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We analyze the spectrum and properties of a highly deconstructed Higgsless model with only three
sites. Such a model contains sufficient complexity to incorporate interesting physics issues related to
fermion masses and electroweak observables, yet remains simple enough that it could be encoded in a
Matrix Element Generator program for use with Monte Carlo simulations. The gauge sector of this model
is equivalent to that of the Breaking Electroweak Symmetry Strongly (BESS) model; the new physics of
interest here lies in the fermion sector. We analyze the form of the fermion Yukawa couplings required to
produce the ideal fermion delocalization that causes tree-level precision electroweak corrections to vanish.
We discuss the size of one-loop corrections to b! s�, the weak-isospin violating parameter �T and the
decay Z! b �b. We find that the new fermiophobic vector states (the analogs of the gauge-boson Kaluza-
Klein modes in a continuum model) can be reasonably light, with a mass as low as 380 GeV, while the
extra (approximately vectorial) quark and lepton states (the analogs of the fermion Kaluza-Klein modes)
must be heavier than 1.8 TeV.
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I. INTRODUCTION

Higgsless models [1] literally break the electroweak
symmetry without invoking a scalar Higgs boson [2].
Among the most popular are models [3–6] based on a
five-dimensional SU�2� � SU�2� �U�1� gauge theory in
a slice of anti-de Sitter space, with electroweak symmetry
breaking encoded in the boundary conditions of the gauge
fields. The spectrum includes states identified with the
photon, W, and Z, and also an infinite tower of additional
massive vector bosons (the higher Kaluza-Klein or KK
excitations) starting at the TeV scale [7], whose exchange
unitarizes longitudinal W and Z boson scattering [8–11].
The properties of Higgsless models may be studied [12–
18] by using the technique of deconstruction [19,20] and
computing the precision electroweak parameters [21–25]
in a related linear Moose model [26].

Our analysis of the leading electroweak parameters in a
very general class of linear Moose models concluded [18]
that a Higgsless model with localized fermions cannot
simultaneously satisfy unitarity bounds and provide ac-

ceptably small precision electroweak corrections unless it
includes light vector bosons other than the photon, W, and
Z. Several authors proposed [27–30] that delocalizing
fermions within the extra dimension could reduce electro-
weak corrections. In deconstructed language, delocaliza-
tion means allowing fermions to derive electroweak
properties from more than one site on the lattice of gauge
groups [31,32]. We then showed [33] for an arbitrary
Higgsless model that choosing the probability distribution
of the delocalized fermions to be related to the wave
function of the W boson makes three (Ŝ, T̂, W) of the
leading zero-momentum precision electroweak parameters
defined by Barbieri, et al. [24,25] vanish at tree level. We
denote such fermions as ‘‘ideally delocalized.’’ We sub-
sequently provided a continuum realization of ideal delo-
cation that preserves the characteristic of vanishing
precision electroweak corrections up to subleading order
[34]. In the absence of precision electroweak corrections,
the strongest constraints on Higgsless models come from
limits on deviations in multi-gauge-boson vertices; we
computed the general form of the triple and quartic
gauge-boson couplings for these models and related them
to the parameters of the electroweak chiral Lagrangian
[35,36].

In this paper, we show that many issues of current
interest, such as ideal fermion delocalization and the gen-
eration of fermion masses (including the top-quark mass)
can be usefully illustrated in a Higgsless model decon-
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structed to just three sites. The Moose describing the model
has only one ‘‘interior’’ SU�2� group and there is, accord-
ingly, only a single triplet of W0 and Z0 states instead of the
infinite tower of triplets present in the continuum limit.
This model contains sufficient complexity to incorporate
the interesting physics issues, yet remains simple enough
that it could be encoded in a Matrix Element Generator
program in concert with a Monte Carlo Event Generator1

for a detailed investigation of collider signatures.
The three-site model we introduce here has the color

group of the Standard Model (SM) and an extended
SU�2� � SU�2� �U�1� electroweak gauge group. This
theory is in the same class as models of extended electro-
weak gauge symmetries [37,38] motivated by models of
hidden local symmetry [39–43]. Indeed the gauge sector is
precisely that of the BESS model [37]; the new physics
discussed here relates to the fermion sector. In the next
section of this paper we briefly describe the model and the
limits in which we work. Section III reviews the gauge
sector of the model in our notation, including the masses
and wave functions of the photon, the nearly-standard light
W and Z, and the heavier W0 and Z0. Section IV solves for
the masses and wave functions of the fermions in the
spectrum (a set of SM-like fermions and heavy copies of
those fermions) and implements ideal delocalization for
the light fermions. Sections Vand VI explore the couplings
of the fermions to the charged and neutral gauge bosons,
respectively. Because the light fermions are ideally delo-
calized, they lack couplings to the W0 and Z0—and this
minimizes the values of electroweak precision observables.
The top-quark, on the other hand, is treated separately in
order to provide for its large mass. The relationship of
triple gauge vertices to ideal delocalization and a compari-
son of multigauge vertices in the three-site model and its
continuum limit are discussed in Section VII; given the
vanishing electroweak corrections and the fermiophobic
nature of the W0 and Z0, multigauge vertices offer the best
prospects for additional experimental constraints on the
three-site model. In Sections VIII and IX, the paper moves
on to a discussion of �T and the Zb �b vertex at one-loop.
Having established that the heavy fermions must have
masses of over 1.8 TeV, we discuss the structure of a
low-energy effective theory in which those fermions have
been integrated out. Section X presents our conclusions.

II. THREE-SITE MODEL

The electroweak sector of the three-site Higgsless model
analyzed in this paper is illustrated in Fig. 1 using ‘‘Moose
notation’’ . The model incorporates a SU�2� � SU�2� �
U�1� gauge group, and 2 nonlinear �SU�2� � SU�2��=
SU�2� sigma models in which the global symmetry groups
in adjacent sigma models are identified with the corre-
sponding factors of the gauge group. The symmetry break-

ing between the middle SU�2� and the U�1� follows a
SU�2�L � SU�2�R=SU�2�V symmetry breaking pattern
with the U�1� embedded as the T3-generator of SU�2�R.
This extended electroweak gauge sector is that of the BESS
model [37].

The left-handed fermions are SU�2� doublets coupling
to the groups at the first two sites, which we will corre-
spondingly label  L0 and  L1. The right-handed fermions
are a SU�2� doublet at site 1,  R1, and two singlet fermions,
denoted in Fig. 1 as ‘‘residing’’ at site 2, uR2 and dR2. The
fermions  L0,  L1, and  R1 have U�1� charges typical of
the left-handed doublets in the standard model, �1=6 for
quarks and �1=2 for leptons. Similarly, the fermion uR2

has U�1� charges typical for the right-handed up-quarks
(� 2=3), and dR2 has the U�1� charge associated with the
right-handed down-quarks (� 1=3) or the leptons (� 1).
With these assignments, we may write the Yukawa cou-
plings and fermion mass2 term

 L f � �f1
� L0�1 R1 �

���
2
p

~�v � R1 L1

� f2
� L1�2

�0u
�0d

� �
uR2

dR2

� �
� H:c: (2.1)

Here we have chosen to write the � R1 L1 Dirac mass in the
form of a Yukawa coupling, for convenience, and the
matrices �1;2 are the nonlinear sigma-model fields associ-
ated with the f1;2 links of the Moose. The Yukawa cou-
plings introduced here are of precisely the correct form
required to implement a deconstruction of a five-
dimensional fermion with chiral boundary conditions
[44]. In the limit in which the ‘‘bulk fermion’’ decouples,
while holding the mixing with the light fermions fixed, the
model reduces to that considered in [45].

It is straightforward to incorporate quark flavor and
mixing in a minimal way. Adding generational indices to

g
0

g
1

f2f1
g

2

L

R

FIG. 1 (color online). The three-site model analyzed in this
paper. The solid circles represent SU�2� gauge groups, with
coupling strengths g0 and g1, and the dashed circle is a U�1�
gauge group with coupling g2. The left-handed fermons, denoted
by the lower vertical lines, are located at sites 0 and 1, and the
right-handed fermions, denoted by the upper vertical lines, at
sites 1 and 2. The dashed green lines correspond to Yukawa
couplings, as described in the text. As discussed below, we will
take f1 � f2 �

���
2
p
v, denote g0 � g, g1 � ~g, g2 � g0, and take

~g� g; g0.

1See, e.g., those appearing on http://www-theory.lbl.gov/tools/.

2In this paper, we will not address the issue of nonzero
neutrino masses. Our focus, instead, is on the physics related
to the generation of the large top-quark mass.
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each of the fermion fields, we may choose the coupling �
and the mass term

���
2
p

~�v to be generation-diagonal. In this
case, all of the nontrivial flavor structure is embedded in
the Yukawa matrices �0u and �0d—precisely as in the
standard model; the only mixing parameters that appear
are the ordinary Cabbibo Kobayashi Maskawa (CKM)
angles and phase. We focus most of our attention, in this
paper, on the top-bottom quark doublet and its heavy
partners, and we note where results for the other fermions
differ.

For simplicity, we examine the case

 f1 � f2 �
���
2
p
v; (2.2)

and work in the limit

 x � g0=g1 � 1; y � g2=g1 � 1; (2.3)

in which case we expect a massless photon, light W and Z
bosons, and a heavy set of bosons W0 and Z0. Numerically,
then, g0;2 are approximately equal to the standard model
SU�2�W and U�1�Y couplings, and we therefore denote
g0 	 g and g2 	 g0, and define an angle � such that

 

g0

g
�

sin�
cos�

	
s
c
: (2.4)

In addition, we denote g1 	 ~g.
In what follows, we will show that ideal mixing requires

the flavor-independent mass contribution from �1 to be
much smaller than the Dirac mass contribution:

 "L 	
�
~�
� O�x� � 1: (2.5)

While we will not immediately require that the flavor-
dependent mass contributions associated with �2

 "uR;dR 	
�0u;d

~�
; (2.6)

be similarly small, we will ultimately find that they are
bounded from above. The Yukawa and fermion mass terms
in the Lagrangian can now be rephrased as

 L f �
���
2
p

~�v
�
"L � L0�1 R1 � � R1 L1

� � L1�2
"uR

"dR

� �
uR2

dR2

� �
� H:c:

�
(2.7)

for easy reference.
Finally note that, treating the link fields as nonlinear

sigma models, the model as described here is properly
considered a low-energy effective theory valid below a
mass scale of order 4�

���
2
p
v 
 4:3 TeV. If we regard

each of the link fields as arising from QCD-like dynamics
at that scale, we would expect large corrections to the S
parameter arising from higher-energy operators [16]. On
the other hand, if this model is viewed as the deconstructed
form of a five-dimensional ‘‘dual’’ of some strongly

coupled four-dimensional theory [46–49], the leading cor-
rections are accounted for by tree-level W0-exchange [5].
The remaining corrections are suppressed in the large-N
expansion, and may be sufficiently small to be phenom-
enologically acceptable.

III. MASSES AND EIGENSTATES

This section reviews the mass eigenvalues and the wave
functions of the gauge bosons of the three-site model,
which are the same as those for the BESS model [37].
Ref. [12] has also previously discussed the gauge-boson
eigenfunctions, but wrote them in terms of the parameters
e, MW , MZ, MW 0 , and MZ0 .

A. Charged gauge bosons

The charged gauge boson mass-squared matrix may be
written in terms of the small parameter x as

 

~g2v2

2

x2 �x
�x 2

� �
: (3.1)

Diagonalizing this matrix perturbatively in x, we find the
light eigenvalue

 M2
W �

g2v2

4

�
1�

x2

4
�
x6

64
� . . .

�
; (3.2)

and the corresponding eigenstate
 

W� � v0
WW

�
0 � v

1
WW

�
1

�

�
1�

x2

8
�

5x4

128
� . . .

�
W�

0

�

�
x
2
�
x3

16
�

9x5

256
� . . .

�
W�

1 ; (3.3)

whereW0;1 are the gauge bosons associated with the SU�2�
groups at sites 0 and 1. Note that the light W is primarily
located at site 0.

The heavy eigenstate has an eigenvector orthogonal to
that in Eq. (3.3) and a mass

 M2
W0 � ~g2v2

�
1�

x2

4
�
x4

16
� . . .

�
: (3.4)

Comparing Eqs. (3.2) and (3.4), we find

 

M2
W

M2
W0
�
x2

4
�
x4

8
�
x6

64
� . . . ; (3.5)

or, equivalently,

 

�
g0

g1

�
2
	 x2 � 4

�
M2
W

M2
W0

�
� 8

�
M2
W

M2
W0

�
2
� 28

�
M2
W

M2
W 0

�
3
� . . . ;

(3.6)

which confirms that the W0 boson is heavy in the limit of
small x.
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B. Neutral gauge bosons

The neutral bosons’ mass-squared matrix is

 

~g2v2

2

x2 �x 0
�x 2 �xt
0 �xt x2t2

0
B@

1
CA; (3.7)

where t 	 tan� � s=c. This matrix has a zero eigenvalue,
corresponding to the massless photon, with an eigenstate
which may be written

 A� �
e
g
W�

0 �
e
~g
W�

1 �
e
g0
B�; (3.8)

whereW0;1 are the gauge bosons associated with the SU�2�
groups at sites 0 and 1, the B is the gauge boson associated
with the U�1� group at site 2, and the electric charge e
satisfies

 

1

e2
�

1

g2 �
1

~g2 �
1

g02
: (3.9)

The light neutral gauge boson, which we associate with
the Z, has a mass

 M2
Z �

g2v2

4c2

�
1�

x2

4

�c2 � s2�2

c2 �
x6

64

�c2 � s2�4

c6
� . . .

�
;

(3.10)

with a corresponding eigenvector

 Z� � v0
ZW

�
0 � v

1
ZW

�
1 � v

2
ZB

� (3.11)

 v0
Z � c�

x2c3�1� 2t2 � 3t4�
8

� . . . (3.12)

 v1
Z �

xc�1� t2�
2

�
x3c3�1� t2�3

16
� . . . (3.13)

 v2
Z � �s�

x2sc2�3� 2t2 � t4�
8

� . . . : (3.14)

The heavy neutral boson has a mass

 M2
Z0 � ~g2v2

�
1�

x2

4c2 �
x4�1� t2�2

16
� . . .

�
; (3.15)

with the corresponding eigenvector

 Z0� � v0
Z0W

�
0 � v

1
Z0W

�
1 � v

2
Z0B

� (3.16)

 v0
Z0 � �

x
2
�
x3�1� 3t2�

16
� . . . (3.17)

 v1
Z0 � 1�

x2�1� t2�
8

� . . . (3.18)

 v2
Z0 � �

xt
2
�
x3t�3� t2�

16
� . . . : (3.19)

IV. FERMION WAVE FUNCTIONS AND IDEAL
DELOCALIZATION

This section analyzes the fermion sector of the three-site
model and implements ideal fermion delocalization
explicitly.

A. Fermion masses and wave functions

Consider the fermion mass matrix

 Mu;d �
���
2
p

~�v
"L 0
1 "uR;dR

� �
	

m 0
M m0u;d

 !
: (4.1)

The notation introduced at the far right is used to empha-
size the ‘‘see-saw’’ form of the mass matrix. In what
follows, we will largely be interested in the top- and
bottom-quarks, and therefore in "tR and "bR (or, equiva-
lently, in m0t=M and m0b=M).

Diagonalizing the top-quark see-saw style mass matrix
perturbatively in "L, we find the light eigenvalue

 mt �

���
2
p

~�v"L"tR����������������
1� "2

tR

q �
1�

"2
L

2�"2
tR � 1�2

� . . .
�
; (4.2)

 



mm0t��������������������

M2 �m02t
p : (4.3)

Note that this is precisely the same form as found in [30].
For the bottom-quark, we find the same expression with
"tR ! "bR, and therefore (neglecting higher order terms in
"2
bR)

 

mb

mt


"bR
"tR

����������������
1� "2

tR

q
: (4.4)

The heavy eigenstate (T) corresponding to the top-quark
has a mass

 mT �
���
2
p

~�v
����������������
1� "2

tR

q �
1�

"2
L

2�"2
tR � 1�2

� . . .
�
; (4.5)

 

��������������������
M2 �m02t

q
(4.6)

and similarly for the heavy eigenstate corresponding to the
bottom-quark (B) with "tR ! "bR (or, equivalently, m0t !
m0b).

The left- and right-handed light mass eigenstates of the
top-quark are
 

tL � t0L 
t
L0 � t

1
L 

t
L1

�

�
�1�

"2
L

2�1� "2
tR�

2 �
�8"2

tR � 3�"4
L

8�"2
tR � 1�4

� . . .
�
 tL0

�

�
"L

1� "2
tR

�
�2"2

tR � 1�"3
L

2�"2
tR � 1�3

� . . .
�
 tL1 (4.7)
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 tR � t1R 
t
R1 � t

2
RtR2

�

�
�

"tR����������������
1� "2

tR

q �
"tR"

2
L

�1� "2
tR�

5=2
� . . .

�
 tR1

�

�
1����������������

1� "2
tR

q �
"2
tR"

2
L

�1� "2
tR�

5=2
� . . .

�
tR2; (4.8)

and similarly for the left- and right-handed b-quarks with
"tR ! "bR. Here we denote the upper components of the
SU�2� doublet fields as  tL0;L1;R1; clearly the smaller the
value of "L ("tR), the more strongly the left-handed (right-
handed) eigenstate will be concentrated at site 0 (site 2).
Note that the relative phase of the eigenvectors tL and tR is
set by the eigenstate condition

 Myt jtLi � mtjtRi: (4.9)

The left- and right-handed heavy fermion mass eigen-
states are the orthogonal combinations
 

TL � T0
L 

t
L0 � T

1
L 

t
L1 (4.10)

 

�

�
�

"L
1� "2

tR

�
�2"2

tR � 1�"3
L

2�"2
tR � 1�3

� . . .
�
 tL0

�

�
�1�

"2
L

2�1� "2
tR�

2 �
�8"2

tR � 3�"4
L

8�"2
tR � 1�4

� . . .
�
 tL1

(4.11)

 

TR � T1
R 

t
R1 � T

2
RtR2; (4.12)

 �

�
�

1����������������
1� "2

tR

q �
"2
tR"

2
L

�1� "2
tR�

5=2
� . . .

�
 tR1

�

�
�

"tR����������������
1� "2

tR

q �
"tR"

2
L

�1� "2
tR�

5=2
� . . .

�
tR2; (4.13)

and similarly for the left- and right-handed heavy B-quarks
with "tR ! "bR.

Analogous results follow for the other ordinary fermions
and their heavy partners, with the appropriate "fR substi-
tuted for "tR in the expressions above.

B. Ideal delocalization

As shown in [33] it is possible to minimize precision
electroweak corrections due to the light fermions by ap-
propriate (‘‘ideal’’) delocalization of the light fermions
along the Moose. Essentially, if we recall that the W is
orthogonal to its own heavy KK modes (theW0 in the three-
site model), then it is clear that relating the fermion profile
along the Moose appropriately to the W profile can ensure
that the W0 will be unable to couple to the fermions.
Specifically, at site i we require the couplings and wave
functions of the ideally delocalized fermion and the W

boson to be related as

 gi� 
f
i �

2 � gWviW: (4.14)

In the three-site model, if we write the wave function of a
delocalized left-handed fermion fL � f0

L 
f
L0 � f

1
L 

f
L1

then ideal delocalization imposes the following condition
(having taken the ratio of the separate constraints for i � 0
and i � 1):

 

g�f0
L�

2

~g�f1
L�

2
�
v0
W

v1
W

: (4.15)

Based on our general expressions for fermion mass
eigenstates (Eqs. (4.7) and (4.8)) and theW mass eigenstate
(3.3), it is clear that (4.15) relates the flavor-independent
quantities x and "L to the flavor-specific �fR. Hence, if we
construe this as an equation for "L and solve perturbatively
in the small quantity x, we find3

 "2
L ! �1� "

2
fR�

2

�
x2

2
�

�
1

8
�
"2
fR

2

�
x4 �

5"4
fRx

6

8
� . . .

�
:

(4.16)

Regardless of the precise value of "fR involved, it is
immediately clear that ideal delocaliztion implies "L �
O�x�. Since x� 1, this justifies the expansions used above
in diagonalizing the fermion mass matrix.

The value of "L that yields precisely ideal delocalization
for a given fermion species depends on "fR and therefore
(4.4) on the fermion’s mass. For example, the value of "L
that ideally delocalizes the b depends on "bR. As we will
see below, however, bounds on the right-handed Wtb
coupling will yield the constraint "bR � 1:4� 10�2;
when Eq. (4.16) is applied to the b-quark and this con-
straint is imposed, terms proportional to "bR become neg-
ligible. As all other fermions (except top) are even lighter,
the associated values of "fR will be even smaller. In
practice, therefore, we may neglect all terms proportional
to "fR in Eq. (4.16), and the condition for ideal mixing is
essentially the same for all fermions except the top-quark:

 "2
L �

x2

2
�
x4

8
�O�x8�

� 2
�
M2
W

M2
W0

�
� 6

�
M2
W

M2
W0

�
2
� 22

�
M2
W

M2
W 0

�
3
� . . . ; (4.17)

where the second equality follows from Eq. (3.6). This is
the value of "L we will henceforth use for all fermions in
our analysis. As discussed in [35], we expect that the value
of x will be bounded by constraints on the WWZ vertex
when the light fermions are ideally delocalized.

3In the three-site model, this choice of "2
L is equivalent to a

choice of the parameter b in [45] to make �3 or �S vanish.
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V. FERMION COUPLINGS TO THE W BOSON

A. Left-handed fermion couplings to the W boson

We may now compute the couplings between left-
handed fermions (ordinary or heavy partners) and the light
W boson.4 In terms of the mass-eigenstate gauge fields, the
left-handed couplings of the light W’s may be written
 

LWL / W�� �gv
0
W�

� L0���� L0� � ~gv1
W�

� L1���� L1�

� H:c:: (5.1)

The couplings of the light-W to the mass-eigenstate fermi-
ons are then computed by decomposing the gauge-
eigenstate fermions into mass-eigenstates.

We begin with the left-handed Wtb coupling, assuming
ideal mixing for the b-quark in the "bR ! 0 limit. Because
the W wave function receives contributions from sites 0
and 1 only, the Wff0 coupling is the sum of the overlap
between the W and fermion wave functions on those two
sites:

 gWtbL � gt0Lb
0
Lv

0
W � ~gt1Lb

1
Lv

1
W ; (5.2)

we find

 gWtbL � g
�
1�

3"4
tR � 4"2

tR � 3

8�"2
tR � 1�2

x2

�
3"8

tR � 16"6
tR � 50"4

tR � 8"2
tR � 15

128�"2
tR � 1�4

x4 � . . .
�
:

(5.3)

The corresponding equation for the coupling of standard-
model fermions other than the top-quark to the W may be
obtained by taking "tR ! 0 in the equation above, yielding

 gWL � g
�
1�

3

8
x2 �

15

128
x4 � . . .

�
: (5.4)

Combining this with Eqs. (2.4), (3.2), (3.9), and (3.10) we
find

 gWL �
e���������������

1�
M2
W

M2
Z

r �1�O�s2x4�; (5.5)

which shows that the W-fermion couplings (for fermions
other than top) are of very nearly standard-model form, as
consistent with ideal delocalization. Eq. (5.4) corresponds
to a value of GF

 

���
2
p
GF �

�gWL �
2

4M2
W

�
1

v2

�
1�

x2

2
�
x4

4
� . . .

�
; (5.6)

and the relation

 gWtbL � gWL

�
1�

"2
tR

4�"2
tR � 1�2

x2

�
"2
tR�3"

6
tR � 8"4

tR � 4"2
tR � 10�

32�"2
tR � 1�4

x4 � . . .
�
:

(5.7)

The W also couples to the heavy partners of the ordinary
fermions. Here, we quote the results for the T and B
fermions; analogous results follow for other generations
when "tR is replaced by the appropriate "qR. There is a
diagonal WTB coupling of the form

 gWTBL � gT0
LB

0
Lv

0
W � ~gT1

LB
1
Lv

1
W; (5.8)

 �
g
2

�
1�

"4
tR � 6"2

tR � 5

8�"2
tR � 1�2

x2 � . . .
�

(5.9)

 �
gWL
2

�
1�

"4
tR � 6"2

tR � 4

4�"2
tR � 1�2

x2 � . . .
�
; (5.10)

where T0;1
L and B0;1

L are the heavy-fermion analogs of the
components t0;1L and b0;1

L . There are also smaller off-
diagonal couplings involving one heavy and one ordinary
fermion
 

gWTbL � gT0
Lb

0
Lv

0
W � ~gT1

Lb
1
Lv

1
W; (5.11)

 �
g�1� "2

tR�

2
���
2
p
�"2
tR � 1�

�x�O�x3��; (5.12)

and
 

gWtBL � gt0LB
0
Lv

0
W � ~gt1LB

1
Lv

1
W; (5.13)

 �
g�1� 2"2

tR�

2
���
2
p
�"2
tR � 1�

�x�O�x3��; (5.14)

which play an important role in radiative corrections.

B. Weak mixing angle

From Eqs. (3.9), (3.10), and (5.6) we can calculate the‘‘Z
standard’’ weak mixing angle5 �W jZ:

 s2
Zc

2
Z 	

e2

4
���
2
p
GFM2

Z

� s2c2 � s2�c2 � s2�

�
c2 �

1

4

�
x2 �O�x4�; (5.15)

where sZ 	 sin�W jZ and cZ 	 cos�W jZ. The relationship
between the weak mixing angle �W jZ and the angle �
defined in Eq. (2.4) is expressed as follows:

 s2
Z � s2 � �; c2

Z � c2 � �; (5.16)

4See also the BESS results [37]. 5See also the BESS results [37,45].
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 � 	 s2

�
c2 �

1

4

�
x2 �O�x4�: (5.17)

In other words, s2 and s2
Z differ by corrections of order x2.

C. Right-handed fermion couplings to theW boson and
b! s�

Because  R is a doublet under SU�2�1, the three-site
model includes a right-handed coupling of the W

 LWR / W�� �~gv1
W�

� R1���� R1� � H:c:: (5.18)

Note that the right-handed fermions exist only on sites 1
and 2 while the W is limited to sites 0 and 1; hence, the
right-handed coupling comes entirely from the overlap at
site 1. For the tb doublet we find
 

gWtbR � ~gt1Rb
1
Rv

1
W (5.19)

 �
g
2

"tR����������������
1� "2

tR

q "bR�����������������
1� "2

bR

q �1�O�x2�� (5.20)

 



g
2

mb

mt

"2
tR

1� "2
tR

; (5.21)

where reaching the last line requires use of Eq. (4.4). It is
interesting to note that this expression is precisely analo-
gous to the related expression in the continuum model (see
Eq. (4.17) of [30]).

The right-handed Wtb coupling can yield potentially
large contributions to b! s�. As shown in [50], agree-
ment with the experimental upper limit on this process
requires

 

gWtbR

gWL
< 4� 10�3: (5.22)

Combining this bound with our expressions for gWL (5.4)
and gWtbR (5.21), recalling x� 1, and using mt �
175 GeV, mb � 4:5 GeV, yields the constraint

 "tR < 0:67: (5.23)

As we shall see below, this constraint will automatically be
satisfied for M> 1:8 TeV—a mass limit that will be
shown to be required for consistency with top-quark
mass generation and limits on "L. Finally, combining
Eqs. (4.4) and (5.23), reveals that

 "bR < 1:4� 10�2; (5.24)

as referred to earlier. Again, this confirms that the same
value of "L can produce nearly perfect ideal delocalization
for the b and all of the lighter fermions.

The W also has right-handed couplings to T and B, for
which we compute the diagonal coupling

 gWTBR � ~gT1
RB

1
Rv

1
W (5.25)

 �
g

2
����������������
1� "2

tR

q �
1�

"4
tR � 6"2

tR � 1

8�"2
tR � 1�2

x2 � . . .
�

(5.26)

 �
gWL

2
����������������
1� "2

tR

q �
1�

"4
tR � 3"2

tR � 1

2�"2
tR � 1�2

x2 � . . .
�
; (5.27)

and the off-diagonal coupling
 

gWtBR � ~gt1RB
1
Rv

1
W (5.28)

 

�
g"tR

2
����������������
1� "2

tR

q �
1�

"4
tR � 2"2

tR � 3

8�"2
tR � 1�2

x2 � . . .
�

(5.29)

 

�
gWL "tR

2
����������������
1� "2

tR

q �
1�

"2
tR�"

2
tR � 2�

2�"2
tR � 1�2

x2 � . . .
�
: (5.30)

As in the case of gWtbR , the right-handed coupling gWTbR
turns out to be proportional to "bR, and is therefore very
small.

Other right-handed Wqq0 couplings involving the light
standard fermions are straightforward to deduce from
Eq. (5.20) and clearly suppressed by the small values of
�qR. Similarly, the off-diagonal gWQq

0

R are proportional to

small �qR. The diagonal gWQQ
0

R are analogous in form to
(5.27).

VI. FERMION COUPLINGS TO THE Z BOSON

The Z coupling to fermions may now be computed. Like
the W, the Z may couple to a pair of ordinary or heavy-
partner fermions, or to a mixed pair with one ordinary and
one heavy-partner fermion. The left-handed coupling of
the light Z-boson to quark fields may be written
 

LZL / Z�

�
gv0

Z

�
� L0

�3

2
�� L0

�
� ~gv1

Z

�
� L1

�3

2
�� L1

�

�
g0

6
v2
Z�

� L0�
� L0 � � L1�

� L1�

�
; (6.1)

where the first two terms give rise to the left-handed ‘‘T3’’
coupling and the last term (proportional to g0) gives rise to
the left-handed hypercharge coupling. The expression for
leptons would be similar, replacing hypercharge 1=6 with
�1=2.

Similarly, the right-handed coupling of the Z to quark
fields is
 

LZR / Z�

�
~gv1

Z

�
� R1

�3

2
�� R1

�
�
g0

6
v2
Z�

� R1�
� R1�

� g0v2
Z

�
2

3
�uR2��uR2 �

1

3
�dR2��dR2

��
; (6.2)

where the last three terms arise from the hypercharge. For
leptons, 1=6! �1=2 in the second term, 2=3! 0 in the
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third term (for neutrinos), and�1=3! �1 in the last term
for the charged leptons. For quarks, this expression may be
more conveniently rewritten as

 L ZR / Z�

�
�~gv1

Z � g
0v2
Z�

�
� R1

�3

2
�� R1

�

� g0v2
Z

�
2

3

X
i�1;2

�uRi��uRi �
1

3

X
i�1;2

�dRi��dRi

��
;

(6.3)

where the last two terms yield the Z-couplings to the
conventionally defined right-handed hypercharge of the
quarks, while the first can give rise to a new right-handed
‘‘T3’’ coupling.

A. Light fermion couplings to the Z boson

We now use Eqs. (6.1) and (6.3) to compute the cou-
plings of the Z to light fermions. For an ideally localized
light fermion f, we find the left-handed coupling to T3 by
summing the overlaps of the Z and fermion wave functions
on sites 0 and 1 (the loci of the T3 charges):
 

gZqq3L � g�f0
L�

2v0
Z � ~g�f1

L�
2v1

Z (6.4)

 � gc
�
1�

x2c2�3� 6t2 � t4�
8

� . . .
�

(6.5)

 

�
eMW

MZ

���������������
1�

M2
W

M2
Z

r �1�O�s2x4�: (6.6)

The coupling of left-handed light fermions to hyper-
charge arises from the overlap between the fraction of
the Z wave function arising from site 2 (the locus of
hypercharge) and the left-handed fermion wave functions
which are limited to sites 0 and 1:
 

gZqqYL � g0v2
Z��f

0
L�

2 � �f1
L�

2 � g0v2
Z (6.7)

 � �g0s
�
1�

x2c2�3� 2t2 � t4�
8

� . . .
�

(6.8)

 

� �
eMZ

MW

�����������������
1�

M2
W

M2
Z

s
�1�O�s2x4�: (6.9)

Eqs. (6.6) and (6.9), derived from the preceding equations
using Eqs. (2.4), (3.2), (3.9), and (3.10) show that the
couplings are very nearly of standard-model form; this is
a further check of ideal delocalization.

Since the right-handed light fermion eigenvectors are
localized entirely at site 2, there are no right-handed cou-
plings of the light fermions to T3 and the right-handed
hypercharge coupling of the Z is given by

 gZqqYR � g0v2
Z�f

2
R�

2 � g0v2
Z � gZqqYL ; (6.10)

where the last equality comes from Eq. (6.7).
For ideally delocalized light fermions, therefore, we find

the Z-couplings are given by the standard-model like ex-
pression

 

eMZ

MW

���������������
1�

M2
W

M2
Z

r �
T3PL �

�
1�

M2
W

M2
Z

�
Q
�
�1�O�s2x4�;

(6.11)

where PL is the left-handed chirality projection operator.

B. Top- and bottom-quark couplings to the Z boson

The left-handed coupling of the top-quark to T3 is
 

gZtt3L � g�t0L�
2v0

Z � ~g�t1L�
2v1

Z (6.12)

 � gZqq3L

�
1�

"2
tR�2� "

2
tR�

4c2�1� "2
tR�

2 x
2 � . . .

�
: (6.13)

Note that a similar expression holds for the bottom-quark,
with "tR ! "bR and therefore, from Eq. (5.24), the tree-
level corrections to the partial width ��Z! b �b� are pro-
portional to "2

bR=2< 0:01%. From Eqns. (6.1) and (6.3),
we see that the left- and right-handed top-quark couplings
to Y turn out to be the same as those for the other quarks

 gZttYL � g0v2
Z��t

0
L�

2 � �t1L�
2 � gZqqYL (6.14)

 gZttYR � g0v2
Z��t

1
R�

2 � �t2R�
2 � gZqqYR : (6.15)

We may also compute the right-handed T3 couplings of the
top-quark
 

gZtt3R � �~gv
1
Z � g

0v2
Z��t

1
R�

2 (6.16)

 �
g
2c

"2
tR

1� "2
tR

�1�O�x2��: (6.17)

The T3 couplings of the Z to a pair of heavy-partner
fermions or an off-diagonal pair are given in Table I. From
the form of Eqs. (6.1) and (6.3), we see that the hyper-
charge couplings of the Z to a pair of left-handed or right-
handed heavy-partner fermions follow the pattern of the
ordinary fermions:

 gZQQYR � g0v2
Z � gZQQYL ; (6.18)

and the hypercharge coupling of the Z to an off-diagonal
(flavor-conserving) Qq pair always vanishes

 gZQqYL � gZQqYR � 0; (6.19)

because the Q and q wave functions are orthogonal.
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VII. IMPLICATIONS OF MULTIPLE GAUGE-
BOSON COUPLINGS

A. ZWW Vertex and �L
Experimental constraints on the ZWW vertex in the

three-site model turn out to provide useful bounds on the
fermion delocalization parameter �L.

To leading order, in the absence of CP-violation, the
triple gauge-boson vertices may be written in the
Hagiwara-Peccei-Zeppenfeld-Hikasa triple gauge vertex
notation [51]
 

LTGV � �ie
cZ
sZ
�1� �	ZW��W�
 Z�


� ie�1��	�W��W�
 A�


� ie
cZ
sZ
�1� �gZ1 �W

��
W�� �W��
W�� �Z


� ie�W��
W�� �W��
W�� �A
; (7.1)

where the two-index tensors denote the Lorentz field-
strength tensor of the corresponding field. In the standard
model, �	Z � �	� � �gZ1 	 0.

As noted in ref. [35], in any vector-resonance model,
such as the Higgsless models considered here, the inter-
actions (7.1) come from re-expressing the non-Abelian
couplings in the kinetic energy terms in the original
Lagrangian in terms of the mass-eignestate fields. In this
case one obtains equal contributions to the deviations of
the first and third terms, and the second and fourth terms in
Eq. (7.1). In addition the coefficient of the fourth term is
fixed by electromagnetic gauge invariance, and therefore in
these models we find

 �	� 	 0 �	Z 	 �gZ1 : (7.2)

Computing the ZWW coupling explicitly in the three-
site model6 yields

 gZWW � g�v0
W�

2v0
Z � ~g�v1

W�
2v1

Z (7.3)

 � gc
�
1�

x2c2�1� 2t2 � t4�
4

� . . .
�

(7.4)

 � e
cZ
sZ

�
1�

1

8c2 x
2 �O�x4�

�
(7.5)

 � gZqq3L

�
1�

x2

8c2 � . . .
�
; (7.6)

where Eq. (7.5) is derived using (5.17). Hence we compute

 �gZ1 � �	Z �
x2

8c2 > 0: (7.7)

The 95% C.L. upper limit from LEP-II is �gZ1 < 0:028
[53]. Approximating c2 
 cos2�W 
 0:77, we find the
bound on x

 x � 0:42

������������
�gZ1
0:028

s
; (7.8)

and hence, from Eq. (3.5),

 MW0 

2

x
MW � 380 GeV

������������
0:028

�gZ1

s
: (7.9)

From Eq. (4.17), therefore, we can write

 "L �
m
M



x���
2
p 
 0:30

�
380 GeV

MW 0

�
: (7.10)

Finally, we recall that, in the absence of a Higgs boson,
WLWL spin-0 isospin-0 scattering would violate unitarity
at a scale of

�������
8�
p

v and that exchange of the heavy elec-
troweak bosons is what unitarizes WW scattering in
Higgsless models. Hence, MW0 � 1:2 TeV in the three-
site model. This constrains "L to lie in the range

 0:095 � "L � 0:30: (7.11)

TABLE I. Strength of the T3 portion of the Z coupling to top-flavored fermions in the three-site model to order x3. The "tR ! "fR
limit of a top-flavor coupling is the corresponding coupling of flavor f.

Coupling Calculated as Strength

gZtt3L g0v
0
Z�t

0
L�

2 � g1v1
Z�t

1
L�

2 cg� 1
8 c

3g�3� 6t2 � t4�x2 �
g"2

tR�2�"
2
tR�

4c�1�"2
tR�

2 x2

gZtt3R �g1v
1
Z � g2v

2
Z��t

1
R�

2 g"2
tR

2c�"2
tR � 1�

�1�
�3�"2

tR � 1�2 � 8c2"2
tR�"

2
tR � 2� � 4c4�"2

tR � 1�2

8c2�"2
tR � 1�2

x2�

gZTT3L g0v
0
Z�T

0
L�

2 � g1v
1
Z�T

1
L�

2 � 1
2 cg�t

2 � 1� �
cg�4�t2�1��c2�"2

tR�1�2�t2�1�3�

16�"2
tR�1�2

x2

gZTT3R �g1v
1
Z � g2v

2
Z��T

1
R�

2 g
2c�"2

tR�1�
� g ��3�"2

tR�1�2�8c2�"4
tR�3"2

tR�1��4c4�"2
tR�1�2�

16c3�"2
tR�1�3

x2

gZtT3L g0v
0
Zt

0
LT

0
L � g1v1

Zt
1
LT

1
L

g
2
��
2
p
c�"2

tR�1�
x� g ��"

2
tR�1�2�c2�"4

tR�6"2
tR�3��4c4�"2

tR�1�2�

16
��
2
p
c3�"2

tR�1�3
x3

gZtT3R �g1v
1
Z � g2v

2
Z�t

1
RT

1
R

g"tR
2c�"2

tR�1�
� g"tR

��3�"2
tR�1�2�4c2�2"4

tR�5"2
tR�1��4c4�"2

tR�1�2�

16c3�"2
tR�1�3

x2

6See also the BESS results [45,52].
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From Eq. (3.4) the bounds on MW0 may be translated
directly to bounds on the size of ~g, yielding

 0:19<
~g2

4�
< 1:9� 4�: (7.12)

Hence we see that SU�2�1 is moderately strongly coupled,
with radiative corrections (which are proportional to
~g2=�4��2) of order 20%.

B. Comparison to the continuum model

The three-site model may be viewed as an extremely
deconstructed version of the model studied in Ref. [35]: a
five-dimensional flat-space SU�2�A � SU�2�B gauge theory
with ideally delocalized fermions. Hence it is interesting to
compare the values of the multiple gauge-boson and chiral
Lagrangian parameters obtained for the two cases.

The limit of the continuum model that is related to the
three-site model has the bulk gauge couplings of SU�2�A
and SU�2�B, g5A and g5B, equal to one another; in the

notation of Ref. [35], 	 �
g2

5B

g2
5A
� 1. Then, we may express

both the values of the chiral Lagrangian parameters �i for
the three-site model (see Appendix) and those from
Ref. [35] in terms of the mass ratio M2

W=M
2
W0 , as shown

in Table II. Note that �gWWWW in the table is defined by

 gWWWW �
e2

s2
Z

�1� �gWWWW: (7.13)

If we fix the value of �M
2
W

M2
W0
�, the quantities listed in Table II

for the three-site model are about 70% as large as those for
the continuum model.

VIII. PHENOMENOLOGICAL BOUNDS

A. Corrections to �T

At leading order, there are two isospin-violating parame-
ters [24,25] of interest. These may be chosen [25] to be ��,
the deviation from one of the ratio of the strengths of low-
energy isotriplet neutral- and charged-current neutrino in-
teractions, and �T, isospin-violating corrections to the
masses of the electroweak bosons [21–23]. Because of

the custodial symmetry present in the limit g0 ! 0, at
tree level �� is always equal to zero and �T is small
(O�x4�) in models of this kind [15,18].

The existence of the new T and B fermions, the heavy
partners of the top and bottom, gives rise to new one-loop
contributions to �T, as illustrated in Fig. 2. In principle, it
is the sum of the SM (t and b-quark loops) and new physics
contributions that is finite. However, we note that the SM
contribution vanishes in the limit "L ! 0 (and g0 ! 0)
since the t and b-quark masses are then equal (both vanish,
per Eq. (4.2)). Since "L respects custodial symmetry, and
fermionic custodial symmetry violation is encoded in the
"fR coefficients, we may obtain the leading contribution to
�T from the new physics by performing the calculation in
the "L ! 0 limit. We obtain

 �T 

1

16�2

m04t
M2v2 �

1

16�2

"4
tRM

2

v2 : (8.1)

Since g0 � 0, there are also isospin-violating corrections
at one-loop in the gauge sector which yield corrections to
�T of order �=4�. The MW 0 dependence of the largest of
these corrections, which are proportional to log�M2

W0=M
2
W�,

exactly matches [54] the Higgs boson mass dependence of
isospin-violating contributions at one-loop in the standard
model. Hence in the three-site model, to leading-log ap-
proximation, the role of the Higgs boson is largely played
by the W0.7

The phenomenological bounds on the value of �T de-
pend (since they include the one-loop SM corrections) on
the reference Higgs mass chosen. We are therefore inter-
ested in the bounds on �T corresponding to Higgs masses
between about 380 GeV (from Eq. (7.9)) and the unitarity
bound 1.2 TeV. Current bounds (see, for example,
Langacker and Erler in [56]) yield (approximately) �T �
2:5� 10�3, at 90% confidence level, assuming the exis-
tence of a moderately heavy (340 GeV) Higgs boson, while
it is relaxed to approximately �T � 5� 10�3 in the case
of a heavy (1000 GeV) Higgs boson. We therefore expect
that the upper bound on �T in the three-site model varies

TABLE II. Quantities related to multi-gauge-boson vertices
and chiral Lagrangian parameters in the three-site model and
the continuum model of Ref [35].

Three-site model Continuum model

�gZ1 � �	Z
1

2c2 �
M2
W

M2
W0
� �2

12c2 �
M2
W

M2
W0
�

�gWWWW
5
4 �

M2
W

M2
W0
� �2

5 �
M2
W

M2
W0
�

e2�1 0 0

e2�2 � �e
2�3 � s2

2 �
M2
W

M2
W0
� � �2s2

12 �
M2
W

M2
W0
�

e2�4 � �e
2�5

s2

4 �
M2
W

M2
W0
� �2s2

30 �
M2
W

M2
W0
�

FIG. 2. One-loop contributions to �� arise from the differ-
ences in the vacuum polarization diagram for the W3 versus
W1;2. We compute the leading contribution in the limit "L ! 0
and mb ! 0 (and g0 ! 0).

7At one-loop, a heavy SM Higgs boson requires an additional
positive contribution to �T to bring it into agreement with
precision electroweak data. To the extent that the tree-level
values of �S and �T are precisely zero, similar considerations
can allow one to set a lower bound on �T in the three-site model
as a function of MW0 [55]. This, in turn, would provide an upper
bound on the Dirac mass of the heavy fermions.
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from approximately 2:5� 10�3 to 5� 10�3. We may
rewrite Eq. (8.1) as

 "tR � 0:79
�

�T

2:5� 10�3

�
1=4
�
v
M

�
1=2
: (8.2)

In what follows, we will quote limits on the parameters of
the model for both of these values. For�T � 5� 10�3, we
find the upper bound

 "tR < 0:94
�
v
M

�
1=2
: (8.3)

As we shall see shortly, this bound is stronger than the one
derived from b! s�.

B. Bounds on M

Our upper limit on "tR and our knowledge of the top-
quark mass allow us to derive a lower bound on M. Our
expression (4.3) for mt reminds us that

 mt 

mm0t��������������������

M2 �m02t
p �

"L"tRM����������������
1� "2

tR

q : (8.4)

For a given value of M, the existence of an upper bound on
"tR implies that there is a smallest allowed value of "L,
which we denote "�L

 "�L � 1:26
�
2:5� 10�3

�T

�
1=4 mt��������

vM
p

�

���������������������������������������������������������
1� 0:63

�
�T

2:5� 10�3

�
1=2 v
M

s
: (8.5)

Since Eq. (7.11) requires "�L < 0:30, for �T � 2:5� 10�3

we find that M must be greater than 2.3 TeV, and for �T �
5� 10�3 we find that M must be greater than 1.8 TeV.

Several additional consequences follow. Using M>
1:8 TeV and the bound in Eq. (8.3), we see that "tR <
0:35, which supersedes the b! s� constraint, Eq. (5.23),
as promised above. For �T � 2:5� 10�3, as M grows
above its minimum value of 2.3 TeV, according to
Eq. (8.5) the value of "�L will fall—reaching the lower
bound of 0.095 (Eq. (7.11)) whenM 
 22 TeV. For values
ofM greater than 22 TeV (and fixedmt), the entire range of
0:095< "L < 0:30 remains accessible if "tR is smaller
than its maximum value (which, for �T � 2:5� 10�3, is
0.26). The joint range of allowed "L and M for both values
of �T is summarized in Figs. 3 and 4.

In the simplest continuum models in which the fifth
dimension is a flat interval, the mass of the first KK
fermion resonance is approximately half of the mass of
the first gauge-boson KK resonance. Because of the chiral
boundary conditions on the fermions, Dirichlet at one
boundary and Neumann at the other, the lowest KK fer-
mion mode has a wavelength of twice the size of the 5-d
interval. Phenomenologically, this situation is disfa-
vored—and it has been suggested that this may be ad-

dressed by having the fermions ‘‘feel’’ a smaller size for
the 5-d interval than the gauge bosons [28,30]. Following
[30], the parameter which measures this enhancement is
then given by

 2
mt�

MW0
; (8.6)

and, for the three-site model, we find its minimum value is
about 12 for �T � 2:5� 10�3 and 7 for �T � 5� 10�3.
In other words, viewing the three-site model as the decon-
struction of a continuum one, the bulk fermion fields

εL

M

 0

10000

15000

20000

25000

 0.1  0.15  0.2  0.25  0.3

 5000

FIG. 3. Phenomenologically acceptable values of M in GeV
and "L for �T � 2:5� 10�3 (solid curve) and 5� 10�3 (dashed
curve). The region bounded by the lines 0:095< "L < 0:30, and
above the appropriate curve is allowed. For a given M and "L,
the value of "tR is determined by Eq. (8.4). As discussed in the
text, naive dimensional analysis implies M< 46 TeV.

MW’

M

10000

20000

25000

 400  600  800  1000  1200
 0

 5000

15000

FIG. 4. Phenomenologically acceptable values of M and MW0

in GeV for �T � 2:5� 10�3 (solid curve) and 5� 10�3

(dashed curve). The region bounded by the lines 380 GeV<
MW0 < 1200 GeV and above the curve are allowed. For a given
M and MW0 (see Eq. (7.10)), the value of "tR is determined by
Eq. (8.4). As discussed in the text, naive dimensional analysis
implies M< 46 TeV.
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behave as though the 5-d interval is at least 12 or 7 times
smaller than do the gauge bosons.

It is interesting to ask what upper bound exists on M.
From the expression for the fermion mass matrix in
Eq. (4.1) we have

 M �

���
2
p
�v
"L

: (8.7)

Eq. (7.11) requires "L � 0:095, and from naive dimen-
sional analysis or, equivalently, perturbative unitarity, we
expect � � 4�. Hence, M< 46 TeV. A more sophisti-
cated analysis could be done by imposing unitarity of
WW ! t�t, as in [30] (see also, footnote 7).

IX. DECOUPLING AND Z! b �b WITH A TOY UV
COMPLETION

In the analysis above we have argued that the ‘‘bulk
fermion’’ Dirac mass M in the three-site model must be
large, between 1.8 and 46 TeV. Such a mass is potentially
much larger than 4�

���
2
p
v 
 4:3 TeV, the largest mass

which can arise from the symmetry breaking encoded by
the link fields. By contrast, the nonlinear sigma-model link
fields have so far been described by an effective chiral
Lagrangian which is valid only at energies less than of
order 4�

���
2
p
v. In order to discuss the three-site model in the

large-M limit, therefore, one must consider the question in
the context of a theory which is consistent to much higher
scales—e.g. a renormalizable one. The situation here is
similar to the consistent analysis [57] of the Appelquist-
Chanowitz bound [58].

The simplest possible renormalizable extension of the
three-site model is formed by promoting the link fields in
Fig. 1 to linear sigma-model fields. Here one introduces
two additional singlet fieldsHi (i � 1, 2) and considers the
matrix fields

 �i �
�Hi � fi�

2
�i; (9.1)

which transform as �2; �2� under the appropriate SU�2�’s,
and which have the kinetic energy terms

 Tr �D��yi D��i� !
1

2
@�Hi@�Hi �

f2
i

4
Tr�D��yi D��i�:

(9.2)

The most general renormalizable potential for the fields
�1;2 will result in mixing between the fields H1;2, which
will therefore not be mass eigenstates. For the purposes of
this note, however, this will not be relevant—we will
require that, consistent with dimensional analysis, the
masses of the ‘‘Higgs’’ are bounded by 4�

���
2
p
v.

For completeness, in this section we will carry the ex-
plicit dependence on f1;2, although in practice we always
have in mind f1 ’ f2 ’

���
2
p
v (as in Eq. (2.2)). We continue

to work in the limit in which x � g0=g1 � 1 and y �
g2=g1 � 1.

In this linear sigma-model version of the three-site
model, the Yukawa couplings and fermion mass term are
of the form below, which is the natural extension of
Eq. (2.1)
 

Lf � "LM
�
1�

H1

f1

�
� L0�1 R1 �M � R1 L1

�M
�
1�

H2

f2

�
� L1�2

"uR
"dR

 !
uR2

dR2

 !
� H:c:

(9.3)

Although the Yukawa couplings are written in terms of the
Dirac mass M for convenience, we do impose (see the
discussion surrounding Eq. (8.7)) the consistency con-
straint

 

"LM
f1

;
�"uR; "dR�M

f2
< 4�; (9.4)

on the size of the allowed Yukawa couplings.

A. The large M effective theory

We now consider the large-M limit. Because of the
decoupling theorem [59], the effects of the bulk (i.e.,
site-1) fermion on low-energy parameters must be sup-
pressed by powers of M. Because of the parameterization
of the couplings chosen in Eq. (9.3), the form of the
operators in the low-energy effective theory may not ob-
viously appear to be suppressed by M when written in
terms of the parameters "L and "uR;dR. Nonetheless, be-
cause of the constraints of Eq. (9.4), the effects of the bulk
fermion always formally decouple in the M ! 1 limit
[59]. We will now look at light-fermion masses, the cou-
pling of delocalized light fermions to gauge bosons, and
�T in the large-M limit and see how the results compare
with our previous findings.

1. Light-fermion masses

The masses of the ordinary fermions arise in the large-M
limit when we consider the diagram connecting left-

ψL0uR2, dR2

Φ1Φ2

FIG. 5. Mass-mixing diagram which yields the operator in
Eq. (9.5) when integrating out the bulk fermion (interior fermion
line) at tree level.
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handed (site-0) and right-handed (site-2) brane fermions in
Fig. 5 and then integrate out the intervening site-1 bulk
fermion at tree level. Specifically, this gives rise to the
operator:

 L 0
f /

"LM
f1f2

� L0�1�2
"uR

"dR

� �
uR2

dR2

� �
� H:c: (9.5)

 

/ "LM
�
1�

H1

f1

��
1�

H2

f2

�
� L0�1�2

"uR
"dR

 !
uR2

dR2

 !

� H:c: (9.6)

In unitary gauge (with �i � I) the leading term provides
the up-type fermion with a mass of the typical see-saw
form mu / "L"uRM that agrees with Eq. (4.2), and simi-
larly for the down-type fermion. The overall power of M
results from two powers ofM in the Yukawa couplings, and
one factor of 1=M from the propagator in Fig. 5.

2. Ideally delocalized fermion couplings

In this limit, it should also be possible to obtain an
effective coupling of  L0 to the SU�2� group at site 1,
consistent with light-fermion delocalization. Indeed, con-
sidering Fig. 6 and integrating out the bulk fermion at tree
level induces the operator

 L 0
Wff /

"2
L

f2
1

� L0�1i 6D�y1 L0; (9.7)

 � "2
L

� L0�1i 6D�y1 L0; (9.8)

which includes (easily visible in unitary gauge) just such
an effective coupling. In this case, the two powers of M in
the Yukawa couplings are canceled by 1=M2 from the
fermion propagators in Fig. 6. If we adjust the value of
the coefficient �L to make the coupling of the light fermi-
ons to theW0 vanish, we achieve ideal delocalization of the
light fermions. The coupling of the brane fermions to the
bulk gauge group is then precisely of the form discussed in
[33,45].

3. Deviations in �T

We may also check that the size of �T in the large-M
limit is consistent with our previous calculation. As dis-
cussed in Section VIII A, we expect that the leading con-
tributions from beyond-the-standard-model physics will
persist in the "L ! 0 limit and will arise, in fact, from
the weak-isospin violation encoded in the "fR. Then the
appropriate diagram8 involves only the � L1�2�uR2; dR2�
Yukawa couplings in Eq. (9.3) as shown in Fig. 7, and gives
rise to the operator9

 L 0
�� /

M2

16�2f4
2

�
Tr

"2
uR

"2
dR

� �
�y2D

��2

�
2
; (9.9)

 /
M2

16�2

�
Tr

"2
uR

"2
dR

� �
�y2D

��2

�
2
: (9.10)

In unitary gauge, this may be seen to affect the mass of the
Z and not that of the W. It encodes the very corrections to
�T discussed in Section VIII A and Eq. (8.1). Here the M2

arises from four powers of "RM from the couplings and an
overall 1=M2 from the convergent loop integral in the
diagram.

B. Z! b �b

With this background, we may now discuss flavor-
dependent corrections to the process Z! b �b. We will do
so in the limit that mb � 0, and hence "bR � 0. In the
large-M limit, therefore, we are interested in flavor-
dependent corrections to the coupling of the lower compo-
nent of  L0 to the SU�2�0 gauge bosons. Furthermore, as
we are interested in flavor-nonuniversal contributions, we
are only interested in couplings proportional to "tR—any
contributions depending only on "L will be flavor-
universal.

There are no relevant contributions at tree level, as the
neutral gauge-boson couplings involving "tR at tree level
couple to the upper component of  L0 —i.e., to the top-
quark. The leading contributions arise from diagrams of
the form shown in Fig. 8. Note that the diagram involves
the exchange of a charged Goldstone boson (necessary to
couple to the lower component of  L0), two couplings
proportional to "L, and two proportional to "tR. This
diagram, and those like it, give rise to the low-energy
operator
 

LZbb /
"2
L

16�2f2
1f

2
2

X
a

� L0

��
�a

2

�
�y1 6D�y2

"2
uR

"2
dR

 !

��2�1

�
�a

2

��
 L0: (9.11)

ψL0ψL0

Φ1Φ†
1

W1

FIG. 6. Coupling diagram which yields the operator in
Eq. (9.7) when integrating out the bulk fermion at tree level.

8See [60] for a similar analysis in the case of the top-quark
see-saw model.

9One may also deduce that this is the leading operator by
recalling that �T violates weak isospin by two units. An iso-
triplet operator would not suffice.

A THREE SITE HIGGSLESS MODEL PHYSICAL REVIEW D 74, 075011 (2006)

075011-13



Here four powers of M from the Yukawa couplings are
canceled by 1=M4 from dimensional analysis.

An operator of this sort gives rise to a shift in the Zbb
coupling of order

 

�gZbb
gSMZbb

/
"2
L"

2
tR

16�2 �
m2
t

16�2M2 : (9.12)

By contrast, the one-loop SM contribution to the Zb �b
coupling [61,62] is of order m2

t =16�2v2. We therefore
see that the new corrections to the process Z! b �b arising
in the three-site model are likely, even for the lowest
possible M, to be negligibly small!6

In models with an extra dimension, one might generally
be worried about effects which arise from integrating out
the KK modes [63], as shown in Fig. 9. Integrating out the
heavy W0 would lead one to anticipate a relatively large
contribution of the form

 

�gZbb
gSMZbb

’
g2v2

16�2M2
W0

log
�M2

W0

m2
t

�
: (9.13)

In a theory with ideal delocalization, however, the W0tb
coupling vanishes, and therefore there is no such effect in
the three-site model described here.

We should also note that the estimate given above pro-
vides only a lower bound on the size of the corrections to
the Zb �b coupling. It is possible that in a truly dynamical
model, the ‘‘extended technicolor’’-like physics respon-
sible for generating the Yukawa couplings can give rise
to new contributions [64].

Finally, it is worth mentioning that the situation could be
somewhat different in a model with ‘‘Georgi fermions’’
[65]. In this case, all of the fermion masses arise from
dimension-four Yukawa couplings so that it is not possible
to take the large-M limit, even in principle. Nonetheless,
the analysis given here, taking the limit M ! O�4�v�,
shows that the effects on Z! b �b are still likely to be quite
small.

X. CONCLUSIONS

The three-site model is a useful tool for illustrating many
issues of current interest in Higgsless models: ideal fer-
mion delocalization, precision electroweak corrections,
fermion mass generation, and phenomenological con-
straints. Because the Moose describing the model has
only one interior SU�2� group, there is, accordingly, only
a single triplet of W0 and Z0 states instead of the infinite
tower of triplets present in the continuum limit. Likewise,
there need only be a single heavy-fermion partner for each
of the standard-model fermions, instead of a tower of such
states. Because theW0 and Z0 states are fermiophobic when
the light fermions are ideally delocalized, discovering
these heavy gauge bosons at a high-energy collider will
require careful study of gauge-boson fusion processes
[35,66]. Fortunately, the sparse spectrum and limited num-
ber of model parameters should allow this model to be
encoded in a Matrix Element Generator program in concert
with a Monte Carlo Event Generator for detailed phenome-
nological investigations.

In this paper, we have discussed the forms of the gauge-
boson and fermion wave functions and their couplings to
one another, and then explored the phenomenological im-
plications. We established the form of the fermion Yukawa

ψL0ψL0

π

Φ†
1 W1 Φ†

2 Φ2 Φ1

FIG. 8. Loop diagram giving leading contribution to the non-
universal correction to Z! b �b. Here � corresponds to a quan-
tum charged ‘‘eaten’’ Goldstone boson, and the vertex involving
the fermions, �y1 and � is to be interpreted using the ‘‘back-
ground field’’ method to preserve chiral invariance. This dia-
gram, and those like it, give rise to the operator in Eq. (9.11) in
the low-energy theory.

Φ†
2

Φ†
2

Φ2

Φ2

uR2, dR 2

uR2, dR2

ψL1ψL1

FIG. 7. Loop diagram giving the leading contribution to �T, as
encoded in the operator of Eq. (9.9).

t

b

b

Z

FIG. 9. A potentially large correction to Z! b �b in extra-
dimensional models [63]. Because of ideal delocalization, how-
ever, the W0tb coupling vanishes, and this contribution is small
in the three-site model described here.
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couplings required to produce the ideal fermion delocali-
zation that causes tree-level precision electroweak correc-
tions to vanish by making the W0 and Z0 fermiophobic. We
discussed the implications of corrections to multi-gauge-
boson vertices for ideal delocalization, and compared the
sizes of electroweak chiral Lagrangian parameters in the
three-site model with those for the continuum limit. In
addition, we have studied a variety of phenomenological
constraints arising from anomalous gauge couplings, and
from one-loop corrections to b! s� and the weak-iso-
spin-violating parameter �T. We found that the extra
fermiophobic vector boson states (the analogs of the
gauge-boson KK modes in a continuum model) can be
reasonably light, with a mass as low as 380 GeV, while
the extra (approximately vectorial) quark and lepton states
must satisfy 1:8 TeV � M � 46 TeV.

Because the bulk fermion’s Dirac mass M does not arise
from electroweak symmetry breaking, its effects on low-
energy parameters must decouple. To investigate this ex-
plicitly, we have constructed a large-M effective field
theory. Since M lies above the range of validity of the
nonrenormalizable nonlinear sigma model for the link
fields, our analysis employs the simplest possible UV
completion, in which the link fields are given by renorma-
lizable linear sigma models. This allows us to construct an
effective low-energy theory produced when the bulk fer-
mions of mass M are integrated out. We confirmed that the
results in the large-M effective theory for the top-quark
mass, the gauge-boson couplings required by ideal deloc-
alization, and the one-loop contribution to �T are precisely
those we computed directly. We then used the large-M
effective theory to estimate the size of the nonuniversal
corrections to the Zb �b coupling—and found that these
corrections can be very small, proportional tom2

t =16�2M2.
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APPENDIX: FOUR-POINT GAUGE VERTICES AND
CHIRAL LAGRANGIAN PARAMETERS

This appendix gives expressions for chiral Lagrangian
parameters and the quartic W boson coupling for the three-
site model in the notation used in this paper. These quan-
tities have previously been derived for the equivalent gauge
sector of the BESS model in [45,67].

Of the complete set of 12 CP-conserving operators in
the electroweak chiral Lagrangian written down by
Longhitano [68–73] and Appelquist and Wu [74], only
five apply to Higgsless models such as the three-site model
(see Ref. [35] for a discussion):

 L 1 	
1

2
�1gWgYB�
 Tr�TW�
� (A1)

 L 2 	
1

2
i�2gYB�
 Tr�T�V�; V
� (A2)

 L 3 	 i�3gW Tr�W�
�V
�; V
� (A3)

 L 4 	 �4�Tr�V�V
�2 (A4)

 L 5 	 �5�Tr�V�V
��2: (A5)

Here W�
, B�
, T 	 U�3Uy, and V� 	 �D�U�Uy are the
basis of the expansion, with U being the nonlinear sigma-
model field10 arising from SU�2�L � SU�2�R ! SU�2�V .
An alternative parametrization by Gasser and Leutwyler
[75] names these coefficients as �1 � L10, �2 � �

1
2L9R,

�3 � �
1
2L9L, �4 � L2, �5 � L1.

The chiral Lagrangian coefficients are related11 to �S,
the Hagiwara-Peccei-Zeppenfeld-Hikasa [51] triple-gauge
vertex parameters and the quartic W boson vertex as fol-
lows [35]:

 �S � ��16����1; (A6)

 �gZ1 �
1

c2�c2 � s2�
e2�1 �

1

s2c2 e
2�3; (A7)

 �	Z �
2

�c2 � s2�
e2�1 �

1

c2 e
2�2 �

1

s2 e
2�3; (A8)

 gWWWW �
e2

s2
Z

�
1�

2

�c2 � s2�
e2�1 �

2

s2 e
2�3 �

1

s2 e
2�4

�
:

(A9)

An expression for gWWWW may be calculated as follows:

 gWWWW � g2�v0
W�

4 � ~g2�v1
W�

4

� g2

�
1�

7

16
x2 �O�x4�

�
: (A10)

Using Eq. (5.17) we may re-express this as

 gWWWW �
e2

s2
Z

�
1�

5

16
x2 �O�x4�

�
: (A11)

10SU�2�W 	 SU�2�L and U�1�Y is identified with the T3 part of
SU�2�R.

11�	��� 0� � 1
s2 ��e2�1 � e

2�2 � e
2�3� is automatically sat-

isfied when �gZ1 � �	Z.
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Solving the relations in (A6)–(A9) using S � O�x4�, the
values of �gZ1 and �	Z from the main text, and gWWWW as
above, we obtain:

 e2�1 � O�x4�; (A12)

 e2�2 � �e2�3 � �
s2

8
x2 �O�x4�; (A13)

 e2�4 � �e
2�5 �

s2

16
x2 �O�x4�: (A14)

The coefficients �4 and �5 provide the leading corrections
to WW and WZ elastic scattering. Note that the three-site
model has �2 � �3 and therefore, L9L � L9R [35,73].
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