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Based on the chiral perturbation theory with the hidden local symmetry, we propose a methodology to
calculate a part of the large Nc corrections in the holographic QCD (HQCD). As an example, we apply the
method to an HQCD model recently proposed by Sakai and Sugimoto. We show that the �-�-� coupling
is in good agreement with the experiment due to the 1=Nc-subleading corrections.
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I. INTRODUCTION

Recently the duality in string/gauge theory [1] has pro-
vided us with a new perspective for solving the problem of
strongly coupled gauge theories: Strongly coupled gauge
theory can be reformulated from the weakly coupled string
theory based on the anti-de Sitter/conformal-field-theory
(AdS/CFT) correspondence [2]. Some important qualita-
tive features of the dynamics of QCD such as the confine-
ment and chiral symmetry breaking have been reproduced
from this holographic point of view, so-called holographic
QCD (HQCD), although the theory in the UV region is
substantially different from QCD, i.e., lack of asymptotic
freedom. Several authors [3,4] proposed a model of HQCD
where the chiral symmetry breaking is realized. In particu-
lar, starting with a stringy setting, Sakai and Sugimoto (SS)
[3] have succeeded in producing the realistic chiral sym-
metry breaking U�Nf�L �U�Nf�R down to U�Nf�V and
also a natural emergence of the hidden local symmetry
(HLS) [5] for vector/axial-vector mesons. Moreover, most
of them [3,4] analyze observables of QCD related to the
pion and the vector mesons in the large Nc limit such as
m2
�=�g2

���F2
�� ’ 3:0, where g��� denotes the �-�-� cou-

pling, and F� the pion decay constant. This, however,
substantially deviates from one of the celebrated
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relations (KSRF II), m2

�=�g
2
���F

2
�� � 2, which agrees

with the experiment. Since the holographic result is only
the one at the leading order in the 1=Nc expansion, the
deviation may be cured by subleading effects in the 1=Nc
expansion. So far, however, no holographic models suc-
ceed in including the effect of the 1=Nc corrections. On the
other hand, it is well known that meson loops yield the next
order in the 1=Nc expansion.

In this paper, we propose a methodology for calculating
a part of the 1=Nc corrections to the HQCD through the
meson loop, based on the ‘‘HLS chiral perturbation theory
(ChPT)’’ [6–9] which incorporates the vector meson loops
into the ChPT [10] through the HLS model [5]. It is
important to note [11] that the HLS is crucial for the
systematic power counting when the vector meson mass
is light (see, for a review, Ref. [9]). As an example, we
apply our method to an HQCD model proposed by SS [3].

We show that the 1=Nc corrections make the ratio
m2
�=�g

2
���F

2
�� in good agreement with the experimental

value or the KSRF II relation. Our formalism proposed in
this paper is applicable to other models holographically
dual to strongly coupled gauge theories, which will give us
implications of HQCD.

II. REVIEW OF A HOLOGRAPHIC MODEL

Let us start with the low-energy effective action on the 5-
dimensional space-time induced from a holographic
model, based on the Nf D8-D8 branes transverse to the
Nc D4-branes, proposed by the authors in Ref. [3]:

 SD8 � NcG
Z
d4xdz

�
�

1

2
K�1=3�z� tr�F��F

���

� K�z�M2
KK tr�F�zF�z� �O�F3�

�
; (1)

whereK�z� is the induced measure of 5-dimensional space-
time given by

 K�z� � 1� z2: (2)

The coupling G is the rescaled ’t Hooft coupling expressed
as

 G �
Ncg

2
YM

108�3 ; (3)

where gYM is the gauge coupling of the U�Nc� gauge
symmetry on the Nc D4-branes. It should be noted that
the mass scale MKK in Eq. (1) is related to the scale of the
compactification of the Nc D4-branes onto the S1.

The 5-dimensional gauge field AM transforms as

 AM�x�; z� ! g�x�; z� 	 AM�x�; z� 	 gy�x�; z�

� i@Mg�x�; z� 	 gy�x�; z�; (4)

where g�x�; z� is the transformation matrix of the 5-
dimensional gauge symmetry. We choose the same bound-
ary condition of the 5-dimensional gauge field AM as in
Ref. [3]:

 AM�x
�; z � 
1� � 0; (5)

which makes the local chiral symmetry a global one
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gR;L 2 UR;L�Nf�. The chiral field U defined in Ref. [3],

 U�x�� � P exp
�
i
Z 1
�1

dz0Az�x�; z0�
�
; (6)

is parametrized by the Nambu-Goldstone (NG) boson field
� as

 U�x�� � e�2i��x
���=F� ; (7)

where F� denotes the decay constant of �. U is divided as

 U�x�� � �yL�x
�� 	 �R�x

��; (8)

where

 �R;L�x
�� � P exp

�
i
Z 
1

0
dz0Az�x

�; z0�
�
: (9)

�R;L transform as [5]

 �0R;L � h�x�� 	 �R;L 	 g
y
R;L; (10)

where h�x�� � g�x�; z � 0� is a gauge transformation. We
further parametrize �R;L as [5]

 �R;L�x�� � ei��x
��=F� 	 e
i��x

��=F�; (11)

where � denote the NG bosons associated with the sponta-
neous breaking of the HLS, and F� the decay constant of
�. The � are absorbed into the gauge bosons of the HLS
which acquire the mass through the Higgs mechanism.

It is convenient to work in the Az�x�; z� � 0 gauge [3].
There still exists a residual gauge symmetry, h�x�� �
g�x�; z � 0�, which was identified with the hidden local
symmetry (HLS) in Ref. [3]. The 5-dimensional gauge
field A� transforms under the residual gauge symmetry
(HLS) as
 

A��x�; z� ! h�x�� 	 A��x�; z� 	 hy�x��

� i@�h�x
�� 	 hy�x��: (12)

In this gauge, the NG boson fields are included in the
boundary condition for the 5-dimensional gauge field A�
as

 A��x
�; z � 
1� � �R;L� �x

��; (13)

where

 �R;L� �x�� � i�R;L�x��@��
y
R;L�x

��; (14)

which transform under the HLS as in the same way as in
Eq. (12).

III. RELATION TO HLS IN THE LARGE NC LIMIT

In contrast to Ref. [3] where vector meson fields are
identified with the Callan-Coleman-Wess-Zumino
(CCWZ) matter fields transforming homogeneously under
HLS, we here introduce vector meson fields as an infinite
tower of the HLS gauge fields V�k�� (k � 1; 2; . . . ), which

transform inhomogeneously under the HLS as in Eq. (12)
[9]. Using V�k�� together with �R;L� , we expand the 5-
dimensional gauge field A� as

 A��x
�; z� � �R��x

���r�z� � �L��x
���l�z�

�
X
k�1

V�k�� �x���k�z�; (15)

where the functions �r, �l, and �k (k � 1; 2; . . . ) form a
complete set in the z-coordinate space. These functions
f�r,�l,�kg are different from the eigenfunctions  n in [3]
which satisfy the eigenvalue equation

 � K1=3@z�K@z n� � 	n n; (16)

with the eigenvalues 	n. Then, the functions f�r;�l; �kg
are not separately the solutions of the eigenvalue equation
but are expressed by linear combinations of the solutions,
as we will see later.

Substituting Eq. (15) into the action (1), we obtain the 4-
dimensional theory with an infinite tower of the massive
vector and axial-vector mesons and the NG bosons asso-
ciated with the chiral symmetry breaking. We would like
to stress that, since the 5-dimensional gauge field A� is

expanded in terms of the HLS gauge fields V�k�� , the action
(1) is expressed as the form manifestly gauge invariant
under the HLS, which enables us to calculate the
1=Nc-subleading correction in a systematic way.

Let us concentrate on the lightest vector meson together
with the NG bosons by integrating out the heavy vector and
axial-vector meson fields.1 As a result, the HLS gauge field
V� corresponding to the lightest vector meson is embedded
into A� as

 A��x
�; z� � �R��x

��’r�z� � �L��x
��’l�z� � V��x

��’�z�;

(17)

where’r,’l, and’ denote the wave functions modified by
integrating out the heavier mesons. Note that they satisfy
the following constraint:

 ’r�z� � ’l�z� � ’�z� � 1; (18)

which follows from the consistency condition between the
transformation properties (inhomogeneous term) of the
left- and right-hand sides of Eq. (17). The relations be-
tween f’r; ’l; ’g and the eigenfunctions of the eigenvalue
equation are obtained in the following way: We introduce
the 1-forms �̂�jj and �̂�? defined as

 �̂ �jj�x�� �
�R��x�� � �L��x��

2
� V��x��; (19)

1This is contrasted with simply putting the heavy fields V�k��
�k � 2� � 0 in Eq. (15). The wave functions �k�z� are thus
modified, when we integrate out the heavier fields [12].
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 �̂ �?�x�� �
�R��x

�� � �L��x
��

2
: (20)

Then Eq. (17) is rewritten in the following form:
 

A��x�; z� � �̂�?�x���’r�z� � ’l�z��

� ��̂�k�x�� � V��x����’r�z� � ’l�z��

� V��x��’�z�: (21)

Since the 1-form �̂�? includes the NG boson field as
�̂�? �

1
F�
@��� 	 	 	 , we identify the combination ’r �

’l with the eigenfunction  0 for the zero eigenvalue as

 ’r�z� � ’l�z� �  0�z� �
2

�
tan�1z: (22)

On the other hand, since the HLS gauge field V� corre-
sponds to the lightest vector meson, we identify the wave
function ’ with the eigenfunction of the first excited
Kaluza-Klein (KK) mode,

 ’�z� � � 1�z�: (23)

Then, by using Eq. (18), the wave functions ’r and ’l are
expressed in terms of the eigenfunctions  0 and  1 as

 ’r;l�z� � 1
2


1
2 0�z� �

1
2 1�z�: (24)

By using this, Eq. (21) is rewritten in the following form:

 A��x
�; z� � �̂�?�x

�� 0�z� � ��̂�jj�x
�� � V��x

���

� �̂�jj�x�� 1�z�: (25)

It should be noticed that neither the wave function ’r nor
’l is the eigenfunction for the zero eigenvalue. This is the
reflection of the well-known fact that the massless photon
field is given by a linear combination of the HLS gauge
field and the gauge field corresponding to the chiral sym-
metry [5,9].

Now, since we introduce the vector meson field as the
gauge field of the HLS, the derivative expansion of the
Lagrangian becomes possible. This is an important differ-
ence compared with the formulation done in Ref. [3].
Then, the leading Lagrangian counted as O�p2� in the
derivative expansion is constructed by the terms generated
from the F�zF�z term in the action (1) together with the
kinetic term of the HLS gauge field V� from the F��F��

term. On the other hand, the O�p4� terms come from the
remainder of the F��F

�� term in the action (1). The
resultant Lagrangian takes the form of the HLS model
[5,9]:
 

L � F2
� tr��̂�?�̂

�
?� � F

2
� tr��̂�jj�̂

�
jj
�

�
1

2g2 tr�V��V
��� �L�4�; (26)

where L�4� is constructed by the O�p4� terms [7,9]:

 L �4� � y1 tr��̂�?�̂
�
?�̂�?�̂

�
?� � y2 tr��̂�?�̂�?�̂

�
?�̂

�
?� � y3 tr��̂�jj�̂

�
jj
�̂�jj�̂�jj� � y4 tr��̂�jj�̂�jj�̂

�
jj
�̂�
jj
�

� y5 tr��̂�?�̂
�
?�̂�jj�̂

�
jj
� � y6 tr��̂�?�̂�?�̂

�
jj
�̂�
jj
� � y7 tr��̂�?�̂�?�̂

�
jj
�̂�
jj
� � y8ftr��̂�?�̂

�
jj
�̂�?�̂

�
jj
�

� tr��̂�?�̂
�
jj
�̂�?�̂

�
jj
�g � y9 tr��̂�?�̂

�
jj
�̂�?�̂

�
jj
� � iz4 tr�V���̂

�
?�̂

�
?� � iz5 tr�V���̂

�
jj
�̂�
jj
�: (27)

Note that all the parameters in the Lagrangian are ex-
pressed in terms of the parameters of the 5-dimensional
gauge theory as

 F2
� � NcGM2

KK

Z
dzK�z�� _ 0�z��2; (28)

 F2
� � NcGM

2
KK	1h 

2
1i; (29)

 

1

g2 � NcGh 2
1i; (30)

 y1 � �y2 � �NcG 	 h1�  1 �  2
0i; (31)

 y3 � �y4 � �NcG 	 h 
2
1�1�  1�

2i; (32)

 y5 � 2y8 � �y9 � �2NcG 	 h 2
1 

2
0i; (33)

 y6 � �y5 � y7; (34)

 y7 � 2NcG 	 h 1�1�  1��1�  1 �  2
0�i; (35)

 z4 � �2NcG 	 h 1�1�  1 �  2
0�i; (36)

 z5 � �2NcG 	 h 2
1�1�  1�i; (37)

with 	1 being the eigenvalue determined by solving the
eigenvalue equation, and

 hAi �
Z
dzK�1=3�z�A�z� (38)

for a function A�z�. In Eq. (29), we used an identity

 

Z
dzK�z� _ 2

1�z� � 	1

Z
dzK�1=3�z� 2

1�z�: (39)

We should note that the normalization of the eigenfunction
 1 is not solely determined from the eigenvalue equation
and the boundary condition  1�
1� � 0. In addition, the
values of the ’t Hooft coupling G and the mass scale MKK

are not fixed in the model. As a result, none of three
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parameters of the HLS at the leading order, �F�; F�; g�, are
fixed in the present model: We need three phenomenologi-
cal inputs to fix their values. However, this implies that
several physical predictions can be made from only three
phenomenological inputs.

It should be also noticed that the Lagrangian (26) has all
the parameters consistently with the largeNc counting rule,
although several are absent since the external gauge fields
are not incorporated in the model: As is well known, terms
including two or more traces are suppressed by 1=Nc
compared with terms of just one trace in the large Nc limit
[10]. We note that all the terms in Eq. (26) are of O�Nc� as
one can easily see in Eqs. (22)–(31), which are constructed
by just one trace of the product.

IV. �-�-� COUPLING AND THE KSRF II
RELATION AT THE LARGE Nc LIMIT

As usual in the HLS model [5,9], from the Lagrangian
(26), we can easily read off the � mass square and the
�-�-� coupling:

 m2
� � ag2F2

�; g��� �
1
2ag�1�

1
2g

2z4�; (40)

where phenomenologically important parameter a is de-
fined by

 a �
F2
�

F2
�
: (41)

It should be noted that these quantities are expressed in
terms of the parameters of the 5-dimensional gauge theory,
by using Eqs. (28)–(30) and (36), as

 m2
� � 	1M2

KK; (42)

 g��� �
�
4

	1����������
NcG
p

�����������������������������
h 1�1�  2

0�i
2

h 2
1i

s
: (43)

Since they are independent of the normalization of the
eigenfunction  1,m2

� and g��� are completely determined,
once the values of G and MKK are fixed. Moreover, the
following ratio related to the KSRF II relation is calculable
even independently of these inputs:

 

m2
�

g2
���F2

�
�

4

a�1� 1
2g

2z4�
2
�

4

�
h 2

1i

	1h 1�1�  2
0�i

2 ’ 3:0;

(44)

which is roughly 50% larger than the value of the KSRF II
relation,

 

m2
�

g2
���F2

�
� 2; (45)

or the experimental value estimated as

 

m2
�

g2
���F2

�

��������exp
� 1:96; (46)

where use has been made of F� � 92:4 MeV, m� �

775:8 MeV, and g��� � 5:99. Alternatively, when we
use F��0� � 86:4 MeV in the chiral limit [9],

 

m2
�

g2
���F2

��0�

��������chi
� 2:24: (47)

The result coincides with that in Ref. [3]. This must be so,
since different identifications of the �meson field, whether
the gauge field or the CCWZ matter field, cannot lead to
different results as far as the tree-level amplitude is con-
cerned [9].

V. 1=Nc-SUBLEADING CORRECTIONS

Now we propose a way to include a part of the 1=Nc
corrections through meson loops as follows: Let us con-
sider the Lagrangian (26), which has the parameters deter-
mined in the largeNc limit, as the bare Lagrangian defined
at a scale �: L � L��� [8,9]. Then the parameters in the
bare Lagrangian are defined as the bare parameters such as
F� � F����, a � a���, g � g���, and so on. The bare
theory is matched to the HQCD at the scale � which we
call the matching scale. Then, the 1=Nc corrections are
incorporated into physical quantities in such a way that we
consider the quantum correction generated from the � and
� loops in HLS ChPT.

For m� 
 � 
 � the quantum corrections are incorpo-
rated through the renormalization group equations (RGEs)
for F����, a���, g���, and z4��� in the HLS theory
including the quadratic divergence in the Wilsonian sense
[8,9]:2

 �
dF2

�

d�
�

Nf
2�4��2

�3a2g2F2
� � 2�2� a��2�; (48)

 �
da
d�
� �

Nf
2�4��2

�a� 1�
�

3a�a� 1�g2 � �3a� 1�
�2

F2
�

�
;

(49)

 �
dg2

d�
� �

Nf
2�4��2

87� a2

6
g4; (50)

 �
dz4

d�
�

Nf
2�4��2

2� 3a� a2

6
: (51)

Since z4��� is related to �a���; g���� as

 a����1� 1
2g

2���z4����
2 ’ 4

3; (52)

through the HQCD result in Eq. (44), all four parameters in
the low-energy region are determined from just three bare
parameters F����, g���, and a��� through the above
RGEs. Note that the � meson mass m� is determined by

2Coefficients of RGEs for all the O�p4� terms including z4 are
given in Appendix D, Table 20, of Ref. [9].
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the on-shell condition:

 m2
� � a�m��F

2
��m��g

2�m��: (53)

For 0 
 � 
 m�, on the other hand, the couplings other
than F� do not run, while F� does by the quantum correc-
tions from the � loop alone. As a result, the physical decay
constant F� � F��0� is related to F��m�� via the RGEs
[9]:

 F2
��0� � F2

��m��

�
1�

Nf
�4��2

m2
�

F2
��m��

�
1�

a�m��

2

��
:

(54)

Following Ref. [9], we take as inputs Nf � 3, F��0� �
86:4
 9:7 MeV (value at the chiral limit), and m� �

775:8 MeV [13], and a particular parameter choice3

 z4��� � 0; i:e:; a��� ’ 4
3 ’ 1:33; (55)

among those satisfying Eq. (52), so that z4�m�� is solely
induced by the loop corrections (1=Nc corrections). From
these, we determine the values of F���� and g��� as done
in Ref. [9]. We choose the matching scale � as � � 1:0,
1.1, and 1.2 GeV since the effect from the a1 meson is not
included.

We should carefully define the physical �-�-� coupling
g���. One would naively regard the physical �-�-� cou-
pling as

 g��� �
1
2a�m��g�m���1�

1
2g

2�m��z4�m���; (56)

where a�m�� � F2
��m��=F

2
��m��. However, g��� should

be defined for the rho meson and the pion both on the mass
shell. While F2

� and g as well as z4 do not run for �<m�,
F2
� does run. Since the on-shell pion decay constant is

given by F��0�, we have to use F��0� to define the on-
shell �-�-� coupling constant [9]. The resultant expres-
sion is given by

 g��� �
1
2a�0�g�m���1�

1
2g

2�m��z4�m���; (57)

where a�0� � F2
��m��=F2

��0� is related to a�m�� through
Eq. (54) as

 

1

a�0�
�

1

a�m��

�
1�

3

�4��2
m2
�

F2
��m��

�
1�

a�m��

2

��
: (58)

By using the above g���, the physical quantity related to
the KSRF II relation is given by

 

m2
�

g2
���F

2
��0�

�
4

a�0��1� 1
2g

2�m��z4�m���
2
’ 2:0; (59)

in good agreement with the experiment, where we have
computed

 a�0� ’ 2:0; 1
2g

2�m��z4�m�� ’ �8:0� 10�3 (60)

through RGE analysis for � � 1:1 GeV, which are com-
pared with the bare values a��� ’ 4=3 and 1

2g
2���z4��� �

0. Equation (59) is our main result, which is compared with
the holographic result Eq. (44).

We note that those corrections are of O�1=Nc�. Actually,
we may set a�m�� ’ a��� in Eq. (58), since a��� does
hardly run for m� < �<� due to the fact that the bare
value a��� ’ 1:33 is close to the fixed point value a � 1 of
the RGE (49) (see also Fig. 17 of Ref. [9]). Then

 

1

a�0�
’

1

a���

�
1�

3

�4��2
m2
�

F2
��m��

�
1�

a���
2

��
(61)

whose second term in the bracket withm2
�=F2

� (� 1=Nc) is
nothing but the O�1=Nc� correction essentially coming
from the pion loop contributions for 0<�<m�.

In Table I, we show the predicted values of
m2
�=�g2

���F2
��0�� and of g��� for � � 1:0, 1.1, 1.2 GeV

in good agreement with the experiment within the errors
coming from the input value F��0� evaluated at the chiral
limit [9]. The result is fairly insensitive to the choice of the
matching scale �. This implies that 1=Nc corrections
actually improve the HQCD prediction, Eq. (44),
m2
�=�g2

���F2
��j� ’ 3:0, into the realistic value ’ 2:0. It

should be emphasized that the 1=Nc corrections make the
value always closer to the experimental value for a wide
range of the value of the parameter a��� not restricted to
the present one a��� ’ 4=3.

By introducing the external field, SS [3] obtained ‘‘vec-
tor meson dominance’’ for the pion electromagnetic form
factor, though not the celebrated ‘‘� dominance’’ due to
significant contributions from higher resonances, particu-
larly the �0. The above peculiarity is closely related to its
prediction of g�, the �-
 mixing strength, or the pion form
factor just on the � pole in the timelike region, namely, a
wrong KSRF I relation, g�=�g���F2

�� ’ 4 [3], which is a
factor 2 larger than the correct one. These problems will be
dealt with in the forthcoming paper [12].

TABLE I. Predicted values for the KSRF II relation and g���
including the 1=Nc corrections with F��0� and m� used as
inputs. Value of the ratio m2

�=�g
2
���F

2
�� indicated by ‘‘Exp.’’ is

obtained with the experimental value F� � 92:4 MeV, while the
one by ‘‘Chi.’’ is with the value F��0� � 86:4
 9:7 MeV (at the
chiral limit). All errors of the predictions arise from the input
value of F��0�.

��GeV� m2
�=�g

2
���F

2
�� g���

1.0 1:98
 1:01 6:38
 1:46
1.1 2:01
 1:02 6:34
 1:45
1.2 2:04
 1:04 6:28
 1:44

Exp. 1:96
 0:00 5:99
 0:03
Chi. 2:24
 0:503a � 4=3 implies the � dominance of the �-� scattering [9].
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