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The physical pole and running masses of squarks and gluinos have recently been related at two-loop
order in a mass-independent renormalization scheme. I propose a general method for improvement of such
formulas, and argue that better accuracy results. The improved version gives an imaginary part of the pole
mass that agrees exactly with the direct calculation of the physical width at next-to-leading order. I also
find the leading three-loop contributions to the gluino pole mass in the case that squarks are heavier, using
effective field theory and renormalization-group methods. The efficacy of these improvements for the
gluino and squarks is illustrated with numerical examples. Some necessary three-loop results for gauge
coupling and fermion mass beta functions and pole masses in theories with more than one type of fermion
representation, which are not directly accessible from the published literature, are presented in an
Appendix.
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I. INTRODUCTION

The small ratio of the electroweak symmetry breaking
scale to the Planck mass can be stabilized [1] in softly
broken supersymmetric extensions of the standard model.
This implies that all of the standard model particles will
have superpartners, which should be within reach of the p �p
Fermilab Tevatron collider or the pp Large Hadron
Collider (LHC) during the next few years. Most of the
new parameters appearing in the minimal supersymmetric
standard model (MSSM) [2] are the masses of the new
superpartners and other supersymmetry-breaking cou-
plings of positive mass dimension. Therefore, a detailed
understanding of the MSSM Lagrangian is nearly synony-
mous with an understanding of supersymmetry breaking.

The fact that experimental observations of flavor viola-
tion and CP violation are not in significant disagreement
with the predictions of the standard model can be taken as
indirect evidence for the existence of some powerful or-
ganizing principle governing supersymmetry breaking and
its mediation to the MSSM sector. An especially interest-
ing possibility is that the organizing principle can be dis-
cerned by running the parameters of the theory up to high
energy scales using the renormalization group. To carry
out this analysis, it will be crucial to relate physically
measured observables, especially the superpartner
masses, to running parameters in the full theory defined
by the nondecoupled Lagrangian that includes all of the
superpartners.

However, running masses are not the most direct ob-
servables expected from collider experiments. In general,
the mass defined by the position of the complex pole in the
propagator is a gauge-invariant and renormalization-scale-
invariant quantity [3–11]. The pole mass does suffer from
ambiguities [12] due to infrared physics associated with
the QCD confinement scale, but these are probably not

large enough to cause a practical problem for strongly
interacting superpartners. The complex pole mass should
be closely related in a calculable way to the kinematic
observable mass and width reported by experiments [13].

It is often useful to calculate in on-shell schemes, in
which some physical masses and other observables are
used as input data and others are outputs. However, for
the key purpose of unraveling the organizing principle
behind the supersymmetry-breaking Lagrangian, this is
not as directly useful. The MS scheme [14] can also be
used, but it violates supersymmetry explicitly. Instead, it is
preferable to use the DR scheme [15] (or the revised DR0

scheme [16], which removes the unphysical effects of
epsilon-scalar masses in softly broken supersymmetric
models), with all superpartners nondecoupled. While it is
difficult to know in detail what limitations on this program
will follow from future experimental uncertainties, it
seems clear that multiloop calculations will be necessary
to make the theoretical sources of error negligible.

The one-loop relations between the superpartner pole
masses and the running parameters in the MSSM
Lagrangian have been known for some time [17–19]. The
calculation of the Higgs scalar boson masses in the MSSM
has now advanced to include the important two-loop cor-
rections (for some reviews of recent progress, see [20–
24]), and even some three-loop corrections [20], using a
variety of different methods. Recent calculations have
provided the supersymmetric QCD (SUSYQCD) two-
loop corrections to the squark [25] and gluino [26,27]
masses. The quark masses in the MSSM are known at
two-loop order [27,28]. More generally, Refs. [25,27] pro-
vide the self-energy functions and pole masses for scalars
and fermions, respectively, calculated in mass-independent
renormalization schemes at two-loop order in any renor-
malizable field theory, in the approximation that vector
bosons are treated as massless in the two-loop parts. This
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approximation is likely to be quite good for most applica-
tions to the MSSM, because the largest two-loop effects
involving vector bosons come from SUSYQCD, and be-
cause theW and Z bosons are evidently lighter than most of
the superpartners.

It is important to consider the validity of the perturbative
expansion in these results. Especially for the lightest Higgs
boson, the squarks, and the gluino, the corrections that give
the pole masses from the running masses turn out to be
quite significant. As a prominent example, even the pure
two-loop correction to the gluino mass (compared to the
running mass evaluated at a renormalization-group scale
equal to itself ) is of order 1%–2% in the case that squarks
and gluinos are comparable in mass, and grows to about
5% for squark masses that are of order 5 times heavier than
the gluino. One would like some assurance that perturba-
tion theory is really converging, and an estimate of the
theoretical error. Unfortunately, the renormalization-scale
dependence of these results is not a reliable error estimate;
in particular, the scale dependence of one-loop corrections
is routinely much smaller than the two-loop corrections
when the latter are known.

Another reason to be wary is the fact that calculations in
mass-independent renormalization schemes like MS or
DR0 use propagators with masses that can differ signifi-
cantly from the physical ones. In many cases this is true for
any reasonable choice of the renormalization scale Q. A
troubling aspect of this is that the imaginary part of the
complex pole squared mass,

 spole � M2 � i�M; (1.1)

can give a numerical value for the width � that differs quite
badly from the physical width. It is not hard to find ex-
amples for which the tree-level masses are sufficiently
different from the physical masses that a particular contri-
bution to � as computed from the complex pole mass is
exactly 0 (because the decay would be kinematically for-
bidden if the particles had masses equal to the tree-level
Lagrangian masses appearing in the propagators of the
self-energy loop diagrams), while the true decay width
contribution (computed directly from diagrams with multi-
particle final states, using an on-shell scheme) is nonzero.
Or, the reverse can happen. (I will show an example of each
type in Fig. 2.) While the complex pole mass is in principle
a gauge-invariant and renormalization-scale invariant ob-
servable, this calls into question how well one can trust the
perturbation theory that yields it in practice.

These issues are general. However, in the MSSM, they
are particularly acute for the squarks and the gluino, be-
cause of their strong coupling. Furthermore, the LHC will
quite likely produce gluinos and squarks in abundance if
supersymmetry is correct. Therefore, I will use the squark
and gluino SUSYQCD system within the MSSM as an
example in this paper to show how to ameliorate the

problems mentioned above. First, in Sec. II, I discuss
how to reorganize the results of perturbation theory by
expanding tree-level masses around physical masses in
the loop corrections obtained in mass-independent (MS
or DR0) schemes. In Sec. III, I present a result for the
three-loop corrections to the gluino mass, valid in the limit
that squarks are treated as nearly degenerate and much
heavier than the gluino. This is the case where one might
expect three-loop and even higher-order corrections to be
most dangerous, but I show that they are actually under
good control, and can be tamed by using effective field
theory and renormalization-group methods. Section IV dis-
plays some numerical results showing the efficacy of these
improvements. In an Appendix, I present some necessary
results for three-loop contributions to fermion mass beta
functions and pole masses in (nonsupersymmetric) theories
with fermions in distinct representations.

II. IMPROVED TWO-LOOP POLE MASS RESULTS

In general, the two-loop order expression for the pole
mass of a particle can be computed from knowledge of the
self-energy function,

 �k
j�s� �

1

16�2 ��1�k
j �

1

�16�2�2
��2�k
j � � � � : (2.1)

Here s is the external momentum invariant, the superscript
in parentheses indicates the loop order, and the indices j, k
indicate different particles with the same quantum num-
bers, which in general can mix. For fermions, �k

j�s� can be
assembled from separate chirality-preserving and chirality-
violating self-energy functions, as described in Sec. II C of
Ref. [27]. Then the gauge-invariant and renormalization-
scale-invariant pole squared masses can be defined for-
mally as the solutions to the equation

 det��s�m2
j ��

k
j ��k

j�s�� � 0; (2.2)

where m2
i are the tree-level diagonalized squared masses.

However, because �k
j should be interpreted as a complex-

valued function of a real variable s, this equation must be
solved by first expanding the self-energy function as a
series about a point on the real s-axis. In evaluating the
loop integrals in the self-energy, s is given a positive
infinitesimal imaginary part, while the complex pole
squared mass solution [see Eq. (1.1)] always has a non-
positive imaginary part. A related subtlety is that when the
particle in question has couplings to massless gauge bo-
sons, terms of a given loop order in the self-energy have
branch-cut singularities (except when the Fried-Yennie
gauge-fixing condition is used [10,25]).

The most straightforward way to obtain the pole mass at
two-loop order in a mass-independent renormalization
scheme is to first expand �k

j�s� in a series about the tree-
level squared masses. Define, for a generic squared mass
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m2:

 

~� �1�k
j �m

2� 	 lim
s!m2�i"

��1�k
j �s�; (2.3)

 

~�
�2�j
j �m

2� 	 lim
s!m2�i"

�
��2�j
j �s� ���1�j

j �s�
@
@s

��1�j
j �s�

�
;

(2.4)

where the self-energy functions on the right-hand side are
computed in a mass-independent renormalization scheme,
and no sum on j is implied in Eq. (2.4). Then, working
consistently to two-loop order, the pole mass for the par-
ticle with tree-level squared mass m2

j is

 

M2
j � i�jMj � m2

j �
1

16�2
~��1�j
j �m

2
j �

�
1

�16�2�2

�
~��2�j
j �m

2
j �

�
X
k�j

~��1�k
j �m

2
j �

~��1�j
k �m

2
j �=�m

2
j �m

2
k�

�
;

(2.5)

obtained by a perturbative1 expansion of Eq. (1.1).
The previous expression is gauge invariant, and renor-

malization scale invariant up to terms of three-loop order.
In its application to the squark and gluino masses in the
MSSM, this approach has the advantage of depending only
on tree-level running parameters, so that iteration is not
necessary if they are taken as given. However, as remarked
in the Introduction, the use of tree-level running masses in
propagators is problematic at least for the imaginary part of
the pole mass, which arises from the absorptive part of the
self-energy functions. If the tree-level masses differ sig-
nificantly from the physical masses of the particles, then
the kinematics of the self-energy functions will poorly
reflect the actual kinematics giving rise to the physical
width of the particle. This can lead to a nonzero width
when there should be none, or vice versa. In general, one
may care more about the real part of the pole mass, but
intuitively one cannot expect the real part to be very
accurate if the kinematics in the loop integrations poorly
reflects the physical particle masses, and if the imaginary
part is completely wrong.

To improve the situation, let us reorganize the previous
result by expanding all tree-level squared masses appearing

in the ~� functions in a series about the real parts of their
respective pole squared masses. (Note that although I have
written the ~� functions as depending on a single external
squared mass argument that replaced s, there is also de-
pendence on the internal propagator masses which is not
explicitly indicated.) Doing this, one arrives at

 

M2
j � i�jMj � m2

j �
1

16�2
���1�j
j �M

2
j �

�
1

�16�2�2

�
���2�j
j �M

2
j �

�
X
k�j

���1�k
j �M

2
j �

���1�j
j �M

2
j �=�M

2
j �M

2
k�

�
X
k

Re� ���1�k
j �M

2
k��

@

@M2
k

���1�j
j �M

2
j �

�
;

(2.6)

The second sum over k is taken over all fermions and
bosons in the theory that couple to particle j, not just those
that can mix with j. The �� in Eq. (2.6) are defined to have
the same functional dependence on the real parts of the
pole squared masses (both external and internal) as the
functions ~� in Eq. (2.5) did on the tree-level squared
masses. Because the one-loop and two-loop parts of
Eq. (2.5) are each separately gauge-fixing invariant, it is
clear that Eq. (2.6) is also independent of gauge fixing.
Formally, Eqs. (2.5) and (2.6) are equivalent up to terms of
three-loop order. However, in Eq. (2.6), all kinematic de-
pendences of loop integrals on the right-hand side corre-
spond to the physical masses (the real parts of the pole
masses). I therefore expect that, when it makes much of a
difference, Eq. (2.6) should be more accurate than
Eq. (2.5). If one starts with the Lagrangian parameters as
input, evaluation of the pole masses will require an iter-
ative procedure involving all of the particle masses simul-
taneously, which in a general case at two-loop order could
take a significant computation time. On the other hand, if
physical masses are taken as inputs, Eq. (2.6) still requires
knowledge of the tree-level couplings and mixing matrices
of the theory. The one-loop functions are always known
analytically in terms of logarithms, so taking derivatives of
them poses no technical difficulties. The two-loop func-
tions often cannot be computed analytically, but computer
codes such as TSIL [29] provide for their numerical
computation.

To illustrate the method, I choose here to consider the
two-loop corrections to the gluino and squark pole masses,
for simplicity including only SUSYQCD corrections and
ignoring the effects of squark mixing, quark masses, and
electroweak effects. For this system, the realization of
Eq. (2.5) is

1Here the loop-induced mixing between particles j and k is
assumed small compared to the tree-level squared mass splitting.
Otherwise, one must perform almost-degenerate perturbation
theory, by expanding around a modified tree-level Lagrangian
designed to minimize the one-loop mixing in that sector. This
could plausibly occur for Higgsino-like neutralinos in the
MSSM.
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M2
~Qj
� i� ~Qj

M ~Qj
� m2

~Qj
� hCq ~��1�

~Q
�m2

~Qj
; m2

~g�

� h2Cq

�
Cq ~��2;a�

~Q
�m2

~Qj
; m2

~g� � CA ~��2;b�
~Q
�m2

~Qj
; m2

~g� � Iq
X
k

~��2;c�
~Q
�m2

~Qj
; m2

~g; m
2
~Qk
�

�
; (2.7)

 

M2
~g� i�~gM~g �m

2
~g� h

�
CA ~��1;a�

~g �m2
~g�� Iq

X
j

~��1;b�
~g �m2

~g;m
2
~Qj
�

�

� h2

�
C2
A

~��2;a�
~g �m2

~g��CAIq
X
j

~��2;b�
~g �m2

~g;m
2
~Qj
��CqIq

X
j

~��2;c�
~g �m2

~g;m
2
~Qj
�� I2

q

X
j

X
k

~��2;d�
~g �m2

~g;m
2
~Qj
;m2

~Qk
�

�
:

(2.8)

Here, m2
~g andm2

~Qj
are the tree-level DR0 squared masses. In many references, m~g is written asM3, but in the present paper,

capital letters are reserved for pole masses and lowercase letters for running masses. The strong gauge coupling appears in
the combination

 h 	 g2
3=16�2 � �S=4�: (2.9)

The indices j and k run over the 12 squark mass eigenstates of the MSSM (taken here to be unmixed, but not necessarily
degenerate), and for SU�3�c, CA � 3 and Cq � 4=3 and Iq � 1=2. The functions ~� appearing in Eq. (2.7) were given in
Eqs. (5.6)–(5.9) of Ref. [25], and those in Eq. (2.8) were given in Eqs. (5.5)–(5.10) of Ref. [27]. Note that the dependence
on all squared masses is explicit in the arguments of these functions.

Applying Eq. (2.6) to this gives the improved equations for the relation between pole and running squared masses:

 

M2
~Qj
� i� ~Qj

M ~Qj
� m2

~Qj
� hCq ~��1�

~Q
�M2

~Qj
;M2

~g�

� h2Cq

�
Cq ~��2;a�

~Q
�M2

~Qj
;M2

~g� � CA ~��2;b�
~Q
�M2

~Qj
;M2

~g� � Iq
X
k

~��2;c�
~Q
�M2

~Qj
;M2

~g;M
2
~Qk
�

� Cq Re� ~��1�
~Q
�M2

~Qj
;M2

~g��
@

@M2
~Qj

~��1�
~Q
�M2

~Qj
;M2

~g�

� Re
�
CA ~��1;a�

~g �M2
~g� � Iq

X
k

~��1;b�
~g �M2

~g;M
2
~Qk
�

�
@

@M2
~g

~��1�
~Q
�M2

~Qj
;M2

~g�

�
; (2.10)

 

M2
~g� i�~gM~g �m2

~g� h
�
CA ~��1;a�

~g �M2
~g�� Iq

X
j

~��1;b�
~g �M2

~g;M
2
~Qj
�

�

� h2

�
C2
A

~��2;a�
~g �M2

~g��CAIq
X
j

~��2;b�
~g �M2

~g;M
2
~Qj
��CqIq

X
j

~��2;c�
~g �M2

~g;M
2
~Qj
�

� I2
q

X
j

X
k

~��2;d�
~g �M2

~g;M
2
~Qj
;M2

~Qk
��Re

�
CA ~��1;a�

~g �M2
~g�� Iq

X
k

~��1;b�
~g �M2

~g;M
2
~Qk
�

�
@

@M2
~g




�
CA ~��1;a�

~g �M2
~g�� Iq

X
j

~��1;b�
~g �M2

~g;M
2
~Qj
�

�
�CqIq

X
j

Re� ~��1�
~Q
�M2

~Qj
;M2

~g��
@

@M2
~Qj

~��1;b�
~g �M2

~g;M
2
~Qj
�

�
: (2.11)

Given the running masses and coupling as inputs, the pole
masses can now be solved for iteratively. Or, given the pole
masses and the running gauge coupling as inputs, the
running masses can be immediately extracted.

I have checked analytically that the imaginary parts of
the pole masses given in Eqs. (2.10) and (2.11) correspond
exactly to the gluino and squark decay widths calculated at
next-to-leading order in [30]. This is a good reason to
prefer the improved version equations (2.10) and (2.11)
over Eqs. (2.7) and (2.8), and more generally Eq. (2.6) over

Eq. (2.5). In Sec. IV, I will present a numerical comparison
of these equations.

III. THREE-LOOP CONTRIBUTIONS TO THE
GLUINO POLE MASS

Radiative corrections to the mass of the gluino in the
MSSM are particularly large, for two reasons. First, the
gluino is a color octet, and so is effectively more strongly
coupled than a quark in the fundamental representation.
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Second, it couples to 12 squark/quark pairs. If one ex-
presses the gluino pole mass in terms of the running
mass evaluated at itself in a nondecoupling scheme, then
the squark-mediated corrections are large and grow loga-
rithmically with the ratio of the squark to gluino masses.
One can exploit this by using effective field theory and
renormalization-group methods to obtain the logarithmi-
cally enhanced parts. In this section, I will use this strategy
to evaluate the three-loop gluino pole mass in the formal
limit M2

~Q
� M2

~g, neglecting terms of three-loop order that

are suppressed byM2
~g=M

2
~Q
, but including all terms of order

L3, L2, and L, where

 L 	 ln�M2
~Q
=M2

~g�: (3.1)

I will also find the coefficient of the L0 term, up to a single
(presently) unknown and plausibly subdominant matching
coefficient. This analysis neglects squark mixing and non-
degeneracy, electroweak effects, and standard model quark
masses, for simplicity. The same method could quite easily
be extended to include all terms of order

 �nSL
n; �nSL

n�1; and �nSL
n�2; (3.2)

at arbitrary loop order n, but the residual unknown three-
loop order contributions are likely to be larger than the
contributions from n � 4. In the following, I will use the
following convenient notations for other logarithms:

 L~g 	 ln�M2
~g=Q

2�; (3.3)

 L ~Q 	 ln�M2
~Q
=Q2�; (3.4)

 ‘ 	 ln�m2
~Q
=m2

~g�; (3.5)

 ‘~g 	 ln�m2
~g=Q

2�; (3.6)

 ‘ ~Q 	 ln�m2
~Q
=Q2�; (3.7)

where Q is the renormalization-group scale, and the run-
ning gluino and squark masses in the last three definitions
are taken to be in the full theory (with squarks included).

The starting point is the three-loop pole mass for a color
octet Majorana fermion �~g� in the presence of 6 light quark
flavors �u; d; s; c; b; t�. This is the same fermion content of
SUSYQCD as found in Ref. [31] and the extreme limit of
‘‘split supersymmetry’’ [32]; it is the effective theory in
which squarks have been decoupled. The three-loop gluino
pole mass in this model is almost known from Ref. [33], up
to a single ambiguity that is resolved in the Appendix of the
present paper. The result can be written as
 

M~g � m̂~g�Q��1� ĥ�a
�1�
1 L~g � a

�1�
0 � � ĥ

2�a�2�2 L
2
~g � a

�2�
1 L~g

� a�2�0 � � ĥ
3�a�3�3 L

3
~g � a

�3�
2 L

2
~g � a

�3�
1 L~g � a

�3�
0 �

� � � ��; (3.8)

where M~g is the gluino pole mass, and the hats on the
symbols m̂~g and ĥ 	 ĝ2

3=16�2 are used to distinguish the
running MS parameters in the effective theory without
squarks. The coefficients appearing here are

 a�1�0 � 12; a�1�1 � �9; (3.9)

 a�2�0 � 339� 33�2 � 36�2 ln2� 54�3; (3.10)

 a�2�1 � �282; a�2�2 � 63; (3.11)

 

a�3�0 � 172 399=18� 73 367�2=10� 12 672�2 ln2

� 12 330�3 � 121�4=2� 48�2ln22� 552ln42

� 13 248Li4�1=2� � 675�2�3 � 1890�5; (3.12)

 a�3�1 � �8932� 627�2 � 684�2 ln2� 306�3; (3.13)

 a�3�2 � 3093; a�3�3 � �399: (3.14)

Note that in this section, the gluino pole mass is real,
because the gluino has no allowed decays in pure
SUSYQCD in the case that all squarks are heavier.

The terms in Eq. (3.8) that depend on L~g, and thus
explicitly involve the renormalization scaleQ, are obtained
from the renormalization-group equations for the gauge
coupling and running gluino mass in the effective theory:

 Q
d
dQ

ĥ � ĥ2b�1�
ĥ
� ĥ3b�2�

ĥ
� ĥ4b�3�

ĥ
� � � � (3.15)

 Q
d
dQ

m̂~g � m̂~g�ĥb
�1�
m̂~g
� ĥ2b�2�m̂~g

� ĥ3b�3�m̂~g
� � � ��; (3.16)

where

 b�1�
ĥ
� �10; b�2�

ĥ
� 44; (3.17)

 b�3�
ĥ
� 4168=3; (3.18)

 b�1�m̂~g
� �18; b�2�m̂~g

� �228; (3.19)

 b�3�m̂~g
� �2774� 1440�3: (3.20)

The last coefficient does not seem to be obtainable directly
from the results in the published literature, which only deal
with theories with a single type of fermion representation.
However, it can be inferred from an unpublished paper of
Tarasov [34]. This is explained in the Appendix of the
present paper.

The results given above are not what is needed in order
to discern an organizing principle for supersymmetry
breaking. Instead, one needs to obtain the running parame-
ters in the full theory with squarks included. This can be
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achieved from matching conditions between the effective
theory parameters �ĥ; m̂~g� and the full theory parameters
�h;m~g;m2

~Q
�. In these equations, the effective theory pa-

rameters �ĥ; m̂~g� are always in MS, while the full theory
parameters �h;m~g; m

2
~Q
� are always in the DR0 scheme here.

(It may also be possible to use DR for the effective theory,
but then there are subtleties associated with evanescent
couplings in nonsupersymmetric theories [35].) Now one
can take the gluino pole mass from Eq. (3.8) and use the
matching to rewrite it in terms of the parameters of the full
theory. In the approximation used here, nonrenormalizable
terms are not included in the effective field theory
Lagrangian, which corresponds to neglecting all contribu-
tions suppressed by powers of M2

~g=M
2
~Q
. Experience shows

that expansions of radiative corrections in such mass ratios
typically converge quite quickly, so I suspect that it is
reasonable to hope that the results below will be approxi-
mately valid even if the typical squark mass is not very
much larger than the gluino mass.

The renormalization-group equations for the parameters
of the nondecoupled theory are

 Q
d
dQ

h � h2b�1�h � h
3b�2�h � h

3b�3�h � � � � (3.21)

 Q
d
dQ

m~g � m~g�hb
�1�
m~g � h

2b�2�m~g � h
3b�3�m~g � � � �� (3.22)

 

Q
d
dQ

m2
~Q
� m2

~g�hb
�1�
m2

~Q

� h2b�2a�
m2

~Q

� � � ��

�m2
~Q
�h2b�2b�

m2
~Q

� � � ��; (3.23)

where [36]

 b�1�h � �6; b�2�h � 28; b�3�h � 694=3; (3.24)

and [37,38]

 b�n�m~g � nb�n�h ; (3.25)

and [16,39]

 b�1�
m2

~Q

� �32=3; b�2a�
m2

~Q

� �128=3; (3.26)

 b�2b�
m2

~Q

� 64: (3.27)

The two-loop gauge coupling matching condition has
been obtained in Ref. [40]:
 

ĥ � h�1� h��1� 2L ~Q� � h
2�23� 12L ~Q � 4L2

~Q
� � � � ��:

(3.28)

For the gaugino mass matching condition, I find

 

m̂~g � m~g�1� h�6L ~Q� � h
2�14�2=3� 176� 133L ~Q

� 18L2
~Q
� � h3�c�3�m~g � �1713� 720�3�L ~Q � 615L2

~Q

� 48L3
~Q
� � � � ��: (3.29)

I obtained the two-loop coefficients here by a direct com-
parison of the two-loop gluino pole squared mass as found
in the full theory with DR0 and in the effective theory
with MS, using the results of Ref. [27]. The three-loop
logarithmic terms in Eq. (3.29) are obtained from the
renormalization-group equations (3.15)–(3.27). Unfortu-
nately, the coefficient c�3�m~g remains unknown, and seems
quite difficult to calculate.

The preceding results can now be used straightforwardly
to obtain the three-loop result for the gluino pole mass in
terms of the nondecoupled theory parameters. I find
 

M~g � m~g�Q��1� h�a
�1�
00 � a

�1�
10L~g � a

�1�
01L ~Q� � h

2�a�2�00

� a�2�10L~g � a
�2�
01L ~Q � a

�2�
20L

2
~g � a

�2�
11L~gL ~Q � a

�2�
02L

2
~Q
�

� h3�a�3�00 � a
�3�
10L~g � a

�3�
01L ~Q � a

�3�
20L

2
~g � a

�3�
11L~gL ~Q

� a�3�02L
2
~Q
� a�3�30L

3
~g � a

�3�
21L

2
~gL ~Q � a

�3�
12L~gL2

~Q

� a�3�03L
3
~Q
���; (3.30)

where

 a�1�00 � 12; a�1�10 � �9; a�1�01 � 6;

a�2�00 � 151� 113�2=3� 36�2 ln2� 54�3;
(3.31)

 a�2�10 � �273; a�2�01 � 229; a�2�20 � 63;

a�2�11 � �72; a�2�02 � 18;
(3.32)

 

a�3�00 � c�3�m~g � 127 147=18� 73 267�2=10� 12 600�2 ln2

� 12 222�3 � 121�4=2� 48�2ln22� 552ln42

� 13 248Li4�1=2� � 675�2�3 � 1890�5; (3.33)

 a�3�01 � 6483� 330�2 � 360�2 ln2� 180�3;

a�3�10 � �6991� 669�2 � 684�2 ln2� 306�3;
(3.34)

 

a�3�20 � 2967; a�3�11 � �3855;

a�3�02 � 1023; a�3�30 � �399; (3.35)

 a�3�21 � 630; a�3�12 � �306; a�3�03 � 48: (3.36)

It is also possible to rewrite this result so that the loga-
rithms involve running masses, by using the two-loop
relation between the squark running and pole masses in
the formal limit M2

~Q
� M2

~g, obtained from Ref. [25] using

Eq. (2.10) of the present paper:
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M2
~Q
� i� ~QM ~Q � m2

~Q
�M2

~Q

�
h

8

3
�1� i��

� h2

�
92

9
�

4�2

9
�1� 8 ln2� � 24L ~Q

� i�
�
932

9
�

128�2

27
� 8L ~Q

���
: (3.37)

The result, formally equivalent to Eq. (3.30) up to terms of
four-loop order, is
 

M~g � m~g�Q��1� h�a
�1�
00 � a

�1�
10 ‘~g � a

�1�
01 ‘ ~Q�

� h2� �a�2�00 � �a�2�10 ‘~g � �a�2�01 ‘ ~Q � a
�2�
20 ‘

2
~g � a

�2�
11 ‘~g‘ ~Q

� a�2�02 ‘
2
~Q
� � h3� �a�3�00 � �a�3�10 ‘~g � �a�3�01 ‘ ~Q � �a�3�20 ‘

2
~g

� �a�3�11 ‘~g‘ ~Q � �a�3�02 ‘
2
~Q
� a�3�30 ‘

3
~g � a

�3�
21 ‘

2
~g‘ ~Q

� a�3�12 ‘~g‘2
~Q
� a�3�03 ‘

3
~Q
���; (3.38)

where the new coefficients are

 �a �2�00 � �49� 113�2=3� 36�2 ln2� 54�3;

�a�2�10 � �111; �a�2�01 � 121;
(3.39)

 

�a�3�00 � c�3�m~g � 60 895=18� 199 541�2=30

� �35 792=3��2 ln2� 11 250�3 � 121�4=2

� 48�2ln22� 552ln42� 13 248Li4�1=2�

� 675�2�3 � 1890�5; (3.40)

 

�a�3�10 � 809� 669�2 � 684�2 ln2� 306�3;

�a�3�01 � 837� 330�2 � 360�2 ln2� 180�3;
(3.41)

 �a �3�20 � 294; �a�3�11 � �723; �a�3�02 � 159:

(3.42)

For practical calculations, it is useful to extract from the
above expressions the contributions that can be consis-
tently added to the complete two-loop results of
Eqs. (2.8) and (2.11), or more generally Eq. (2.5) or
Eq. (2.6). Below, the symbol ��3�A will denote three-loop
contributions that can be added to Eq. (2.5) or Eq. (2.8), and
��3�B will denote contributions that can be added to Eq. (2.6)
or Eq. (2.11). From Eq. (3.38), I obtain
 

��3�A M
2
~g � h3m2

~g�d00 � d10‘� d20‘
2 � d30‘

3

� d01‘~g � d11‘‘~g � d21‘2‘~g � d02‘2
~g � d12‘‘2

~g

� d03‘
3
~g� (3.43)

with coefficients

 d00 � 2c�3�m~g � 50 311=9� 213 101�2=15

� �74 176=3��2 ln2� 23 796�3 � 121�4

� 96�2ln22� 1104ln42� 26 496Li4�1=2�

� 1350�2�3 � 3780�5; (3.44)

 d10 � 3990� 1112�2 � 1152�2 ln2� 288�3;

d20 � 2202; d30 � 312;
(3.45)

 d01 � 3826� 904�2 � 864�2 ln2� 1296�3;

d11 � �2280; d21 � �864;
(3.46)

 d02 � �384; d12 � 648; d03 � �108; (3.47)

and from Eq. (3.30)
 

��3�B M
2
~g � h3M2

~g�e00 � e10L� e20L
2 � e30L

3 � e01L~g

� e11LL~g � e02L2
~g�; (3.48)

where
 

e00 � 2c�3�m~g � 91 507=9� 59 707�2=5� 22 608�2 ln2

� 20 556�3 � 1104ln42� 96�2ln22� 121�4

� 26 496Li4�1=2� � 1350�2�3 � 3780�5; (3.49)

 e10 � 1410� 696�2 � 576�2 ln2� 2304�3; (3.50)

 e20 � �2310; e30 � 312; e01 � �314;

e11 � �504; e02 � 126:
(3.51)

[The coefficients of L2L~g and LL2
~g and L3

~g in Eq. (3.48)
vanish.] Writing these in a convenient numerical form, I
find
 

��3�A M
2
~g � �3

Sm
2
~g�0:001 01c�3�m~g � 9:616� 3:744‘

� 1:110‘2 � 0:157‘3 � 0:375‘~g � 1:149‘‘~g

� 0:435‘2‘~g � 0:194‘2
~g � 0:327‘‘2

~g

� 0:0544‘3
~g�; (3.52)

 

��3�B M
2
~g � �3

SM
2
~g�0:001 01c�3�m~g � 5:992� 2:161L

� 1:164L2 � 0:157L3 � 0:158L~g � 0:254LL~g

� 0:0635L2
~g�: (3.53)

When applied to realistic models, the two-loop gluino pole
mass should be calculated including all relevant effects
including squark mixing and Yukawa and electroweak
couplings using Eq. (2.5) or Eq. (2.6), and then the appro-
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priate corresponding formula Eq. (3.43) or Eq. (3.48) can
be added with an approximate overall squark mass scale
parametrized by either ‘ or L. (However, the three-loop
contributions found here must be eschewed if most of the
squarks are not heavier than the gluino.)

The parts of Eqs. (3.52) and (3.53) that do not contain
logarithms came from two sources: the nonlogarithmic part
of Eq. (3.8), and the unknown three-loop gluino mass
matching coefficient c�3�m~g defined in Eq. (3.29). It is useful
to note that the dominant part of the contribution from
Eq. (3.8) is due to loop diagrams containing only gluons
and light quark internal lines. Furthermore, there is a
significant partial cancellation in this nonlogarithmic
piece, not due to supersymmetry, which is not present in
the effective theory, but to the accident of the number of
quarks in the standard model. To see this, one can tag the
contributions according to the number n of closed gluino
loops in each diagram, and also treat the number of light
quarks nQ (equal to 6 in the real world) as a variable, using
Eq. (A15). Then, in Eqs. (3.52) and (3.53) respectively,
 

9:616! 33:312� 26:634�nQ=6� � 3:489�nQ=6�2

� 0:027�nQ=6�3 � ��0:598� 0:0095�nQ=6��n

� 0:084n2; (3.54)

 

5:992! 16:703� 10:543�nQ=6� � 0:667�nQ=6�2

� 0:027�nQ=6�3 � ��1:072� 0:126�nQ=6��n

� 0:084n2: (3.55)

Thus the diagrams with no closed heavy particle loops
dominate the final result, and would even more so if it
were not for the tendency of gluon and quark loops to
cancel. In the numerical studies of the following section, I
will simply neglect the effects of the unknown coefficient
c�3�m~g , since it comes from diagrams with at least one heavy
squark loop and therefore is plausibly less significant than
the other nonlogarithmic contributions. Note that jc�3�m~g j

would have to exceed 104 in order for it to contribute 1%
to the gluino pole mass formula.

It is also useful to observe that there will typically be a
significant cancellation between the logarithmic and non-
logarithmic contributions in Eq. (3.53). Therefore, that
version of the three-loop contribution to the pole mass is
actually considerably smaller than one might have naively
suspected.

IV. NUMERICAL RESULTS

For purposes of illustration, consider a simplified model,
with all squarks degenerate and unmixed, and quark
masses and electroweak effects neglected, as in the pre-
vious section. The pertinent Lagrangian parameters are
then the running SUSYQCD coupling �S�Q� and the

gluino and common squark masses in the DR0 scheme.
Throughout this section, I will fix �S�M~g� � 0:095.

In the left panel of Fig. 1, I compare different computa-
tions of the ratio of the real part of the gluino pole mass to
the running mass evaluated at the pole mass, M~g=m~g�M~g�.
The two-loop computations of Eqs. (2.8) and (2.11) for the
pole mass agree to better than 1% for M ~Q=M~g < 1:55, but
the disagreement increases for larger values of that ratio,
and reaches 2.7% when M ~Q=M~g � 3:5. It is in just this
regime that the three-loop contributions to the gluino pole
mass found above should be reliable and important; I will
return to this below.

In the right panel of Fig. 1, the same comparison is done
for the ratio of the real part of the squark pole mass to the
running mass. Here, the different two-loop computations
are in extremely close agreement over the entire range.
Furthermore, the overall magnitude of the radiative cor-
rections is much smaller than for the gluino. I conclude that
purely theoretical uncertainties for squark masses are
probably under control at a level of much better than 1
percent. (The steep ‘‘cliff’’ at the left side of the graph
reflects the fact that a much heavier gluino makes a large
negative radiative contribution to the squark pole squared
mass.)

I expect that the solid lines in Fig. 1, reflecting the
calculations of Eqs. (2.10) and (2.11), are more reliable
than those of Eqs. (2.7) and (2.8). As discussed above, one
reason for this expectation is the fact that the former
equations do a much better job of approximating the decay
widths (the imaginary parts of the pole mass) in the near-
threshold region. This is illustrated in Fig. 2. First, the
gluino width �~g as calculated from the pole mass using
Eq. (2.8) actually vanishes for all M ~Q > 0:969M~g, rather
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FIG. 1 (color online). The ratios of the gluino and squark pole
masses to the running masses, M~g=m~g�M~g� in the left panel and
M ~Q=m ~Q�M ~Q� in the right panel, as functions of the ratio of the
common squark pole mass to the gluino pole mass, M ~Q=M~g. The
different lines correspond to the two-loop results of Eqs. (2.7),
(2.8), (2.10), and (2.11) and the one-loop truncations of the same
formulas. For simplicity, here all squarks are taken to be degen-
erate and unmixed, and quark masses and electroweak effects are
neglected. The renormalization-scale use for the computation is
Q � M~g for the left panel and Q � M ~Q in the right panel, and
the SUSYQCD coupling is fixed to �S�M~g� � 0:095 in both
cases.
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than for M ~Q � M~g as dictated by kinematics. The reason
for this failure is that the width in the pole mass derives
from the imaginary parts of loop integrals which, in that
approximation, depend on running masses in the propaga-
tors instead of physical masses. The approximation of
Eq. (2.11) does not have this problem, and exactly repro-
duces the direct next-to-leading order width calculation of
Ref. [30].

A similar situation holds for the squark width, as shown
in the right panel of Fig. 2. In fact, the calculation of
Eq. (2.7) gives slightly negative (and therefore unphysical)
values for the width in a narrow range on either side of the
physical threshold. This is because the two-loop pole mass
contribution to the width overcompensates for the one-loop
contribution, which is strictly positive for all M ~Q �

0:969M~g. Again, the two-loop calculation of Eq. (2.10)
gets the kinematics correct, and precisely reproduces the
next-to-leading order calculation of Ref. [30].

I next turn to the effect of the partial three-loop contri-
butions, derived in Sec. III, on the gluino pole mass. This is
shown in Fig. 3. Strictly speaking, the three-loop calcula-
tions given here are only valid in the formal limit M2

~Q
�

M2
~g, but in any case the applied correction is small for

squark masses just above the gluino mass, so I have taken
the liberty of showing the entire range M ~Q >M~g. The two
three-loop approximations are much closer to each other
than the corresponding two-loop approximations, just as
one might have hoped. They differ by less than 1% even for
M ~Q=M~g � 5. It is also noteworthy that both three-loop
results are closer to the two-loop approximation of
Eq. (2.11) than they are to Eq. (2.8), providing some
circumstantial evidence for the superiority of Eq. (2.11).

Finally, consider the renormalization-group scale depen-
dence of the calculated relationship between the pole mass

and the running mass of the gluino. Numerical results are
shown in Fig. 4, for three ratios M~g=M ~Q � 0:9, 1.5, and 3.
In each case, the ratio of the pole mass M~g to the running
mass evaluated at the pole mass,m~g�M~g� is computed for a
fixed model in terms of the renormalization scale Q at
which the calculation of the pole mass is performed. The
renormalization-group equations (3.21)–(3.27) are used to
run the running parameters between different values of Q.
Comparing the two-loop results, the approximation of
Eq. (2.11) is slightly more stable than that found using
Eq. (2.8), although both are quite acceptably scale invariant
for M~g=M ~Q � 0:9 and 1.5. In the case of M~g=M ~Q � 3,
shown in the right panel, I also include the three-loop
contributions of Eqs. (3.52) and (3.53). They exhibit a still
further improved scale dependence; this is encouraging but
cannot be counted as a surprising triumph, since the ex-
plicit Q dependence of the three-loop contribution to the
pole mass came from nothing other than the three-loop beta
functions.
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FIG. 3 (color online). The ratio of the gluino pole mass to the
running mass, M~g=m~g�M~g�, as a function of the ratio of the
squark pole masses to the gluino pole mass,M ~Q=M~g, as in Fig. 1.
The different lines correspond to different two-loop and partial
three-loop approximations, as defined in the text.
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FIG. 4 (color online). Renormalization-group scale (Q) depen-
dence of the ratio of the gluino pole mass to the running mass,
M~g=m~g�M~g�. The left panel shows the two-loop approximations
of Eqs. (2.8) and (2.11), for M~g=M ~Q � 0:9 (lower pair of lines)
and M~g=M ~Q � 1:5 (upper pair of lines). The right panel shows
the same information, and also the three-loop approximate
contributions of Eqs. (3.52) and (3.53), for M~g=M ~Q � 3.
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FIG. 2 (color online). The gluino and squark widths as ex-
tracted from the complex pole masses, �~g=M~g in the left panel
and � ~Q=M ~Q in the right panel, as functions of the ratio of the
squark pole mass to the gluino pole mass, in the near-threshold
region of parameter space. The different lines correspond to
different two-loop approximations, as defined in the text. The
widths as computed using Eqs. (2.10) and (2.11) agree exactly
with the direct next-to-leading order width calculation of
Ref. [30], while the widths as computed using Eqs. (2.7) and
(2.8) fail to agree with the decay kinematics dictated by the
physical masses near threshold.
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V. CONCLUSION

In this paper, I have argued in favor of a reformulation of
the two-loop approximation between pole and running
squared masses. As an improvement over Eq. (2.5),
Eq. (2.6) has general applicability. It was applied here to
the specific case of gluinos and squarks in the SUSYQCD
sector of the MSSM in Eqs. (2.10) and (2.11). I also used
the method of effective field theory to obtain a partial
three-loop approximation to the gluino pole mass, when
squarks are heavier. The agreement between the three-loop
gluino pole mass results and the two-loop approximation of
Eq. (2.11) provides evidence that the method of expanding
running masses about the real part of pole masses in the
loop corrections provides better accuracy. Another piece of
evidence in favor of this conjecture is the agreement of the
imaginary part of the pole mass with a direct calculation of
the width. Also, the improved renormalization-scale de-
pendence is at least consistent with it. If the LHC discovers
strongly interacting superpartners, then the quest to deci-
pher the organizing principle behind supersymmetry
breaking should eventually benefit from the improved
results presented here, as well as similar applications to
the rest of the sparticle spectrum.
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APPENDIX: THREE-LOOP RESULTS FOR GAUGE
THEORIES WITH FERMIONS IN ARBITRARY

REPRESENTATIONS

In this Appendix, I compile the following results for a
general gauge theory renormalized in the MS scheme with
fermions in arbitrary representations and no scalar fields:

(i) the three-loop beta functions for gauge couplings,
(ii) the three-loop beta functions for fermion masses,

and
(iii) the three-loop relation between the pole and run-

ning MS masses, in the limit that there is only one
nonvanishing fermion mass parameter.

Each of these results has appeared before in the case of
theories that are QCD-like (containing a single gauge
group and a single type of fermion representation).
However, there are nontrivial ambiguities in inferring the
three-loop results for general theories from the published
literature. The purpose here is to resolve these ambiguities
for use in the main text of the present paper and for future
reference.

To set notation, consider a theory with a gauge group G
which is the product of one or more simple or U�1� gauge

groups Ga, each with a distinct MS gauge coupling ga.
Results will be written in terms of the combinations

 ha 	 g2
a=16�2: (A1)

Suppose further that the two-component Weyl fermions of
the theory transform in possibly distinct representations of
the gauge group labeled by R. Each Dirac (Majorana)
fermion consists of two (one) such Weyl fermions, so
this entails no loss of generality. The quadratic Casimir
invariants of the adjoint and fermion representations of
each gauge group are written as Ca�A� and Ca�R�, respec-
tively. The normalization is such that Ca�A� � N for
SU�N�, and Ca�R� � �N2 � 1�=2N when R is a fundamen-
tal representation of SU�N�. The Dynkin index of each
representation R is written as Ia�R�, in a normalization
such that the fundamental representation of SU�N� has
index 1=2 for a Weyl fermion. I also define the invariants:

 Sa �
X
R

Ia�R�; (A2)

 Sab �
X
R

Ia�R�Cb�R�; (A3)

 Sabc �
X
R

Ia�R�Cb�R�Cc�R�: (A4)

Note that a Dirac fermion contributes twice to each of these
sums. For example, a Dirac fermion in a fundamental
representation of SU�N� will contribute 1 to Sa, and a
Dirac fermion with charge q under a U�1� gauge group
will contribute 2q2 to the corresponding Sa.

The three-loop beta function for each of the MS gauge
couplings is

 �ha 	 Q
d
dQ

ha � ��1�ha � �
�2�
ha
� ��3�ha � � � � ; (A5)

where the terms in the loop expansion are

 ��1�ha � h2
a��22Ca�A� � 4Sa�=3; (A6)

 ��2�ha � h3
aCa�A���68Ca�A� � 20Sa�=3� 4h2

ahbSab;

(A7)

 

��3�ha � h4
aCa�A�f�2857�Ca�A��2 � 1415Ca�A�Sa

� 79�Sa�
2g=27� h3

ahb8Ca�A�Sab

� h2
ah

2
bSab�133Cb�A� � 22Sb�=9� 2h2

ahbhcSabc;

(A8)

with the indices b and c implicitly summed over in each
term where they appear. The special case of this result for a
QCD-like theory with a single gauge group component and
a single type of fermion representation was given in
Ref. [41]. (The four-loop result has also been obtained in
QCD-like theories, in [42].) In that special case, the three-
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loop terms proportional to h3
ahbCa�A�Sab and

h2
ah

2
bSabCb�A� are combined, and the term proportional

to h2
ah

2
bSabSb could in principle combine with a term

proportional to h3
ahbSabSa, which is actually absent.

These two ambiguities have been resolved by considering
the special case of the electromagnetic coupling beta func-
tion with QCD effects included; see, for example, Eq. (54)
of [43] and Eqs. (9)–(10) of [44].

Next consider the three-loop MS beta function for the
mass m of a fermion transforming in a representation F,
given for a QCD-like theory in [34]. Chiral symmetry
guarantees that, if there are several such masses, they
each run independently. As far as I know, the result for a
theory with different fermion representations has not been
given directly in the published literature, but can be in-
ferred by considering the results given for individual
classes of diagrams in [34]. The result is

 �m 	 Q
d
dQ

m � m���1�m � �
�2�
m � �

�3�
m � � � ��; (A9)

where the terms in the loop expansion are

 ��1�m � �6haCa�F�; (A10)

 ��2�m � h2
aCa�F���97Ca�G� � 10Sa�=3

� 3hahbCa�F�Cb�F�; (A11)

 

��3�m � h3
aCa�F�

�
�

11 413

54
�Ca�A��

2 �

�
556

27
� 48�3

�


 Ca�A�Sa �
70

27
�Sa�2

�

� h2
ahbCa�F�

�
129

2
Ca�A�Cb�F� � SaCb�F�

� �45� 48�3�Sab

�

� 129hahbhcCa�F�Cb�F�Cc�F�: (A12)

with indices a, b, c summed over in terms in which they
appear. The terms proportional to Ca�F�SaCb�F� and
Ca�F�Sab are combined in the case of quark masses in
QCD, and it is this ambiguity that has been removed using
the results inferred from [34]. (The QCD-like case has been
extended to four-loop order in [45].)

Finally, consider the three-loop fermion pole mass. Let
the two-component fermions consist of massless fermion
species with representations labeled by r, as well as degen-
erate massive fermion(s) with representation labeled by F
and a running mass m�Q�. This is only technically natural
if F is irreducible (as for Majorana fermions), or consists of
an irreducible representation and its conjugate (as for Dirac
fermions), or if F consists of three or more degenerate
copies of a single irreducible representation and/or its
conjugate (a situation for which I know of no examples
in proposed extensions of the standard model). Therefore,

it is assumed here that all of the irreducible representations
labeled by F have the same Casimir invariant Ca�F� and
index Ia�F�. The invariants Sa, Sab previously defined are
now separated into contributions from the massless and
massive fermions:

 SLa �
X
r

Ia�r�; SHa �
X
F

Ia�F�; (A13)

 SLab �
X
r

Ia�r�Cb�r�; SHab �
X
F

Ia�F�Cb�F�: (A14)

(Again one must remember that the representations are
defined for two-component fermions, so each Dirac fer-
mion contributes twice to the appropriate sums.) Then the
fermion pole mass M is related to the running MS mass m
evaluated at a renormalization scale Q � M by

 m�M� � M�1� x�1� � x�2� � x�3� � � � ��; (A15)

where the loop expansion terms are

 x�1� � �ha4Ca�F�; (A16)

 

x�2� � h2
aCa�F�fCa�A���1111=24� 4�2=3

� 4�2 ln2� 6�3� � S
L
a �71� 8�2�=3

� SHa �143� 16�2�=3g � hahbCa�F�Cb�F�


 �8�2 ln2� 5�2 � 12�3 � 7=8�; (A17)

 

x�3� � 64haCa�F��hbhcCb�F�Cc�F�d
�3�
1

� hahbfCa�A�Cb�F�d
�3�
2 � 2SLabd

�3�
4A

� 2SLaCb�F�d
�3�
4B � 2SHabd

�3�
5 g � h

2
af�Ca�A��2d

�3�
3

� 2Ca�A�SLad
�3�
6 � 2Ca�A�SHa d

�3�
7

� 4SLaS
H
a d
�3�
8 � 4�SHa �

2d�3�9 � 4�SLa �
2d�3�10 g�; (A18)

with indices a, b, c summed over wherever they appear.
The coefficients d�3�n were found in Ref. [33] for n � 1, 2,
3, 5, 6, 7, 8, 9, 10, and will not be repeated here. The
remaining coefficients d�3�4A and d�3�4B were combined into a
single coefficient d�3�4 in that paper, since those terms are
indistinguishable in the special case of a single type of
fermion representation. In this paper, I need the general-
ized result:

 d�3�4A � 827=384� �2=16� �4=240� 11�3=8; (A19)

 

d�3�4B �
85

1152
�

95

144
�2 �

11

9
�2 ln2�

11

3
�3 �

11

216
�4

�
2

9
�2ln22�

1

9
ln42�

8

3
Li4�1=2�: (A20)

I obtained d�3�4A by a direct computation of the correspond-
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ing three-loop diagrams, and then obtained d�3�4B � d�3�4 �

d�3�4A using the result for d�3�4 provided in Ref. [33]. This was
also checked independently using a slight modification of
the computer code used in Ref. [33], kindly provided by
Kirill Melnikov.

In the application of the present paper, the effective
theory with squarks decoupled consists of an SU�3�c gauge
theory with 6 flavors of ‘‘massless’’ Dirac fermion quarks
and 1 massive color octet Majorana gluino. Therefore,

ha � �S=4� and the relevant group theory invariants are

 Ca�A� � Ca�F� � 3; (A21)

 SLa � 6; SLaa � 8; SLaaa � 32=3; (A22)

 SHa � 3; SHaa � 9; SHaaa � 27; (A23)

 Sa � 9; Saa � 17; Saaa � 113=3: (A24)
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