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Standard model gauge bosons propagating in two universal extra dimensions give rise to heavy spin-1
and spin-0 particles. The lightest of these, carrying Kaluza-Klein numbers (1,0), may be produced only in
pairs at colliders, whereas the (1,1) modes, which are heavier by a factor of

���
2
p

, may be singly produced.
We show that the cascade decays of (1,1) particles generate a series of closely-spaced narrow resonances
in the t�t invariant mass distribution. At the Tevatron, s-channel production of (1,1) gluons and electroweak
bosons will be sensitive to t�t resonances up to masses in the 0.5–0.7 TeV range. Searches at the LHC for
resonances originating from several higher-level modes will further test the existence of two universal
extra dimensions.
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I. INTRODUCTION

If the standard model gauge bosons propagate in extra
dimensions, then for each of the SU�3�C � SU�2�W �
U�1�Y gauge fields there is a tower of heavy vector bosons
that could produce signals in collider experiments. These
heavy vector bosons are commonly called Kaluza-Klein
(KK) modes of the gauge bosons [1], and we will refer to
them in what follows as ‘‘vector modes.’’ The properties of
the vector modes depend crucially on the number, com-
pactification and metric of extra dimensions, as well as on
what other fields propagate in the extra dimensions.

For example, if the metric is flat and no quarks or leptons
propagate in the extra dimensions, then vector-mode ex-
change among fermions produces too large corrections to
the electroweak observables, unless the compactification
scale (which approximately sets the mass of the lightest
vector modes within each tower, called level-1 states) is
higher than roughly 6 TeV [2], pushing the vector modes
beyond the reach of the Large Hadron Collider (LHC) [3].
By contrast, if the extra dimensions are universal, i.e., all
standard model particles propagate in the extra dimen-
sions, then the limit on the compactification scale is close
to the electroweak scale [4], so that the vector modes could
be produced not only at the LHC but also at the Tevatron.
In that case, however, a KK parity is conserved implying
that level-1 vector modes may be produced only in pairs,
and that their decays involve soft leptons and jets plus
missing energy [5], making their discovery challenging.

The vector modes that are particularly interesting for
collider searches are level-2 states from universal extra
dimensions. These have individual couplings to the ob-
served fermions, induced by loops within the higher-
dimensional effective theory [6], or by boundary operators
generated at the cutoff scale, Ms, where some new physics
should smooth out the ultraviolet behavior of the theory
[4]. The induced couplings are rather small, being sup-
pressed by either a loop factor or a volume factor, so that

one need not worry about the constraints from electroweak
precision measurements. At the same time, the suppression
may be not too strong, allowing a potentially sizable
s-channel production at high-energy colliders. This possi-
bility in the case of one universal extra dimension, where
the level-2 masses are roughly twice as large as the level-1
masses, has been noted in Ref. [5] and analyzed in detail in
Ref. [7].

In this paper we point out that level-2 vector modes in
the case of two universal extra dimensions offer better
opportunities for discovery. The reason is that the level-2
vector modes in this case have masses which are larger
than the level-1 masses by a factor of approximately

���
2
p

.
As a result, their production is possible at smaller center-
of-mass energies, and the decays of level-2 states into pairs
of level-1 states, which would lead to only soft leptons and
jets in the detector, are kinematically forbidden (as op-
posed to the case of one universal extra dimension where
such decays are typically allowed). Then the level-2 states,
characterized by KK numbers (1,1), have large branching
fractions for decays into a pair of standard model particles
giving rise to a high pT signal. Another distinctive feature
of two universal extra dimensions is that each vector mode
is accompanied by a spin-0 particle in the adjoint repre-
sentation of the corresponding gauge group.

In Sec. II we present the standard model in two universal
extra dimensions compactified on the chiral square, which
is the simplest compactification consistent with the chi-
rality of the quarks and leptons. We concentrate especially
on the mass spectrum and KK-number-violating interac-
tions of the KK modes. In Sec. III we compute in detail the
branching fractions of the (1,1) modes, which is useful for
any future phenomenological study of the standard model
in six dimensions. We then turn to resonant production of
the (1,1) modes at the Tevatron, and estimate the expected
reach of Run II in Sec. IV. The more complex phenome-
nology at the LHC is briefly discussed in Sec. V, and then
our results are summarized in Sec. VI.

PHYSICAL REVIEW D 74, 075008 (2006)

1550-7998=2006=74(7)=075008(20) 075008-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.075008


II. SIX-DIMENSIONAL STANDARD MODEL

We consider the standard model in six dimensions, with
two dimensions compactified. Each of the gauge fields has
six components: for example, the six-dimensional (6D)
gluon fieldGa

�, where a labels the eight SU�3�C generators,
has a 6D Lorentz index � � 0; 1; . . . ; 5. The quark and
lepton fields are chiral 6D fermions, which have four
components. The requirements of 6D anomaly cancella-
tions and fermion mass generation [8] force the weak-
doublet quarks to have opposite 6D chirality than the
weak-singlet quarks, so that the quarks of one generation
are given byQ� � �U�; D��,U�,D�, where� labels the
6D chiralities. The chirality assignment in the 6D lepton
sector is similar (its implications for the neutrino masses
are analyzed in [9]).

The zero-mode states, which are particles of zero mo-
mentum along the extra dimensions, are identified with the
observed standard model particles. Since the observed
quarks and leptons have definite 4D chirality, an immediate
constraint on any 6D extension of the standard model is
that the compactification of the two extra dimensions must
allow chiral zero-mode fermions. A simple compactifica-
tion of this type has been studied in detail in [10,11]. It
consists of a square, 0 � x4, x5 � �R, where x4, x5 are the
coordinates of the extra dimensions and R is the compac-
tification ‘‘radius.’’ The compactification is obtained by
imposing the identification of two pairs of adjacent sides
of the square, and we refer to it as the ‘‘chiral square.’’

A. KK decomposition

For any 6D field ��x�; x4; x5� that has a zero mode, the
field equations have the following solution:

 � �
X
j;k

�
cos

jx4 � kx5

R
� cos

kx4 � jx5

R

�
��j;k��x��

�R�1� �j;0�
:

(2.1)

The KK numbers, j and k, are integers with j 	 1 and
k 	 0, or j � k � 0. The 4D fields ��j;k��x�� are the KK
modes of the 6D field �. They have masses due to the
momentum along x4, x5 given by

 Mj;k �
1

R

����������������
j2 � k2

q
; (2.2)

so that the mass spectrum, in the limit where other con-
tributions to physical masses are neglected, starts with
M0;0 � 0, M1;0 � 1=R, M1;1 �

���
2
p
=R, M2;0 � 2=R; . . .

For 6D fields that do not have a zero mode, the KK
decompositions differ from Eq. (2.1), as shown in
[10,11], but their KK mass spectrum is the same for the
massive states.

The 6D gluon and electroweak gauge bosons decompose
each into a tower of 4D spin-1 fields, a tower of 4D spin-0
fields which are eaten by the heavy spin-1 fields, and a

tower of 4D spin-0 fields which remain in the spectrum, all
belonging to the adjoint representation of the correspond-
ing gauge group. We refer to these latter spin-0 fields as
‘‘spinless adjoints.’’ The zero modes of the spin-1 fields are
the standard model gauge bosons, while the spin-0 fields do
not have zero modes. Therefore, in the unitary gauge the
6D gluon field includes at each nonzero KK level a vector
mode G�j;k�a� and a real scalar field G�j;k�aH . The 6D weak
gauge fields have KK modes W�j;k��� , W�j;k��H , W�j;k�3� , and
W�j;k�3H , while the hypercharge KK gauge bosons are B�j;k�� ,
B�j;k�H . Electroweak symmetry breaking due to the 6D VEV
of the Higgs doublet (as discussed in general in [11]),
mixes W�j;k�3� and B�j;k�� , as well as W�j;k�3H and B�j;k�H .
However, for 1=R�300 GeV, this mixing is small [6],
and we will neglect it in what follows. The 6D Higgs
doublet decomposes into a tower of 4D weak doublets.
The zero-mode doublet gives the longitudinal degrees of
freedom of the W and Z and a Higgs boson, while at each
nonzero KK level three of the degrees of freedom of the
massive Higgs doublet mix with the longitudinal compo-
nents of the electroweak vector modes (this mixing is also
suppressed by MZR).

The 6D quark and lepton fields decompose each into a
tower of heavy vectorlike 4D fermions and a chiral zero
mode identified with the observed fermion. Explicitly, the
standard model quark doublets are given by �uL; dL� 


Q�0;0��L
, while the standard weak-singlet quarks are uR 


U�0;0��R
and dR 
 D�0;0��R

, where a generation index is implicit.

B. Localized operators

The ‘‘chiral square’’ compactification is a two-
dimensional space having the topology of a sphere. It is
flat everywhere, with the exception of conical singularities
at the corners of the square. Altogether there are three such
conical singularities, given that the �0; �R� and ��R; 0�
corners are identified.

Operators localized at the singular points are generated
by loops involving the bulk interactions [12], as in the
theories studied in Ref. [6,13]. The space around the
conical singularities is symmetric under rotations in the
�x4; x5� plane, and therefore the localized operators have an
SO�2� symmetry. Furthermore, the bulk interactions are
symmetric under reflections with respect to the center of
the square. This symmetry is a KK parity, labeled by ZKK

2 .
It implies that the operators generated at (0,0) are identical
with those at ��R;�R�.

Other contributions to the localized operators might be
induced by physics above the cutoff scale. They should
also be SO�2� symmetric. In addition, it is compelling to
assume that these UV-generated localized operators are
ZKK

2 symmetric, so that the stability of the lightest KK
particle, a promising dark matter candidate [14], is
ensured.
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The 4D Lagrangian can be written as

 

Z �R

0
dx4

Z �R

0
dx5fLbulk � ��x4����R� x5�L2

� ���x4���x5� � ���R� x4����R� x5��L1g: (2.3)

Lbulk includes 6D kinetic terms for the quarks, leptons,
SU�3�C � SU�2�W �U�1�Y gauge fields, and a Higgs dou-
blet, 6D Yukawa couplings of the quarks and leptons to the
Higgs doublet, and a 6D Higgs potential. The form of these
terms can be derived from the general 6D Lagrangians
discussed in [10,11]. L1 and L2 contain all the localized
operators. In particular, these include 4D-like kinetic terms
for all 6D fields, and the pieces of 6D kinetic terms that
describe motion along the extra dimensions. For example,
the localized operators of the lowest mass dimension that
involve the 6D quark field U� appear in Lp �p � 1; 2� as

 

CpU
22M2

s
i �U�R

��D�U�R
�

� C0pU
22M2

s
i �U�R

�lDlU�L
� H:c:

�
;

(2.4)

where �� with � � 0, 1, 2, 3 and �l with l � 4, 5 are
anticommuting 8� 8 matrices, D�, Dl are covariant de-
rivatives, CpU (C0pU) are real (complex) dimensionless
parameters, and Ms is the cutoff scale. For convenience,
we also wrote explicit factors of �1=2�2 to account for an
enhancement due to the values of the wave functions in
Eq. (2.1) at the singular points. The localized operators of
the lowest mass dimension that involve the 6D gluon field
are given by

 L p 
 �
1

4

CpG
22M2

s
G��G�� �

1

2

C0pG
22M2

s
�G45�

2; (2.5)

where CpG and C0pG with p � 1, 2 are real dimensionless
parameters.

As mentioned above, the contributions to the localized
operators in Eq. (2.4) and (2.5) arise from two sources:
loops with KK modes, and physics above the cutoff scale.
The bare contribution, from physics at or above the cutoff
scale, to the coefficients of the localized terms can be
estimated by assuming that the localized couplings get
strong at the cutoff scale Ms, where Ms is the scale at
which the QCD interactions become strong in the ultravio-
let. Using naive dimensional analysis (NDA) in the 6D
theory [15], we estimate the coefficients CpG and C0pG in
Eq. (2.5), CpU, ReC0pU, ImC0pU in Eq. (2.4), and the analo-
gous coefficients associated with the Q� and D� fields, to
be all of the order of l6=l4 � 8�, where l6 � 128�3 and
l4 � 16�2 are 6D and 4D loop factors, respectively. This
estimate assumes that the localized term receives contri-
butions from color interactions. If this is not the case, then
there is an associated suppression.

Furthermore, NDA gives ��RMs�
2 � l6=�g2

sNc�, where
gs is the 4D QCD gauge coupling and Nc � 3 is the

number of colors. Thus, the bare contribution to the effec-
tive 4D coupling is of the order of �l6=l4�=��RMs�

2 �
g2
sNc=l4. Also, the separation between the compactifica-

tion scale and the cutoff scale is

 MsR�
�

32

�sNc

�
1=2
� 10: (2.6)

The strong coupling constant is evaluated here at the
compactification scale, 1=R: �s 
 g2

s=�4�� � 0:1.
The localized operators are also renormalized by the

physics below the cutoff scale, Ms. These contributions
were calculated in [12] at one-loop order. For the fermion
kinetic terms in Eq. (2.4) involving 4D derivatives, one
obtains
 

C1f

��MsR�
2 �

�
�4

X
A

g2
AC2�f� �

5

8

X
i

�2
i

�
1

16�2 ln
M2
s

�2 ;

C2f

��MsR�2
�

�
�2

X
A

g2
AC2�f� �

1

4

X
i

�2
i

�
1

16�2 ln
M2
s

�2 ;

(2.7)

where �i are Yukawa couplings of the fermion f to com-
plex scalars having zero modes (the i sum is over the
scalars), gA is the 4D gauge coupling, C2�A� and C2�f�
are the quadratic Casimir eigenvalues of the gauge fields
and fermions, respectively [for an SU�N� gauge group,
C2�A� � N, and if f is in the fundamental representation,
C2�f� � �N2 � 1�=�2N�], and T�f� and T�s� are the indi-
ces of the representations to which the fermion f and scalar
s belong [T�f� � T�s� � 1=2 in the fundamental represen-
tation]. Notice that these contributions are scale dependent,
and � should be taken of the order of the characteristic
scale of the process of interest.

For the coefficients of the fermion kinetic terms with
derivatives in the plane of the extra dimensions, one finds
that only the Yukawa couplings contribute:
 

C01f
��MsR�2

�
5

8

X
i

�2
i

1

16�2 ln
M2
s

�2 ;

C02f
��MsR�

2 �
1

4

X
i

�2
i

1

16�2 ln
M2
s

�2 ;

(2.8)

where again the sum runs over complex scalars.
The coefficients of the 4D gauge kinetic terms in

Eq. (2.5) are found to be
 

C1A

��MsR�2
�

�
�

14

3
C2�A� �

2

3

X
f

T�f� �
5

12

X
s

T�s�
�
g2
A

16�2

� ln
M2
s

�2 ;

C2A

��MsR�2
�

�
�2C2�A� �

1

6

X
s

T�s�
�
g2
A

16�2 ln
M2
s

�2 ;

(2.9)

where A stands for any gauge field. The sum over f
involves all 6D Weyl fermions having a zero mode of

RESONANCES FROM TWO UNIVERSAL . . . PHYSICAL REVIEW D 74, 075008 (2006)

075008-3



any 4D chirality, while the sum over s involves all complex
scalars having a zero mode.

Finally, for the operators involving the spinless adjoints
A4–A5 one finds

 

C01A
��MsR�

2 �

�
8C2�A� � 4

X
f

T�f� �
13

4

X
s

T�s�
�
g2
A

16�2

� ln
M2
s

�2 ;

C02A
��MsR�

2 �

�
2C2�A� �

1

2

X
s

T�s�
�
g2
A

16�2 ln
M2
s

�2 ;

(2.10)

where again the sums run over 6D Weyl fermions and
complex scalars having zero modes.

We note that the contribution due to the physics below
the cutoff scale is enhanced by a logarithmic factor com-
pared to the ‘‘bare’’ contributions from physics at or above
Ms. However, in the present class of models the logarithm
is at most a few [see Eq. (2.6)]. Also, for strongly interact-
ing particles one should worry about higher-loop orders in
the contributions to the localized operators coming from
the physics below Ms. For these strongly interacting par-
ticles, the multiloop effects are of the same order as the
one-loop result. Note, however, that for particles that do
not interact directly with colored states, such as the leptons,
the one-loop computation should be a good approximation
for the coefficient of the localized operator, modulo the
bare contributions which are not logarithmically enhanced.
At any rate, the above results should be used carefully and
we shall take them as an estimate of the physics due to
localized operators. For the most part, we will express our
results in terms of generic localized parameters. However,
for numerical purposes we will use the above one-loop
expressions.

C. Mass spectrum

The localized terms of Eqs. (2.4) and (2.5) shift the
masses of the fermion, gauge field and spinless adjoint
KK modes, leading to mass splittings among the members
of a given KK level. To lowest order in the localized terms
Cpf, C0pf, CpA, and C0pA, where f stands for any of the
fermions and A for any of the gauge fields, the mass shifts
are

 Mf�j;k� � Mj;k

�
1�

1

2
�Zf�j;k� �

1

2
�Z0

f�j;k�

�
;

MA�j;k� � Mj;k

�
1�

1

2
�ZA�j;k�

�
;

MA�j;k�H
� Mj;k

�
1�

1

2
�ZA�j;k�H

�
:

(2.11)

For KK-parity even fields, that is (j,k) modes with
��1�j�k � �1, we find

 �Zf�j;k� �
1

��MsR�2
�2C2f � C2f�;

�Z0
f�j;k�
�

2

��MsR�2
Re�2C01f � C

0
2f�;

�ZA�j;k� �
1

��MsR�2
�2C1A � C2A�;

�ZA�j;k�H
�

1

��MsR�
2 �2C

0
1A � C

0
2A�;

(2.12)

while for KK-parity odd fields, i.e., ��1�j�k � �1, the
�Z’s are given by (2.12) with C2f � C02f � C2A � C02A �
0. The mass shifts depend on the quantum numbers j and k
because the coefficientsCpf,C0pf,CpA andC0pA are running
parameters and should be evaluated at the scale of the
corresponding mass Mj;k.

The mass of the gluon vector mode, G�j;k�� , can be
parametrized as

 MG�j;k� � Mj;k�1� AGCGj;k�; (2.13)

where

 CGj;k 

g2
sNc

16�2 ln
�
M2
s

M2
j;k

�
; (2.14)

Mj;k are the masses due to motion in the extra dimensions,
given in Eq. (2.2), and AG is a dimensionless parameter
expected to be of order unity. The SU�2�W-doublet quark
modes have masses

 MQ�j;k��
� Mj;k

�
1� AQ�C

G
j;k �

m2
q

2M2
j;k

�
; (2.15)

where mq is the mass of the zero-mode quark, and we
expanded in m2

q=M2
j;k � 1. We employ a similar parame-

trization for the SU�2�W-singlet quarks in terms of dimen-
sionless parameters, AU� and AD� (collectively denoted by
AQ�). The coefficients AQ� , AU� and AD� are also expected
to be of order unity.

The masses of the hypercharge and electrically-neutral
SU�2�W vector modes, B�j;k�� and W�j;k�3� , are given by

 MW�j;k� � Mj;k

�
1�

2g2

Ncg2
s
AWC

G
j;k �

M2
W

2M2
j;k

�
;

MB�j;k� � Mj;k

�
1�

g02

Ncg
2
s
ABCGj;k

�
;

(2.16)

where g and g0 are the 4D SU�2�W and U�1�Y gauge
couplings, respectively. In Eqs. (2.16), we have neglected
terms of order �MW=Mj;k�

4, where MW is the zero-mode W
mass. Similar parametrizations can be used for the masses
of the spinless adjoints:
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MG�j;k�H
� Mj;k�1� AGHC

G
j;k�;

MW�j;k�H
� Mj;k

�
1�

2g2

Ncg2
s
AWH

CGj;k �
M2
W

2M2
j;k

�
;

MB�j;k�H
� Mj;k

�
1�

g02

Ncg
2
s
ABHC

G
j;k

�
:

(2.17)

The SU�2�W-doublet and -singlet lepton modes, L�j;k� and
E�j;k�, have masses

 ML�j;k� � Mj;k

�
1�

2g2

Ncg
2
s
ALCGj;k

�
;

ME�j;k� � Mj;k

�
1�

g02

Ncg
2
s
AEC

G
j;k

�
:

(2.18)

The above corrections to the KK masses of leptons and
electroweak bosons are due to the 6D SU�2�W �U�1�Y
interactions. Given that the loop factor CGj;k is computed for
QCD, we have factored out the electroweak gauge cou-
plings such that the coefficients AW , AB, AWH

, ABH , AL, and
AE are all expected to be of order unity, barring enhance-
ment factors due to particle multiplicities.

The KK modes of the Higgs boson, h�j;k�, are split in
mass from the KK modes of the other 3 degrees of freedom
of the Higgs doublet. The latter ones mix with the W�j;k�H
KK modes, giving rise to the Nambu-Goldstone bosons
eaten by W�j;k�� , and to the orthogonal states ~��j;k�a �a �
1; 2; 3�which form a tower of physical spin-0 particles. For
a detailed discussion of this mechanism, we refer the
reader to Section 6 of Ref. [11]. The masses of these
Higgs KK modes may be parametrized as

 Mh�j;k� � Mj;k

�
1�

2g2

Ncg2
s
AHC

G
j;k �

M2
h

2M2
j;k

�
;

M~��j;k� � Mj;k

�
1�

2g2

Ncg2
s
A~�C

G
j;k �

M2
W

2M2
j;k

�
;

(2.19)

where we assumed that the Higgs boson mass Mh is small
enough compared to the compactification scale such that
the �Mh=Mj;k�

4 corrections may be ignored. In the limit
Mh � 1=R, the KK modes of the Higgs boson, h�j;k�, and
of the three eaten Nambu-Goldstone bosons, ~��j;k�� and
~��j;k�3, form a degenerate SU�2�W doublet at each KK
level, which we denote by H�j;k�.

In this paper we are interested in the KK-parity even
states, which can be singly produced at colliders, as we will
see in the next section. It will be useful to have the mass
shift formulae (2.11) and (2.12) that follow from the one-
loop results, Eqs. (2.7)–(2.10), applied to the standard
model gauge group and field content. For the gluon vector
modes, and for the SU�2�W-doublet and -singlet quark
modes, Q� and Q� respectively, we find

 

AG �
13

3
; AQ� �

20

9
�

1

4g2
s

�
�2
qL � 5g2 �

5

27
g02
�
;

AQ� �
20

9
�

1

g2
s

�
1

2
�2
qR �

5

12
y2
qRg

02

�
; (2.20)

where yf are the hypercharges of the quarks and leptons,
normalized such that the quark doublets have y � 1=3.
Here �qL and �qR are the Yukawa couplings to the Higgs
doublet (given by �bL � �tL � �tR 
 �t ’ 1, and negli-
gible for the other flavors). Note that the top Yukawa gives
a positive contribution so that the third generation Q3 and
U3 KK modes are heavier than those of the first two
generations. The positive contribution to the mass shifts
due to Yukawa couplings is special to six dimensions, and
is related to the existence of two 6D chiralities, both of
which must be involved in the Yukawa interaction (notice
that in 5D the Yukawa couplings give a negative contribu-
tion to the mass shifts [6]). Note also that the KK gluons
are heavier than the KK quarks. However, as we stressed
before, for strongly interacting particles the one-loop re-
sults should be taken only as indicative of the size of the
mass shifts. Although a situation where the KK quarks are
heavier than the KK gluons is possible, we will assume that
higher order contributions do not change the hierarchy of
masses found at one-loop.

For the electroweak gauge bosons, we get

 AW �
85

24
; AB � �

83

12
; (2.21)

while the leptons have

 AL �
15

8

�
1�

g02

3g2

�
; AE � 5; (2.22)

so that the SU�2�W gauge boson modes are heavier than the
lepton modes.

For the spinless adjoints the mass shifts arise from the
second term in Eq. (2.5) and the analogous terms in the
electroweak sector. As shown in [11], the KK-expansion of
the extra-dimensional field strength, F45, defines gauge
invariant linear combinations of A4 and A5 that are or-
thogonal to the would-be Nambu-Goldstone bosons eaten
by the vector modes at each KK level. Thus, only these
gauge invariant degrees of freedom, that we call spinless
adjoints, get a mass shift from the localized terms, given in
the third equation of (2.11). We obtain the following values
for the parameters defined by Eqs. (2.17):

 AGH � 1; AWH
� �

17

8
; ABH � �

153

4
: (2.23)

Note that the (1,1) SU�3�C spinless adjoints receive a
positive contribution to their masses, but are typically
lighter than the (1,1) quarks. Similarly, the electroweak
spinless adjoints are lighter than the (1,1) leptons. Their
masses are driven down by the contribution due to the
fermions.
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Finally, the parameters that control the KK Higgs
masses in Eq. (2.19) are given by

 AH ’ A~� ’
33

32
�
�2
t

2g2 ; (2.24)

where we have not included the contributions from Higgs
self-interactions and from U�1�Y interactions.

The mass spectrum of the (1,1) modes is shown in Fig. 1
for 1=R � 500 GeV. Higher-loop contributions involving
colored KK modes may be important (see the end of
Section II B), and may shift the mass spectrum. This un-
certainty is larger than corrections coming from the run-
ning of the coupling constants, or electroweak symmetry
breaking. We ignored these effects in Fig. 1, and we used
some rough estimates for the couplings at the scale M1;1 ����

2
p
=R: �g=gs�2 � 0:34, �g0=gs�2 � 0:10, ��t=gs�2 � 0:8,

CG � 0:1. We also assumed that the Higgs boson is
much lighter than the compactification scale.

We also point out here that at the (1,0) level, the mass
corrections to the electroweak spinless adjoints are also
negative. The mass correction to the (1,0) SU�3�C spinless
adjoints happens to vanish at one-loop for the standard
model field content, but one should keep in mind that
multiloop contributions are expected to be important for
the strongly interacting particles. The corresponding mass
shifts for the spin-1 particles are positive for the (1,0)
gluons, and negative for the (1,0) W and B vector modes.
In fact, it is interesting that the lightest KK particle is
predicted to be the spinless hypercharge mode, B�1;0�H .
Thus, in contrast to the case of five dimensions, the natural
dark matter candidate has spin-0. The mass spectrum of the
(1,0) modes is shown in Fig. 2 for 1=R � 500 GeV.

D. KK-number-violating interactions

The ZKK
2 symmetry implies that for any interaction

among KK modes the sum over all j and k numbers should
be even. In particular, interactions involving two zero
modes and a �j; k� mode with j 	 1 and j� k even is
allowed. Such an interaction is not generated at tree level
by bulk interactions, but arises due to the localized
operators.

To be concrete, the effective 4D, KK-number-violating
couplings between zero-mode quarks and massive KK
gluons are given by

 gsC
qG
j;k � �q�

�Taq�G�j;k�a� ; (2.25)

where CqGj;k are real dimensionless parameters, Ta are the
SU�3�C generators in the fundamental representation, gs is
the QCD gauge coupling, and q stands for any of the
standard model quarks. The strength of the couplings to
zero-mode fermions is controlled by the kinetic terms
localized at the fixed points, and contained in L1 and L2

in Eq. (2.3). Their dimensionless coefficients ultimately
determine the strength of the KK-number-violating cou-
plings of fermions to gauge bosons. In terms of the coef-
ficients defined in Eqs. (2.4) and (2.5), CqGj;k is given to
lowest order in the localized terms by

 CqGj;k � �
1

2
�ZG�j;k� �

1

2
�Zq�j;k� �

1

2
�Z0q�j;k� ; (2.26)

where it is understood thatG�j;k� is KK-parity even [i.e. j�
k is even], but not the zero-mode, and
 

�Zq�j;k� �
1

��MsR�2
�2C1q � ��1�jC2q�;

�Z0q�j;k� �
2

��MsR�2
Re�2C01q � ��1�jC02q�;

�ZG�j;k� �
1

��MsR�
2 �2C1G � ��1�jC2G�:

(2.27)
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FIG. 1 (color online). Mass spectrum of the (1,1) level for
1=R � 500 GeV. Electroweak symmetry breaking effects are
small, and have not been included.
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FIG. 2 (color online). Mass spectrum of the (1,0) level. The
lightest KK particle is the B�1;0�H spinless adjoint.
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Notice that when both j and k are even we can write
Eq. (2.26) in terms of the mass shifts given in Eq. (2.11) as

 CqGj;k �
�MG�j;k�

Mj;k
�
�Mq�j;k�

Mj;k
; j; k even: (2.28)

However, when both j and k are odd the above relation
does not hold (unless there are no terms induced at
�x4; x5� � �0; �R�, i.e. C1q � C01q � C1G � 0). In this
case, the above interactions depend on a different combi-
nation of the coefficients in L1 and L2 than the KK mass
shifts and are, effectively, independent parameters.

As mentioned above, the coefficients of the localized
operators receive contributions from physics at the cutoff
Ms, and run logarithmically below Ms due to bulk loop
effects. The contribution to the localized couplings from
physics between the scales Ms and �<Ms is of the order
of �g2Nc=16�2� ln�M2

s=�2�. This contribution is enhanced
compared to the bare one by a logarithmic factor. Based on
these NDA estimates, Eqs. (2.26) and (2.27) give the values
of the parameters CqGj;k at the scale of the KK-mode mass
Mj;k:

 CqGj;k � 	Gq C
G
j;k; (2.29)

where 	Gq is a dimensionless parameter of order unity, and
CGj;k was defined in Eq. (2.14).

The localized operators at the cutoff scale may be flavor
dependent. Their contributions to the CqG coefficients are
not shown in Eq. (2.14) because they are not enhanced by
the logarithmic factor. Nevertheless, Eq. (2.6) implies that
the logarithmic factor is at most as large as ln�MsR�

2 �
4:6, and therefore the flavor dependent operators may lead
to large flavor-changing neutral processes. In order to
suppress these, the physics above the cutoff scale must
possess some approximate flavor symmetry.

The KK spinless adjoints interact with the zero-mode
quarks only via dimension-5 or higher operators:

 

gs ~CqGj;k
Mj;k

� �q��Taq�D�G
�j;k�a
H ; (2.30)

where ~CqGj;k are real dimensionless parameters, and D� is
the gauge covariant derivative. The largest contributions to
these coefficients arise from the quark and spinless adjoint
kinetic and mass mixing effects associated with the local-
ized kinetic terms of Eqs. (2.4) and (2.5). There is also a
subdominant finite direct vertex contribution, suppressed
by a logarithm compared to the mixing effects. According
to NDA, the direct bare contributions from localized op-
erators to the interaction (2.30) are of order �g2

sNc=16�2�2,
and are therefore negligible compared to the contributions
due to mixing effects. It is important to notice that the
vertex (2.30) is proportional to the quark masses, as can be
seen by integrating by parts and using the fermion equa-
tions of motion. As a result, the spinless adjoints decay

almost exclusively into top quarks. This observation also
implies that the coupling for direct production of the spin-
less states is negligible, being suppressed by the u or
d-quark masses. However, the spinless adjoints can be
easily produced in the decays of KK quarks or leptons,
as we discuss in the next section.

Dimension-4 operators which couple a single spinless
adjoint to one or two zero-mode gluons are forbidden by
the unbroken gauge invariance associated with the zero-
mode gauge boson. Naively, a spinless adjoint may couple
to zero-mode gluons via the dimension-5 operator

 

1

Mj;k
Tr�G��G��G

�j;k�
H � (2.31)

or the analogous operator involving a dual field strength.
However, these operators vanish because the trace over
three generators Ta, Tb, Tc in the adjoint representation
is proportional to the antisymmetric structure constant
fabc, and two indices are contracted with identical gluon
field strengths. On the other hand, the operator obtained by
replacing one of the gluon field strengths in (2.31) by the
field strength of a KK gluon need not vanish, and generates
a coupling of a spinless adjoint to a KK gluon and a gluon
zero mode.

Higher-dimension operators coupling the hypercharge
spinless adjoint to two spin-1 fields, e.g., Tr�G��G��B

�j;k�
H �

or B��B��B
�j;k�
H , could be present. Interestingly, the one-

loop contributions to their coefficients vanish. This is
because B�j;k�H couples to fermions via an axial-scalar cou-
pling so that the relevant triangle diagrams are proportional
to the corresponding gauge anomaly coefficients, which
are canceled.

The W�j;k�a� KK modes couple to zero-mode fermions
through

 gCfWj;k � �fL�
�Ta2fL�W

�j;k�a
� ; (2.32)

where Ta2 are the SU�2�W generators, g is the 4D SU�2�W
gauge coupling, and f are the quark and lepton fields of any
generation. It is convenient to write the dimensionless
parameters CfWj;k as follows:

 CqWj;k 
 	Wq CGj;k; ClWj;k 

2g2

g2
sNc

	Wl C
G
j;k: (2.33)

Here, l stands for the SU�2�W-doublet leptons. The 	Wq and
	Wl parameters are estimated via NDA to be of order unity.

Similarly, the B�j;k�� KK modes couple to zero-mode
quarks and leptons:

 g0
yf
2
CfBj;k� �f�

�f�B�j;k�� ; (2.34)

where g0 is the 4D U�1�Y gauge coupling, and yf are the
hypercharges of the quarks and leptons, normalized such
that the quark doublets have y � 1=3. The CfBj;k parameters
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may be written in terms of other parameters �	Bq ; 	Bl ; 	
B
e �

expected to be of order unity:

 CqBj;k 
 	BqC
G
j;k; ClBj;k 


2g2

g2
sNc

	Bl C
G
j;k;

CeBj;k 

g02

g2
sNc

	BeC
G
j;k:

(2.35)

So far we have parametrized the (0,0) (0,0), �j; k� cou-
plings, using NDA as a guide to argue that certain parame-
ters are expected to be of order unity. The explicit one-loop
results, Eqs. (2.7)–(2.10), involve a ��j� k�=2; �k� j�=2�
mode in the loop when j 	 k, and a ��j� k�=2; �j� k�=2�
mode when j < k [10]. For j and k even, there is also a one-
loop contribution with a �j=2; k=2� mode running in the
loop. As a result, the (0,0) (0,0) (1,1) interaction is gen-
erated by a (1,0) loop, while the (0,0) (0,0) (2,0) interaction
is generated by the sum of a (1,0) loop and a (1,1) loop. As
we will see below, these interactions of KK modes beyond
the (1,0) level with two zero-mode fields, have important
phenomenological consequences. Also note that the lead-
ing contributions to these one-loop diagrams involve gluon
and quark KK modes, and therefore are flavor independent.
Electroweak KK modes induce some splitting between the
couplings of the SU�2�W-doublet and singlet quarks as well
as between the up- and down-type quarks. Another effect is
due to the Yukawa couplings to the Higgs doublet, and is
notable only for the �tL; bL� and tR quark fields.

If we use Eqs. (2.7)–(2.10) we find, in the case of 6D
gauge fields A� interacting with some 6D Weyl fermions f
and 6D complex scalars s which have zero modes, that the
‘‘renormalization’’ constants (2.27) that determine the cou-
plings of the (1,1) vector modes to zero-mode fermions via
Eq. (2.26), are given by
 

�Zf�1;1� �

�
�6

X
A

C2�f�g2
A �

X
i

�2
i

�
1

16�2 ln
�
M2
sR

2

2

�
;

�Z0f�1;1� �
X
i

�2
i

1

8�2 ln
�
M2
sR2

2

�
;

�ZA�1;1� �

�
�

22

3
C2�A� �

4

3

X
f

T�f� �
2

3

X
s

T�s�
�
g2
A

1

16�2

� ln
�
M2
sR2

2

�
: (2.36)

Applying this result to the standard model gauge group,
we find the parameters introduced in Eq. (2.29),

 	GqL � 1�
1

2g2
s

�
1

3
�2
qL �

3

2
g2 �

1

18
g02
�
;

	GqR � 1�
1

g2
s

�
1

3
�2
qR �

y2
qR

4
g02
�
:

(2.37)

Similarly, the parameters that control the W�1;1�� couplings
to zero-mode fermions are given by

 	Wq � �
4

3
�
�2
q

6g2
s
�

1

36g2
s
�11g2 � g02�;

	Wl �
11

24
�

3g02

8g2 :

(2.38)

Note that in the above equations the hypercharge interac-
tion give only small corrections, which for practical pur-
poses may be neglected in what follows. However, in the
case of the B�1;1�� couplings to zero-mode fermions, the
wave function renormalization of B�1;1�� (more precisely,
its mixing with B�0;0�� ) is enhanced by the large number of
fields, giving a relatively large contribution from the hy-
percharge interaction:
 

	BqL � �
4

3
�

1

2g2
s

�
1

3
�2
qL �

3

2
g2 �

83

18
g02
�
;

	BqR � �
4

3
�

1

g2
s

�
1

3
�2
qR �

�
41

18
�
y2
qR

4

�
g02
�
;

	Bl � �
9

8
�

91g02

24g2 ;

	Be � �
59

6
:

(2.39)

Note that the couplings of the spin-1 KK modes to the third
generation quarks are somewhat enhanced due to the loops
involving Higgs KK modes.

III. DECAYS OF THE (1,1) MODES

The 6D standard model outlined in the previous section
leads to specific predictions for the properties of the KK
modes. In this section we compute the branching fractions
of the (1,1) modes, which are of special interest for collider
phenomenology. We start by summarizing the information
regarding the parameters that control the branching frac-
tions, and then we discuss in turn each of the (1,1) modes.

A. Parameters

The most important parameter is 1=R, which sets the
overall scale of the KK mass spectrum. Lower limits on
1=R are set mainly by electroweak precision constraints
and are likely to be in the 300–500 GeV range, based on
the study from Refs. [4,16], where a different compactifi-
cation of two extra dimensions has been considered. We
emphasize that the limits from electroweak constraints are
sensitive to higher-dimensional operators at the cutoff
scale, and therefore are not nearly as robust as the limits
that will be set by collider searches (see Sec. IV B).

The cutoff scale,Ms, is in principle another free parame-
ter. However, it cannot be too close to 1=R because the
effective field theory loses its validity, and it cannot be too
far above 1=R because the effective field theory becomes
nonperturbative. We use the NDA estimate given in
Eq. (2.6): Ms � 10=R. Given that the physical observables
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depend on the cutoff scale only logarithmically, this choice
is not a source of large uncertainties.

The coefficients of the localized kinetic terms are all
parameters beyond those in the standard model. They
control the leading contributions to the mass splittings
among the modes within a given KK level, as well as the
KK-number-violating couplings, as discussed in the pre-
vious section. We note that there are two parameters per
localized operator: one controls the strength of the operator
at (0,0) and ��R;�R�, while the second one controls the
strength at �0; �R�. It is important to notice that the mass
shifts and KK-number-violating couplings depend on dif-
ferent linear combinations of these two parameters. Since
in this paper we are mainly interested in the phenomenol-
ogy of the (1,1) level, we may consider their masses and
couplings as independent parameters. However, one should
keep in mind that knowledge of these parameters imply
definite relations for the masses and couplings of other
states, such as the (1,0) modes.

The loop factor that controls the couplings of the (1,1)
gluons to zero-mode quarks CG is (we drop the j � k � 1
indices)

 CG �
�sNc
4�

ln
�
M2
sR

2

2

�
’ 0:1: (3.1)

where we used the value of the strong coupling constant at
a scale of about 1 TeV, �s � 0:1.

The G�1;1�� , W�1;1�3� , and B�1;1�� particles have couplings to
zero-mode fermions proportional to the parameters of
order one 	Gq , 	Wq , 	Wl , 	Bq , 	Bl , and 	Be , introduced in
Eqs. (2.29), (2.33), and (2.35). We will keep the depen-
dence on the 	 parameters explicit whenever possible, but
for numerical results we use the one-loop values given in
Eqs. (2.37), (2.38), and (2.39). One should emphasize that
the decay widths and production cross sections depend
quadratically on the 	 parameters. Therefore, the estimates
for the 	 parameters, which for strongly interacting parti-
cles could be off by a factor as large as 2 or so, is a major
source of uncertainty in the predictions of this model.
Barring unexpectedly large bare contributions, the 	 pa-
rameters associated with the weakly interacting particles
are expected to be more reliable. In addition, one should
keep in mind that the flavor independence of the (1,1)
couplings may be only approximate: the localized opera-
tors induced by physics at the cutoff scale may be flavor
dependent (as discussed in Sec. II, this is a subdominant
effect because the coefficients of these operators are not
enhanced by a logarithmic factor).

Other parameters control the mass splittings among
various (1,1) states. These are also determined by the
coefficients of the localized operators, so that they are
related to CG as shown in Eqs. (2.13)–(2.19). We will
keep the dependence on the coefficients AG, AGH , AQ� ,
AQ� , AW , AWH

, AL, AB, ABH , AE, and AH explicit in our

analytic results, while in the numerical analysis we will use
the values given in Eqs. (2.20)–(2.23).

B. Branching fractions of the B� (1,1)-mode

As we discussed in Sec. II C, B�1;1�� is the lightest of the
standard model KK excitations at the (1,1) level. Only its
spinless partner, B�1;1�H , is expected to be lighter. Thus, B�1;1��

can only decay into zero modes or into B�1;1�H plus zero
modes. We consider first the decays into zero modes only.
Their widths may be computed in terms of the couplings
given in Eqs. (2.34). The decay width into q �q, with q � u,
d, s, c, is given by

 ��B�1;1�� ! q �q� � �B0 ��	
B
qL�

2 � 8�	BuR�
2 � 2�	BdR�

2�; (3.2)

where we summed over the four q �q flavors, and we defined

 �B0 

�

18cos2
w
�CG�2MB�1;1� : (3.3)

Here 
w is the weak mixing angle, and � is the electro-
magnetic coupling constant at a scale of order 1=R. The
decay widths into t�t and b �b are as follows:

 

��B�1;1�� ! t�t� � �B0

�
1

4
�	BtL�

2 � 4�	BtR�
2

��
1�

m2
t

M2
B�1;1�

�

�

�
1�

4m2
t

M2
B�1;1�

�
1=2
;

��B�1;1�� ! b �b� � �B0

�
1

4
�	BtL�

2 � �	BdR�
2

�
:

(3.4)

Note that we have neglected the QCD corrections and the
b-quark mass.

The leptonic decays of B�1;1�� are induced by the 6D
electroweak interactions:

 

��B�1;1�� ! ‘�‘�� � �B0
�2

3�2
ssin4
w

��	Bl �
2 � �	Be �

2tan4
w�;

��B�1;1�� ! � ��� � �B0
�2

�2
ssin4
w

�	Bl �
2; (3.5)

where ‘ � e, �, �, and there is no sum over the three
charged lepton pairs, while the decay width into � �� is
summed over the three neutrino flavors.

There are also 3-body decays, B�1;1�� ! B�1;1�H ‘�‘�

through an off-shell (1,1) lepton. The decay that proceeds
through off-shell SU�2�W-singlet leptons dominates be-
cause of their larger hypercharge. In the limit that B�1;1��

and B�1;1�H are almost degenerate, MB �MBH � MB, we
find

RESONANCES FROM TWO UNIVERSAL . . . PHYSICAL REVIEW D 74, 075008 (2006)

075008-9



 

��B�1;1�� ! B�1;1�H ‘�‘�� �
�2M2

E�1;1�
�MB�1;1� �MB�1;1�H

�4

�cos4
wMB�1;1� �M
2
E�1;1�
�M2

B�1;1�H

�2

� �B0
�3�AB � ABH �

4

2��2
scos6
w�AE � ABH �

2
:

(3.6)

In the second equality we used the parametrizations of the
masses given in Sec. II C, and expanded to lowest order in
the mass shifts. Although for the 1-loop values of AB, ABH
and AL given in Sec. II C there is a considerable ‘‘reso-
nant’’ enhancement, it is not enough to overcome the
phase-space suppression and we find that this partial decay
width is at least 1 order of magnitude smaller than the two-
body decay into leptons of Eq. (3.5). Given that the two-
body leptonic decay is much smaller than the two-body
decay into q �q, we conclude that B�1;1�� is almost ‘‘leptopho-
bic’’ (this term was coined in Ref. [17]).

The decays of B�1;1�� into B�1;1�H and a Z boson or a photon
could proceed through higher-dimension operators similar
to those discussed after Eq. (2.31). Such effects are sup-
pressed compared to the two-body decays discussed above,
and therefore we neglect them. Note, however, that the
decays of the first-level vector mode B�1;0�� through such
higher-dimension operators could be phenomenologically
relevant.

The B�1;1�� total width, in the limit �mtR�
2 � 1 and

neglecting (3.6), is given approximately by
 

�B � �B0

�
�	BqL�

2 � 8�	BuR�
2 � 3�	BdR�

2 �
1

2
�	BtL�

2 � 4�	BtR�
2

�
�2

�2
s

�
2�	Bl �

2

sin4
w
�
�	Be �

2

cos4
w

��
: (3.7)

We compute the 	 parameters from Eqs. (2.39), using
� � 1=127, sin2
w � 0:23, �s � 0:1, and �t � 1, which
gives �g=gs�2 � 0:34, �g0=gs�2 � 0:10, and ��t=gs�2 �
0:8. Note that these values for the coupling constants are
our rough estimates of their average values at a scale M1;1

in the range �0:4–1 TeV. In order to use more precise
values for the coupling constants one would need to com-
pute the changes in their running due to all lighter particles,
including the (1,0) modes. However, the masses of the
colored (1,0) modes may get relatively large corrections
from localized operators at the cutoff scale, so that we
cannot include a precise scale dependence of the coupling
constants.

For quarks, the resulting values of the 	 parameters are
of order unity, as expected: 	BqL ’ �1:8, 	BuR ’ 	

B
dR
’ �1:6,

	BtL ’ �2:0, 	BtR ’ �1:9. For leptons, the couplings are
somewhat enhanced as discussed in subsection II D: 	Bl ’
�2:3, 	Be ’ �9:8. The branching fractions computed with
these parameters are 59% into dijets (not including b jets),
30% into t�t, 7.1% into b �b, 0.9% for each of the e�e�,

���� and ���� pairs, and 1.1% for invisible decays. The
total width is �B ’ 2:4� 10�4MB�1;1� , so B�1;1�� is an ex-
tremely narrow resonance.

For larger values ofmtR, the branching fraction into t�t is
reduced as in Eq. (3.4), while the other branching fractions
are somewhat increased (see the values in Table III of
Sec. III D for 1=R � 500 GeV).

C. Branching fractions of the W3
� (1,1)-mode

The width of the W�1;1�3� decay to quarks depends on the
couplings 	Wq defined in Eq. (2.33):

 ��W�1;1�3� ! q �q� � 4�W0 �	
W
q �

2; (3.8)

where q � u, d, s, c, we summed over these four q �q
flavors, and we ignored QCD corrections. Here we defined

 �W0 

�

8sin2
w
�CG�2MW�1;1� : (3.9)

For t�t and b �b final states we find

 

��W�1;1�3� ! t�t� � �W0 �	
W
t �

2

�
1�

m2
t

M2
W�1;1�

��
1�

4m2
t

M2
W�1;1�

�
1=2
;

��W�1;1�3� ! b �b� � �W0 �	
W
t �

2: (3.10)

The leptonic widths of W�1;1�3� are the same for each
neutrino flavor or left-handed charged lepton:

 ��W�1;1�3� ! e�L e
�
L � � �W0 �	

W
l �

2 4�2

27�2
ssin4
w

: (3.11)

If theW�1;1�3� boson is heavier than the (1,1) leptons, then
it may also decay into a (1,1) lepton and a zero-mode
lepton. In fact this is the case for the values of the masses
given in Sec. II. Summing over the decay widths into
leptons and antilepton doublets of the three generations,
we obtain

 

�
�
W�1;1�3� !

X
L�1;1�l

�
�
�MW�1;1�

2sin2
w

�
1�

M2
L�1;1�

M2
W�1;1�

�
2

�

�
1�

M2
L�1;1�

2M2
W�1;1�

�
: (3.12)

To first order in the mass shifts shown in Eqs. (2.16) and
(2.18), we find

 �
�
W�1;1�3� !

X
L�1;1�l

�
’ �W0

32�2�AW � AL�2

3�2
ssin4
w

: (3.13)

Adding these decay modes to the ones into zero modes, we
find the total width of W�1;1�3� in the �mtR�2 � 1 limit:
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�W � �W0

�
4�	Wq �

2 � �	Wt �
2

�
2�

3m2
t

M2
W�1;1�

�

�
8�2

9�2
ssin4
w

��	Wl �
2 � 12�AW � AL�2�

�
: (3.14)

Using the 	 parameters from Eq. (2.38), 	Wq ’ �1:2,
	Wl ’ 0:35 and 	Wt ’ �1:4, and the A parameters from
Eq. (2.22), AW � AL ’ 1:5, we find the branching fractions
into t�t,

 Br �W�1;1�3� ! t�t� ’ 15%
�
1�

2:6m2
t

M2
W�1;1�

�
; (3.15)

and the decays that preserve KK number,

 Br
�
W�1;1�3� !

X
L�1;1�l

�
’ 22%

�
1�

0:44m2
t

M2
W�1;1�

�
; (3.16)

For m2
t � M2

W�1;1�
, the W�1;1�3� has branching fractions of

48% into dijets (not including the b quark), 15% into b �b,
0.02% into each of the e�e�, ���� and ���� pairs, and
0.06% for invisible decays. Including the next order in the
m2
t =M2

W�1;1�
expansion, these branching fractions have the

same mt dependence as in Eq. (3.15). The W�1;1�3� is almost
as narrow as B�1;1�� , with a total width �W ’ 10�3MW�1;1� .

D. Quark and lepton (1,1)-mode branching fractions

We assume, motivated by the 1-loop mass-shifts given in
subsection II C, that the spinless adjoints,G�1;1�H ,W�1;1�H , and
B�1;1�H , are lighter than the (1,1)-quarks. In this case, the KK
quarks can decay into both vector and spinless modes, via
the KK-number preserving gauge interactions given in
[11].

The SU�2�W-doublet (1,1) quarks can decay into a zero-
mode quark plus a W�1;1�3� or W�1;1��� gauge boson, each
with a partial decay width given by
 

��Q�1;1�� ! W�1;1�i� qL� �
�MQ�1;1��

16sin2
w

�
1�

M2
W�1;1�

M2
Q�1;1��

�
2

�

�
1�

M2
Q�1;1��

2M2
W�1;1�

�
; (3.17)

where we neglected the final quark mass. When the final
state includes the top quark, as for Q3�1;1�

L ! W�1;1�i� tL with
i � �, 3, this approximation may not be valid. In fact, for
the 1-loop masses of Sec. II C, these decays are closed for
1=R� 650 GeV, and are phase space suppressed if the
compactification scale is not much higher. We will neglect
these decay channels in the following, although they could
be important at the LHC, where compactification scales
well above this limit can be probed.

Both the SU�2�W-doublet and singlet (1,1) quarks may
decay into B�1;1�� and a zero-mode quark with a decay width

of
 

��Q�1;1� ! B�1;1�� q� �
y2
q�MQ�1;1�

16cos2
w

�
1�

M2
B�1;1�

M2
Q�1;1�

�
2

�

�
1�

M2
Q�1;1�

2M2
B�1;1�

�
; (3.18)

where yq is the hypercharge of the quark q (normalized
such that yuR � 4=3�.

Given that the quark (1,1) modes appear to be heavier
than the spinless (1,1) gluon, the decay into a G�1;1�H and a
jet has a rather large width:

 ��Q�1;1� ! G�1;1�H q� �
�s
6
MQ�1;1�P

�MG�1;1�H

MQ�1;1�
;
mq

MQ�1;1�

�
;

(3.19)

where we defined the function

 P�x; y� � �1� x2 � y2���1� x2 � y2�2 � 4x2y2�1=2:

(3.20)

Note that the final-state quark is left-handed (right-handed)
if the decaying (1,1) quark is an SU�2�W-doublet (singlet).
The SU�2�W-doublet (1,1) quarks may also decay into a
W�1;1�H and a jet,
 

��Q�1;1�� ! W�1;1�iH qL� �
�

32sin2
w
MQ�1;1��

P
�MW�1;1�H

MQ�1;1��

;
mq

MQ�1;1��

�
:

(3.21)

We included here the dependence on the final-state quark
mass,mq, because the decay of the (1,1) bL-quark, B�1;1�� , is
sensitive to mtR. Any of the (1,1) quarks may also decay
into the hypercharge spinless adjoint and a jet with a width

 ��Q�1;1� ! B�1;1�H q� �
y2
q�

32cos2
w
MQ�1;1�P

�MB�1;1�H

MQ�1;1�
;
mq

MQ�1;1�

�
:

(3.22)

The decay widths into the electroweak spinless adjoints are
comparable to the weak decays of Eq. (3.17) or (3.18),
while the decay into the spinless (1,1) gluon dominates. We
base our estimates of the (1,1) quark branching fractions on
the 1-loop corrected masses given in subsection II C, and
summarize them in Table I.

The decays into the spinless adjoints, G�1;1�H , W�1;1�3H , and
B�1;1�H , are very interesting since these subsequently decay
most of the time into a pair of top quarks, giving rise to a
potentially unique signal for these intrinsically 6D excita-
tions. This is due to the fact that the coupling of the spinless
adjoints to fermions is proportional to the fermion mass, as
explained after Eq. (2.30).

As mentioned in Sec. II, the strongly interacting parti-
cles receive important contributions from multiloop ef-
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fects, and these could in principle make the spinless glu-
ons, G�1;1�H , heavier than the (1,1) quarks, thus closing these
decay channels. In that case, the SU�2�W-doublet quarks
would decay about 56% of the time intoW�1;1�� qL, 42% into
W�1;1�H qL, and the rest into B�1;1�� qL and B�1;1�H qL. The
SU�2�W-singlet quarks would decay about 67% of the
time into B�1;1�� qR and 33% into B�1;1�H qR.

The (1,1) leptons can decay to the (1,1) modes of the
electroweak gauge bosons or spinless adjoints. The decay
widths are given by Eqs. (3.18), (3.21), and (3.22), with

MQ�1;1� replaced by ML�1;1� , and yq replaced by yl. Using the
one-loop results for the various masses given in
subsection II C, we find the branching fractions summa-
rized in Table II.

Combining the W�1;1�3� branching fractions into a (1,1)
lepton and a zero-mode lepton with the L�1;1� branching
fractions, leads to the cascade decays of W�1;1�3� into (1,1)
bosons shown in Table III. Given that W�1;1�3H and B�1;1�H
decay almost exclusively into t�t pairs, about 21% of the
W�1;1�3� decays lead eventually to t�t pairs.

E. Branching fractions of the gluon (1,1)-mode

The decays of G�1;1�� that preserve KK numbers are into
U�1;1��R

�UR, �U�1;1��R
uR, U�1;1��L

�UL, �U�1;1��L
uL, and the analogous

pairs of the other five quark flavors. The partial widths for
these decays are given by
 

��G�1;1�� ! U�1;1��R
�UR� ’

�s
12
MG�1;1�

�
1�

M2
U�1;1��

M2
G�1;1�

�
2

�

�
1�

M2
U�1;1��

2M2
G�1;1�

�
(3.23)

and analogous expressions for the other (1,1) quarks. Given
the approximate degeneracy of the gluon and quark KK
modes, the above decays are phase-space suppressed, and
are in competition with the decay into a quark-antiquark
pair, which is suppressed by the small KK-number-
violating couplings:
 

��G�1;1�� ! q �q� ’
�s
12
�CG�2��	GqL�

2 � �	GqR�
2�

�MG�1;1�

�
1�

3m2
q

M2
G�1;1�

�
; (3.24)

where there is no flavor sum over the q �q pairs. The decay
into two gluons is also allowed [12], but even further
suppressed.

Using the parametrization for the (1,1)-mode masses
shown in Eqs. (2.13) and (2.15), assuming for the moment
that all quark (1,1) modes are degenerate, and expanding
for simplicity in AGCG, we find the total width of G�1;1�� :
 

�G � �s�C
G�2MG�1;1�

�
1

12
�4�	GqL�

2 � 2�	GuR�
2 � 3�	GdR�

2

� 2�	GtL�
2 � �	GtR�

2� � 10�AG � AQ�
2

�
: (3.25)

Here we have taken into account that theG�1;1�� decays to a t
quark and one of its (1,1) modes are kinematically forbid-
den for 1=R� 1 TeV. For �AG � AQ� of order unity, G�1;1��

has a width of the order of a few percent of its mass. Given
that the 	Gq coefficients are also expected to be of order
unity, the decay into a (1,1)-mode quark and a zero-mode

TABLE I. Branching fractions (in percentage) into vector and
spinless modes for the SU�2�W-doublet quarks of the first two
generations Q�1;1�� , for the (1,1) mode of the bL-quark, B�1;1�� , and
for the SU�2�W-singlet quarks, U�1;1�� and D�1;1�� . The branching
fractions of the t quark (1,1) modes are strongly dependent on
mtR, and are not shown here. The phase-space suppression used
for the decay B�1;1�� ! W�1;1��H tL corresponds to 1=R � 0:5 TeV.

Decay modes Q�1;1�� B�1;1�� U�1;1�� D�1;1��

G�1;1�H q 41 58 61 86

W�1;1�3H q 8 11 — —

W�1;1��H q 17 14 — —

B�1;1�H q 0.3 0.4 13 5

W�1;1�3� q 11 15 — —

W�1;1��� q 22 — — —

B�1;1�� q 0.9 1.1 26 9

TABLE II. Branching fractions (in percentage) into vector and
spinless modes for the SU�2�W-doublet leptons, L�1;1�, and the
SU�2�W-singlet leptons, E�1;1�.

Decay modes: W�1;1��H l W�1;1�3H l B�1;1�H l B�1;1�� l

L�1;1� 45 22 21 12
E�1;1� — — 79 21

TABLE III. Branching fractions of W�1;1�3� and B�1;1�� in per-
centage. The final states involving (1,1) bosons are due to
cascade decays via a (1,1) lepton. The phase-space suppression
of the decays into t�t are computed for 1=R � 0:5 TeV.

Decay modes W�1;1�3� B�1;1��

t�t 13 26
b �b 16 8
dijet (no b �b) 52 62P
‘�‘� 0.05 3

� �� 0.05 1
W�1;1�3H � leptons 4 —

W�1;1��H � leptons 9 —

B�1;1�H � leptons 4 —

B�1;1�� � leptons 2 —
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quark dominates. For each flavor of q �q pairs, the branching
fractions is approximately given by

 Br �G�1;1�� ! q �q� �
�	GqL�

2 � �	GqR�
2

120�AG � AQ�
2 ; (3.26)

which typically leads to branching fractions of less than
1%.

The values of the 	 parameters given by Eqs. (2.37) are
indeed of order unity: 	GqL � 0:74, 	GuR � 0:95, 	GdR � 0:99,
	GtL � 0:61, and 	GtR � 0:69. However, according to the
estimates of Sec. II C, AG has a rather large value of
13=3, so that for more precision we compute the branching
fractions without expanding in AGCG. Using the quark
(1,1) masses given by Eqs. (2.15) and (2.20), we find that
the G�1;1�� decays approximately 96% of the time into a
(1,1) mode quark and the corresponding zero-mode quark.
These decays are split as follows: 35% into down-type
SU�2�W-singlets, 22% into uR and cR modes, 32% into
doublets of the first two generations, and 6.3% into bL
modes. The subsequent decay of the (1,1) quark depends
on its transformation properties under SU�2�W , as dis-
cussed in Sec. III D. Using the branching fractions of the
(1,1) quarks given in Table I, we find the branching frac-
tions for the G�1;1�� cascade decays and direct decays listed
in Table IV. The total width is �G ’ 3:7� 10�2MG�1;1� .

As mentioned in Sec. III D, the electrically-neutral spin-
less adjoints, G�1;1�H , W�1;1�3H and B�1;1�H , decay most of the
time into t�t pairs. The additional possible two-jet final
states coming from two gluons are forbidden due to the
vanishing of the operators similar to the one shown in
Eq. (2.31). Furthermore, about 21% of the W�1;1�3� decays
lead to t�t pairs (see Sec. III D), while B�1;1�� has a branching
fractions of about 26% into t�t. The decays of W�1;1���

involving a (1,1) lepton yield some additional t�t pairs.

We therefore expect a significant fraction, of about 72%,
of the vector gluon modes to produce t�t events.

IV. SIGNALS AT THE TEVATRON

In the absence of boundary terms, the conservation of
KK number implies that KK modes cannot be singly-
produced. In addition, as pointed out in Ref. [5] for the
5D case, the nearly degenerate spectrum typically results in
rather soft jets and lepton signals. However, KK-number-
violating interactions such as those in Eqs. (2.4) and (2.5),
while still preserving ZKK

2 , allow for the production of
single (1,1) states through their interactions with zero
modes. In what follows, we study the s-channel production
of the (1,1) KK gluon G�1;1�� , as well as of the electroweak
gauge bosons W�1;1�3� and B�1;1�� . Their subsequent decays
give rise to interesting signals at the Tevatron.

A. s-channel production of the (1,1) modes

Let us first consider the s-channel production of the
gluon vector mode G�1;1�� through the coupling to q �q pairs
given in Eq. (2.25). The differential cross section for the
s-channel process q �q! G�1;1�� ! U�1;1��R

�UR is given by
 

d�̂G
d�cos
�

�
��2

s

36ŝ2 �C
G�2

�ŝ�M2
Q�1;1�
�2

�ŝ�M2
G�1;1�
�2 �M2

G�1;1�
�2
G

� f�ŝ�1� cos
�2 �M2
Q�1;1�

sin2
��	GqL�
2

� �ŝ�1� cos
�2 �M2
Q�1;1�

sin2
��	GqR�
2g; (4.1)

where 
 is the angle between the momenta of U�1;1��R
and q,

and ŝ is the energy of the parton collision, both defined in
the center-of-mass frame.

In the narrow width approximation, the parton-level
cross section for the production of a (1,1) gluon takes a
simple form:
 

�̂�q �q! G�1;1�� � �
4�2�s
9MG

�CG�2��	GqL�
2 � �	GqR�

2�

� ��
���̂
s
p
�MG�1;1� �: (4.2)

Integrating this partonic cross section over the parton
distribution functions, we find the inclusive cross section.
At the Tevatron, the total production cross section is given
by
 

��p �p! G�1;1�� X� �
8�2�s

9s
�CG�2

X
q

tq�M2
G�1;1�

=s�

� ��	GqL�
2 � �	GqR�

2�: (4.3)

To leading order in �s,

 tq�z� �
Z 1

z

dx
x
�q�x�q�z=x� � �q�x� �q�z=x��: (4.4)

TABLE IV. Branching fractions of G�1;1�� in percentage. The
final states involving (1,1) bosons are due to cascade decays via a
(1,1) quark. With the exception of the decays into W�1;1��H;� and t�t,
whose widths are computed for 1=R � 0:5 TeV, the branching
fractions are only mildly dependent on 1=R.

Decay modes G�1;1��

G�1;1�H � jets 60.5

W�1;1�3H � jets 3.2

W�1;1��H � jets 6.1

B�1;1�H � jets 4.8

W�1;1�3� � jets 4.3

W�1;1��� � jets 7.0

B�1;1�� � jets 9.3
t�t 0.5
b �b 0.8
Dijet (no b �b) 3.3
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The parton distribution functions (PDF’s) q�x� and �q�x� are
evaluated at the scaleMG�1;1�=2, and

���
s
p
� 1:96 TeV in Run

II. We use the CTEQ6 leading order PDF’s [18], and a
correction factor of K � 1:3 to approximate the next-to-
leading order (NLO) QCD corrections. This approximation
is often used in the case of Z0 production (for a discussion
of its accuracy, see Ref. [19]). Note that W�1;1�3� and B�1;1��

fall into this category, whereas G�1;1�� production has differ-
ent color flow, so that a slightly different K factor may be
necessary in that case; we will not study this issue in what
follows. The result is the solid line shown in Fig. 3.

We emphasize that this is only a rough estimate of the
vector-mode production cross sections. We have not in-
cluded several corrections: (i) the nonresonant process
induced by a t-channel exchange of a (1,1) gluon which
involves a single KK-number-violating interaction;
(ii) s-channel production of a (1,1) gluon from gluon
fusion, via dimension-6 operators (note that the q �q initial
state dominates at the Tevatron); (iii) exact NLO and next-
to-next-to-leading order QCD corrections. However, we
expect our estimate to be correct up to a factor of less
than 2, which is sufficient for the purpose of deciding
whether a search for (1,1) modes at the Tevatron is useful.

The production cross sections for the s-channel pro-
cesses q �q! W�1;1�3� , B�1;1�� ! q0 �q0 may be computed in a
similar fashion. The differential cross sections for these
two processes are given by

 

d�̂W
d�cos
�

�
��2�CG�4

128sin4
w
�	Wq 	

W
q0 �

2fq0 �cos
�

�
ŝ

�ŝ�M2
W�1;1�
�2 �M2

W�1;1�
�2
W

; (4.5)

 

d�̂B
d�cos
�

�
��2�CG�4

128cos4
w

ŝ

�ŝ�M2
B�1;1�
�2 �M2

B�1;1�
�2
B

� ��aqLaq0L � aqRaq0R�fq0 �cos
�

� �aqRaq0L � aqLaq0R�fq0 �� cos
��; (4.6)

where the function that encodes the angular distribution
has the following form:

 fq�y� � �1� y�2 � 2�1� 4y� 3y2�
m2
q

ŝ
�O�m4

q=ŝ2�:

(4.7)

Note that we keep the dependence on the final-state quark
masses, which is useful for the decay into t�t. The parame-
ters aqL , aq0L , aqR , aq0R are products of hypercharges and 	
parameters:

 aq � �	
B
qyq�

2: (4.8)

The parton-level production cross sections are given in
the narrow width approximation by

 �̂�q �q! W�1;1�3� � �
�2��	Wq CG�2

12sin2
wMW�1;1�
��

���̂
s
p
�MW�1;1� �;

(4.9)

 

�̂�q �q! B�1;1�� � �
�2��CG�2

12cos2
wMB�1;1�
�aqL � aqR�

� ��
���̂
s
p
�MB�1;1� �: (4.10)

The total production cross section at the Tevatron are
given by
 

��p �p! W�1;1�3� � �
�2��CG�2

6sin2
ws

X
q

�	Wq �2tq�M2
W�1;1��

=s�;

��p �p! B�1;1�� � �
�2��CG�2

6cos2
ws

X
q

�aqL � aqR�tq�M
2
B�1;1��

=s�;

(4.11)

and are shown in Fig. 3. Note that the B�1;1�� production is
suppressed compared to W�1;1�3� production by a tan2
w
factor, but it is also enhanced by the larger values of the
	 parameters, such that the curves representing the two
cross sections are very close to each other.

B. Peaks in the invariant mass distributions

Once produced at the Tevatron, the G�1;1�� , W�1;1�3� , and
B�1;1�� would decay with the branching fractions given in
Tables III and IV. These vector (1,1) modes are leptophobic
(only B�1;1�� has a potentially interesting branching fractions
of about 1% into each lepton pair), but have rather large
branching fractions into t�t pairs, either directly or via
cascade decays as explained at the end of Sec. III E.
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FIG. 3 (color online). Production cross sections for (1,1) vec-
tor modes in the s channel at the Tevatron, as a function of their
mass. The solid line is for G�1;1�� , while the dashed and dotted
(lowest) lines are for W�1;1�3� and B�1;1�� , respectively, (acciden-
tally, the cross sections for these two are close to each other such
that they might not be distinguishable).
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Altogether there are six resonances that can be produced in
the t�t invariant mass distribution: the vector and spinless
(1,1) modes of the gluon and of the two electroweak gauge
bosons. However, the decay G�1;1�� ! t�t has a negligible
branching fraction. Therefore, we will concentrate on the t�t
peaks at the masses of G�1;1�H , W�1;1�3� , B�1;1�� , W�1;1�3H , and
B�1;1�H . These are given by 1:10M1;1, 1:08M1;1, 0:98M1;1,
0:95M1;1, and 0:86M1;1, where M1;1 �

���
2
p
=R.

The spinless (1,1) gluon, G�1;1�H , is produced only in
cascade decays of the vector (1,1) gluon, as shown in
Fig. 4, the electroweak spinless adjoints are produced in
the cascade decays of both W�1;1�3� (see Fig. 5) and G�1;1�� ,
while the electroweak vector modes are produced both in
cascade decays and directly, as shown in Fig. 5. The cross
sections for producing t�t pairs with an invariant mass
corresponding to the five resonances are given by
 

�t�t�G
�1;1�
H � � ��G��bG�GH�;

�t�t�W
�1;1�3
� � � ���G��bG�W3

�� � ��W3
���bW�t�t�;

�t�t�B
�1;1�
� � � ���G��bG�B�� � ��W3

��bW�B��

� ��B���bB�t�t�;

�t�t�W
�1;1�3
H � � ��G��bG�W

3
H� � ��W

3
��bW�W

3
H�;

�t�t�B
�1;1�
H � � ��G��bG�BH� � ��W3

��bW�BH�;

(4.12)

where we introduced the shorthand notations

 ��V�� 
 ��p �p! V�1;1�� X�; (4.13)

for the production cross sections shown in Fig. 3, and
 

bG�V� 
 Br�G�1;1�� ! V�1;1� � jets�;

bW�V� 
 Br�W�1;1�3� ! V�1;1� � leptons�;

bV�t�t� 
 Br�V�1;1�� ! t�t�:

(4.14)

for the branching fractions given in Tables III and IV. In
Eq. (4.12) we have used branching fractions of 100% for

electrically-neutral spinless adjoints into t�t, which is a
reasonably good approximation.

Additional contributions to the t�t peaks at the B�1;1�� ,
W�1;1�3H and B�1;1�H masses come from s-channel production
of W�1;1��� followed by cascade decays similar to the one in
Fig. 5. However, the relevant branching fractions for
W�1;1��� are at most a few percent, and for simplicity we
ignore them. We have also neglected contributions to
Eq. (4.12) coming from the cascade decays of a (1,1) KK
gluon through a W�1;1�� into B�1;1�� , W�1;1�3H or B�1;1�H , because
these are suppressed by an additional branching ratio.

The five resonances described above are very narrow,
but cannot be separately resolved at hadron collider experi-
ments. At CDF and D0, the t�t pair mass resolution is
expected to be around 10%, so one could hope for at
most three distinct peaks. The heaviest one corresponds
to the G�1;1�H and W�1;1�3� resonances which have masses 2%
apart, with an average of 1:09M1;1. Then, there is a peak at
0:97M1;1, composed of W�1;1�H and B�1;1�� , whose masses
separated by 3% cannot be resolved experimentally. The
third peak, due to B�1;1�H , is at 0:86M1;1.

In Fig. 6 we plot the cross sections for t�t pairs coming
from the three mass peaks. The current preliminary limits
at the 95% confidence level from D0 [20] and CDF [21] on
the production cross section of a narrow t�t resonance,
based on 0:37 fb�1 and 0:32 fb�1 of Run II data, respec-
tively, are around 1 pb forM�t�t� above 600 GeVor so, and a
few times larger than that for M�t�t� in the 350–550 GeV
range due to some excess events. The G�1;1�H �W�1;1�3� and
W�1;1�3H � B�1;1�� mass peaks have cross sections not far
below these limits, but at the moment 1=R is not con-
strained by s-channel production of (1,1) modes.

Nevertheless, the much larger integrated luminosity ex-
pected until the end of Run II will make it possible to probe
an interesting range of values for the compactification
scale. In order to estimate the ultimate reach of the
Tevatron, we plot in Fig. 7 the sum of the cross sections

q

q

G(1,1)
µ

U(1,1)
−

jet

jet

G(1,1)
H

t

t

FIG. 4. Production of the vector (1,1) gluon followed by a
cascade decay. The � stands for a KK-number-violating cou-
pling. Other diagrams having the same topology exist: the U�1;1��

quark KK mode may be replaced by D�1;1�� , Q�1;1�� , or the
corresponding antiquarks; in addition the spinless gluon G�1;1�H

may be replaced by B�1;1�� or B�1;1�H , and in the case where the
quark KK mode is an SU�2�W doublet, by W�1;1�3� or W�1;1�3H .

q

q

W (1,1)3
µ , B (1,1)

µ
t

t

q

q

W (1,1)3
µ

L (1,1)
− W (1,1)3

H

t

t
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representative decays.
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into t�t pairs from all peaks versus the uncorrected mass of
the (1,1) KK level, i.e., M1;1 �

���
2
p
=R. One should keep in

mind that for any given value of 1=R the separation be-
tween consecutive mass peaks is slightly above 10%. For
instance, for 1=R � 500 GeV, the peaks are at 770 GeV,
680 GeV, and 610 GeV. For this value of the compactifi-
cation scale, the total cross section for t�t pairs from (1,1)
resonances is approximately 40 fb. The branching fraction
for t�t into the lepton plus jets final state used in [20,21] is
29%, while the product of acceptance times efficiency is
expected to be in the 15%–20% range. Therefore, approxi-
mately 5% of the t�t pairs can be selected, so that an
integrated luminosity of 5 fb�1 will result in a total of
about 10 reconstructed t�t events from the sum of all (1,1)
resonances, for 1=R � 500 GeV.

Although the background is small, due especially to
standard model t�t and W � 4j productions [20], it is not
negligible at large luminosity for M�t�t� below 800 GeV or
so, and therefore the ultimate Tevatron reach is likely to be
below 1=R � 500 GeV.

An estimate of the future sensitivity to t�t resonances [22]
shows that with 4 fb�1 the production cross section will be
down to 1.3 pb for a mass of 450 GeV, and 0.7 pb for a mass
of 550 GeV. Comparing these numbers with the cross
section for the G�1;1�H �W�1;1�3� mass peak given in Fig. 6,
we find that there will be sensitivity to a peak of mass up to
480 GeV. Given that Run II may deliver more than 4 fb�1,
and that there are additional t�t events from the nearby
W�1;1�3H � B�1;1�� mass peak, it is likely that the ultimate
Tevatron sensitivity will be for a G�1;1�H �W�1;1�3� mass
peak above 500 GeV, corresponding to a limit of
320 GeV on 1=R.

A cautionary comment needs to be made: the prelimi-
nary D0 and CDF limits mentioned above have been
derived based on the assumption that there is a single t�t
resonance having a width equal to 1.2% of its mass [20,21].
In the model with two universal extra dimensions dis-
cussed here, there are several resonances arising from
both direct production and cascade decays, and therefore
one would need to set limits based on these facts. However,
the extra jets and leptons that are produced in the cascade
decays are relatively soft due to the approximate mass
degeneracy of the (1,1) modes, and are not likely to change
dramatically the limits. The individual resonances are very
narrow (with widths of at most 0.1% of their mass for the
electroweak KK bosons, and of the order of 1% for G�1;1�H ),
but the main ones come in pairs, with separations of 2–3%
within the pairs. Given the expected resolution of 10%,
such a pair of resonances looks like a single resonance,
similar to the one used to set the CDF and D0 limits. The
presence of two pairs (the top two curves in Fig. 6) with
comparable cross sections, which may partially overlap, is
likely to have a stronger impact on the limits. Overall
though this is not a concern at the level of accuracy
employed here.

So far, we have assumed in this section that the KK mass
splittings and KK-number-violating couplings are given by
the one-loop effects discussed in Sec. II. We reiterate that
there are uncertainties in the mass splittings and couplings
to zero modes of the (1,1) modes due to higher loops
involving the SU�3�C interactions (see Sec. II B). These
could have several effects. For example, the mass of G�1;1�H

could be further apart from the mass ofW�1;1�3� . However, it
turns out that the majority of events in the G�1;1�H �W�1;1�3�

mass peak are due to G�1;1�H , so that the uncertainty in the
mass of G�1;1�H does not result into a changed sensitivity to
the highest peak, but rather into an uncertainty on the limit
on 1=R. A more drastic effect of the higher loops would be
to invert the mass hierarchy between the (1,1) quarks and
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FIG. 6 (color online). Cross section for the production of t�t
pairs at the Tevatron from the three distinct mass peaks: G�1;1�H �

W�1;1�3� (top, solid line), W�1;1�3H � B�1;1�� (middle line) and B�1;1�H
(bottom line).
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FIG. 7 (color online). Cross section for the production of t�t
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marks 10 selected events with 5 fb�1, assuming that 5% of the t�t
pairs are selected.
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G�1;1�H . In that case the t�t peak at the G�1;1�H mass would be
highly suppressed, but a large fraction of the G�1;1�� cascade
decays would result in t�t events at the mass peaks due to
the (1,1) electroweak bosons (see Sec. III D).

If the qualitative mass hierarchy of (1,1) modes is the
one given by the one-loop results, then shifts in two pa-
rameters from higher loops could have a substantial impact
on the production cross section of the t�t resonances. First,
the mass splitting between G�1;1�� and G�1;1�H could be differ-
ent. If it is larger (smaller), then the cross section for a
given G�1;1�H mass decreases (increases), as it is harder
(easier) to produce the G�1;1�� boson, which is the main
source of G�1;1�H production, via cascade decays.

Second, the average coupling of G�1;1�� to quark zero-
modes, 	Gq [see Eqs. (2.25) and (2.29)], may also be differ-
ent than the one-loop result. Assuming that the change in
	Gq is at most a factor of 2, the cross section for the t�t signal

due to G�1;1�H decays (approximately given by the top curve
in Fig. 6) could still increase by a factor of 4, because the
cross section is proportional to �	Gq �2, as shown in Eq. (4.3).
In that case the CDF and D0 sensitivity from Ref. [22] with
4 fb�1 would increase to a G�1;1�H mass of about 700 GeV.
Notice also that a large decrease in 	Gq would not neces-

sarily dilute completely the Tevatron reach, since theW�1;1��

and B�1;1�� production cross sections depend on parameters
other than 	Gq (those parameters, 	Wq and 	Bq , are affected
by higher loops that change the wave function renormal-
ization of the quarks, but their shifts may be different than
for 	Gq ). Based on these considerations, we conclude that
the ultimate Tevatron sensitivity to t�t mass peaks from the
6D standard model may be as high as in the 0.5–0.7 TeV
range (corresponding to 1=R as high as 320–450 GeV),
depending on the values of parameters controlled by the
SU�3�C interactions of the KK modes.

For low enough 1=R one may hope for a discovery of t�t
resonances at the Tevatron. In that case one should find
ways of discriminating the models with two universal extra
dimensions against other models that predict t�t resonances,
such as Topcolor [23] or certain technicolor models [24].
Fortunately, the extra jets and leptons from cascade decays
may provide useful checks for confirming that the reso-
nances are due to (1,1) modes. The jets come from decays
of the colored (1,1) states as shown in Fig. 4, and may carry
an energy of up to 10–15% of the mass of the decaying
particle. The leptons come from cascade decays of W�1;1�3�

(see Fig. 5), with rather small but still relevant branching
fractions given in Table III. Measurements of angular
distributions may further discriminate among various
models.

In addition to the decays into t�t pairs from the above
mentioned resonances, there will be decays ofW�1;1�� , B�1;1�� ,
and (to a lesser extent, see Table IV) of G�1;1�� into a pair of
jets. From Table III, we see that Br�W�1;1�3� ! dijets� �

64% and Br�B�1;1�� ! dijets� � 71%, where we included b
jets. Figure 3 shows that dijet resonances at the W�1;1�3� and
B�1;1�� masses are produced with cross sections of tens of
femtobarns, for 1=R ’ 500 GeV. The search for dijet reso-
nances is a great challenge due to large backgrounds
[25,26], but an observation at invariant masses consistent
with the t�t peaks would provide a further confirmation of
the models with universal extra dimensions.

Here we have concentrated on single production of (1,1)
modes. The pair production of (1,0) modes is also interest-
ing, and needs to be analyzed in detail. In the case of one
universal extra dimension, a search in the leptons plus
missing-energy channel in Run I is already setting a limit
of 1=R > 280 GeV at the 95% confidence level [27]. In
order to set limits on two universal extra dimensions based
on pair production of (1,0) modes, one needs to use the
KK-number preserving interactions derived in Ref. [11]
and compute the relevant cross sections and branching
fractions. Compared to the case of one universal extra
dimension, the presence of spinless adjoints could substan-
tially change both the cross sections for pair production
[28] and the branching fractions [5]. We leave this impor-
tant study for future work.

V. PROSPECTS FOR THE LHC

By contrast to the Tevatron, where the dominant contri-
bution to the production of (1,1) modes comes from q �q
annihilation, at the LHC there will be competing contribu-
tions from parton-level processes involving gluons in the
initial state. The KK-number-violating couplings of gluons
arise from higher-dimensional operators generated at the
one-loop level. Although these couplings are not enhanced
by a logarithmic factor, as the q �q couplings to vector
modes (see section II D), the presence of the gluon in the
initial state may compensate this effect due to a larger PDF
at moderate energies. The main processes are s-channel
production due to dimension-6 operators of the G�1;1�� and
B�1;1�� vector modes through gluon fusion, and of the (1,1)
quark modes through quark-gluon fusion. It is beyond the
scope of this article to compute the coefficients of these
operators which arise from finite one-loop contributions. In
order to have an order of magnitude estimate of (1,1)-mode
production at the LHC we compute the q �q annihilation
processes which have logarithmic enhancements of the
couplings but smaller PDF’s for �q.

The production cross sections at the LHC for G�1;1�� ,
W�1;1�3� , and B�1;1�� due to q �q annihilation are given by the
right-hand sides of Eqs. (4.3) and (4.11) with tq�z� replaced
by

 

Z 1

z

dx
x
�q�x� �q�z=x� � �q�x�q�z=x��; (5.1)

to leading order in �s. In Fig. 8 we plot these three cross
sections, using the CTEQ6 PDF’s at leading order with a K
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factor of 1.3. In the case of G�1;1�� , and B�1;1�� , these are
underestimates of the total production cross sections be-
cause the additional contributions to the production cross
sections from gluon fusion mentioned above are not in-
cluded. For W�1;1�3� production, the SU�2�W gauge symme-
try does not allow gluon fusion via dimension-6 operators,
and therefore the only relevant parton-level process is
q �q! W�1;1�3� . One should keep in mind though that addi-
tional W�1;1�3� particles are produced from the cascade
decays of G�1;1�� , as explained in Sec. III E.

In order to translate these high rates at the LHC into a
mass reach it is necessary to study carefully the back-
grounds, which are huge for values of 1=R in the few
hundred GeV, where the Tevatron has a significant discov-
ery potential. For larger values of the compactification
scale, the backgrounds should be manageable for the t�t
signal. Moreover, for large 1=R the decay of G�1;1�� to a top
quark and its (1,1) mode opens up (see Sec. III E), leading
to additional interesting signals involving t and b quarks.
Thus, the LHC will complement the searches at the
Tevatron discussed in Sec. IV, by probing larger values of
1=R.

In Fig. 9 we plot the cross sections for t�t pairs coming
from the G�1;1�H �W�1;1�3� , W�1;1�3H � B�1;1�� , and B�1;1�H mass
peaks, including only the q �q initial states. Comparing these
cross sections to the discovery potential of the ATLAS
detector for a narrow resonance decaying to t�t, given in
[29,30], we estimate that the production cross sections for
(1,1) modes are large enough to allow discovery of narrow
t�t resonances of at least 1 TeV with an integrated luminos-
ity of 30 fb�1. The reach can be further increased by using
the extra leptons produced in the cascade decays of the
W�1;1�3� and W�1;1��� modes, as shown in Fig. 5.

If a discovery is made, further measurements may be
performed: angular distributions, threshold effects in cas-

cade decays, lepton pairs from B�1;1�� decays (the branching
fraction is 1% for each of the e�e� and ���� pairs). A
thorough study of the capabilities of the LHC, both in the
hadronic and leptonic channels is needed. Particularly
exciting would be to identify the spinless adjoints, since
the presence of these states is a distinctive feature of the 6D
scenario.

The most convincing test of the existence of two uni-
versal extra dimensions would be the observation of series
of resonances clustered around the masses of the �j; k�
levels with j� k even. Relative to the first even level, of
mass M1;1 �

���
2
p
=R, the next four even levels have masses

M2;0 �
���
2
p
M1;1, M2;2 � 2M1;1, M3;1 �

���
5
p
M1;1, M4;0 �

2
���
2
p
M1;1. Within each of these levels, the relative mass

splittings are roughly the same as for the (1,1) level (see
Fig. 1). However, the branching fractions into zero-mode
fermions are smaller than for the corresponding (1,1) mode
because the higher-level KK modes may also decay into
lower level ones.

VI. CONCLUSIONS

The 6D standard model compactified on the chiral
square [10,11] is a well motivated theory, given that it
predicts a long proton lifetime [31], it restricts the number
of fermion generations to a multiple of three [8], and it
accommodates nicely the observed pattern of neutrino
oscillations [9]. We have computed here the spectrum of
KK modes, which is split due to localized operators in-
duced by one-loop effects (see Sec. II). In particular, we
have shown that the lightest KK particle in this model is the
hypercharge spinless adjoint B�1;0�H , whose mass is roughly
15% below the compactification scale 1=R which sets the
tree-level mass of the (1,0) KK modes. This appears to be a
promising dark matter candidate, but in order to find the
range of values for 1=R consistent with the dark matter
abundance one would need to determine the relic density
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FIG. 8 (color online). Production cross sections for (1,1) vec-
tor modes in the s channel at the LHC due to q �q annihilation.
The solid, dashed and dotted (lowest) lines represent the G�1;1�� ,
W�1;1�3� and B�1;1�� production cross sections, respectively.
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FIG. 9 (color online). Cross section for the production of t�t
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along the lines of the detailed computations performed in
the case of one universal extra dimension [32,33].

We have also computed the KK-number-violating inter-
actions due to loop-induced localized operators which,
although suppressed compared to the tree-level interac-
tions presented in Ref. [11], have important phenomeno-
logical consequences. In this way we have laid the
groundwork for studies of the phenomenology of two
universal extra dimensions.

After completing this general study of the KK couplings
and masses, we have focused on the (1,1) modes, which are
even under KK-parity, and therefore may be produced in
the s channel at colliders. The (1,1) modes are the lightest
KK modes of this type, with a tree-level mass of only���

2
p
=R. This low mass for an even KK level, and the

presence of spinless adjoints changes significantly the
phenomenology compared to the case of level-2 modes
from one universal extra dimension discussed in
Refs. [5,7].

In Sec. III we have computed the branching fractions of
the (1,1) KK modes. As in the case of one universal extra
dimension, the even vector modes are leptophobic because
the loop-induced couplings to zero-mode leptons are gen-
erated by the SU�2�W �U�1�Y interactions, while the loop-
induced couplings to zero-mode quarks are generated by
the SU�3�C interactions. Only the hypercharge (1,1) mode
has a non-negligible branching fractions into lepton pairs:
1% for each of e�e� and ����. An interesting result of
our computation is that the branching fractions to t�t pairs
are enhanced, especially because the strength of the (1,1)
couplings to the top quark is increased by one-loop cor-
rections involving the Yukawa interaction to the Higgs
fields. Even more strikingly, the spinless adjoints decay
most of the time into t�t pairs, because their couplings to
zero-mode fermions are proportional to the fermion mass.
Putting together the direct decays and cascade decays of
vector (1,1) modes, we have found large branching frac-
tions for final states involving t�t resonances: 72%, 21%,
and 26% for G�1;1�� , W�1;1�3� , and B�1;1�� , respectively, for
1=R� 500 GeV.

Although leptophobic bosons are usually hard to observe
at hadron colliders, due to large backgrounds, the sizable
branching fractions into t�t offer promising prospects for
searches at the Tevatron and the LHC. We have shown that
the Tevatron is likely to set useful limits on 1=R, through
s-channel production of the (1,1) gluon, B�1;1�� and W�1;1�3� ,
and their subsequent cascade or direct decays to a pair of

top quarks (see Sec. IV B). Altogether there are five narrow
resonances to be observed in the invariant t�t mass distri-
bution, but they form at most three mass peaks once we
take into account a realistic t�t pair mass resolution. With
4 fb�1, the D0 and CDF experiments may discover reso-
nances in the t�t channel, or else will likely set a lower limit
on t�tmass peaks in the 500–700 GeV range, corresponding
to a lower limit on 1=R in the 320–450 GeV range.

If a discovery of one or more t�t resonances is made at the
Tevatron, or for larger 1=R at the LHC, there are various
other measurements that can differentiate the 6D standard
model from other theories, such as Topcolor [23], that
predict similar resonances. Particularly useful would be
measurements of the extra jets and leptons from cascade
decays, angular distributions in the decays of spinless
adjoints, the dijet invariant mass distribution that may
reveal resonances with the same mass as in the t�t channel,
and signals involving missing transverse energy from pair
production of (1,0) modes.

Despite the troublesome backgrounds at the LHC, the
large rates for producing t�t resonances at high invariant
mass, in the TeV range, would allow accurate measure-
ments. For a precise assessment of the LHC reach in 1=R,
more detailed studies are needed. Particularly exciting
would be the discovery of resonances associated with
several KK levels. The masses of consecutive even levels
have ratios given by a peculiar factor of

���
2
p

for the first
three even levels, so that the observation of clusters of
resonances fitting this pattern would signal the existence
of two universal extra dimensions.
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