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We present new results from our test of Lorentz invariance, which compares two orthogonal cryogenic
sapphire microwave oscillators rotating in the lab. We have now acquired over 1 year of data, allowing us
to avoid the short data set approximation (less than 1 year) that assumes no cancellation occurs between
the ~�e� and ~�o� parameters from the photon sector of the standard model extension. Thus, we are able to
place independent limits on all eight ~�e� and ~�o� parameters. Our result represents up to a factor of 10
improvement over previous nonrotating measurements (which independently constrained seven parame-
ters) and is a slight improvement (except for ~�ZZe�) over results from previous rotating experiments that
assumed the short data set approximation. Also, an analysis in the Robertson-Mansouri-Sexl framework
allows us to place a new limit on the isotropy parameter PMM � �� �� 1

2 of 9:4�8:1� � 10�11, an
improvement of a factor of 2.
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In recent times there has been an increase in activity in
experimental tests of local Lorentz invariance (LLI), in
particular, light speed isotropy tests with at least 6 experi-
ments reported in the last 3 years [1–6]. This is largely due
to advances in technology, allowing more precise measure-
ments, and the emergence of the standard model extension
(SME) as a framework for the analysis of experiments,
providing new interpretations of LLI tests. None of these
experiments have yet reported a violation of LLI, though
the constraints on a putative violation have become more
stringent by approximately 3 orders of magnitude in the
same time frame.

LLI is an underlying principle of relativity, postulating
that the outcome of a local experiment is independent of
the velocity and orientation of the apparatus. Tests of LLI
are motivated by the central importance of this postulate to
modern physics, as well as the development of a number of
conflicting unification theories, which suggest a violation
of LLI at some level. To identify a violation it is necessary
to have an alternative theory to interpret the experiment
[7], and many have been developed [8–15]. The kinemati-
cal frameworks (RMS) [8,9] postulate a simple parametri-
zation of the Lorentz transformations with experiments
setting limits on the deviation of those parameters from
their values in special relativity (SR). Because of their
simplicity they have been widely used to interpret many
experiments [3–6,16,17]. More recently, a general Lorentz
violating extension of the standard model of particle phys-
ics (SME) has been developed [12–14] whose Lagrangian
includes all parameterized Lorentz violating terms that can
be formed from known fields. This has inspired a new wave

of experiments designed to explore uncharted regions of
the SME Lorentz violating parameter space.

Our experiment consists of two cylindrical sapphire
resonators of 3 cm diameter and height supported by
spindles within superconducting niobium cavities [18].
The sapphire loaded cavities are situated one above the
other, oriented with their cylindrical axes orthogonal to
each other in the horizontal plane. The experiment is
rotated with a period of 18 seconds around its vertical
axis. Whispering gallery modes [19] are excited in each
near 10 GHz, with a difference frequency between the two
of 226 kHz. The difference frequency along with various
experimental parameters are logged by a stationary data
acquisition system as a function of the experiments orien-
tation. A detailed description of the experiment can be
found in [20].

Inside the sapphire crystals standing waves are set up
with the dominant electric and magnetic fields in the axial
and radial directions, respectively, corresponding to a
Poynting vector around the circumference. The frequency
of each resonator � is proportional to the speed of light c
and inversely proportional to the electrical path length L of
the resonator (� / c=L), where L is dependent on the
material properties of the sapphire crystal, which have
been shown to have a negligible dependence on orientation
[21]. Hence, by measuring the difference frequency be-
tween the two orthogonal cavities as they rotate we make a
direct observation of the isotropy of the speed of light.

To test for Lorentz violations we derive the perturbation
of the difference frequency with respect to an alternative
test theory. In the photon sector of the SME this may be
calculated to first order as the integral over the nonper-
turbed fields (Eq. (34) of [15], see [17,20] for an applica-
tion to our case). The change in orientation of the fields due*Electronic address: pstanwix@physics.uwa.edu.au
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to the rotation of the experiment in the lab and Earth’s
orbital and sidereal motion induces a time varying modu-
lation of the difference frequency, which is searched for in
the experiment. In the photon sector of the SME [15],
Lorentz violating terms are parameterized by 19 indepen-
dent components, which are in general grouped into three
traceless and symmetric 3� 3 matrices (~�e�, ~�o�, and
~�e�), one antisymmetric matrix (~�o�), and one additional
scalar, which all vanish when LLI is satisfied. The 10
independent components of ~�e� and ~�o� have been con-
strained by astronomical measurements to <2� 10�32

[15,22]. Recently two combinations of these parameters
have been further constrained to less than parts in 10�37

[23]. The scalar ~�tr component has been constrained to
<10�4 by [24] through the reanalysis of previous Ives-
Stilwell experiments, who also propose interferometric
techniques to improve on this by 7 orders of magnitude.
Seven components of ~�e� and ~�o� have been indepen-
dently constrained in stationary optical and microwave
cavity experiments [1–3] at the 10�15 and 10�11 level,
respectively. The last remaining component ~�ZZe� was only
recently constrained for the first time by a group of cavity
experiments [4–6,25,26] designed to both improve on the
results of [1–3] and, more importantly, be sensitive to ~�ZZe�
through the use of active rotation in the laboratory.

However, the most stringent independent limits on the
isotropy (~�e�) and boost terms (~�o�) can only be achieved
with 1 year of data. This is because the maximum boost
with respect to the sun centered equatorial celestial frame
(SCECF) is due to the Earth’s annual motion. Thus, over
1 year of data is required to decorrelate the parameters.
Previous analysis [1,5,6], which contained significantly
less than 1 year of data, constrained the ~�e� and ~�o�
parameters by assuming no cancellation occurred in the
case of a nonzero Lorentz violating effect. We have now
acquired sufficient data to remove this assumption, pro-
ducing independent limits on all of the eight components of
~�e� and ~�o�.

Alternatively, with respect to the RMS framework, we
analyze the change in resonator frequency as a function of
the Poynting vector direction with respect to the velocity of
the lab in some preferred frame (as in [17,20]), typically
chosen to be the cosmic microwave background. The
RMS parameterizes a possible Lorentz violation by a
deviation of the parameters ��;�; �� from their SR values
�� 1

2 ;
1
2 ; 0�. These are typically grouped into three linear

combinations representing a measurement of (i) the iso-
tropy of the speed of light (PMM � �� �� 1

2 ), a
Michelson-Morley experiment [27], constrained by [17]
to parts in 10�9, (ii) the boost dependence of the speed
of light (PKT � �� �� 1), a Kennedy-Thorndike experi-
ment [28], constrained by [17] to parts in 10�7, and (iii) the
time dilation parameter (PIS � �� 1

2 ), an Ives-Stillwell
experiment [29], constrained by [30] to parts in 10�7.
Because our experiment compares two cavities it is only
sensitive to PMM.

In our previous analysis [5] the amplitude and phase of a
Lorentz violating signal was determined by fitting the
parameters of Eq. (1) to the data, with the phase of the fit
adjusted according to the test theory used,

 

��0

�0
� A� Bt�

X

i

Ci cos�!it� ’i� � Si sin�!it� ’i�

(1)

Here �0 is the average unperturbed frequency of the two
sapphire resonators, and ��0 is the perturbation of the
226 kHz difference frequency. A and B determine the
frequency offset and drift, and Ci and Si are the amplitudes
of a cosine and sine at frequency !i, respectively. In the
final analysis we fit 15 frequencies to the data, !i �
�2!R; 2!R � ��; 2!R � !�; 2!R � !� � ��; 2!R �
2!�; 2!R � 2!� � ���, where !R is the rotation fre-
quency of the experiment in the lab and!� and �� are the
sidereal and annual frequencies of the Earth’s rotational
and orbital motion, respectively. Since the residuals of the
fit exhibit a significantly nonwhite behavior, the optimal
regression method is weighted least squares (WLS) [2].
WLS involves premultiplying both the experimental data
and the model matrix by a whitening matrix determined by
the noise type of the residuals of an ordinary least squares
analysis. However, this method of analysis proved to be
computationally intensive due to the large amount of data
we have now acquired. For this reason, an alternative
approach used by [4,6] was adopted. Using this technique
we reduce the size of the data set by demodulating it in
quadrature with respect to 2!R in blocks of 40 periods of
rotation. The number of periods was chosen to minimize
the net effect of narrow band noise (due to instabilities in
the systematic at 2!R) and broad band noise (due to
oscillator frequency noise), which is similar to an optimal
filter. By fitting the expression of Eq. (2) to each block of
data using an ordinary least squares regression technique,
we determine the coefficients S�t� and C�t�, which can be
considered linear combinations of the sidereal, semi-
sidereal, and annual modulations and combinations
thereof. The relationship between S�t� and C�t� and the
various modulation frequencies is expressed in Eqs. (3) and
(4), where !i � ���; !�; !� ���; 2!�; 2!� ����:
 

��0

�0
� A�Bt�S�t� sin�2!Rt�’��C�t�cos�2!Rt�’�;

(2)

 S�t� � S0 �
X

i

Ss;i sin�!it� ’i� � Sc;i cos�!it� ’i�;

(3)

 C�t� � C0 �
X

i

Cs;i sin�!it� ’i� � Cc;i cos�!it� ’i�;

(4)
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A comparison was made between the two techniques by
performing a complete analysis of 30 data sets (3 data sets
were later excluded from the analysis due to overly large
and varying systematic signals at 2!R). Both techniques
produced consistent results, with the uncertainties associ-
ated with the demodulated technique being lower than the
WLS technique by no more than 15%. The difference
between the two techniques is most likely due to the

efficiency with which the data analysis could be optimized
for the noise type present in the data. WLS only takes into
account the broad band noise (spectral density) whereas
the optimization used in the demodulated technique takes
into account the extra noise source of instability of the
systematic at 2!R. Hence, the latter approach was adopted
in further investigations of the data.

The data used in this analysis spans a period from
December 2004 to January 2006. It consists of 27 sets of
data totalling approximately 121 days. Shown in Fig. 1 are
the S�t� and C�t� resulting from the demodulation of the
data at 2!R. An offset and drift have been removed from
the coefficients derived from each data set. As described
earlier, this data is then used to determine the amplitudes of
the frequencies of interest. In [5] we describe how system-
atic effects dominate the data at 2!R, limiting our ability to
constrain test theory parameters associated with this fre-
quency (a detailed discussion of the systematics and their
effect is thus left out here). Also, we do not consider the
nearby annual offsets (2!R ���) for two reasons. First,
the strong systematic signal at 2!R has been shown to have
a significant effect on nearby sidebands due to leakage [5],
and second, by subtracting a linear drift from the individual
data sets after being demodulated (as presented in Fig. 1) it
is possible that a signal at the annual frequency may be
suppressed. However, all other frequencies of interest (see
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FIG. 1 (color online). Cosine C�t� and sine S�t� amplitudes
resulting from demodulation of the data at 2!R in blocks of 40
rotations, with a linear fit removed from each data set.

TABLE I. Shown are the relationships between the ~�e� and ~�o� parameters of the SME and the coefficients CC;!i
, CS;!i

, SC;!i
, and

SS;!i
from Eqs. (3) and (4) for the 8 frequencies of interest, normalized for the experimental sensitivity S. � is the colattitude of the lab,

� is the declination of the Earth’s orbit relative to the SCECF, and �� and �L are the boost suppression terms due to the lab velocity
from Earth’s orbital and rotational motion, respectively. Also shown is the measured value (in 10�16) of each coefficient used in the
analysis along with its statistical uncertainty. The values for CC;0 (used to constrain ~�ZZe�) and SC;0 were determined by averaging over
the data sets (see text). The coefficients of �� were not included in the analysis (see text).

!i CC;!i
CS;!i

0 3
2 sin2���~�ZZe� �30�38� 	 	 	

�� ���sin2����cos���~�XZo� � 2 sin���~�XYo�� ���sin2���~�XYo�
!� ��� �� cos��� sin��� sin���~�YZo� �2:3�0:7� �2�� cos��2� sin����cos��2�~�

XY
o� � sin��2�~�

XZ
o�� 0.9(0.7)

!� sin�2��~�XZe� � 2�L~�XZo� 1.9(0.7) sin�2��~�YZe� � 2�L ~�YZo� �2:5�0:7�

!� ��� �� cos��� sin��� sin���~�YZo� �2:0�0:7� ��� sin��2� sin�2���cos��2�~�
XZ
o� � sin��2�~�

XY
o�� �1�0:7�

2!� ��� � 1
2��cos2 �

2 �3� cos�2���~�XZo� �0:4�0:7� � 1
2��cos2 �

2 �3� cos�2���~�YZo� �0:7�0:7�

2!� � 1
4 �3� cos�2����~�XXe� � ~�YYe�� �0:6�0:7� � 1

2 �3� cos�2���~�XYe� �1:7�0:7�

2!� ���
1
2��sin2 �

2 �3� cos�2���~�XZo� �3:4�0:7� 1
2��sin2 �

2 �3� cos�2���~�YZo� �0:5�0:7�

SC;!i
SS;!i

0 2�L sin���~�XYo� 29(46) 	 	 	

�� 	 	 	 	 	 	

!� ��� �� cos��2� sin�2���cos��2�~�
XY
o� � sin��2�~�

XZ
o�� �0:3�0:8� �� sin��� sin���~�YZo� �0:8�0:8�

!� �2�sin���~�YZe� � 2�L cos���~�YZo�� 1.4(0.8) 2�sin���~�XZe� � 2�L cos���~�XZo�� �3:6�0:8�

!� ��� 2�� sin��2� sin����cos��2�~�
XZ
o� � sin��2�~�

XY
o�� �5:4�0:8� �� sin��� sin���~�YZo� 0.4(0.8)

2!� ��� 2��cos2 �
2 cos���~�YZo� 1.5(0.8) �2��cos2 �

2 cos���~�XZo� �3:2�0:8�

2!� 2 cos���~�XYe� �1:2�0:8� � cos����~�XXe� � ~�YYe�� 2.8(0.8)

2!� ��� �2��sin2 �
2 cos���~�YZo� 0.5(0.8) 2��sin2 �

2 cos���~�XZo� 3.4(0.8)
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Table I) are close to the sidereal or semi-sidereal frequen-
cies, so will be unaffected by the removal of an offset and
drift from each data set.

In the SME, all ~�e� and ~�o� parameters other than ~�ZZe�
can be constrained from the sidereal and semi-sidereal
frequencies and their annual frequency offsets as outlined
in Table I. ~�ZZe� only appears in the coefficient C2!R

so to
determine a limit we do the same as in [5] and consider the
C2!R

coefficients for each data set to be independent and
treat them statistically. The systematic at 2!R has been
shown to be primarily due to tilt variations. It remains
relatively constant in phase within a data set but varies
between data sets. Figure 2 shows the C2!R

and S2!R

coefficients for the 27 data sets. Also shown is the mean
and standard error of the mean which is used to calculate
~�ZZe�. The results for the SME analysis are given in Table II.
We note that the results for ~�XZe� and ~�XZo� are significant at
approximately the 3� and 2� level, respectively. However,
we do not believe this to be an indication of a Lorentz
violating effect for reasons similar to those given in [2],
which also used data taken over more than 1 year. Our
result for ~�XZe� is inconsistent with other recent measure-
ments shown in Table II. Also, an examination of the
corresponding sideband coefficients from an analysis of
the individual data sets (not shown here) shows no coher-
ence in the phase of the signal, which would be expected in
the presence of a genuine Lorentz violating effect.

In terms of the RMS framework, the advantage to be
gained by having 1 year of data is primarily statistical.

Because of the symmetry of our experiment, we are not
sensitive to the boost parameter of the RMS, PKT, and
cavity experiments are not sensitive to the time dilation
parameter �. However, we can improve on our previous
constraint on the isotropy parameter PMM by taking a
weighted average over the results of multiple data sets.
We analyze each data set using the WLS technique de-
scribed earlier. The association between PMM and the
coefficients of the frequencies of interest is described in
[5]. The coefficients of Eq. (1) are for the frequencies!i �
�2!R; 2!R �!�; 2!R � 2!�� only. We calculate a value
for the RMS parameter of 9:4�8:1� � 10�11.

In conclusion, by collecting over 1 year of data we have
been able to set the first independent limits on eight pa-
rameters in the photon sector of the SME, without assum-
ing that no cancellation occurs between the isotropy and
boost terms. The results do not indicate any Lorentz vio-
lating effects, and compared to previous experiments we
see a slight improvement in the constraints on these pa-
rameters. We improve on our previous determination of
~�ZZe� by more than a factor of 3. However, due to the
systematic disturbances present at twice the rotation fre-
quency we are unable to measure this parameter with the
precision of [6], who have developed a tilt control system
which avoids the major rotation induced systematic. Also,
we have reduced the limit on the isotropy parameter PMM

of the RMS framework by a factor of 2.
To improve on these results we intend to replace the

resonators with higher quality sapphire loaded cavities,
which have a frequency instability approximately 40 times
lower than the current experiment [31]. Considerable effort
will need to be invested to improve the rotation system and
reduce environmental disturbances for this improvement to
be realized.

TABLE II. Results for the SME Lorentz violation parameters
determined independently in this work. Also shown for com-
parison is the previous best independent constraints of seven
parameters [2] and more recent short term results that assume no
cancellation between the ~�e� and ~�o� terms, other than ~�ZZe�
[5,6] (~�e� in 10�16, ~�o� in 10�12). The PMM parameter from the
RMS framework is also listed (in 10�11).

This
work

Previous
analysis [2]

Recent short
analysis [5,6]

~�XYe� 2.9(2.3) �57�23� �3:1�2:5�

~�XZe� �6:9�2:2� �32�13� 1.9(3.7)

~�YZe� 2.1(2.1) �5�13� �4:5�3:7�

�~�XXe� � ~�YYe�� �5:0�4:7� �32�46� 5.4(4.8)

~�ZZe� 143(179) - �19:4�51:8�

~�XYo� �0:9�2:6� �18�15� 2.0(2.1)

~�XZo� �4:4�2:5� �14�23� �3:6�2:7�

~�YZo� �3:2�2:3� 27(22) 2.9(2.8)

PMM 9.4(8.1) 120(220)[17] �21�19�
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FIG. 2 (color online). The amplitudes S0 and C0 for each of the
27 data sets (squares), used to limit the parameter ~�ZZe� of the
SME. Also shown (circle) is the mean and its standard error
[S0 � 2:9�4:6�, C0 � �3:0�3:8� � 10�15].
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[22] V. A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87,
251304 (2001).
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