.

This offline test is somewhat more restrictive than the
offline test employed in our original analysis. In the origi-
nal analysis, a check was made only to see that the weight
difference between the TM’s for equal AM loadings was
reasonable. The more restrictive test used in the present
analysis resulted in the rejection of the S2304 series at the
time when the room temperature stabilizer was just begin-
ning to fail. It was also the reason for not including the
tantalum TM-measurements in the present analysis. In the
eight S2304 series accepted for the determination of the
gravitational constant, approximately 8% of the expected
zero-point values could not be determined due to at least
one of the three weighings at each load value being rejected
by the test for valid weighings.

I. Calibration measurements

A coarse calibration of the balance was made periodi-
cally during the gravitational measurement (before each
S288 series) using two calibration masses each with a
weight of approximately 100 mg. A correction to the
coarse calibration constant due to the nonlinearity of the
balance will be discussed in Sec. III J. The two CM’s used
for the coarse calibration were short sections of stainless
steel wire. The diameter of CM1 was 0.50(1) mm and that
of CM2 was 0.96(1) mm. The surface area of CM1 was
approximately 1 cm2 and that of CM2 was 0:5 cm2. The
CM’s were electrochemically etched to the desired mass
and then cleaned in an ethanol ultrasonic bath. The mass of
each CM was determined at Metrology and Accreditation
Switzerland (METAS) in air with an absolute accuracy of
0:4 �g or a relative uncertainty of 4 ppm. The absolute
determinations of the CM masses were made before and
after the gravitational measurement with copper TM’s and
after the second measurement with tantalum TM’s. Only
the first measurement was used to evaluate the coarse
calibration constant employed in the measurement with
copper TM’s. As will be discussed below, the second and
third measurement were used for the measurement with
copper TM’s only to check the stability of the CM’s.

A calibration measurement involved either TM and one
of following seven additional loads: (1) CM1 alone,
(2) CM2 alone, (3) again CM1 alone, (4) empty balance,
(5) CM1� CM2, (6) empty balance, and (7) CM1� CM2
and nine so-called dummy weighings. These measure-
ments were made with no AM’s on the balance. After the
seventh weighing, a series of nine dummy weighings alter-
nating between upper and lower TM’s were made with the
AM load set to the value for the next TM weighing. The
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FIG. 10. The average signal for each of the eight S2304 series.
Series with increasing loads are shown as circles. Series with
decreasing loads are shown as squares. The dashed line is the
average of all eight series.
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dummy weighings were made in order to allow the balance
to recover from the large load variations experienced dur-
ing the calibration measurement and thereby come to an
approximate equilibrium value before the next TM weigh-
ing. Calibrations were made alternately with the upper and
lower TM’s as load. Calibration measurements were made
about twice a day. Including the dummy weighings, each
calibration required about 50 min.

A three-parameter least-squares fit was made to the
calibration weighings labeled 4, 5, 6, and 7 above. The fit
thereby determined best values for the balance ZP, the
slope of the ZP, and a parameter representing the effective
ZP-corrected reading of the balance for the load CM1�
CM2. This third parameter is of particular interest since the
coarse calibration constant is determined from the known
mass of CM1� CM2 (measured by METAS) divided by
this parameter. Therefore, the results of the least-squares fit
to each set of calibration data gave a value for the coarse
calibration constant which then was used to convert the
balance output of the S288 series to approximate mass
values. An ABA analysis of the first three weighings of
each set of calibration data was also made in order to
determine the difference in mass between CM1 and CM2.

The absolute masses obtained for CM1 and CM2 as
determined by METAS are given in columns 2 and 3 of
Table I. Also shown in Table I (column 4) are the mass
differences between CM1 and CM2 as obtained from the
METAS measurement in air and the average of our CM
measurement in vacuum. The mass differences between
CM1 and CM2 measured in vacuum are particularly useful
in checking for any mass variation of the CM’s.

It is seen that CM2 mass decreased by 1:00�53� �g
between the first and second METAS measurements while
the mass of CM1 was essentially the same in all three
measurements. From the mass difference values in air
and vacuum it is clear that the change occurred after the
measurements with copper TM’s ended in Sept. 2001 and
before the weighing at METAS in Nov. 2001 which pre-
ceded the start of the tantalum measurements. We ascribe
this change of CM2 to either the loss of a dust particle or
perhaps a piece of the wire itself. The loss of a piece of the
wire was possible since the wire used for the CM’s had

been cut with a wire cutter and there could have been a
small broken piece that was not bound tightly to the wire.
For this reason only the values given for the first weighing
of the CM’s were used to determine the coarse calibration
constant used for the measurement with copper TM’s.

A plot of the relative change of the effective ZP-
corrected balance reading corresponding to the load
CM1� CM2 is shown in Fig. 11. It is seen that it changed
by only a few ppm over the 43 days of the measurement. A
linear fit made to these data results in a slope equal to
�0:044�6� ppm=day which is equivalent to a mass rate
variation of �0:0088�12� �g cm�2 d�1. The uncertainty
was obtained by normalizing �2 of the fit to the degrees
of freedom (DOF).

The slow variation of the effective balance reading for
the load CM1� CM2 seen in Fig. 11 could be due either to
a change of the balance sensitivity, to a decrease in the
mass of CM1� CM2 due to the removal of a contaminant
layer from the CM’s in vacuum, or to a combination of both
causes. A variation of the balance sensitivity would have
essentially no effect on the analysis of the weighing for the
gravitational measurement as the coarse calibration con-
stant used for the analysis was determined from the balance
parameter for each S288 series. However, a variation of the
mass of CM1� CM2 would result in an error in the
analysis since the mass would not be the value measured
by METAS shown in Table I.

In order to investigate this problem, we have examined
the difference between the balance readings for CM1 and
CM2. This difference is proportional to the surface areas of
CM1 and CM2 which differ by approximately a factor of 2
(CM1 area � 1 cm2 and CM2 area � 0:5 cm2). The bal-
ance reading difference is only slightly dependent upon the
coarse calibration constant so that it represents essentially

TABLE I. The mass of the CM’s as measured by METAS and
the CM1� CM2 mass differences measured in air at METAS
and in vacuum during the gravitational measurements at PSI. All
values are given in �g.

Date CM1 CM2 Difference

Feb 6, 01 100 270.30(40) 100 263.90(40) 6.40(60)
Jul.–Sep., 01 in vacuum 5.853(19)
Nov. 29, 01 100 270.20(35) 100 262.90(35) 7.30(50)
Jan.–Mar., 02 in vacuum 7.269(29)
Apr.–May, 02 in vacuum 7.496(25)
May 27, 02 100 270.01(35) 100 262.97(35) 7.04(50)
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FIG. 11. The change of the effective balance reading for the
load CM1� CM2 as a function of time relative to its value on
the first day. No valid measurements were made between
day 229 and 235.
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the mass difference itself. In Fig. 12 is shown the measured
mass difference as a function of time during the gravita-
tional measurement. Also shown is a linear function fit to
these data. The slope parameter of the fit results in a rate of
increase per area equal to 0:0021�18� �g cm�2 d�1. The
uncertainty has been determined by normalizing �2 to the
DOF. The sign of the slope is such that the CM with the
larger area has the larger rate of increase. A mass differ-
ence variation (CM1� CM2) would require a slope of
�0:0088�12� �g cm�2 d�1. The measured slope of the
effective balance reading for the load CM1� CM2 clearly
excludes such a large negative slope as assumed for a mass
variation. We therefore conclude that the variation of this
parameter is due primarily to the sensitivity variation of the
balance.

We note that Schwartz [16] has also found a mass
increase for stainless steel samples in a vacuum system
involving a rotary pump, a turbomolecular pump, and a
liquid nitrogen cold trap. His samples were 1 kg masses
with surface areas differing by a factor of 1.8. He measured
the thickness of a contaminant layer using ellipsometry as
well as the increase in weight of the sample during pump-
ing periods of 1.2 d and 0.36 d. The rate of mass increase
per area which he reports is approximately a factor of 5
larger than the value we find. No explanation for this
difference can be made without a detailed knowledge of
the partial pressures of the various contaminant gases in the
two systems and the surface properties of the samples
employed.

There still remains the possibility that a rapid removal of
an adsorbed layer such as water might have occurred
between the absolute determination of the CM masses in
air at METAS and the gravitational measurement in vac-
uum (i.e. during the pump down of the system). Schwartz
[17] has measured the mass variation per unit area of 1 kg
stainless steel objects in air with relative humidity between
3% and 77%. He [16] also has measured the additional

mass variation per area due to pumping the system from
atmospheric pressure at 3% relative humidity down to 5�
10�3 Pa. His samples were first cleaned by wiping them
with a linen cloth soaked in ethanol and diethylether and
then ultrasonic cleaning in ethanol. After cleaning, they
were dried in a vacuum oven at 50 �C. For these cleaned
samples, the weight change found for 3% to 50% humidity
variation was 11:5 ng cm�2 with an additional change of
29 ng cm�2 in going from 3% relative humidity in air to
vacuum (total change of 40:5 ng cm�2). Similar measure-
ments with ‘‘uncleaned’’ samples gave a total change of
80 ng cm�2. The variation due to the cleanliness of the
samples was much larger than the difference found for the
two types of stainless steel investigated and the effect of
improving the surface smoothness (average peak-to-valley
height equal to 0:1 �m and 0:024 �m). Since the cleaning
procedure used for our CM’s and their smoothness were
different than the samples used by Schwartz, we have
employed the average of Schwartz’s ‘‘cleaned’’ and un-
cleaned objects for estimating the mass change of our
CM’s. Based on these data, the relative mass difference
found for both CM’s together as measured in air having
50% humidity and in vacuum was 0.5 ppm. We assign a
relative systematic uncertainty of this correction equal to
the correction itself.

J. Nonlinearity correction

By nonlinearity of the balance, one is referring to the
variation of the balance response function with load, that
is, the degree to which the balance output is not a linear
function of the load. The nonlinearity of a mass comparator
similar to the one employed in the present work has been
investigated [18] by the firm Mettler-Toledo. It was found
that besides nonlinearity effects in 10 g load intervals, there
was also a fine structure of the nonlinearity in the 0.1 mg
load interval which would be important for the accuracy of
the present measurement. It is the nonlinearity of our mass
comparator in the particular load interval less than 0.2 g
involved in the present experiment that we wish to
determine.

One expects the nonlinearity of the balance used in this
experiment to be small; however, it should be realized that
a 200 mg test mass (two 100 mg CM’s) required for having
an accurately known test mass for calibration purposes is
over 250 times the size of the gravitational signal that one
wishes to determine. In addition, the statistical accuracy of
the measured gravitational signal is some 30 times better
than the specified accuracy (2 �g) of the unmodified com-
mercial balance. One therefore has no reason to expect the
nonlinearity of the balance to be negligible with this pre-
cision. In Sec. III A we have presented the general idea that
the measurements with 256 AM values tends to average out
the effect of any nonlinearity. We wish now to give a more
detailed analysis of this problem.
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FIG. 12. The mass difference of the CM’s as a function of time
and the linear fit function.
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The correction for nonlinearity makes use of an arbitrary
response as a function of the load. Since the two TM’s are
essentially equal (< 400 �g difference), the variation of
the response function can be thought of as being a function
of the additional load due to the AM’s. Although a power
series or any polynomial series would suffice for this
function, we have for convenience used a series of
Legendre polynomials

 f�u� �
XLmax

‘�0

a‘P‘�2u=umax � 1�:

The coefficients of P‘ are chosen subject to the two con-
ditions that (1) f�u� � 0 for no load and (2) f�u� � C for
u � C where C is the weight of the two CM’s together.
These two conditions represent the sensitivity of the bal-
ance over the 0.2 g range of the calibration (i.e. the coarse
calibration). The value of the maximum load umax in the
present measurements was very nearly C. Substituting the
above conditions into the response function, one obtains
for the lowest two coefficients the expressions

 a0 � C=2�
XLmax

even ‘�2

a‘

and

 a1 � C=2�
XLmax

odd ‘�3

a‘:

One can then minimize

 �2 �
XN
n�1

�f�un � s� � f�un� � yn	2��2
n

and thereby determine best values for the parameters s and
a‘ for ‘ � 1 to Lmax. The yn are the measured balance
signal for the load values un, s is the load-independent
signal, and N is the number of different loads with valid
measurements. The error �n for the load value un is the
load-independent intrinsic noise of the balance �0 for a
single weighing divided by the square root of the number
of weighings for the load un. The value of Lmax must be
chosen large enough to describe the response function
accurately. All of the parameters in the fit are linear pa-
rameters with the exception of s. Thus, there is no difficulty
in extending the fit to a large number of parameters since
only the nonlinear parameter must be determined by a
search method.

In order to determine Lmax, we calculate the �2 proba-
bility [19] (often referred to as confidence level) as a
function of Lmax. This requires an approximate value for
the intrinsic noise of the balance �0. The value of �0 sets
the scale of the �2 probability but does not change the
general shape of the function. One can obtain a reasonable
approximation for �0 by setting �2 equal to the DOF
obtained for a large number of parameter. We have arbi-

trarily set �2 equal to the DOF for 61 parameters. The �2

probability as a function of the maximum number of
parameters is shown in Fig. 13. It is seen that the �2

probability reaches a plateau near this maximum number
of parameters.

Starting from a low value of 10�4 for one parameter, the
�2 probability rises rapidly to a value of 0.05 for three
parameters. It remains approximately constant at this value
up to 57 parameters where it rises sharply to reach a plateau
of approximately 0.5 at 60 parameters and above. The fit
parameter representing the signal corrected for nonlinear-
ity of the balance was essentially constant over the entire
range of parameters with a variation of less than 
1:3 ng.
The signal for one parameter representing complete line-
arity was 784:8994 �g. The signal of the plateau region
from 60 to 67 parameters was 784:9005 �g with a statis-
tical uncertainty of 5.5 ng. In this region the signal varied
by less than 0.2 ng. We therefore take the nonlinearity
correction of the measured signal to be 1.1(5.5) ng (i.e.
the difference between the signal using one parameter as
would be obtained with no correction and the average value
obtained for 60 to 67 parameters).

The nonlinear signal and fit as a function of loads
determined for 60 parameters is shown in Fig. 14. The
function shows many narrow peaks with widths of 3 to 10
load steps and with amplitudes of roughly 0:1 �g. In
principle one could use this response function to correct
the individual weighings with various loads; however, we
prefer to use the signal as corrected for nonlinearity over
the entire range of measurements as described above. The
variation of the response function indicates that a measure-
ment made at an arbitrary load value could be in error by as
much as
130 ng assuming the response to be linear. This
is to be compared with the assumed uncertainty in Ref. [6]
due to nonlinearity of 
200 ng.
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FIG. 13. The �2 probability as a function of the number of
parameters.
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K. Correction of the TM-sorption effect

Moving the FM’s changed slightly the temperature of
the vacuum tube surrounding the TM’s. These temperature
variations were due to changes in the air circulation in the
region of the vacuum tube as obstructed by the FM’s. An
increase of the wall temperature of the tube caused ad-
sorbed gases to be released which were then condensed
onto the TM. Since the temperature variation was different
in the regions near the upper and lower TM’s, this resulted
in a variation of the weight difference between the upper
and lower TM’s (i.e. a ‘‘false’’ gravitational signal).

The temperature variation at the positions of the upper
and lower TM’s during 1 d of the gravitational measure-
ment is shown in Fig. 15 along with a curve representing
the FM motion. The peak-to-peak temperature variation
was approximately 0.04 �C at the upper position and
0.01 �C at the lower position. The shape of the temperature
variation at the upper position was used as a fit function
(employing an offset and an amplitude parameter) to ob-
tain a better determination of the temperature variation at
the lower position. There were 32 oneday measurements of
the temperature variations during the gravitational mea-
surement. The average amplitude at the lower position
determined from these 32 measurements was
0.0138(2) �C.

The signal produced by these temperature variations was
small and therefore not directly measurable with the bal-
ance in a reasonable length of time. The procedure that was
employed to determine this temperature dependent signal
was to use four electrical heater bands to produce a varia-
tion of the temperature distribution along the vacuum tube
that was a factor of approximately seven larger than the
variation resulting from the motion of the FM’s. The bands

were positioned 30 cm above and below the positions of
the upper and lower TM’s. The heater windings were bifilar
to avoid magnetic effects. The heater power (less than 3 W
total) was turned off and on with the same 8-hour period as
the FM motion and produced essentially no change in the
average temperature of the vacuum tube in the daylong
measurement. The FM’s were not moved during the mea-
surements with heaters. The signal (TM weight difference
as determined with the balance) obtained during a 1 d
measurement with heaters is shown in Fig. 16. The shape
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FIG. 15. Temperatures of the vacuum tube measured at the
position of the TM’s. The upper curve is the temperature at the
position of the upper TM. The square wave in the middle section
of the plot indicates the FM motion. The data (crosses) for the
lower TM and fit function (solid line) are shown in the lowest
section of the figure.
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FIG. 16. Weight difference between TM’s as a function of time
for a temperature variation roughly 10 times that of the gravita-
tional measurement. The solid curve is the best fit of the
temperature variation difference at upper and lower TM posi-
tions. For the purpose of this plot, an arbitrary offset of the
weight difference between upper and lower TM has been em-
ployed.
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FIG. 14. Signal and fit function employing 60 parameters as a
function of load. The data are shown as a stepped line. The fit is
the smooth curve. The lower plot shows the normalized resid-
uals. Residuals were divided by the relative uncertainty of each
point. The normalization has been chosen such that the rms value
of the residuals is 1.
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of the fit function (employing an offset and an amplitude
parameter) shown in this figure was obtained from the
variation of the temperature difference at the upper and
lower positions of the TM’s. The signal obtained from the
fitting procedure was 0:114�40� �g.

In order to scale the heater produced signal to that
resulting from the FM motion during the gravitational
measurement, we make the simplifying assumption that
the signal variation is proportional to the temperature
variation at the upper TM position minus the temperature
variation at the lower TM position. The term variation in
this statement refers to the variation about its mean value.
One uses the temperature difference since the signal is
defined as the difference between TM weighings.

With just four heater bands it was not possible to obtain a
variation of the temperature distribution along the vacuum
tube that was exactly a constant factor times that of the FM
motion. For the best adjustment that we were able to
obtain, the ratio of the heater produced temperature varia-
tion to the FM produced variation was 7.1 at the upper
position and 9.2 at the lower. The ratio for the variation of
the temperature difference at the upper and lower positions
relative to the gravitational values was 6.8. These ratios are
based on the peak-to-peak amplitudes obtained for the
fitted functions. The scaling factor for the temperature
difference ratio is the reciprocal of the temperature differ-
ence ratio or 0.147. This results in a scaled signal of
0:0168�58� �g where the uncertainty is the statistical un-
certainties of the measured signal and the scaling factor.
The scaled signal (’’false’’ signal) is to be subtracted from
the total signal measured in the gravitational experiment.

In order to check our assumption regarding the scaling
factor, we have made four additional oneday measure-
ments in which the temperature variations were very differ-
ent from that produced by the FM motion. The object of
these measurements was to determine whether the scaled
signals obtained with the heaters were consistent with one
another when calculated with the assumed scaling factors.
The most extreme distribution involved a temperature
variation of the lower TM which was even larger (factor
of 4) than that of the upper TM. The signals obtained in all
of the test measurements were consistent with each other
within their statistical uncertainties (relative uncertainties
of approximately 30%). We therefore conclude that the
assumption used for scaling the signals was sufficiently
accurate for the present purpose. Nevertheless, we assign a
systematic uncertainty to the scaled signal equal to its
statistical uncertainty of 5.8 ng (relative systematic uncer-
tainty of the false signal is 35%).

L. Magnetic forces on the test masses

In the absence of a permanent magnetization, the z
component of force on the TM due to a magnetic field
can be calculated from

 Fz � ��0�mVH
@H
@z

;

where V denotes the volume of the TM, �m is its magnetic
susceptibility, and H is the magnetic field intensity. The
magnetic properties of the TM’s were measured by
METAS. No permanent magnetization was found (<
0:08 A=m). The magnetic susceptibility was 4� 10�6

for the copper TM’s. The magnetic field intensity for
both positions of the FM’s was measured at cm intervals
along the axis of the vacuum tube at the positions occupied
by the TM’s using a flux gate magnetometer. The differ-
ence of Fz for the FM positions obtained from these data
was 0.01 ng which is a negligible correction to the mea-
sured gravitational signal.

M. Tilt angle of balance

Since the weight of the TM’s and the weight of the CM’s
both produce forces on the balance arm in the vertical
direction, a small angle between the balance weighing
direction and the vertical produces no error in the weighing
of the TM’s. However, if the balance weighing direction is
correlated with the motion of the FM’s, a systematic error
in the measured gravitational signal will result. Sensitive
angle monitors were mounted on the base of the balance.
No angle variation correlated with the motion of the FM’s
was found with a sensitivity of 100 nrad. Since the sensi-
tivity of the balance varies with the cosine of the angle
(near 0 rad), this limit is completely negligible. For a
balance misalignment of 0.01 rad relative to vertical and
a correlated variation of 100 nrad with respect to this angle
due to the FM motion, the relative signal variation is
approximately 0.001 ppm.

IV. DETERMINATION OF THE MASS-
INTEGRATION CONSTANT

One must relate the gravitational constant to the mea-
sured gravitation signal. This involves integrating an in-
verse square force over the mass distribution of the TM’s
and FM’s. The gravitational force Fz in the z (vertical)
direction on a single TM produced by both FM’s is given
by

 Fz � G
ZZ ez � �r2 � r1�dm1dm2

jr2 � r1j
3 ; (1)

where ez is a unit vector in the z direction, r1 and r2 are
vectors from the origin to the mass elements dm1 of the
TM and dm2 of the FM’s, and G is the gravitational
constant to be determined. The mass-integration constant
is the double integral in Eq. (1) multiplying G. Actually,
the mass-integration constant for the present experiment is
composed of four different mass-integration constants,
namely, those for the upper TM and lower TM with the
FM’s together and apart. We shall use as mass-integration
constant the actual constant multiplied by the 1986
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CODATA value of G (6:672 59 m3 kg�1 s�2 and give the
result in dimensions of grams ‘‘force’’ (i.e. the same di-
mensions as used for the weighings).

The objects contributing most to Fz (TM’s, FM tanks,
and the mercury) have very nearly axial symmetry which
greatly simplifies the integration. Parts which do not have
axial symmetry were represented by single point masses
for small parts and multiple point masses for larger parts.
For axial symmetric objects, we employ the standard
method of electrostatics for determining the off-axis po-
tential in terms of the potential and its derivatives on axis
(see e.g. [20]). The force on a cylindrical TM in the z
direction produced by an axially symmetric FM can be
conveniently expressed as (see Eq. (A6) in the appendix)

 Fz � 2MTM

X1
n�0

V�2n�1�
0

Xn
i�0

1

��4�i
1

i!�i� 1�!

�
1

�2n� 2i� 1�!
b2n�2ir2i; (2)

where MTM is the mass of a cylindrical TM with radius r
and height b, and V�2n�1�

0 is the 2n� 1st derivative of the
gravitational potential with respect to z evaluated at the
center of mass of the TM (r � 0, z � z0).

The potential V�r � 0; z� of the various FM components
having axial symmetry was determined analytically for
three types of axially symmetric bodies, namely, a hollow
ring with rectangular cross section, one with triangular
cross section, and one with circular cross section. This
allows one to calculate the gravitation potential of the
tank walls and the mercury content of the tank as a sum
of such bodies. For example, the region between measured
heights on the top plate and z � 0 at two values of the
radius was represented by a cylindrical shell composed of a
right triangular torus and a rectangular torus (i.e. a linear
interpolation between the points describing the cross sec-
tion of the rings). O-rings were calculated employing the
equation for rings with circular cross sections. A total of
nearly 1200 objects (point masses and rings of various
shapes) were required to describe the two FM’s.

The derivatives of the potential were evaluated using a
numerical method called ‘‘automatic differentiation’’ (see
e.g. [21]). For the geometry of the present experiment, the
terms in the summation over n decrease rapidly so that 8
terms were sufficient for an accuracy of 0.02 ppm in the
mass-integration constant.

A. Positions of TM’s and FM’s

In order to carry out the mass integration, one needs
accurate weight and dimension measurements of the TM’s
and FM’s as well as distances defining their relative posi-
tions. The dimension and weight measurements for TM’s
were described in Sec. III B. The measurement of the TM
positions shown in Fig. 17 will now be addressed.

A special tool was made to adjust the length of the
tungsten wires under tension. Each wire made a single
loop around the post on either side of the TM and a thin
tube was crimped onto the wires to hold them together
thereby forming the loop (see Fig. 4). The position of the
TM could only be measured with the vacuum tube vented.
The vacuum tube was removed below a flange located at a
point just above the upper TM. The TM hanging from the
balance was then viewed through the telescope of an
optical measuring device to determine its position.

The vertical position of the TM’s and FM’s was mea-
sured relative to a surveyor’s rod which was adjusted to be
vertical. The bottom of the surveyor’s rod was positioned
to just touch a special marker mounted on the floor of the
pit. The surveyor’s rod had accurate markings every cm
along its length. A precision levelling device in which the
optical axis of the telescope could be displaced by some-
what more than a cm was then used to compare the position
of the upper surface of a TM with a mark on the surveyor’s
rod. Similar measurements were made for the FM’s. These
measurements were made before and after each of the three
gravitational measurement (Cu, Ta 1 and Ta 2 TM’s).
Although the measuring device including the surveyor’s
rod was removed from the pit after each of these measure-
ments, the reproducibility of each position measurement
was found to be better than 35 �m. The accuracy of the
average of the two sets of position measurement for each
type of TM including systematic uncertainty was 35 �m.

A small vertical displacement of the TM’s occurred
when the system was evacuated. This was measured during
the evacuation of the system by observing the TM’s
through the windows on the side of the vacuum tube using
the levelling device that was also used for measuring the
TM position in air. The vertical displacement was mea-

FIG. 17. Drawing showing the measured vertical distances to
TM and FM surfaces for the two FM positions (T—Together and
A—Apart).

MEASUREMENT OF NEWTON’S GRAVITATIONAL CONSTANT PHYSICAL REVIEW D 74, 082001 (2006)

082001-15



sured several times and found to be 0.10(3) mm. This
displacement is shown as " in Fig. 17).

The angle of the TM axis relative to the vertical direction
was also determined with the same precision levelling
instruments by measuring the height on the top surface of
the TM at two opposite points near the outer radius of the
TM. This was done for each TM from a viewing direction
almost perpendicular to the plane of the supporting wires.
The angle of the axis relative to the vertical was found to be
less than 1� for both TM’s.

The horizontal positions of the TM’s were determined
using a theodolite. The left and right sides of the TM were
viewed through the telescope of the theodolite relative to
an arbitrary zero angle. The horizontal position of the
central tube was determined relative to the same zero
angle. These measurements were made for each TM and
FM from two nearly perpendicular viewing angles. The
measurements were made before and after each gravita-
tional measurement. The radial positions of the upper and
lower TM’s relative to the common axis of the FM’s were
found to be 0.45 mm and 0.50 mm, respectively. The
overall accuracy of the radial positions of the TM’s from
these measurements was 0.1 mm. This uncertainty results
in only a small uncertainty in the value of G determined in
this experiment due to the extremum of the force field in
the radial direction. No problem was experience with
pendulum oscillation during these measurements as the
amplitudes were strongly damped in air.

B. Dimensions and weight of the FM’s

The individual parts of the FM’s were weighed at
METAS with an accuracy of 1 g. The weights were cor-
rected for buoyancy to obtain the masses.

The narrow confines of the pit made measurement of the
FM’s deformed by the mercury load difficult. Although
measurements of the individual pieces before assembly
were in principle more accurate, the loading and tempera-
ture difference between dimension measurements and
gravitational measurement reduced the accuracy of these
measurements. In addition, it is known that long term
loading can release tensions in the material which result
in inelastic deformation of the material. Therefore, the
measurements made with mercury load were always used
in the analysis when available.

The uncertainty in the height of the central piece proved
to be very important in determining the uncertainty of the
mass-integration constant. Because of the various types of
measurements for this dimension with different systematic
effects, we decided that the best value would be an equally
weighted average of the four available measurements with
the uncertainty being determined from the rms deviation
from the mean. The measurements employed were the
following: (1) a Coordinate Measuring Machine measure-
ment before the tanks were assembled, (2) a Laser Tracker
(LT) measurement with mercury loading during the experi-

ment, (3) a LT measurement in the machine shop with no
loading after completion of the experiment, and (4) a
CMM measurement after the tanks had been disassembled
at the end of the experiment. The two CMM measurements
were independent in that they were made with different
CMM devices and with different temperature sensors. The
uncertainty in the height as determined from the rms
deviation was 19 �m for the upper tank and 9 �m for
the lower tank.

A cut-away drawing of a FM tank is shown in Fig. 18.
All pieces were made from stainless steel type No. 1.4301
which is resistant to mercury and has a low magnetic
susceptibility. The pieces were sealed to one another with
mercury resistant Perbunan O-rings. The top and bottom
plates were fastened to the central piece with 12 screws.
The top and bottom plates were screwed to the outer casing
with 24 screws.

Because of the nearness of the central piece to the TM’s,
especially close tolerances were specified for this piece.
The central piece was annealed before machining to re-
move tensions which could deform the piece during ma-
chining. A surface roughness value of <1 �m was
obtained by grinding the surface after machining. The
roughness value is defined as the average height of the
peaks times the area of peaks relative to the total area of the
surface.

The top and bottom plates were less critical than the
central piece. A surface roughness value of 6 to 10 �m was
specified for the machining of the inner surface of these
pieces. The inner surface of the casing was even less
critical and a surface roughness value of 15 �m was
specified for it.

Since the mercury was filled into the tanks under vac-
uum conditions, it filled more or less the exact surface
profile (i.e. the region between the grooves caused by
machining). The mercury in the filled tank was under
positive pressure on all surfaces including the top plate.
The over pressure ranged from about 0.1 bar on the top
plates (due to the height of mercury in the compensation

FIG. 18. Drawing of the field mass. All dimensions are given
in mm.
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vessel shown in Fig. 18) and 1 bar on the bottom plates.
The bulging of the central cylinder and the outer casing due
to the mercury pressure was calculated using the equations
for thin cylindrical shells [22]. The inward bulging of the
central tube was found to have a maximum value of
0:17 �m which is completely negligible for the present
experiment. The maximum outward bulging of the outer
casing was approximately 4 �m and resulted in a small
(8 ppm) correction of the volume. The loading of the tanks
produced a 2 �m elongation of the outer casing corre-
sponding to a relative volume increase of 1 ppm.

Before the tanks were assembled, measurements of the
individual pieces were made with a coordinate measuring
machine. The inner diameters of the central tube were
checked with a special dial gauge and found to agree
with the CMM values. The wall thickness of the outer
casing, top and bottom plates were measured with a wide
jaw micrometer having a dial gauge readout.

After the tanks were filled with mercury, measurements
of the outer surface of the top and bottom plates were made
with a laser tracker. It was not possible to measure the outer
surface of the casing due to the close confines of the pit.
The LT measurements were made in the dynamic mode in
which the retro reflector is moved on the surface and
readings are taken as fast as possible (1000 per s). An
example of these data for the top surface of the lower
tank is shown in Fig. 19. The data for the other plates are
similar. The force due to the mercury loading which tended
to stretch the central tube, and to a lesser extent the outer
casing, could be determined from these data using equa-
tions based on thin axial symmetric plates and shells [22].
The force on the central tube was calculated to be (17

8 kN) which resulted in an elongation of 15 �m.

Finally, after the mercury had been removed from the
tanks, additional LT measurements were made of the out-

side height of the central tube in order to clear up a
discrepancy of this dimension as measured with the
CMM and LT.

The form of the central tube and outer casing as deter-
mined by the analysis of the measurements was very nearly
circular; however, the deviation from perfect roundness
was larger than the expected accuracy of the measure-
ments. For the purpose of determining the actual accuracy
of the measurements, a least-squares fit was made to the
data employing a number of Fourier terms. The uncertainty
of the measured data was then determined by setting the �2

of this fit equal to the DOF.
For the purpose of determining the uncertainty of the

volume and the mass-integration constant, we have em-
ployed effective dimensions describing a hollow, right
circular cylinder. The effective value of the small radius
r and height h of the central piece were assigned the
approximate values of 60 mm and 650 mm, respectively.
The effective inner radius R of the casing was then deter-
mined such that the inside volume of the tank was the value
determined from measurements.

Besides the accuracy of the directly measured dimen-
sions, one has also to consider the effect of the expansion
coefficient of the stainless steel times the temperature
difference between the measurement of the piece and the
temperature during the gravitational measurement, accu-
racy of the surface roughness, and the deformation due to
the load. The accuracy of the temperature, roughness, and
deformations effects are assumed to be one-half of the
change caused by these effects. An estimate of these
accuracies for the inside effective dimensions of the tanks
is given in Table II.

C. Weighing the mercury

After a preliminary measurement in which the tanks
were filled with water, the water was drained from the
tanks and they were ventilated with warm dry air. The
tanks were then evacuated to a pressure of 10�2 mbar
using a rotary pump with an oil filter to prevent back
streaming in preparation for being filled with mercury.
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FIG. 19. Data and fit for the upper surface of the lower tank as
a function of radius. The solid curve is the fit function based on
the theory of circular plates. The offset has been chosen such that
the z value is 0 mm at a radius of 60 mm.

TABLE II. Estimated uncertainty in �m of the effective values
for the radius r of the central tube, the radius R of the outer
casing, and the height h of the central tube due to various effects.
The uncertainties apply to the inside dimensions of the tank.

Description �r �R �h

Measurement 1.0 5 20
Thickness � � � � � � 5
Temperature 0.3 4 6
Elongation � � � � � � 7
Bulge 0 2 � � �

Roughness 0 6 7
Total 1.1 9 24
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Since the tanks were to be filled with mercury only once,
every effort was made to weigh the mercury as accurately
as possible during the filling. The mercury (specified purity
99.99%) was purchased in 395 flasks each weighing
36.5 kg and containing 34.5 kg of mercury. The general
procedure for filling each tank was as follows. The outer
surface of the flasks were first cleaned with ethanol. Half of
the flasks were brought into a measuring room near the
experiment and allowed to come into equilibrium with the
room atmosphere for a few days. These flasks were then
weighed over a period of one week. Then, one after an-
other, the flasks were attached to the transfer device. Most
of the mercury in a flask was transferred via compressed
nitrogen, first into an intermediate vessel used as a vacuum
lock and then into the evacuated tank. A small amount of
mercury was intentionally left in each flask in order not to
transfer any of the thin oxide layer floating on the surface.
The filling of a tank required one week. After completion
of the filling, the flasks with their small remaining mercury
content were weighed again. The entire process was then
repeated for the second tank.

Various precautions and test measurements were under-
taken to insure the accuracy of the weighings. The balance
employed for these measurements was type SR 30002
made by Mettler-Toledo. The balance was operated in the
differential mode with accurately known (5 mg) standards
for weights less than 2 kg (for empty flasks) and a stainless
steel mass of approximately 36.6 kg made in our machine
shop (for full flasks). The mass of the 36.6 kg weight was
calibrated several times at METAS and remained constant
within the 18 mg (the certified accuracy of the weighings)
during the weighing of the mercury. The reproducibility of
the weighing of an almost empty flask or full flask was
20 mg. The average of three weighings was made for
empty and full flasks with the balance output transferred
directly to a computer via an RS232 interface. The balance
was checked for nonlinearity and none was found within
the accuracy of the standard weights. A centering table was
used which allowed the flasks to be off center by as much
as 2 cm without influencing the measurement. Atmos-
pheric data used for buoyancy corrections were taken
several times a day. A 10 kg calibration test was made
once a day and the balance zero was checked every hour. It

was found that the flasks were magnetized along their
symmetry axis. Rotating the flask on the balance did not
change the measured weight but inverting the flask resulted
in a 100 mg difference. Since weighings were always made
with the flasks in an upright position, no magnetization
error occurred in the difference between full and empty
flasks. The variation of the weight for 12 flasks was moni-
tored over a period of 8 weeks. The variation was similar
for all 12 flasks and amounted to about 20 mg per flask
during the 3 weeks required to weigh the flasks and fill the
tank. Mercury droplets which had not reached the tanks
and small flakes of paint which had accidentally been
removed from the outer surface of the flasks during the
transfer process were collected and weighed.

The total uncertainty in the approximately 6760 kg of
mercury in each tank was 12 g for the upper tank and 15 g
for the lower tank which gives a relative accuracy of
2.2 ppm for the mass of mercury in the tanks. A listing
of the various weighing uncertainties is given in Table III.
An estimate of the mercury and flask residue that had not
been collected (and the uncertainty of the amount col-
lected) was assumed to be 20% of the amount collected.
The pressurizing of the flasks with nitrogen during transfer
resulted in a buoyancy correction of the almost empty
flasks due to the difference in density between air and
nitrogen. The flasks were sealed after use, but air gradually
replaced the nitrogen. The assumption of a constant density
(approximate equation) for the gas left in each empty flask
during the time of the measurement amounted to an un-
certainty of 7 and 8 g for the upper and lower tanks,
respectively. The change in mass of the flasks during the
three week measurements gave an uncertainty of 4 g for
each tank. The accuracy of the standard masses caused an
uncertainty of 3.7 g for each tank. Air buoyancy uncertain-
ties resulted in an uncertainty of 1.2 g for each tank. The
statistical uncertainty due to reproducibility of the balance
was 0.4 g for each tank.

D. Mass distribution of the central piece

Although the principle mass making up the FM’s was
mercury and therefore had only a negligible density varia-
tion due to its pressure gradient, the density variation of the

TABLE III. A listing of the weighing uncertainties for the upper and lower tanks. All
uncertainties except that of the standard masses are independent for each tank. The total mass
of mercury in each tank was approximately 6760 kg.

Type of uncertainty Upper Tank [g] Lower Tank [g]

Loss of mercury and residue from flasks 8 11
Approximate equation 7 8
Mass variation of flasks 4 4
Uncertainty of standard masses 3.7 3.7
Buoyancy correction 1.2 1.2
Weighing statistics 0.4 0.4
Total uncertainty 12 15
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walls of the tanks was important in determining the mass-
integration constant. In particular, the two central pieces
which were very near to the TM’s and which were com-
posed of three different pieces of stainless steel welded
together were critical for this determination. Therefore
after the gravitational measurements had been completed,
the central pieces were cut into a number of rings in order
to determine the density of these rings and thus the mass
distribution of the central pieces.

As shown in Fig. 18, each central piece was composed of
upper and lower flanges and a central tube. The material of
the flanges extended about 40 mm beyond the surface of
the flanges in the form of the central tube. In order to
determine the vertical mass distribution in the flanges,
three rings of 10 mm height were cut from each of these
40 mm sections with the last ring straddling the weld
between flange and central tube. The weight and dimen-
sions of the various pieces (12 rings, 4 flanges, and 2
central sections of the tube) were used to determine the
densities of these pieces. The densities of the flanges were
found to be between 7.9138 and 7:9147 g cm�3 and the
densities of the central section of tubes were 7.9062 and
7:9101 g cm�3. The accuracy of the absolute-density de-
terminations was somewhat better than 0:001 g cm�3. The
density of the weld regions did not differ significantly from
that of the flanges. The variation of the flange densities
over the 65 mm of the flange and adjoining section of the
tube was found to be less than 0:005 g cm�3. From these
measurements, it was not possible to determine a radial
density gradient of the flanges. For calculating the effect of
a radial gradient on the mass-integration constant, we shall
make the assumption that the radial density variation was
less than 0:005 g cm�3 over the radial dimension of the
flange (160 mm). The vertical density gradients of the
central tubes were not important since their effects on the
gravitational signal are almost completely cancelled due to
the symmetry of central tube relative to the apart-together
measurements with the FM’s.

E. Using the measured dimensions

The first step in calculating the mass-integration con-
stant was to enter the measured dimensions and masses of
the various pieces in a computer program. For pieces that
had essentially axial symmetry such as the central tube and
the outer casing, an average radius was determined from
the data measured at each height and used in further
calculations. For horizontal surfaces which were nearly
planar such as the top and bottom plates, an average height
was determined from the data at each measured radius and
used in further calculations. Since the original data were
normally available only in Cartesian coordinates, it was
necessary to determine the symmetry axis and make the
conversion to cylindrical coordinates. For data without
axial symmetry such as screws, screw holes, and linear
objects, single or multiple point masses were used. With

this reduced set of dimensions, approximately 580 data
elements were necessary to describe each tank.

As a preliminary calculation related to the mass-
integration constant, the volume of the individual pieces
and the inside volume of the tanks were calculated from the
reduced dimensions. Using the known weight of the piece,
the calculated volume allowed the density of the material
to be determined. This was a valuable test to check whether
the input data for the piece was reasonable.

The volume for pieces with axial symmetry was deter-
mined by making a linear interpolation between the points
of the reduced data. The volume of a piece was thus
composed of a sum of cylindrical rings with rectangular
and right triangular form. A cylindrical ring with circular
cross section was used for the volume of O-rings. The
accuracy of the linear approximation in the volume deter-
mination was checked relative to a quadratic approxima-
tion of the surface. The linear approximation was found to
be sufficient for all calculations.

The original CMM measurements had been made for 12
’ angles at 14 heights on the central tube, at 4 radii on the
horizontal surfaces of the central flange, at 11 radii on the
horizontal surfaces of the top and bottom plates, and at 7
heights on the outer casing. Although many more points of
the horizontal surfaces were measured with the LT, they
were reduced to the original CMM points for the purpose
of volume integration and mass integration by fitting func-
tions to the LT data. Only outside surfaces were measured
with the LT. Inside dimensions were obtained from the LT
data by subtracting the micrometer-thickness values. The
only measurements of the casing radius were the CMM
measurements of the inner radius. The outer surface of the
casing was determined from the CMM values combined
with the micrometer data.

F. Density constraint

Since the mercury represented roughly 90% of the total
tank mass, special attention was given to its contribution to
the signal. The density of mercury samples from each tank
was measured at the Physikalisch-Technische
Bundesanstalt, Braunschweig with an accuracy of 3 ppm.
One can use this density and mass measurements of the
mercury (see Sec. IV C) to obtain better values for the
effective tank dimensions and thus for the mass-integration
constant. This results in a correlation among the effective
parameters, r, R, h,m. The method employed to determine
the best parameters representing the effective values (de-
termined from measurements as described in the previous
section) is based on minimizing a �2 function of the form
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subject to the density constraint
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m

��R2 � r2�h
: (4)

After substituting % from Eq. (4) in Eq. (3), �2 becomes a
function of the four parameters r, R, h, m, the five mea-
sured quantities r0, R0, h0, m0, %0, and their uncertainties
(see Table IV for the uncertainties of the effective values).
The simplex method was used to minimize �2 and thereby
obtain best values for the fit parameters. Although % is not
explicitly one of the fit parameters, a best value for % can
be obtained by substituting best fit parameters in Eq. (4).

The difference between best fit parameters and the mea-
sured values are shown in Table IValong with the resulting
minimum �2. It is seen that the difference between pa-
rameters and measured values is less than the error in all
cases and that �2 is consistent with the expected �2 for a
least-squares fit with one DOF.

In order to obtain the uncertainty of the mass-integration
signal one needs the parameter-error matrix involving r, R,
h, m, and % multiplied by partial derivatives of the signal
with respect to these quantities. The partial derivative with
respect to % is zero since it does not occur explicitly in the
expression for the signal. The error of the signal S is given
by

 �S �
�X
i;j

@S
@xi

@S
@xj

err�xi; xj�
�

1=2
;

where the xi and xj are any pair of the measured quantities
and err�xi; xj� is the 5 by 5 parameter-error matrix.
Assuming that, for small variations about the measured
values, the fit parameters represented by the 5-dimension
vector �y can be expressed as a linear function of the
measured values �x of the form �y � T �x� �a. The
parameter-error matrix can be written as

 err �yi; yj� � TVTt;

where T is the Jacobi derivative of ywith respect to x, Tt is
its transpose, V is the 5 by 5 matrix covariance matrix (i.e.
Vi;j � err�yi; yj�) with all zero elements except along its
diagonal, and �a is a constant vector. The elements of the
matrix T and the vector �a were determined numerically by
solving a system of linear equations in which the fit pa-

rameters were determined for measured values incre-
mented by small amounts (�x).

The partial derivatives were also determined numeri-
cally by calculating the signal for measured values with
small increments (�x). The signal was calculated using
actual dimensions of the deformed tanks corrected by
factors relating the r, R, h parameters to the effective
dimensions r0, R0, h0. The resulting covariance matrix
representing the square of the uncertainty in the calculated
mass-integration signal is shown in Table V. It is seen that
the elements involving R and h are much larger than those
for r and m. For the upper tank (tank 1), the relative
uncertainty of the calculated mass-integration constant
due to the correlated dimensions is 2.14 ppm. For tank 2,
it is 2.41 ppm. The large cancellation occurring in the sum
of the elements results in the uncertainty for these con-
strained parameters being approximately a factor of 7
smaller than the uncertainty that would be obtained with-
out the density information.

G. The effect of air density

Since air is not present in the region of the FM’s, the
motions of the FM’s results in a force on the TM’s due to
the mass of the air elsewhere. It is as if there were a
negative contribution to the mass of the FM’s due to the
lack of air in this region. This effect depends upon the
density of the air in the region surrounding the FM’s.

The air pressure, the relative humidity, and the air tem-
perature were recorded every 12 min during the gravita-
tional measurement thereby providing the information
necessary to determine the air density. The effect of air
density on the calculated mass-integration constant was
approximately 100 ppm. The variation of the mass-
integration constant for this effect was only about 1 ppm.
Thus, it was sufficient to employ only the average value of
the air density during the entire gravitational measurement.
The average density employed was 1:156 kg=m3.

H. The effect of mercury expansion

Because of the small temperature variations of the FM’s,
the volume of the mercury relative to the volume of the

TABLE IV. The correlated measured values, their uncertain-
ties, and the difference between the best fit parameters and the
measured values for upper and lower tanks labeled 1 and 2. Only
approximate values are shown for the measured quantities.

Measured Uncertainty Difference 1 Difference 2

r0 60 mm 1.1 �m 0.007 �m 0.013 �m
R0 498 mm 9.0 �m �3:5 �m �7:1 �m
h0 650 mm 24.0 �m �9:5 �m �19:0 �m
m0 6760 kg 14.8 g 0.3 g 0.7 g
%0 13.54 g=cm3 40.6 �g=cm3 �1:3 �g=cm3 �2:5 �g=cm3

�2 0.27 1.18

TABLE V. The covariance matrix involving r, R, h, m for the
uncertainty of the calculated signal. Values are given in units of
ng2. Only the upper part of the symmetric matrix is shown. The
sum of all elements in the full matrix is 2:84 ng2. The sum of a
similar diagonal matrix for uncorrelated r, R, h, m values (not
shown) is 175 ng2.

r R h m

r 0.52 0.04 0.05 0.0003
R 35.77 �42:52 �0:20
h 51.62 �0:25
m 0.66
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tanks changed slightly during the gravitational measure-
ment. This resulted in a variation of the mercury height in
the compensation vessels. The height of the mercury in
each compensation vessel was recorded every 12 min dur-
ing the experiment. The calculated mass-integration con-
stant varied by only 0.3 ppm due to this effect. Therefore,
only an average value of the mercury height in each
compensation vessel was employed in determining the
mass-integration constant for the entire measurement.

I. Uncertainties affecting the mass-integration constant

The relative uncertainties of the mass-integration con-
stant due to the various measured and estimated quantities
relating to either the upper or lower TM or to either the
upper or lower FM are given in Table VI. The signs of the
estimated quantities have been chosen to give the largest
uncertainty of the mass-integration constant. With the ex-
ception of the constrained quantities r, R, h, and m, all
measured quantities of this table are independent (i.e.
uncorrelated). All estimated quantities are also indepen-
dent. The total uncertainty of the mass-integration constant

due to the measured quantities listed in Table VI results in a
relative statistical uncertainty of 4.89 ppm. The total un-
certainty of the mass-integration constant due to estimated
quantities results in a relative systematic uncertainty of
3.25 ppm.

In addition to the uncertainties related to either TM
alone, there is the common vertical displacement (shown
as " in Fig. 17) of both TM’s due to evacuating the system.
The uncertainty of this displacement results in a relative
uncertainty of the mass-integration constant equal to
0.78 ppm which is added to the other uncertainties as an
independent relative uncertainty. Including the uncertainty
of " results in a relative statistical uncertainty of the mass-
integration constant equal to 4.95 ppm.

V. DISCUSSION OF MEASUREMENTS

The measured gravitational signal discussed in
Secs. III G, III H, III I, III J, and III K is
784 883.3(12.2)(5.8) ng. The calculated mass-integration
constant determined in Secs. IVA, IV B, IV C, IV D, and
IV E is 784 687.8(3.9)(2.6) ng. Using these values, we
obtain the value for the gravitational constant

 G � 6:674 252�109��54� � 10�11 m3 kg�1 s�2:

A summary of the relative uncertainties contributing to this
result is given in Table VII.

The relative statistical and systematic uncertainties of
this result are 16.3 ppm and 8.1 ppm, respectively. The two
largest contributions to the total relative uncertainty are the
statistical uncertainty of the weighings (11.6 ppm) and the
combined statistical and systematic uncertainty due to the
TM-sorption effect (10.3 ppm). All uncertainties have been
given as one sigma uncertainties. Statistical and systematic
uncertainties have been combined to give a total uncer-
tainty by taking the square root of the sum of their squares.

A. Comparison with our previous analysis

Our previously published value [10] for G was
6:674 070�220� � 10�11 m3 kg�1 s�2 which was based on
the measurements of both the copper and tantalum TM’s.
The value for the copper TM’s alone was 6:674 040�210� �
10�11 m3 kg�1 s�2. The value obtained forG in the present

TABLE VI. Mass-integration constant relative uncertainties
(ppm) associated with the measured quantities. ‘‘Upper’’ and
‘‘Lower’’ refer to the upper and lower FM or TM quantities. The
values in parentheses are the uncertainty of the measured quan-
tities. Where two measured values are listed, the first applies to
the upper object and the second to the lower object. Quantities
marked with a � are obtained from estimated limiting values. All
uncertainties are independent except for the constrained quanti-
ties r, R, h, m. However, these constrained quantities are
independent for the upper and lower tanks.

Measured Quantity Upper Lower

FM Quantities
r, R, h, m constrained 1.20 1.09
Position � 2460 or 1042 mm (35 �m) 2.05 2.99
Inner radius � 50 mm (1:1 �m) 0.91 0.91
Travel � 709 mm (10 �m) 0.95 1.22
Upper plate mass � 153 kg (0.9 g) 0.01 0.01
Lower plate mass � 154 kg (0.45 g) 0.02 0.02
Central piece mass � 46 kg (0.18 g) 0.03 0.03
Outer tube mass � 412 kg (0.83 g) 0.01 0.01
Central piece no density gradient 0.03 0.03
Central piece z density gradient � <0:03 <0:03
Central piece r density gradient � <1:1 <1:1

TM Quantities
Radius � 23 mm (5 �m) 0.57 0.57
Height � 77 mm (5 �m) 0.49 0.87
Position � 2495, 1077 mm (35 �m) 0.45 0.32
Mass � 1:1 kg (300 �g) 0.14 0.14
Off center � 0:44 or 0.51 mm (0.1 mm) 1.03 1.03
Angle relative to vertical � <1:85 <1:85
Relative z density gradient � <0:9 <0:7
Relative r density gradient � <0:02 <0:02

TABLE VII. Relative statistical and systematic uncertainties
of G as determined in this experiment.

Description Statistical (ppm) Systematic (ppm)

Measured signal
Weighings 11.6
TM-sorption 7.4 7.4
Linearity 6.1
Calibration 4.0 0.5
Mass integration 5.0 3.3
Total 16.3 8.1

MEASUREMENT OF NEWTON’S GRAVITATIONAL CONSTANT PHYSICAL REVIEW D 74, 082001 (2006)

082001-21



analysis for only the copper TM’s (6:674 252�124� �
10�11 m3 kg�1 s�2) is in reasonable agreement with the
previous value. The difference between the present and
previous result is due primarily to the correction for the ZP
curvature which was not taken into account in the previous
analysis. A minor difference is also due to a slightly differ-
ent selection of the analyzed data.

The uncertainty given for the present result is appreci-
ably smaller than that of our previous result. This is due to
a better method used in computing the nonlinearity correc-
tion (Sec. III J) and a calculation of the mass-integration
constant (Sec. IV E) using the mercury density as a con-
straint. The uncertainty of the linearity correction was
reduced from 18 ppm to 6.1 ppm and the uncertainty of
the mass-integration constant was reduced from 20.6 ppm
to 6.7 ppm. The statistical uncertainty of the weighings in
the present analysis is somewhat larger than the previous
value (9.1 ng vs 5.4 ng). This is due to the correlation of the
ZP-corrected data of the present analysis. The previous
ABA analysis involved only uncorrelated data.

B. Comparison with other measurements

Recent measurements [23–25] of the gravitational con-
stant with relative errors less than 50 ppm are listed in
Table VIII and shown in Fig. 20. We list only the latest
publication of each group. It is seen that the present result
is in good agreement with those of Gundlach and
Merkowitz [23] and Fitzgerald [25]. It is in disagreement
(3.6 times the sum of the uncertainties) with the result of
Quinn et al. [24].

All of the measurements listed in Table VIII with the
exception of our own were performed using torsion balan-
ces. It is therefore instructive to compare the problems
encountered in the different types of measurements.

In the measurements being discussed, the statistical
accuracy in determining the gravitational signal was ob-
tained in measurements lasting one to six weeks. However,
as in the case of all precision measurements, the time
required for obtaining a good statistical accuracy of the
measurement is less than the time required to obtain cali-
bration accuracy of the equipment and the time necessary
to investigate and eliminate systematic errors. All of the
measurements listed in Table VIII have been long, ongoing
investigations which have lasted for periods up to ten years.

Although the beam-balance measurement was made
with more massive FM’s (15 t) than were employed in
the torsion-balance measurements (< 60 kg), the larger
gravitational signal had to be measured in the presence of
the TM weight. In our experiment the gravitational signal
was roughly 0.7 ppm of the total weight on the balance.
This small ratio of signal to total weight on the balance
resulted in larger effects of zero-point drift as well as larger
statistical noise in the beam-balance data than in the
torsion-balance data. In the torsion-balance measurements,
the deflection of the balance arm is due entirely to the
gravitational force to be determined with only small per-
turbations from distant moving objects.

A similar problem has to do with the change of TM
weight that is produced by an adsorbed water layer. In our
measurement, this varied with the temperature of the vac-
uum tube produced by the FM motion. This resulted in one
of the largest contributions to the uncertainty of the gravi-
tational signal (see Sec. III J). In the beam-balance mea-
surement the weight change adds directly to the signal
whereas in the torsion-balance it adds only to the mass of
the torsion-arm and is therefore a negligible effect.

The calibration of the beam balance, while simple in
principle, is difficult in practice due to the lack of calibra-
tion masses having the required mass and accuracy. We
have used an averaging method to correct for the nonline-
arity of the balance (see Sec. III K) involving a large
number of auxiliary masses. This allowed the comparison
of the gravitational signal with a heavier, accurately known
calibration mass. The accurate calibration of the torsion
balance also presents a problem. Various methods involv-
ing either electric forces or an angular acceleration of the
measuring table to compensate the gravitational force have
been used.

TABLE VIII. Recent measurements of the gravitational con-
stant. Statistical and systematic uncertainties have been added as
if they were independent quantities.

Reference G [10�11 m3 kg�1 s�2]

Gundlach and Merkowitz [23] 6.674 215(92)
Quinn et al. [24] 6.675 590(270)
Armstrong and Fitzgerald [25] 6.673 870(270)
Present analysis 6.674 252(124)

ref_23(2000)

ref_24(2001)

ref_25(2003)

Present_work

6.6740 6.6750 6.6760

G [10-11m3 kg-1 s-2]

FIG. 20. Plot of recent measurements with relative errors less
than 50 ppm.
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In our measurement, the TM was positioned at a double
extremum of the force field produced by the FM’s. This
greatly reduces the relative accuracy of the distance mea-
surements required to determine the mass-integration con-
stant. It also reduces the problem resulting from a density
gradient in the TM. It is difficult to compare the problems
involved in determining the mass-integration constant for
the two types of experiments. It appears that the distance
between the field masses attracting the small mass of the
torsion balance must be measured with very high absolute
accuracy (1 �m is the accuracy given for this distance in
the torsion-balance experiments).

The use of liquid mercury as the principle component of
the FM’s reduces the problem associated with the density
gradients of the FM’s. There is still the density gradient of
the vessel walls which has to be considered. The field
masses employed in the torsion-balance experiments
were either spheres or cylinders. The FM’s were rotated
between measurements in order to compensate gradient
effects.

The large mercury mass resulted in deformations of the
vessel which had to be accurately determined. The FM’s
although, nearly cylindrical in form, required more than
1000 ring and point-mass elements in order to determine
the mass-integration constant. A similar problem (but on a
smaller scale) occurs in the torsion experiments in account-
ing for small imperfections of the spheres, cylinders, or
plates and in determining their relative positions.

The determination of G using a beam balance is beset
with a number of problems which we have tried to describe
in detail. We have been able to reduce the uncertainty in G
resulting from these problems to values comparable to the
statistical reproducibility of the weighings determining the
gravitational signal. The total uncertainty for G which we
obtain with a beam balance is comparable to the uncer-
tainty quoted in recent torsion-balance determinations of
G. We believe that the beam-balance measurement involv-
ing a number of quite different problems than encountered
in torsion-balance measurements can therefore provide a
useful contribution to the accuracy of the gravitational
constant.
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APPENDIX

The general idea in determining the z component of
force on a small volume element of a TM is first to
calculate the potential along the z axis due to the FM.
The off-axis potential can then be obtained by making a
Taylor series expansion for small r and substituting this in
the Laplace equation. This is the procedure which is often
used in electrostatic calculations [20]. The force in the z
direction is just the negative derivative of this potential
with respect to z. We present first a derivation of the force
for the axially symmetric case and then describe the modi-
fication required for a nonaxially symmetric potential.

The gravitational potential on the z axis of a homoge-
neous, torus of rectangular cross section with density %FM,
inner radius R1, outer radius R2, and half height Z is given
by the equation

 ��r � 0; z� � 2�%FMG
Z Z=2

�Z=2

Z R2

R1

r0dr0dz0������������������������������
r02 � �z0 � z�2

p ;

(A1)

where r and z are the radial and axial coordinates of a point
within the TM expressed in cylindrical polar coordinates.
For convenience, one chooses the zero of the potential at
the center of mass of a TM. For simplicity, the cross section
of the FM employed in Eq. (A1) has been chosen to be a
rectangle. Besides the torus with rectangular cross section,
analytic expressions for the two-dimensional integrals with
triangular and circular cross sections were also employed.

The potential at points close to the axis can be calculated
as a power series in r

 ��r; z� � a0 � a1r� a2r
2 � a3r

3 � . . . �
X1
i�0

air
i (A2)

with unknown coefficients a1; a2; . . . which are functions
of z alone. For r � 0, one has a0 � ��0; z�. The gravita-
tional field satisfies the Laplace equation r2� � 0.
Applying the Laplace operator in cylindrical coordinates
to Eq. (A2) leads to

 r2� � a1r
�1 �

X1
i�0

ri
�
d2ai
dz2 � �i� 2�2ai�2

�
� 0:

This equation is valid for all r. Since r2� � 0 for r � 0,
a1 must be identically zero. Thus, the values for ai can be
calculated recursively from
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 ai�2 � �
1

�i� 2�2
d2ai
dz2

starting with either a0 or a1. Since a1 � 0, all terms with
odd i are zero and ai for even i can be obtained starting
with a0. By induction, it is easily shown that the coefficient
a2n is

 a2n �

�
�

1

4

�
n 1

�n!�2
V�2n��z�

with

 V�2n��z� �
d2n��0; z�

dz2n :

Here, V�0� is just ��0; z� which can be easily calculated
using Eq. (A1).

Using this expression for the coefficients in the expan-
sion (A2), the gravitational potential can be calculated
from the sum

 ��r; z� �
X1
i�0

�
�

1

4

�
i 1

�i!�2
V�2i��z�r2i: (A3)

The gravitational field gz in z direction is given by
�@�=@z or

 gz�r; z� � �
X1
i�0

�
�

1

4

�
i 1

�i!�2
V�2i�1��z�r2i:

Integrating gz over the volume of the TM, one obtains the
force on the TM in the z direction

 Fz � �2�%TM

X1
i�0

�
�

1

4

�
i 1

�i!�2

�
Z �b
�b

dz0
Z r

0
V�2i�1��z�r02ir0dr0; (A4)

where the origin has been taken to be the center of the TM.
The integration over r is trivial. The integration over z is

 

Z �b
�b

V�2i�1�dz0 � V�2i��b� � V�2i���b�:

Making a Taylor expansion for small b on the right side
of the equation, one obtains

 

Z �b
�b

V�2i�1�dz0 � V�2i��0� � bV�2i�1��0� �
1

2!
b2V�2i�2��0�

� . . .� V�2i��0� � bV�2i�1��0�

�
1

2!
b2V�2i�2��0� � . . .

Adding similar terms results in

 

Z �b
�b

V�2i�1�dz0 � 2bV�2i�1��0� �
2

3!
b3V�2i�3��0�

�
2

5!
b5V�2i�5��0� � . . .

or

 

Z �b
�b

V�2i�1�dz0 �
X1
j�0

2

�2j� 1�!
b2j�1V�2i�2j�1��0�: (A5)

The final equation for the gravitational force on a cyl-
inder can then be calculated by combining Eqs. (A4) and
(A5) to obtain
 

Fz � �2�br2%TM

X1
n�0

V�2n�1��0�
Xn
i�0

1

��4�i
1

i!�i� 1�!

�
1

�2n� 2i� 1�!
b2n�2ir2i: (A6)

Only odd derivatives of the potential are required for this
case involving complete axial symmetry. The convergence
of the series can be improved by dividing the TM into two
or more shorter cylinders. The algebraic expressions for
the V2n�0�, as determined using ‘‘automatic differentia-
tion’’ [21], are very long and will not be given here.

The above derivation has assumed that the TM and FM
have a common axis of cylindrical symmetry. We will now
show how essentially the same equations can be employed
for an arbitrary FM potential. This allows one to calculate
the potential of a FM with cylindrical symmetry but with
its axis displaced and/or tilted relative to that of the TM.

Again, in order to facilitate integration over the volume
of the cylindrical TM, one employs cylindrical polar coor-
dinates with the z axis along the symmetry axis of the TM.
The potential is now a potential of the form  �x; y; z� �
 �r cos�’�; r sin�’�; z� which satisfies r2 � 0. The cen-
ter of mass of the TM is chosen as the zero of potential.

One defines a function ��r; z� such that

 ��r; z� � �2���1
Z 2�

’�0
 �r; ’; z�d’: (A7)

One can then show that this function satisfies the same
assumptions that were made for the function ��r; z�,
namely, that � has axial symmetry, that it is zero on the
z axis, and that its Laplacian is zero. It can therefore be
used in the Eqs. (A3)–(A6) instead of � to obtain the
gravitational force integrated over the TM.

The axial symmetry of � is obvious since ’ has been
removed by the integration over ’. The zero potential was
chosen to be at the TM center of mass. The Laplacian of �
can be shown to be zero by allowing the Laplacian to
operate on � as defined in Eq. (A7). Reversing the inte-
gration and differentiation operations one obtains

 r2��r; z� � �2���1
Z 2�

’�0

�
r2 � r�2 @

2 

@’2

�
d’:

The Laplacian of  �r; ’; z� is zero for an inverse r poten-
tial. The integral of the second term is r�2@ =@’ eval-
uated at ’ � 0 and 2� which is also zero. Thus, one
obtains the desired result that r2��r; z� � 0.
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In order to use this property of a potential which does not
have axial symmetry about the TM axis (the z axis), one
must determine the potential and its derivative with respect
to z along the z axis. This is not difficult for the case of a
FM which has axial symmetry about an axis not coincident
with the TM axis. One merely uses Eq. (A3) to determine
the potential at radial distances from the FM axis corre-
sponding to points on the TM axis. The force in the z
direction (TM axis) is then determined as before using

Eqs. (A4) and (A6). This procedure is particularly useful
for the case of TM and FM axes which are parallel but
which are displaced relative to one another.

In principle, one can determine the derivatives with
respect to r which are required for the force on a TM tilted
relative to the vertical; however, in this case it is simpler to
approximate the TM by a number of thin slabs displaced
from the vertical axis. This completes the discussion of
nonaxial-symmetric potentials.
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