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Analytical radiative corrections of order ��=���q=M1� are calculated for the four-body region of the
Dalitz plot of baryon semileptonic decays when the ŝ1 � p̂2 correlation is present. Once the final result is
available, it is possible to exhibit it in terms of the corresponding final result of the three-body region
following a set of simple changes in the latter. We cover two cases, a charged and a neutral polarized
decaying baryon.
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In this report we shall improve the precision of analyti-
cal radiative corrections (RC) to the four-body region
(FBR) of the Dalitz plot of baryon semileptonic decays,
A! Bl ��l, with a polarized decaying baryon by including
the order ��=���q=M1� contributions. The ŝ1 � p̂2 angular
correlation will be kept explicitly. The corresponding cor-
rections to order ��=���q=M1�

0 were obtained in Ref. [1].
Here we follow the same notation and conventions, and we
recall that in this region neither the neutrino nor the real
photon can reach zero energy. As explained there, this
region must be incorporated into the RC when bremsstrah-
lung photons cannot be discriminated either kinematically
or by direct detection. This is the case when only the
emitted baryon momentum is measured and its correspond-
ing asymmetry coefficient is determined.

The result we want cannot be obtained from the corre-
sponding final result for the three-body region (TBR),
because the variable y0 plays a double role in the latter
case. It appears in the integrand and as the upper limit of
the y � p̂2 � l̂ integration variable [see Eqs. (6) and (7) of
Ref. [1]]. In the FBR case y0 is no more an upper limit of y,
since now the latter has one as an upper limit, and y0

appears only in the integrand. One is then forced to per-
form the complete calculation. However, once the final
result is obtained, it is possible to present it in terms of
the final result of the TBR by making simple changes in the
latter. This allows us to make a concise presentation and
avoid many unnecessary repetitions.

The calculation of RC in the FBR has the same structure
as in the TBR, so there is an exact parallelism all along. To
mark the difference we shall introduce a subindex F in the
expressions and definitions that pertain to the FBR. In this
report we shall present only new results, all others will be
appropriately referenced.

The complete Dalitz plot without the restriction of kine-
matically discriminating real photons is

 d�i � d�TBR
i � d�FBR

i ; i � C;N (1)

where i � C, N refers to charged and neutral decaying
baryon cases, respectively. The analytical RC to order
��=���q=M1� to the TBR part including the ŝ1 � p̂2 corre-
lation are found in Eqs. (24) and (44) of Ref. [2] for i � C,
N, respectively. The FBR arises only from bremsstrahlung
and it can be separated into an unpolarized part (ŝ1 � 0)
and into another one containing the ŝ1 � p̂2 correlation, that
is,

 d�FBR
i � d�0FBR

iB � d��s�FBR
iB : (2)

Here the subindex B stresses the bremsstrahlung origin of
these parts. To order ��=���q=M1� the spin-independent
part is found, with some changes in notation, in Eq. (32) of
Ref. [3] for i � C and in Eq. (22) of Ref. [4] for i � N. To
order ��=���q=M1�

0 the spin-dependent part is found in
Eq. (18) of Ref. [1] for i � C, N.

To obtain the order ��=���q=M1� of d��s�FBR
CB we trace a

parallelism with Eq. (14) of Ref. [2] for the TBR. The final
result is compactly given by

 d��s�FBR
CB �

�
�
d�ŝ1 � p̂2�B

0
2IC0F � C

�s�
AF�: (3)

B02 is given in Eq. (7) of Ref. [2]. The infrared convergent
IC0F, explicitly given in Eq. (37) of Ref. [5], corresponds to
the infrared divergent IC0 of the TBR. C�s�AF can be arranged
as the sum

 C�s�AF � CIF � CIIF � CIIIF; (4)

where
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 CIF �
X8

i�1

Qi�6�iF; CIIF �
X15

i�6

Qi��i�3�F;

CIIIF �
X25

i�16

Qi��i�3�F:

(5)

which are the counterparts of Eqs. (21)–(23) of Ref. [2].
The Qi (i � 6; . . . ; 25) are quadratic functions of the

form factors and are common to both regions. Their ex-
plicit expressions are found in Appendix A of Ref. [2]. It
should be clear that forQ6 andQ7 we use ~Q6 and ~Q7 of this
Appendix, since the contributions of orders �q=M1�

2 and
higher have been subtracted [6].

The analytical form of C�s�AF is obtained by performing
explicitly the triple integrals over the real photon variables,
contained in the �iF functions (i � 1; . . . ; 28). These in-
tegrals result in a set of analytical functions �jF (j �
0; . . . ; 22). The connection between the �iF and the �jF
functions requires several algebraic steps, which are ex-
hibited in terms of intermediate functions XiF, YiF, ZiF,
NiF, IF, �0F, �0F, �ijF, and �ijF.

Once the final results for the FBR are available it is only
necessary to give explicitly the �jF functions to present it.
The �iF and the intermediate functions [7] can be obtained
from the corresponding �i and Xi, Yi, Zi, Ni, I, �0, �0, �ij,
and �ij, respectively, of the TBR by making some simple
changes in the latter. This is possible because of the paral-
lelism mentioned above. These changes are: (i) a subindex
F is attached to all the corresponding functions of the TBR,
(ii) the terms proportional to the factor (1� y0) are re-
placed by zero, and (iii) otherwise the factor y0 is kept as
such. There are three exceptions to rule (iii). In I, �11, and
�0, y0 appears by itself only once and there it must be
replaced by y0 � 1 to produce IF, �11F, and �0F respec-
tively. The �i, Xi, Yi, Zi, Ni, I, �0, and �0 are found in
Appendix B of Ref. [2]. It should be stressed that �2F � 0
as is �2 � 0, and that is why it does not appear in this
Appendix. The �ij, and �ij are found in Sec. IVof Ref. [8],
but �10, �10, and �20 were not directly given in terms of �i
there and the above rules cannot be easily applied to them.
It is better to give the explicit connection now, namely,

 �10F � p2l
�
�13F �

l
p2
�10F �

E0
�

p2
�5F

�
;

�10F � l�2�0F � E
0
��4F � l�5F�;

�20F � 2l2
�
p2y0�4F � E

0
��5F � 2l�10F � p2�13F

�
1

2
�14F �

E0
�

l
�0F

�
:

The function �31 of Ref. [2] has also a misprint in the term
proportional to �12. In order to avoid further confusions,
we provide here the right expression for �31F, which reads

 

�31F�p2ly0�2�3E
2� l2��3F�6E2��4F�	�5F���9F�

�30lE2p2�13F�30l2Ep2�19F�
6l3

	4 �5�l�	E
0
��

�3	2�p2y0� l����3F��4F�	�5F�

�18l2EE0
���4F��3F��6p2l

3y0�3F

�30lE2�l�	E0
���10F�30El3�20F�

1

2
�22F

�6p2

�
E2l�	2�5��

2lp2
2�2	p2ly0�E�E

0
��

b�b�

�
�12F;

so that the correct �31 of the TBR can be obtained by
dropping the subindex F from the �’s in the above equa-
tion. We need to point out that neither results nor conclu-
sions are affected by that misprint.

Let us illustrate the above procedure with an example.
�15F is obtained from
 

�15 �
	�E� E0

��

4M1

�
p2

2�7 � 2p2
2E��4 � �3� � 2�21 �

2

l
X3

�

�
X4

2M1
�
l2p2

4M1
�y2

0 � 1� �
p2

4M1E
�4�ly0 � p2�X2

� p2�21�;

by first putting y0 � 1 into the factor (1� y0) only and
keeping y0 as such elsewhere, and second by attaching a
subindex F to the intermediate functions. The result is

 �15F �
	�E� E0

��

4M1

�
p2

2�7F � 2p2
2E��4F � �3F� � 2�21F

�
2

l
X3F

�
�
X4F

2M1
�

p2

4M1E
�4�ly0 � p2�X2F

� p2�21F�:

With these changes all we now need is the list of the �jF
functions. Their explicit forms for j � 1; . . . ; 16 were al-
ready calculated in Ref. [5] and they are found in
Appendix B of this reference. �0F is given in Eq. (38) of
this reference, �1F � �17F � 0, and �18F � 1.

The functions �jF with j � 19; . . . ; 22 are new. They are
defined as �19F �

R
1
�1 x


T
4 �x�dx, �20F �

R
1
�1 x

3
T1 �x�dx,
�21F �

R
1
�1 x

2
T2 �x�dx, and �22F �
R

1
�1 


T
6 �x�=�1�

	x�dx. The functions 
T1 �x�, 

T
2 �x�, and 
T4 �x� are found

in the Appendix of Ref. [3]. Here we only need the explicit
form of 
T6 �x�, which reads

 


T6 �x� � h1�x��1� 	x� �
h2�x�

�x� a���x� a��
�

h�3 �x�

�x� a��2

�
h�3 �x�

�x� a��2
�

h�4 �x�
�x� a��

�
h�4 �x�
�x� a��

; (6)

where
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h1�x� � 24p2l2
�

a�y�0
b��x� a��

�
a�y�0

b��x� a��

�
x; (7a)

h2�x� � 8lf6x�2a2
1 � p

2
2 � y0p2xa1� � p

2
2x�3� x

2� � 3y0p2a1�1� x
2� � 6xa2

1 � 6p2�2y0a1 � �y
2
0 � 1�p2x�g; (7b)

h	3 �x� � 2lf2p2
2x�3� x

2� � 6y0p2a1�1� x
2� � 12xa2

1 
 2p2
2y0�y

2
0 � 3� 	 6a1�2y0a1 � �y

2
0 � 1�p2x�g; (7c)

h	4 �x� � 

�

4l2

p2

�
�3p2�p2x� y0a1� � a	�p2

2x
2 � 3y0p2a1x� 6a2

1��: (7d)

We have used the definitions

 a	 �
E0
� 	 p2

l
; b	 � 1� 	a	;

y	0 � y0 	 a
	; a1 � E0

� � lx:

The analytical results of �19F, �20F, �21F and �22F are

 �19F �
4

3p2
; �20F �

1

p2
�T�20F � T

�
20F�;

�21F � T�21F � T
�
21F; �22F � T�22F � T

�
22F;

where

 T	20F � 	
1

4
�1� �a	�4�I	2 	

a	

2

�
�a	�2 �

1

3

�
;

T	21F �
4

3

 2a	�y0 	 a

	��a	I	2 � 2�;

T	22F �
1

2
L0 �

1

2
L1I1 � L

	
2 I
	
2 � L

	
3 I
	
3 :

The I1, I	2 , and I	3 functions are found at the end of
Appendix C of Ref. [8] and the Li are defined as

 

L0 � 48l2p2

�
a�y�0
b�

�
a�y�0
b�

�
� 16E�p2

2 � 3l�2l� p2y0��;

L1 �
	2h2�1=	�
b�b�

�
	�	h�3 �1=	� � b

�h�4 �1=	��

�b��2
�
	�	h�3 �1=	� � b

�h�4 �1=	��

�b��2
;

L	2 �
�24p2l2�a	�2y	0 � h

	
4 ��a

	�

b	
�
b	h	3 �0� � h

	
3 ��a

	�

b	a	
� 4Ea	�3l�2l� y0p2� � p

2
2�

�
	2a	h	3 �1=	�

�b	�2


lh2��a

	�

2p2b
	

;

L	3 �
h	3 ��a

	�

b	
;

where the functions hi�x� are the same of Eq. (7), but
evaluated at the indicated arguments.

For a neutral process we proceed again in parallel to the
calculation of d��s�NB given in Sec. IIIB of Ref. [2]. Thus, we
can express d��s�FBR

NB as in Eq. (31) of this reference as

 d��s�FBR
NB �

�
�
d�ŝ1 � p̂2�B

0
2IN0F � C

�s�
AF � C

�s�
NAF�; (8)

where B02 and C�s�AF are those of Eq. (3). The function IN0F

corresponds to the infrared divergent IN0 of Eq. (35) of
Ref. [9]. As in the charged case, IN0F is no longer infrared
divergent. It can be calculated up to order (q=M1) by using
the approximation 1=p2 � k ’ 1=p1 � k� q � k=�p1 � k�

2.
The result is

 IN0F � IC0F � �I0;

where IC0F is the same of Eq. (3) and

 �I0�
4p2

M1	

�
y0

2
ln
�
y0� 1

y0� 1

�
� 1

���
1�	2

	

�
arctanh	� 1

�
:

It should be remarked that this expression is equal to zero
when 	! 0 and y0 ! 1.

The other new integrals appear only in C�s�NAF. They are

 C�s�NAF � D3�N3F �D4�N4F:

Here D3 � 2�f1g1 � g2
1� and D4 � 2�f1g1 � g2

1�, �N3F

and �N4F are

 �N3F � �IF � �IIF � �IIIF;

�N4F � �0IF � �
0
IIF � �

0
IIIF:

The analytical forms of the integrals �iF and �0iF (i � I, II,
III) can be obtained from Eqs. (34)–(39) of Ref. [2] again
by changing y0 to one as the upper limit in the y integrals.
After the integration one can see that the analytical form of
the �iF and �0iF can be obtained from the analytical ex-
pressions of �i and �0i for TBR, which are found in
Appendix C of Ref. [2], using the same rules (i), (ii), and
(iii) applied to �i to obtain the �iF of the FBR for charged
decaying baryons.
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We have made crosschecks between numerical integrals
and analytical results of the �iF, �iF, and �0iF, and they
were satisfactory. Our results are model-independent and
include terms up to order ��=���q=M1�, this is as far one
can improve the precision of RC before introducing model-
dependence into them. They are useful when l � e	, 
	,
and �	. The two cases discussed here, charged and neutral
decays, allow one to cover the other four charge assign-
ments predicted by heavy quarks in baryons [10]. When

such quarks are involved, the results of Ref. [1] are useful
in low statistics experiments (several hundreds of events)
and the improved results presented here are useful in
medium statistics experiments (several thousands of
events).
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