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We consider in the soft-collinear effective theory semi-inclusive hadronic B decays, B! XM, in which
an energetic light meson M near the endpoint recoils against an inclusive jet X. We focus on a subset of
decays where the spectator quark from the B meson ends up in the jet. The branching ratios and direct CP
asymmetries are computed to next-to-leading order accuracy in �s and to leading order in 1=mb. The
contribution of charming penguins is extensively discussed, and a method to extract it in semi-inclusive
decays is suggested. Subleading 1=mb corrections and SU�3� breaking effects are discussed.
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I. INTRODUCTION

Semi-inclusive hadronic decays B! XM have received
much less attention over the years in contrast to the widely
studied exclusive two-body B decays [1–9]. As we will
show in this paper, semi-inclusive hadronic B decays in the
endpoint region, where M is an isolated energetic meson
and X is a collinear jet of hadrons in the opposite direction,
are theoretically simpler than the exclusive two-body B
decays in many respects, yet still address many of the
questions that had been debated in the context of the
two-body B decays. Using the soft-collinear effective the-
ory (SCET) [10–13] predictions of semi-inclusive decays
can be improved systematically and lead to the following
advantages. Firstly, larger data samples can be included by
considering inclusive jets with a variety of final-state par-
ticles forming the collinear jet. Secondly, as in exclusive B
decays [14,15], the four-quark operators in the weak
Hamiltonian factorize at leading order in 1=mb into a
product of a heavy-to-light current and a collinear current,
with no strong interactions between these two currents.
Thirdly, we employ the two-step matching in SCET. We
first integrate out all the degrees of freedom of order mb to
obtain SCETI. Hard coefficients are obtained by matching
the full QCD onto SCETI. Then we integrate out the
degrees of freedom of order p2 �mb�, where ��
�QCD to produce the effective theory called SCETII, in
which all the degrees of freedom have p2 ��2. The
inclusive collinear jet is described by the jet function,
which is obtained by matching SCETI onto SCETII at the
scale p2

X �mb�. Since the same jet function appears at
leading order in B! Xs� or B! Xl �� inclusive decays,
many of the hadronic uncertainties cancel by taking ratios.
Finally, the contribution of charming penguins can be

implemented systematically using the effective theory.
Studying B! XM decays can thus offer a theoretical
handle to probe nonperturbative effects of charming
penguins.

In order to see these advantages clearly, we consider the
decays B! XM in which the spectator quark of the B
meson goes to the inclusive jet. It is straightforward to treat
other decay modes without this constraint [16], but would
involve more calculation including spectator interactions,
and we do not discuss it further here. The decay rate for
B! XM at leading order in 1=mb can then be schemati-
cally written as

 

d�

dEM
� �jT ��Mj

2� � �J � f�; (1)

where T is a collection of hard coefficients obtained in
matching full QCD onto SCETI and J is the discontinuity
of the jet function describing the fluctuations of ordermb�
in the forward scattering amplitude of the heavy-to-light
currents. �M and f are the light-cone distribution ampli-
tude (LCDA) for the light mesonM and the B-meson shape
function, respectively. The � sign implies the appropriate
convolution. The convolution J � f in Eq. (1) is universal
in the sense that the same convolution appears in B! Xs�
and B! Xul �� decays [10,17]. Therefore, if we take the
ratios of the decay rates for B! XM and, say, the decay
rate for B! Xs�, this convolution cancels out and the only
surviving nonperturbative parameters are the LCDAs.

Another interesting but complicated problem common
to two-body B decays and B! XM decays in the endpoint
region is the contribution of intermediate charming pen-
guins, which can be of nonperturbative nature [18]. There
has been a disagreement on how to treat this contribution
between the recent SCET analysis of the two-body B
decays [19,20] and the approach of QCD factorization
[21]. The question is whether or not the long-distance
effects of charming penguins are of leading order in
1=mb. Long-distance contributions arise when intermedi-
ate charm quarks lie in the nonrelativistic QCD (NRQCD)
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regime with small relative velocity v�. These contributions
are of the form �s�2mc�f�2mc=mb�v

� [22], where
f�2mc=mb� is a factor which accounts for the phase space
in which the charm quarks have small relative velocities. In
QCD factorization [21,23], the claim is that the phase
space suppression near the threshold region is strong
enough so that the nonperturbative contributions are sub-
leading. On the other hand, Bauer et al. [19,22] argue that
since 2mc=mb is of order unity so is f�2mc=mb�, and the
nonperturbative contribution of charming penguins can be
of leading order. In this paper, we suggest how to resolve
the issue of charming penguins in B! XM decays. If the
nonperturbative contributions of charming penguins are
really suppressed, then the decay rates at leading order in
1=mb are completely determined in terms of the perturba-
tively calculable hard kernels convoluted with LCDA, once
normalized to the B! Xs� rate. If nonperturbative charm-
ing penguins are not suppressed, they will show up experi-
mentally as a sizable deviation from purely perturbative
predictions, which we will discuss in detail.

The paper is organized as follows: In Sec. II we describe
the kinematics for B! MX decays. In Sec. III, we set up
the operator basis for the decays B! MX and compute the
radiative corrections at next-to-leading order (NLO) to
derive the renormalization group equations for the opera-
tors. In Sec. IV, we present a factorized form for the semi-
inclusive B decays in the endpoint region. Section V is
devoted to the contribution of charming penguins, consid-
ering two possible scenarios in which the charm quark is
regarded as either hard-collinear or heavy. The contribu-
tion of charming penguins in the heavy quark limit
mb;mc ! 1 with mc=mb fixed is considered in detail. In
Sec. VI, we discuss the corrections to the leading-order
prediction, including SU�3� breaking effects. In Sec. VII,
we perform the phenomenological analysis of B! MX
decays and predict the decay rates and CP asymmetries.
The method to extract the effect of charming penguins is
also discussed. We conclude in Sec. VIII. In Appendix A
we present the Wilson coefficients for the operators at NLO
in SCETI. In Appendix B the detailed analysis of charming
penguins in the heavy quark limit is discussed.

II. KINEMATICS

Using SCET, solid predictions can be made for hadronic
semi-inclusive B! MX decays in the endpoint region. In
the rest frame of the B meson, the outgoing energetic
meson M with p2

M ��2 moves in the �n� direction, while
the inclusive hard-collinear jet with p2

X ��mb is in the n�

direction, where n2 � �n2 � 0, n � �n � 2. We can choose
the reference frame in which the transverse momentum of
M is zero. The momenta p�M and p�X can be written in terms
of the light-cone coordinates p� � � �n � p; n � p; p?� as

 pM � �0; n � pM; ~0� 	O��2=mB�;

pX � �mB;mB � n � pM; ~0� 	O��2=mB�;
(2)

with p�B � mBv
� � p�M 	 p

�
X , where 2v� � n� 	 �n�.

We consider the endpoint region in which mB � n � pM �
�, so that p2

X �mB�.
At the quark level, the b quark has momentum p�b �

mbv
� 	 l�, where l� is the residual momentum of order

�QCD. The b quark decays to a quark-antiquark pair mov-
ing in the �n direction which hadronizes into the meson M,
and another quark with momentum p�J moving in the n
direction, which combines with a spectator antiquark to
form the outgoing jet X. The momentum p�J can be written
as (dropping terms of order �2=mb)

 

p�J � mbv
� 	 l� � p�M � mb

n�

2
	mb�1� xM�

�n�

2
	 l�

� mb
n�

2
	 k�; (3)

where xM � n � pM=mb � 2EM=mb. In the endpoint re-
gion, 1� xM ��=mb. Since the invariant mass squared
p2
J of the jet is timelike, the range of the residual momen-

tum k� in p�J is 0 
 n � k 
 n � pX. Since the residual
momentum of the heavy quark n � l is smaller than �� �
mB �mb, the region of n � l, which has support for the
B-meson shape function, is

 �mb�1� xM� 
 n � l 
 ��: (4)

III. MATCHING AND EVOLUTION IN SCETI

We employ a two-step matching in computing and
evolving the hard coefficients. First we construct the op-
erators for the decays in SCETI by integrating out degrees
of freedom of order mb. The Wilson coefficients of the
operators are obtained by matching full QCD onto SCETI.
The decay rates of the semi-inclusive B decays are ob-
tained from the forward scattering amplitude of the time-
ordered product of the heavy-to-light currents, as shown in
Fig. 1. In the next step, we match SCETI onto SCETII by
integrating out the degrees of freedom with p2 �mb�. As
a result, the jet function is obtained, the discontinuity of
which contributes to the semi-inclusive hadronic B decay
rates.

The effective weak Hamiltonian in full QCD for had-
ronic B decays is given as

 

HW �
GF���

2
p

� X
p�u;c

��q�p �C1O
p
1 	 C2O

p
2 �

� ��q�t

�X10

i�3

CiOi 	 CgOg 	 C�O�

��
; (5)

where the operators are
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Op
1 � � �pb�V�A� �qp�V�A;

Op
2 � � �p�b��V�A� �q�p��V�A;

O3;5 � � �qb�V�A
X
q0
� �q0q0�V�A;

O4;6 � � �q�b��V�A
X
q0
� �q0�q0��V�A;

O7;9 � � �qb�V�A
X
q0

3eq0

2
� �q0q0�V�A;

O8;10 � � �q�b��V�A
X
q0

3eq0

2
� �q0�q0��V�A;

O� � �
emb

8�2
�q	��F���1	 �5�b;

Og � �
gmb

8�2
�q	��Ga

��Ta�1	 �5�b:

(6)

Here ��q�p � VpbV
�
pq is the CKM factor and V � A �

���1� �5�. The summation over q0 includes u, d, s, c
and b quarks. Operators with q � d (q � s) describe the
�S � 0 (�S � 1) effective weak Hamiltonian.

The effective Hamiltonian in SCETI at leading order
(LO) in 1=mb is (with charm quarks integrated out, non-
perturbative charm contributions will be discussed in
Sec. V) [15,19]

 HI �
2GF���

2
p

X
p�u;c

��q�p
X6

i�1

Cpi �Oi; (7)

where the relevant four-quark operators are

 O 1 �  �un 6n�PLY
y
n bv� �q �n 6nPLu �n�u;

O2;3 �  �qn 6n�PLY
y
n bv� �u �n 6nPL;Ru �n�u;

O4 �
X
q0
 �q0n 6n�PLY

y
n bv� �q �n 6nPLq

0
�n�u;

O5;6 �
X
q0
 �qn 6n�PLY

y
n bv� �q0�n 6nPL;Rq

0
�n�u:

(8)

The summation over q0 includes u, d and s quarks and
PL;R � �1� �5�=2. In Eq. (7), � denotes the convolution

 C p
i �Oi �

Z 1

0
du Cpi �u�Oi�u�; (9)

and the subscript u in Eq. (8) refers to the variable in a 

function, which is defined as

  �q �n 6nPLq �n�u �

�
�q �n


�
u�

n � P y

2EM

�
6nPLq �n

�
: (10)

The qn and q �n are the gauge-invariant quark fields

 qn � Wyn �
�q�
n ; q �n � Wy�n �

�q�
�n ; (11)

given in terms of the collinear fermion fields ��q�n , ��q��n of
flavor q and the collinear Wilson lines Wn, W �n in the n and
�n directions, respectively. The ultrasoft (usoft) Wilson line
in the n direction, Yn, is obtained after redefining the
collinear fields to decouple collinear and usoft degrees of
freedom [13].

There are also color-octet operators corresponding to the
operators in Eq. (7), e.g.,

 

�O 1�u� �  �unY
y
n Y �n 6n�PLTaY

y
�n bv� �q �n 6nPLTau �n�u; (12)

but the matrix elements of the octet operators between
hadronic states vanish and are therefore not relevant here.
The Wilson coefficients Cpi �u� in Eq. (7) encode physics at
the hard scale mb and are perturbatively calculable in
powers of �s�mb�. They are known at NLO in �s [15,21]
and are listed in Appendix A. Note that the Wilson coef-
ficients Cpi �u� exhibit nonzero strong phases at NLO from
integrating out the intermediate on-shell quarks.

In matching SCETI onto SCETII at �0 �
����������
mb�

p
, the

operators in the Hamiltonian in Eq. (7) are first evolved
down frommb to�0 using the renormalization group (RG)
equation in SCETI. The operators in Eq. (7) factor into a
heavy-to-light current J�H and a collinear current J�C as1

 O �u;�� �  �qn�HY
y
n bv� �q �n�Cq �n�u � JH��� � JC�u;��;

(13)

where �H;C are the Dirac structure in each current. There
are no strong interactions between the two currents to all
orders in �s in SCETI. At order �s, the radiative correc-
tions in Fig. 2 show explicitly that this is true. As a result,
the operator O is multiplicatively renormalized, and there
is no mixing between color-singlet and color-octet opera-
tors due to factorization. The renormalized operator OR
and the bare operator OB are related by

pJ

pb

−ūpM

upM

FIG. 1. Tree-level diagram for the forward scattering of the
heavy-to-light currents in SCETI whose discontinuity gives the
semi-inclusive hadronic B decay rates in the endpoint region.
The double lines denote a heavy quark, the intermediate line is
the hard-collinear quark in the n direction with p2

J � m2
b�1�

xM�, while the upward collinear quarks move in the �n direction.

1O4 is a sum over a product of currents. When considering the
spectator quark going into the jet, only one of the terms will
contribute.
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 O R�u;�� �
Z
dvZ�1�u; v;��OB�v;��

�
Z
dvZ�1

H ���Z
�1
C �u; v;��OB�v;��; (14)

where the counterterm Z is a product of the counterterms
ZH and ZC from the radiative corrections of J�H and J�C .
This leads to the RG equation

 �
d
d�

O�u;�� �
�
�

d
d�

JH���
�
JC�u;��

	 JH����
d
d�

JC�u;��

� ��HJH���JC�u;�� � JH���

�
Z
dv�C�u; v;��JC�v;��; (15)

whereas the RG equation for the Wilson coefficients is
written as

 �
d
d�

Ci�u;�� �
Z 1

0
dv�H���
�u� v�

	 �C�v; u;���Ci�v;��: (16)

At next-to-leading logarithm (NLL), the anomalous di-
mensions for JH and JC are given by

 �H��� � �
�sCF
�

ln
�
mb
�
�sCF

2�

�
5

2
	
�s
�
B ln

�
mb

�
; (17)

 

�C�u; v;�� � �
�sCF

2�

�
3

2

�u� v� 	 2

u
v

�
1	

1

�v� u�	

�

� ��v� u� 	 �u; v$ �u; �v�
�
; (18)

where CF � �N2 � 1�=�2N� with N the number of colors.
The subscript ‘	’ denotes the plus distribution, and �u �
1� u. The one-loop result for �H in SCET was first
obtained in Ref. [10], while the part of the two-loop result

containing �2
s ln��=mb� needed at NLL accuracy has not

yet been calculated in SCET. Extracting it from the full
QCD calculation [24], one gets B � N�67=18� �2=6� �
5nf=9, where nf is the number of flavors. The one-loop
result for �C can be taken from the full QCD hard kernel
calculations [25,26], which agree with the determination in
SCET [27].

At one loop, Eq. (16) can be written as
 

�
d
d�

Ci�u;�� �
�
�H��� � 3

�sCF
2�

�
Ci�u;�� �

�sCF
2�

1

u �u

�
Z 1

0
dvV�u; v�Ci�v;��; (19)

where V�u; v� is the Brodsky-Lepage kernel [25]
 

V�u; v� � 2
�

�uv
�
1	

1

�u� v�	

�
��u� v�

	 �u; v$ �u; �v�
�
: (20)

The eigenfunctions of Eq. (19) are given by the
Gegenbauer polynomials C3=2

n �2u� 1�, which satisfy

 

Z 1

0
dvV�u; v�C3=2

n �2v� 1� � enu �uC3=2
n �2u� 1�; (21)

with the eigenvalues

 en � �4	
2

�n	 1��n	 2�
� 4

Xn	1

k�2

1

k
; (22)

since the four-quark operators in SCETI are partially gov-
erned by the light-cone conformal symmetry with the
highest weight of the conformal spin j � 2	 n [28].

We can now expand the Wilson coefficients in terms of
the Gegenbauer polynomials,

 C i�u;�� �
X
n�0

C3=2
n �2u� 1�Ani ���; (23)

ξnbv

−ūpMupM

ξ n̄ξ̄ n̄(a) (b) (c)

(d) (e)

FIG. 2. Feynman diagrams at order �s for the four-quark operators in SCETI. Note that there is no strong interaction between the two
currents.
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a virtue of which is that Ani with different n do not mix to
one-loop. The solution of the RG equations for Ani ,

 �
d
d�

Ani ��� �
�
�H��� � 3

�sCF
2�

�
�sCF

2�
en

�
Ani ���;

(24)

yields the Wilson coefficient at the scale � to NLL order

 C i�u;�� �
X
n

C3=2
n �2u� 1�Ani �mb� expIn��;mb��; (25)

with
 

In��;mb� �
4�

�s�mb�

CF
�2

0

�
1�

1

z
� lnz

�
	
�1

�3
0

CF

�
�1	 z

� lnz	
1

2
ln2z

�
	
CF
�0

�
11

2
	 en

�
lnz

	
2B

�2
0

CF1� z	 lnz�; (26)

where z � �s���=�s�mb�. The coefficients of the QCD �
function are �0 � �11� 2nf�=3, and �1 � 34N2=3�
10Nnf=3� 2CFnf. From the orthogonality of the
Gegenbauer polynomials the coefficients Ani �mb� are
 

Ani �mb� �
4�2n	 3�

�n	 1��n	 2�

Z 1

0
duu

� �1� u�Ci�u;mb�C
3=2
n �2u� 1�: (27)

At NLL, only LO values of the Wilson coefficients at � �
mb are needed. Since these are independent of the momen-
tum fraction u, we have Ani �mb� � Ci;LO�mb�
n0.

IV. SEMI-INCLUSIVE DECAY RATES

The decay amplitudes for B! XM, in which a spectator
quark of the B meson ends up in the jet X, are schemati-
cally
 

hXMjHIjBi �
2GF���

2
p

Z 1

0
duT�q�M �u;��hMj �q

0
�n 6nPLq

00
�n�uj0i

� hXj �qn 6n�PLY
y
n bvjBi; (28)

where the hard kernel T�q�M is given by the sum of the
products of the CKM factors ��q�p � VpbV

�
pq and the

Wilson coefficients Cpi . Here q denotes the flavor of the
outgoing quark in the heavy-to-light current. The matrix
elements for the meson M are related to the LCDA by

 hPj �q0�n 6n�5q00�n�uj0i � �2ifPEP�P�u;��; (29)

 hVLj �q
0
�n 6nq

00
�n�uj0i � 2ifVEV�V�u;��; (30)

where P and VL denote pseudoscalar and longitudinal
vector mesons, respectively. Transversely polarized me-
sons, VT , do not contribute at leading order, as in exclusive
two-body B decays (for charming penguins, see below).

Thus the decay amplitude can be written as

 

hXMjHIjBi � i
2GF���

2
p fMEM

Z 1

0
duT �q�

M �u;���M�u;��

� hXj �qn 6n�PLY
y
n bvjBi; (31)

where the hard kernels T �q�
M for various processes are listed

in Table I.
In order to obtain the decay rates for B! XM

 

d�

dEM
� �2��2

E3
MG

2
Ff

2
�

mB

��������
Z 1

0
duT �q�

M �M

��������
2

�
X
X

jhXj �qn 6n�PLY
y
n bvjBij

2
4�pB � pX � pM�;

(32)

we use the optical theorem to relate the decay rate to the
imaginary part of the forward scattering amplitude. We
therefore consider the time-ordered product of the heavy-
to-light currents

 T�EM� �
i
mB

Z
d4ze�ipM�zhBjTJyH�z�JH�0�jBi; (33)

where JH�z� � ei�~p�mbv��z �qn 6n�PLY
y
n bv�z�. Since there are

no collinear particles in the B meson, the time-ordered
product of the collinear fields can be written as

 

h0jTqn�z� � �qn�0�j0i � i
6n
2

�n � z�
2�z?�

�
Z dn � k

2�
e�in�k �n�z=2

� JP�n � k	 i�; (34)

which defines the jet function JP � JP�n � k� with the label
momentum P. In SCETII, the remaining matrix elements
are parametrized in terms of the B meson shape function,

 

f�n � l� �
1

2

Z d �n � z
4�

e�in�l �n�z=2

� hBvj �bvYn�� �n � z=2�Yyn bv��0�jBvi

�
1

2
hBvj �bvYn
�n � l� n � i@�Y

y
n bvjBvi; (35)

and the time-ordered product in Eq. (33) can be written as

 

T�EM� � �2
Z ��

�mb�1�xM�
dn � lf�n � l�

� JP�mb�1� xM� 	 n � l	 i�; (36)

with the limits on n � l included according to Eq. (4).
Taking the discontinuity, we obtain
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1

�
ImT�EM� � 2

Z ��

�mb�1�xM�
dn � l f�n � l�

�

�
�

1

�
ImJP�mb�1� xM� 	 n � l	 i�

�

�
2

mb
S�xM;�0�; (37)

where the nonperturbative function S is defined as the
convolution of the B meson shape function and the imagi-
nary part of the jet function.

Combining Eqs. (31) and (37), the factorized differential
decay rate for the B! XM is

 

d�

dEM
�B! XM� �

G2
F

8�
f2
Mm

2
bx

3
MS�xM;�0�H

�q�
M �mb;�0�;

(38)

where H�q�M is the convolution of the hard kernel and the
LCDA,

 H�q�M �mb;�0� �

��������
Z 1

0
duT �q�

M �u;�0��M�u;�0�

��������
2
: (39)

The information on the LCDA can in principle be extracted
from experimental data on other hard processes, whileH�q�M
can be computed in perturbation theory. It is worth men-
tioning that Eq. (38) is independent of �0 and �.
S�xM;�0� is the convolution of the imaginary part of the
jet function, which is computed in matching between
SCETI and SCETII at �0 and evolves down to �, with
the B-meson shape function, evaluated at �. The depen-
dence on the low scale � cancels between the two. In H�q�M ,
T �q�

M evolves from mb to �0, and the LCDA �M, which is
the matrix element of the collinear quark operators, are
evaluated at �0. The dependence on �0 in H�q�M will then
cancel against ImJP. Therefore the decay rate is indepen-
dent of �0 and �.

We can compare our result with the differential decay
rate for �B! Xs� in the endpoint region at leading order
[10,13],

 

d�

dE�
� �B! Xs�� �

G2
Fm

4
b

16�4 x
3
��H��mb;�0�S�x�;�0�;

(40)

where x� � 2E�=mb, and � is the fine structure constant.
H� is the hard coefficient

 H��mb;�0� � jVtbV�tsj2jC�j2jC1 	 C2j
2; (41)

with C1 	 C2 � 1	O��s�. Here we have used the opera-
tor basis suggested in Ref. [29] for the Wilson coefficients,
which is equivalent to the one in Ref. [11]. Note that S, the
convolution of the jet function and the B meson shape
function, appears exactly as in B! XM. Therefore if we
take the ratio of these two decays, this factor cancels out,
reducing the theoretical uncertainty. In the SU�3� limit, the
ratio is given by

 

�
d��B! XM�

dEM

�
d��B! Xs��

dE�

�
xM�x�

�
2�3f2

M

�m2
b

H�q�M �mb;�0�

H��mb;�0�
; (42)

which is only a function of the hard coefficients (with H�q�M
including the convolution with the LCDA). The ratio does
not depend on detailed information about the B-meson
shape function. If charming penguins are present, this
result is modified as discussed in the next section.

V. CHARMING PENGUINS

The size of the nonperturbative charming penguins in
two-body B decays has been debated recently [22,23].
Semi-inclusive decays B! XM can lead to new insight.
Unlike two-body B decays, where additional nonperturba-
tive parameters related to the B! M form factors enter the
predictions, the only nonperturbative parameters in
Eq. (42) are the LCDA. If there are experimental deviations
from Eq. (42) that exceed the uncertainties from sublead-
ing corrections when we compare processes with and

TABLE I. Hard kernels T �q�
M for �B0=B� ! XM (above horizontal line) and �B0

s ! XM decays (below horizontal line), where only
the strangeness content of the inclusive jet is shown. The summation over p � u, c is implied. The NLO Wilson coefficients Cpi are
given in Appendix A.

Mode (�S � 1) T �s�
M Mode (�S � 0) T �d�

M

K����X	 ��s�p �C
p
1 	 Cp4 � ��X	=��X	 ��d�p �C

p
1 	 Cp4 �

�K���0X� ��s�p Cp4 K���0X0
s =X�s ��d�p Cp4

�X�s =�X0
s ��s�p Cp4 � �

�s�
t �C5 	 C6� �X0=�X� ���d�t �C5 	 C6�

�0X0
s �s

1��
2
p ���s�p Cp2 	 �

�s�
t C3� �0X0

�s
1��
2
p ���d�p Cp2 	 �

�d�
t C3 � �

�d�
p Cp4 �

�0X0
s �s

1��
2
p ���s�p Cp2 � �

�s�
t C3� �0X0

�s
1��
2
p ���d�p Cp2 � �

�d�
t C3 � �

�d�
p Cp4 �

!X0
s�s

��s�p��
2
p Cp2 �

��s�t��
2
p �C3 	 2C5 	 2C6� !X0

�s
��d�p��

2
p �Cp2 	 Cp4 � �

��d�t��
2
p �C3 	 2C5 	 2C6�

K����X	�s ��s�p �C
p
1 	 Cp4 � ��X	�s =�

�X	�s ��d�p �C
p
1 	 Cp4 �
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without charming penguins (such as �B! X0�), they
would then unambiguously confirm the nonperturbative
nature of the charm contribution.

A typical charming penguin contribution is shown in
Fig. 3. When the momentum transfer through the gluon is
close to 4m2

c, the intermediate charm quark pair is almost
on-shell and should be treated nonperturbatively, governed
by usoft interactions. The long-distance contribution can
be power counted as leading order in SCET [22] and
cannot be disentangled from the bound state of the bottom
quark. We can write the momentum of the charm quark
pair as 2mcv

�
�cc 	 k

�, where v��cc is the velocity of the charm
quark pair, and k� is the residual momentum of order
�QCD. Note that v��cc is not the usual small velocity pa-
rameter v� in NRQCD. In the rest frame of the B meson,
we can write

 2mcv
�
�cc � �n � p

n�

2
	 �un � pM

�n�

2
; (43)

where v2
�cc � 1. The momentum fraction of �u of the anti-

quark in meson M is given as

 4r2 � �uxM; r � mc=mb; (44)

where �u � 1� u and xM is close to 1 near the endpoint.
There are two possible scenarios when we take appro-

priate limits of the charm quark mass compared to mb.
First, we can take the heavy quark limit mb ! 1 with
mc �

����������
mb�

p
. In this case, r2 is of order �=mb and the

momentum of the charm pair, or the charm quark itself,
becomes hard-collinear in the n direction because �u �
4r2=xM is of order �=mb. Therefore the outgoing anti-
quark with the momentum �upM is an usoft quark, and the

exchanged gluon has off-shellness of order
����������
mb�

p
. The

long-distance charming penguin contribution, shown in
Fig. 4(a), can be treated in the same way as that of the
quarks with small mass, shown in Fig. 4(b). In Fig. 4, Lmc

is the collinear Lagrangian with the quark mass, which is
given by Eq. (60), where ms is replaced by mc. L

�1�
�� is the

subleading collinear Lagrangian given by Eq. (55), and
L�1��q is the usoft-collinear Lagrangian [30]. Since the usoft-

collinear interaction is suppressed at least by ��
�������������
�=mb

p
,

the leading long-distance contribution is suppressed by
mc=mb at the operator level. In addition, the unbalanced
endpoint configuration for the meson M gives the endpoint
suppression of order �=mb. Therefore, the long-distance
contribution in this limit is suppressed by mc�=m2

b. This
power counting is in agreement with the expectation that
the contribution of the charming penguin in this limit gives
the same contribution as massless quarks, which is sup-
pressed by �2=m2

b [31]. The reason why it is not of order
mq�=m2

b is because the quark mass insertion is replaced by

the insertion of L�1���.
The second scenario is to take the heavy quark limit

mb;mc ! 1 with fixed r, which is motivated by the fact
that �u � 4r2=xM is near the central point experimentally.
In this case, the power counting is different. The charm
quark is regarded as a heavy quark and there is no endpoint
suppression. The exchanged gluon in Fig. 3 has large off-
shellness 4m2

c �m
2
b, and is integrated out to obtain an

operator of the form  �cc�NR �� �n�n�. Here we suppress the
Dirac structure and color indices, and the charm quark is
treated as a heavy quark described by NRQCD. The non-
perturbative charming penguin contribution is then ob-
tained from the time-ordered product of this operator
with the four-quark operators in the weak Hamiltonian of
the form  ��nbv� �cc�NR. This leads to a contribution
��s�2mc�v�F c �c in agreement with Refs. [19,22], where
the nonperturbative function F c �c is comparable in size to
the leading-order shape function f. Furthermore there is no
endpoint suppression because the outgoing antiquark form-
ing the meson M is collinear with momentum fraction �u �
4r2=xM, corresponding numerically to the central region in
the LCDA of the meson M.

We think that the second scenario is more plausible
based on the actual value of mc=mb. As this is the more

L (1)
ξ

L mc

L (1)

L (1)
ξξ

(a) (b)

q ξq

FIG. 4. a) Nonperturbative penguins where charm quarks in the loop are treated as hard-collinear, with an insertion of Lmc
of order

�0 in SCETI. b) one of the nonperturbative penguin contributions for massless quarks with the insertion of L�1��q and L�1���, each of which
is suppressed by � in SCETI. Dashed line is an usoft quark, leading to additional endpoint suppression in forming a meson M.

β
αpb α

β

upM

pJ

−ūpM

FIG. 3. A typical charming penguin contribution, with charm
quarks in the loop, and �, � are the color indices. The outgoing
momenta pJ and pM are n and �n-collinear, respectively. Usoft
interactions are not shown.

SEMI-INCLUSIVE HADRONIC B DECAYS IN THE ENDPOINT REGION PHYSICAL REVIEW D 74, 074022 (2006)

074022-7



conservative of the two, we consider the nonperturbative
charming penguins in the second scenario, which give
larger contributions than the first scenario. As explained
above, in the heavy quark limit mb;c ! 1 with r fixed, the
charming penguin can be of leading order, which can be
expanded in powers of �=mb;c and �s�2mc� in a consistent
way. In this scheme, at leading order in 1=mb;c, the con-
tribution is factorized into the �n-collinear part, the jet
function, and a nonperturbative function. The derivation
of the factorized form is presented in detail in Appendix B.
At leading order in �=mb;c, and to first order in �s�2mc�,
the contribution of the charming penguin to the differential
decay rate can be written as [see Eq. (B20)]
 

d��cc�B! XqM�

dEM
�
G2
F

8�
f2
Mm

2
bx

3
M�
�q�
c �s�2mc�c

BM
q

��M

�
u � 1�

4r2

xM

�
� 2 ReT �q��

M F c �c;

(45)

where cBMq is defined in Appendix B and T �q�
M is the hard

kernel given in Table I. Here M � P, VL, while the con-
tribution of VT is 1=mb;c suppressed because of the spin
flip. The function F c �c does not depend on the outgoing
meson M or the jet X because F c �c is given by the non-
perturbative effects arising only from the usoft interactions
of the on-shell charm quark pair in the Bmeson. Hence, up
to the B meson flavor, F c �c is universal in all the decay
modes where charm penguins contribute, and its size is
experimentally measurable from various decay modes. In
the isospin limit the F c �c functions in �B0 and B� decays are
the same, and are equal to F c �c in Bs decays in the SU�3�
limit. Because of its nonperturbative nature it can, how-
ever, have a nonzero strong phase [19].

In summary, the differential decay rate for the semi-
inclusive decays at leading order in 1=mb, including the
nonperturbative charming penguin at LO in 1=mc and
�s�2mc�, is
 

d�

dEM
�B! XqM� �

G2
F

8�
f2
Mm

2
bx

3
M

�
H�q�M �mb;�0�S�xM;�0�

	 �s�2mc��
�q�
c cBMq �M

�
1�

4r2

xM

�

� 2 ReT �q��
M F c �c

�
: (46)

Phenomenological implications of this expression will be
discussed in Sec. VII.

VI. ESTIMATES OF SUBLEADING CORRECTIONS

To predict the branching ratios for B! XM more accu-
rately, Eq. (46) can be systematically extended to higher
orders in 1=mb and �s. In this way one could also unam-
biguously determine whether a possible future discrepancy

between experiment and predictions based on Eq. (42) is
due to nonperturbative charming penguins or higher-order
corrections. A full analysis of the higher-order corrections
is beyond the scope of this paper, but we identify typical
subleading corrections and estimate their size. Here we
consider two types of the subleading corrections, sup-
pressed by powers of �=mb: (i) corrections to the heavy-
to-light current leading to the subleading B-meson shape
functions, some of which are already well known from the
analyses of �B! Xs� and �B! Xul �� inclusive decays [32–
36], and (ii) corrections to the �n-collinear currents forming
the light meson M, which appear as the twist-3 LCDA and
the SU�3� breaking effects in the twist-2 LCDA. There are
also annihilation diagrams at the same subleading order,
but we will not consider them here.

Let us consider the corrections of the first type. The
convolution S of the jet function and the B meson shape
function in Eq. (37) can be expanded to higher orders in
1=mb as

 S �xM� � S�0��xM� 	 �S
�1�
hl �xM� 	 S�1��n �xM�� 	 � � � ; (47)

where S�1�hl is the subleading corrections to the heavy-to-
light current and S�1��n is the usoft corrections to the
�n-collinear current. Using the results of Ref. [36], the
sum S�0� 	 S�1�hl can be related to the imaginary part of
the time-ordered product, W��,

 

1

mb
�S�0� 	 S�1�hl � � W��

�n� �n�

4
; (48)

where the factor �n�=2 comes from the �n-collinear current
h �� �n�

�� �ni � �n�h �� �n 6n� �ni=2. Taking the ratio with respect to
�B! Xs� gives the difference

 

S�1�hl � S�1�� � �S�0� 	 S�1�hl � � �S
�0� 	 S�1�� �

� 2
Z
dn � lv�n � l�
�mb�1� x� 	 n � l�

� �
2

m2
b

H2�1� x�; (49)

where x � xM � x� is chosen. The subleading shape
functions v and H2 are defined in Refs. [36,32],
respectively. In particular, H2 is proportional to �2 �

h �Bvj �bvgs	��G��bvj �Bvi=12� 0:12 GeV2. Taking a broad
cut EM � 2:0 GeV, this contribution should not exceed
10% compared to the leading contribution, unless there is
an enhancement in the coefficient.

The subleading correction S�1��n comes from the usoft
interactions with the �n-collinear currents, which lead to
new subleading B meson shape functions. The subleading
operators obtained by inserting the usoft gauge-invariant
term Yy�n i 6D

?
usY �n are suppressed by �2 in SCETI, but they

should be included in SCETII because they are suppressed
by �=mb. The nonzero contributions come only from the
color-octet four-quark operators
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 O �1�
iA �u� � 2� �qnY

y
n Y �n�

�PLT
aYy�n bv�

�

�
�q0�n��PL;RT

aYy�n i 6D
?
usY �n

1

n � P
6nq00�n

�
u
;

O�1�iB �u� � 2� �qnY
y
n Y �n��PLTaY

y
�n bv�

�

�
�q0�n 6n

1

n � P y
Yy�n i 6D

 
?
usY �nTa��PL;Rq00�n

�
u
;

(50)

where the flavor and chirality structure is the same as the
corresponding leading operators Oi in Eq. (8). Because of
reparametrization invariance [37,38], the Wilson coeffi-
cients of O�1�i;A�u� 	O�1�i;B�u� are the same as those for the
leading color-octet operators in Eq. (12), which are pre-
sented in Appendix A.

After some calculation, the matrix elements of these
operators which do not vanish trivially from the flavor
content are nonzero only for specific values of i due to
the helicity structure. They are given by

 

hO�1�i;A�u�i �
ifM
N

�M�u�
�u
hXqj �qnY

y
n i 6D?usY �n�PLY

y
�n bvjBi;

�i � 1; 2; 4; 5�;

hO�1�i;B�u�i � �
VM � 
PM�
ifM
N

�M�u�
u

� hXqj �qnY
y
n Y �nY

y
�n i 6D
 ?

us�PLbvjBi;

�i � 3; 6�;

(51)

where 
PM, 
VM are Kronecker deltas, and we use
Eqs. (B10) and (B11) in Appendix B for the matrix ele-
ments of the collinear current. For the matrix elements of
the heavy-to-light current, we need the time-ordered prod-
ucts with JyH,

 

T�2�A �
2i

mbmB

Z
d4z e�ipM�z

� hBjTJyH�z� �qnY
y
n i 6D?usY �n�PLY

y
�n bv�0�jBi;

T�2�B �
2i

mbmB

Z
d4z e�ipM�z

� hBjTJyH�z� �qnY
y
n Y �nY

y
�n i 6D
 
?
us�PLbv�0�jBi: (52)

They can be factorized into the jet function and subleading
B-meson shape functions,

 

T�2�A;B � �2
Z ��

�mb�1�xM�
dn � l f�1�A;B�n � l�

� JP�mb�1� xM� 	 n � l	 i�; (53)

where the subleading shape functions are defined as

 f�1�A �n � l� �
1

mb

�
Bv

�������� �bvYn
�n � l� n � i@�
6n�6n
4

�Yyn i 6D?usY �n�Y
y
�n bv

��������Bv
	
;

f�1�B �n � l� �
1

mb

�
Bv

�������� �bvYn
�n � l� n � i@�

�
6n�6n
4
Yyn Y �nY

y
�n i 6D
 
?
us�bv�0�

��������Bv
	
:

(54)

The shape functions f�1�A;B are different from the subleading
shape functions appearing in �B! Xs� and �B! Xul ��, due
to the presence of Y�y��n , which cannot be neglected at
subleading order. At present we cannot estimate their
size, but there is no reason to expect a dramatic enhance-
ment from the insertion of Y�y��n . However, these contribu-
tions can be numerically significant in the decays that are
very small at LO in 1=mb. These are the color-suppressed
�S � 0 tree decays �B0

s ! f�
0; �0; !gX0

�s , the QCD
penguin-dominated �S � 0 and �S � 1 decays �B0 !

�X0, B� ! �X� and �B0
s ! !X0

s �s and the ��s�u part of the
amplitudes in �B0

s ! f�
0; �0gX0

s�s. For these decays, the
Wilson coefficients of the LO operators convoluted with
the asymptotic LCDA (j� � Cu2j � 0:08 and j� � �C5 	
C6�j � 0:005) are much smaller than those for the color-
octet operators (j� � Cu2j � 1:9 and j� � � �C5 	 �C6�j �
0:15). The subleading contributions can thus be numeri-
cally large in spite of the 1=2N suppression. Note that this
is not a sign of failure of the 1=mb expansion, but due to the
hierarchy of the Wilson coefficients.

There is another contribution shown in Fig. 5, from the
time-ordered products of the �n-collinear currents and L�1���,

 L �1�
�� �

�� �nW �n�Y
y
�n i 6D

?
usY �n�

1

n � P
Wy�n i 6D

?
�n
6n�
2
� �n

	 �� �ni 6D
?
�n
6n�
2
W �n

1

n � P
�Yy�n i 6D

?
usY �n�

6n�
2
Wy�n � �n: (55)

The intermediate legs in Fig. 5 are hard-collinear and give
a jet function of the form 1= �n � k. The relevant LCDA for
M are suppressed by �=mb due to the presence of iD?�n . But
it is not known whether this process factorizes, and we
leave a full analysis for future work.

We now consider the contributions from the �S� P� �
�S	 P� four-quark operator. At leading order it matches

(a) (b)

L (1)
ξξ

(c)

L (1)
ξξ

FIG. 5. Subleading usoft interactions induced from the
�n-collinear currents. In Diagrams b) and c), the dots denote
the �-suppressed interaction in L�1���.
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onto �q0n�1� �5�b � �q �n�1	 �5�q
0
�n, which vanishes because

of spin symmetry. At subleading order it matches onto
 

O�1�S	P � �2
X

q0�u;d;s

�
� �q0n 6n�PRY

y
n bv�

�

�
�q �nPR

1

n � P
Wy�n i 6D

?
�n W �n 6nq0�n

�
	 � �q0n 6n�PRY

y
n bv�

�

�
�q �n 6nW

y
�n i 6D
 ?

�n W �n
1

n � P y
PRq0�n

��
; (56)

where for the heavy-to-light current we have used the
relation (2v� � n� 	 �n�)

 2 �q0nPLY
y
n bv � 2 �q0nPL 6vY

y
n bv � �q0n 6n�PRY

y
n bv: (57)

In semi-inclusive B decays, the amplitude from this opera-
tor factorizes using the twist-3 LCDA [39]. At order 1=mb
it contributes through the time-ordered product with the
leading heavy-to-light current as

 TS	P �
i
mB

Z
d4z e�ipM�zhBjTJyH�z� �q

0
n 6n�PRY

y
�n bv�0�jBi:

(58)
This vanishes because
 

hBjTJyH�z� �qn 6n�PRY
y
�n bv�0�jBi

/

�
B
�������� �bvYn�

�n�z
2 �6n�PL 6n6n�PRY

y
�n bv�0�

��������B
	
� 0: (59)

Therefore the nonzero contribution comes from the time-
ordered products of O�1�S	P with the subleading operators of
JyH, suppressed by mq=mb [29], or from the time-ordered

products of O�1�S	P with itself. Both are of order 1=m2
b, but

the latter may not be numerically negligible. In the QCD
factorization approach [21], the contributions correspond-
ing to O�1�S	P lead to formally suppressed but numerically
large ‘‘chirally enhanced’’ contributions. In SCET O�1�S	P is
also formally suppressed, while its matrix elements remain
unknown and could be numerically large. Because of this
uncertainty, the decay rates and the CP asymmetries pre-
sented in the next section for modes with small tree-level
amplitudes should be regarded only as a rough estimate.

Finally, we discuss the SU�3� breaking corrections to
Eq. (42). The SU�3� breaking due to different light-quark
flavors in the inclusive jet is suppressed by m2

s=mb� [29]
and thus negligible, but the SU�3� corrections due to the
strangeness content of meson M are not negligible. These
are realized in SCET by inserting the strange quark mass
term [40,41]

 L m � ms
�� �n

�
i 6D?�n ;

1

n � iD �n

�
6n
2
� �n (60)

in the leading �n-collinear currents with the final-state s
quark in Fig. 6. It can be written as

 As�u� �
�i

fMEM

�
M
��������T�s �n 6nPLq �n�0��u � i

Z
d4zLm�z�

��������0
	
:

(61)

For the final-state �s quark, a hermitian conjugate of
Eq. (61), A�s�u�, is needed with A�s�u� � As� �u�. If ms is
comparable to iD?�n ��, Lm is of leading order in SCETII,
suppressed only by ms=�.

The SU�3� breaking affects meson decay constants and
the LCDAs. One finds to leading order in SU�3�-breaking
� �K�u� � ��u� 	 As�u�, �K�u� � ��u� 	 As� �u� and
���u� � ��u� 	 2�As�u� 	 As� �u��=3 for the LCDA of
K�� �K0�; K	�K0� and �, where ��u� is the pion LCDA.
Since

R
1
0 �M�u�du � 1 �

R
1
0 ��u�du one has a constraint

 

Z 1

0
As�u�du � 0: (62)

It is also straightforward to check that these LCDA satisfy
the relation [42] ���u;�� 	 3���u;�� � 2�K	�u;�� 	
�K��u;��� � 2�K0�u;�� 	� �K0�u;���. From power
counting one expects the relative size of the SU�3� break-
ing contribution to be of order ms=�� 20%. Recent QCD
sum rules predictions can be found in Refs. [43–46].

VII. PHENOMENOLOGY

In this section we collect the predictions for B! XM
decay rates and direct CP asymmetries, defined as

 ACP �
d�� �B! XM�=dEM � d��B! XM�=dEM
d�� �B! XM�=dEM 	 d��B! XM�=dEM

; (63)

while treating the charming penguins as perturbative. Once
the experimental data become available, one of the modes
can be used to determine the nonperturbative charm con-
tribution F c �c and then modify the predictions according to
Eq. (46). To reduce the hadronic uncertainty, we normalize
the branching ratios of �B0 ! XM, B� ! XM, and �B0

s !
XM to the decay rates �B0 ! X0

s�, B� ! X�s �, and �B0
s !

X0
s�s� in the endpoint region, respectively [See Eq. (42).]

The only remaining nonperturbative input is then the light
meson LCDAs. Expanding in terms of the Gegenbauer
polynomials,

 �M�u;�� � 6u �u
�

1	
X1
n�1

aMn ���C
3=2
n �2u� 1�

�
; (64)

we truncate the series at n � 2 and use isospin symmetry to
set aM1 � 0 for mesons not containing a strange quark. We
fix the remaining coefficients using the results from QCD

(a) (b)

L mL m

FIG. 6. The insertion of the strange quark mass in the
�n-collinear currents in SCETII. Diagrams a) and b) represent
the possible strange quark mass insertions for the strange quark
in Eq. (61) where the external particle is a strange quark.
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sum rules, while conservatively doubling the errors quoted
in the literature. This gives at � � 2 GeV: aK1 � 0:05�

0:05, aK2 � 0:23� 0:23 [44], aK
�

1 � 0:08� 0:13, [45],
a�2 � 0:09� 0:15 [46], aK

�

2 � 0:07� 0:08, a�2 � 0:14�

0:15, a�2 � 0:� 0:15 [45], while for the ! LCDA a!2 �
0:� 0:2 is used for lack of better information.

Direct CP asymmetries in Eq. (63) are nonzero only in
the presence of nonzero strong phases. These are generated
by integrating out on-shell light quarks in a loop when
matching full QCD to SCETI at NLO in �s. We therefore
use the NLO matching expressions for the Wilson coeffi-
cients Cpi at� � mb even though the evolution to the hard-
collinear scale�0 �

����������
�mb

p
is performed at NLL. Note that

this running cancels to a large extent in the ratios of decay
rates (only the running of aMn ���, n � 1 remains), giving in
effect the Wilson coefficients with NLO accuracy at the
hard-collinear scale �0.

For definitiveness, we choose �0 � 2 GeV for the hard-
collinear scale, which corresponds to the experimental cut
p2
X < �2 GeV�2 on the inclusive jet invariant mass. The

corresponding predictions are listed in Tables II and III for
�S � 1 and �S � 0 decays, respectively. The predicted
partial decay widths d��B! XM�=dEM in principle de-
pend on the light meson energy EM. In the endpoint region
the dependence on xM � 2EM=mB � 1	 �m2

M � p
2
X�=m

2
B

is, however, a subleading effect,2 so we set xM � 1 in
Tables II and III.

The two errors quoted in Tables II and III are an estimate
of subleading corrections and the errors due to coefficients

of the Gegenbauer expansion of LCDAs. Since the predic-
tions are made to NLO in �s�mb� but only to LO in 1=mb,
the largest corrections are expected to arise from the 1=mb
terms. These are estimated by independently varying the
magnitudes of the leading terms proportional to ��s�;�d�u;c;t by
20%�O��=mb� and the strong phase by 5�. This latter
variation estimates the error on the strong phase arising
from the uncalculated �s�mb�=mb or �2

s�mb� terms. A
100% error is assigned to predictions for branching ratios
in color-suppressed tree and QCD penguin-dominated
�S � 0 decays where the 1=mb corrections are sizable
compared to the leading results due to the hierarchy of
Wilson coefficients. No prediction on CP asymmetries is
given for these modes or for the affected QCD penguin-
dominated �S � 1 decays.

To understand better the relative sizes of different
branching ratios, it is useful to split the amplitudes for
the semi-inclusive decays according to the CKM elements.
Using the unitarity of the CKM matrix ��q�t � ��

�q�
u �

��q�c , the amplitude can be rewritten in terms of the
‘‘tree’’ amplitude TB!MX and the ‘‘penguin’’ amplitude
PB!MX as

 A�B! MX� � ��q�u TB!MX 	 �
�q�
c PB!MX; (65)

with q � d, s for �S � 0, 1 decays, respectively. The tree
amplitudes receive contributions from Ou

1;2 in Eq. (6), the
penguin amplitudes from Oc

1;2 (charming penguins), while
the QCD and electroweak penguin operators contribute to
both amplitudes. The combinations of the CKM elements
exhibit the following hierarchy

 ��s�c � �2
C; ��d�u;c � �3

C; ��s�u � �4
C; (66)

where �C � 0:23 is the Cabibbo angle. In �S � 0 decays,
the two CKM factors in Eq. (65) are of comparable size. In

TABLE II. Predictions for decay rates and direct CP asymmetries for �S � 1 semi-inclusive
hadronic decays are given in the second and fourth column, respectively. The first errors are an
estimate of the 1=mb corrections, while the second errors are due to errors on the Gegenbauer
coefficients in the expansion of the LCDA. The third column gives lower bounds on inclusive
decay rates obtained by summing over measured two-body decays [47] and normalizing to b!
s� decay with Emin � 2:0 GeV (90% CL lower bounds are used).

Mode Br�Mode�=Br�B! Xs�� Exp. (2-body) ACP
�B0 ! K�X	 0:16� 0:09� 0:05 >0:078 0:30� 0:16� 0:01
�B0 ! K��X	 0:28� 0:16� 0:07 >0:026 0:31� 0:16� 0:02
�B0 ! �X0

s 0:22� 0:13� 0:03 >0:034 0:0089� 0:0050� 0:0016

B� ! �K0X� 0:20� 0:11� 0:06 >0:067 0:0097� 0:0048� 0:0006
B� ! �K�0X� 0:34� 0:19� 0:08 >0:040 0:0084� 0:0046� 0:0019
B� ! �X�s 0:22� 0:13� 0:03 >0:035 0:0089� 0:0050� 0:0016

�B0
s ! �0X0

s�s �1:0� 0:6� 0:2� � 10�2 � � � � � �
�B0
s ! K�X	�s 0:16� 0:09� 0:05 � � � 0:30� 0:16� 0:01

�B0
s ! �0X0

s �s �2:4� 1:4� 0:5� � 10�2 � � � � � �
�B0
s ! !X0

s �s �2:8� 3:4� 0:7� � 10�3 � � � � � �
�B0
s ! K��X	�s 0:28� 0:16� 0:07 � � � 0:32� 0:16� 0:02

2Numerically, for p2
X < �2 GeV�2 one has E� > 2:26 GeV

compared to mB0=2 � 2:64 GeV. The same p2
X cut corresponds

to higher EM cut for heavier mesons, for instance, for � mesons
the same cut on p2

X corresponds to E� > 2:36 GeV. Thus
mB=2� EM �� with 1� xM �O��=mB�.
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�S � 1 decays, on the other hand, there is a hierarchy
between the two terms in Eq. (65) since j��s�u =�

�s�
c j � �2

C.
To first order in this small ratio, the quantity

 A�S�1
CP �B! MX� � �2 Im

�
��s�u

��s�c

�
Im
�
TB!MX
PB!MX

�
; (67)

with�2 Im���s�u =�
�s�
c � � 0:037, which sets a typical size of

the CP asymmetries. The size of the direct CP asymme-
tries also crucially depends on the ratio of tree over pen-
guin amplitudes, as can be seen in Table II. This can be
estimated from the sizes of the Wilson coefficients at � �
mb (convoluted with the asymptotic form of LCDA) that
are given in Table IV. The modes that receive contributions
from the operator Ou

1 , �B0
s ! K����X	�s and �B0 ! K����X	,

have TB!MX > PB!MX and thus have larger CP asymme-
tries. The rest of the modes listed in Table II do not receive
these large tree contributions and thus have smaller CP
asymmetries. Note that the direct CP asymmetries are
nonzero only if the two interfering amplitudes in Eq. (65)
have different strong phases. In the �S � 0 decays �B0 !
�X0 and B� ! �X�, the two amplitudes TB!MX, PB!MX
are the same at LO in 1=mb and the CP asymmetries
vanish. This may change at higher orders, but no prediction
for ACP for these modes is given in Table III.

For color-suppressed two-body decays, the leading-
order tree amplitude in SCETI comes from O2. However,

when matching onto SCETII, the hard-spectator contribu-
tion from O1 can compete with the leading-order term. For
semi-inclusive decays considered in this paper, in which
the spectator quark does not enter the outgoing meson M,
there are no hard-spectator interactions. Thus, due to the
hierarchy of the Wilson coefficients (using values in
Table IV)

 

��������
Z 1

0
du 6u �uCu2�u�

���������0:10

��������
Z 1

0
du 6u �uCu1�u�

��������; (68)

numerically [19,20], semi-inclusive tree amplitudes re-
ceiving contributions from O2 are smaller than the tree
amplitudes due to O1. The color-suppressed tree decays
are then more sensitive to 1=mb corrections, as discussed in
the previous section. These may be especially important
for the decay �B0

s ! !X0
s in which a cancellation between

different contributions occurs for central values of input
parameters. A strong dependence of the predictions on a2!
is thus found with Br� �B0

s!!X0
�s �=Br� �B0

s!�X0
s �2 0:003;

0:027� for a2!2�0:3;0:3�. Sizable 1=mb corrections are
expected in all the modes without the charming penguin
contributions: �B!�X0, B�!�X�, and �B0

s ! MX0
s�s

�M��0;�0;!�. These decay modes are a good experi-
mental source to analyze the corrections at order 1=mb.

A testing ground for the charming penguins are the
processes which include Cp4 in Table I. By comparing all

TABLE IV. The magnitudes and strong phases of the Wilson coefficients at � � mb (using the
notation C3;5;6 � Cu3;5;6 � Cc3;5;6) convoluted with the asymptotic form of the LCDA � � 6u �u.

Cu1 Cu2 Cc1 Cc2 C3 Cu4 Cc4 C5 C6

Abs 0.89 0.080 0.0011 0.012 0.00037 0.029 0.032 0.010 0.0061
Arg 0.9� �99� 79� 181� 7.5� �150� �163� 14� �151�

TABLE III. Predictions for decay widths and direct CP asymmetries of �S � 0 semi-
inclusive hadronic decays. The first errors are an estimate of the 1=mb corrections, while the
second errors are due to errors on the Gegenbauer coefficients in the expansion of the LCDAs.
The third column gives lower bounds on inclusive decay rates obtained by summing over
measured two-body decays [47] and normalizing to b! s� decay with Emin � 2:0 GeV (90%
CL lower bounds are used).

Mode Br�Mode�=Br�B! Xs�� Exp. (2-body) ACP
�B0 ! ��X	 0:67� 0:37� 0:14 >0:038 �0:040� 0:021� 0:004
�B0 ! K0X0

s �9:1� 5:3� 3:1� � 10�3 >2:0� 10�3 �0:15� 0:11� 0:01
�B0 ! �X0 �2:0� 2:0� 0:1� � 10�4 � � � � � �
�B0 ! ��X	 1:76� 0:97� 0:35 >0:10 �0:039� 0:021� 0:004
�B0 ! K�0X0

s �1:4� 0:8� 0:5� � 10�2 � � � �0:17� 0:11� 0:03

B� ! K0X�s �9:1� 5:3� 3:1� � 10�3 >2:5� 10�3 �0:15� 0:11� 0:01
B� ! �X� �2:0� 2:0� 0:1� � 10�4 � � � � � �

B� ! K�0X�s �1:4� 0:8� 0:5� � 10�2 � � � �0:17� 0:11� 0:03

�B0
s ! �0X0

�s �4:1� 4:1� 2:6� � 10�3 � � � � � �
�B0
s ! ��X	�s 0:67� 0:37� 0:14 � � � �0:040� 0:021� 0:004

�B0
s ! �0X0

�s �1:3� 1:3� 0:7� � 10�2 � � � � � �
�B0
s ! ��X	�s 1:76� 0:97� 0:35 � � � �0:039� 0:021� 0:004

�B0
s ! !X0

�s �1:1� 1:1� 0:9� � 10�2 � � � � � �
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the processes ��S � 0; 1� including the charming penguins
with and without the tree amplitudes Cp1 , we can estimate
whether the charming penguins are subleading or not if we
can estimate the size of the subleading corrections. In order
to probe the phase of the charming penguin, �S � 1
processes with the tree contributions can be probed by
observing the CP asymmetries, as mentioned below
Eq. (67). These correspond to �S � 1 processes with Cp1 	

Cp4 in Table I, namely, �B0 ! K����X	 and �B0
s ! K����X	�s .

In Tables II and III we also give the experimental lower
bounds on the predicted semi-inclusive branching ratios
[47]. These were obtained by summing over the already
measured two-body decays and normalizing them to
Br�b! s�� � �317� 23� � 10�6 for E� > 2:0 GeV.
The two-body channels for which only upper bounds are
known were not used in the estimate, nor were the decays
to more than two hadrons in the final state.

Experimentally, the semi-inclusive hadronic decays can
be measured either by summing over exclusive decays or
by performing a truly inclusive measurement where only
the flavor and charge of the decaying B meson and of the
isolated energetic light meson M are tagged. For these
measurements a first step might be made by making an
even more inclusive measurement where only the flavor,
but not the charge of the initial B meson is tagged.
Theoretically simple predictions can be made for
B�= �B0 ! KS;LXs, B�= �B0 ! K�0Xs and B�= �B0 ! �Xs
decays, where B�= �B0 denotes a sum over the decay
widths, ��B� ! MX� 	 �� �B0 ! MX�. Using isospin
symmetry, the following relations hold in the endpoint
region due to factorization at leading order in 1=mb:
 

Br�B� ! KS;LX�s � � Br� �B0 ! KS;LX0
s �;

Br�B� ! K�0X�s � � Br� �B0 ! K�0X0
s �;

Br�B� ! �X�s � � Br� �B0 ! �X0
s �;

Br�B� ! �X�� � � �B0 ! �X0�;

(69)

so that
 

Br�B�= �B0 ! KS;LXs� �
1
2Br�B�= �B0 ! K0Xs�

� 1
4Br�B� ! K0X�s �;

Br�B�= �B0 ! K�0Xs� �
1
2Br�B� ! K�0X�s �;

Br�B�= �B0 ! �X�s�� �
1
2Br�B� ! �X��s��:

(70)

For the direct CP asymmetries of these more inclusive
modes, we find
 

ACP�B
�= �B0 ! KS;LXs� � ACP�B

�= �B0 ! K0Xs�

� ACP�B
� ! K0X�s �;

ACP�B
�= �B0 ! K�0Xs� � ACP�B

� ! K�0X�s �;

ACP�B�= �B0 ! �X�s�� � ACP�B� ! �X��s��:

(71)

and ACP�B�= �B0 ! �Xu	d	s� ’ ACP�B�= �B0 ! �Xs�.
Furthermore, for �B0 ! �X and �B0 ! �K�0X decays an

even more inclusive measurement can be made, where the

strangeness content of the inclusive jet need not be deter-
mined, simplifying the measurement. Since Br�B�= �B0 !
�Xs� � Br�B�= �B0 ! �X�, the theoretical prediction for
this inclusive measurement is Br�B�= �B0 ! �Xu	d	s� ’
Br�B�= �B0 ! �Xs� valid up to corrections at the percent
level. A similar simplification occurs in B�= �B0 ! K�0Xs
decays, since the decays B� ! K�0X� and �B0 ! K�0X0

are absent. Therefore the strangeness of the inclusive jet is
fixed automatically and need not be determined experi-
mentally. An important part of the measurement is that the
flavor of K�0 is tagged from the decay K�0 ! K	��. On
the other hand in B�= �B0 ! KS;LXs decays, since there are
contributions with the spectator quark ending up in �K0

from �B0 ! �K0X0, the strangeness content of the inclusive
jet should be determined from experiment.

VIII. CONCLUSIONS

In the framework of SCET we have considered semi-
inclusive, hadronic decays B! XM in the endpoint re-
gion, where the light meson M and the inclusive jet X with
p2
X ��mb are emitted back-to back. We have considered

the decays in which the spectator quark does not enter into
the meson M. In SCET the four-quark operators factorize,
which allows for a systematic theoretical treatment. After
matching the effective weak Hamiltonian in full QCD onto
SCETI, the weak interaction four-quark operators factor
into the heavy-to-light current and the �n-collinear current.
The forward scattering amplitude of the heavy-to-light
currents leads to a convolution S of the jet function with
the B-meson shape function, while the matrix element of
�n-collinear currents gives the LCDA for the meson M,
leading to a factorized form for the decay rates. The two
nonperturbative functions, the convolution S and the
LCDA, are the only nonperturbative input in the predic-
tions for B! XM decay rates at leading order in 1=mb.
Furthermore, the same convolution S appears in B! Xs�
decay and drops out in the ratio of B! XM to the B!
Xs� rate and in the prediction for direct CP asymmetries.

This greatly reduces hadronic uncertainties, since the
remaining nonperturbative input, the LCDA, is well de-
scribed by its asymptotic form, corrections to which can be
obtained from other experiments or from QCD sum rules.
The Wilson coefficients can be perturbatively computed
and are then evolved to the scale �0 �

����������
�mb

p
using the

NLL expressions. In the ratios the multiplicative RG evo-
lution factors almost cancel. The predictions for branching
ratios and CP asymmetries are then given at NLO in
�s�mb� and at LO in 1=mb and are collected in Tables II
and III. Numerical values are given in the limit of pertur-
bative charming penguin due to a lack of experimental
data, while the formalism used is extended to the case of
nonperturbative charming penguins. To leading order in
SCET, the charming penguin contribution factorizes and is
given by a universal nonperturbative function F c �c describ-
ing the usoft interactions between the on-shell charm pair
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and the bound state of the b quark. In particular, F c �c does
not depend on the final mesonM or the flavor content of the
inclusive jet, but only on the flavor of initial B meson.

We have also estimated subleading corrections and iden-
tify potentially large subleading usoft contributions com-
ing from the �n-collinear sector giving rise to color-octet
operators. These contributions can be of appreciable size,
compared with the leading contributions when the leading
contributions are suppressed by Wilson coefficients. This,
for instance, happens for color-suppressed tree decays and
QCD penguin (not charming penguin) dominated decays.
Other contributions such as the �S� P� � �S	 P� opera-
tors that have been argued to be large in exclusive B
decays, on the other hand, vanish to first order in 1=mb,
but are present at higher orders. Similarly, subleading
corrections coming from the heavy-to-light sector and
giving subleading B-meson shape functions largely cancel
in the ratio with the rate �B! Xs�.

In conclusion, semi-inclusive hadronic B decays are a
good test field to clarify many hadronic uncertainties com-
mon to two-body exclusive B decays and the inclusive B
decays at the endpoint. The factorized results provide us
with a simplified view on the diverse channels of hadronic
B decays and enable us to consider them rigorously within
the framework of SCET. By investigating decays without
charming penguins, we can test whether the formalism is
working. Then by looking at modes where the charming
penguin can contribute, we can potentially see whether or
not the charming penguin give a large contribution to the
decays.
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APPENDIX A: THE WILSON COEFFICIENTS AT
NLO

The matching of the weak Hamiltonian in Eq. (5) from
full QCD to SCETI was calculated at NLO in �s�mb� first
in Refs. [21], and then in Ref. [15]. For the detailed
matching procedure in obtaining the Wilson coefficients,
the reader is referred to Ref. [15]. Here we translate the
results to the basis choice of Eqs. (8) and (12). The Wilson
coefficients for operators (8) are3

 

Cp1;2�v� � 
up

�
C1;2 	

C2;1

N
	
�sCF

4�

�
C1;2K	

C2;1

N
F

��

	
3

2

�
C10;9 	

C9;10

N
	
�sCF

4�

�

�
C10;9K	

C9;10

N
F

��
; (A1)

 C p
3 �v� �

3

2

�
C7 	

C8

N
	
�sCF

4�

�
C7K	

C8

N
~F
��
; (A2)

 

Cp4;5�v� � C4;3	
C3;4

N
	
�sCF

4�

�
C4;3K	

C3;4

N
F

�

�
1

2

�
C10;9	

C9;10

N
	
�sCF

4�

�
C10;9K	

C9;10

N
F

��

	
�s
4�

CF
N
fLp;0g; (A3)

 

Cp6 �v� � C5 	
C6

N
	
�sCF

4�

�
C5K	

C6

N
~F
�

�
1

2

�
C7 	

C8

N
	
�sCF

4�

�
C7K	

C8

N
~F
��
; (A4)

with the shorthand notation K�v� � �6� �2=12 and
 

F �v� � �24�
�2

12
� 3i�	 3

�
1�

v
�v

�
lnv

	

�
�1	 2i��ln2v�

1� 3v
1� v

lnv� 2ln2v

� 2Li2�1� v� � �v$ �v�
�
; (A5)

 

~F �v� � F �v� 	 6i�	 24	 3� �v� v�
�

ln �v
v
�

lnv
�v

�
:

(A6)

The contribution of a fermion loop and the gluonic
operator to Cp4 �v� is given as
 

Lp �
2

3

�
C1 	 2C3 	 5C4 � C9 	

C10

2

�
�

�
C3 	 3C4

	 3C6 �
C9

2

�
G�0� � �C4 	 C6 	 C8 	 C10�G�zc�

�

�
C3 	 C4 	 C6 �

1

2
�C8 	 C9 	 C10�

�
G�1�

�
2

�v

�
C5 	 Cg �

1

2
C7

�
� C1�
upG�0� 	 
cpG�zc��;

(A7)

where zf � m2
f=m

2
b and

 G�zf;v� � �4
Z 1

0
dww�1�w� lnzf�w�1�w� �v� i�:

(A8)
3Note that Cu3;5;6�v� � Cc3;5;6�v�, so we also use the notation

C3;5;6�v� � Cp3;5;6�v�.
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The Wilson coefficients for the octet operators in Eq. (12)
are
 

�Cp1;2�v� � �2
upC2;1 	 3C9;10�

�
1	

�s
4�
�CFF � NG�

�

	 �2
upC1;2 	 3C10;9�
�s
4�

H ; (A9)

 

�C p
3 �v� � 3C8

�
1	

�s
4�
�CF ~F � N ~G�

�
	 3C7

�s
4�

~H ;

(A10)

 

�C p
4;5�v� � �2C3;4 � C9;10�

�
1	

�s
4�
�CFF � NG�

�

	 �2C4;3 � C10;9�
�s
4�

H �
�s
4�

CF
N
fLp; 0g;

(A11)

 

�Cp6 �v� � �2C6 � C8�

�
1	

�s
4�
�CF ~F � N ~G�

�

	 �2C5 � C7�
�s
4�

~H ; (A12)

where
 

G �
1

2

�
�10	 ln2v�

2

v
ln �v	 ln2 �v� 2Li2

�
�
v
�v

�

�
7

6
�2 � 2i� lnv

�
; (A13)

 

H �
1

2

�
�18	 �2� 3v�

�
lnv

�v
�

ln �v
v

�
	 2Li2

�
�

�v
v

�

� 2Li2

�
�
v
�v

�
� 3i�

�
; (A14)

 

~G �
1

2

�
2	 ln2v� 3 lnv	

1� 3v
v

ln �v	 ln2 �v

� 2Li2

�
�
v
�v

�
�

7

6
�2 	 i��3� 2 lnv�

�
; (A15)

 

~H �
1

2

�
6� �1� 3v�

�
lnv

�v
�

ln �v
v

�
	 2Li2

�
�

�v
v

�

� 2Li2

�
�
v
�v

�
	 3i�

�
: (A16)

APPENDIX B: NONPERTURBATIVE CHARMING
PENGUIN IN THE HEAVY QUARK LIMIT

In this Appendix we show that in the heavy quark limit,
mb,mc ! 1 with r � mc=mb fixed, the charming penguin
contributions to the decay rates factorize in SCET into
hard, jet, collinear, and soft parts at LO in 1=mc;b. A typical
charming penguin contribution is shown in Fig. 3. When
the momentum transfer in the gluon is close to 4m2

c, the

intermediate charm quark pair is nearly on-shell and can
have usoft interactions. In the B meson rest frame, the
velocity of the b quark can be written as v� �
�n� 	 �n��=2 with n� � �1; 0; 0; 1� and �n� �
�1; 0; 0;�1�. In this frame, the on-shell charm quark pair
has momentum 2mcv

�
�cc 	 k

�, where k� �� is the resid-
ual momentum, while v��cc is the velocity of the charm
quark pair with v2

�cc � 1. It is given by

 v��cc �
1

2r
n�

2
	

�uxM
2r

�n�

2
� �

n�

2
	

1

�
�n�

2
; (B1)

where 4r2 � �uxM, with xM close to 1 and �u � 1� u.
The charm quark pair annihilates into a gluon with off-

shellness of order 4m2
c �m

2
b. Integrating out the intermedi-

ate off-shell gluon gives a four-quark operator at leading
order in 1=mc

 O c �cn �n �
X
q

� �qn;!��Taq �n; �!1
�� �c�v �cc

��Tacv �cc
�; (B2)

where the charm quarks are treated as heavy. The collinear
quark fields qn and q �n are defined as

 q �n; �!1
� 
� �!1 � n � P �W

y
�n �

q
�n�;

�qn;! �  ��qnWn
�!� �n � P y��;
(B3)

where Wn (W �n) is the collinear Wilson line in the n ( �n)
direction from integrating out off-shell heavy charm
quarks. Note that these collinear Wilson lines are the
same as those from the heavy b quarks in Eq. (7). This is
a manifestation of Type-III reparameterization invariance
[37,38], which states that the SCET Lagrangian and the
collinear Wilson lines are invariant under n� ! n�=� and
�n� ! � �n� with � close to 1. For example, the collinear
Wilson line Wn is invariant under this transformation as

 Wn0

�
�n0 � A
�n0 � P

�
� Wn0

�
� �n � A
� �n � P

�
� Wn

�
�n � A
�n � P

�
; (B4)

which also holds for W �n. This corresponds to the Lorentz
invariance under a boost with � � mb=�2mc� in the z
direction, corresponding to transforming to the B meson
rest frame. The usoft interactions can be decoupled from
collinear interactions by introducing the usoft Wilson lines
Yn and Y �n and redefining the collinear fields [13]. This
gives

 O c �cn �n �
X
q

� �qn;!�
�Taq �n; �!1

�� �c�v �cc
Y �n��T

aYyn cv �cc
�;

(B5)

where the collinear fields from now on will denote the
redefined fields. The operator Oc �cn �n satisfies gauge invari-
ance in SCET [13,30], and the subleading corrections to
this operator will be of order �=mc;b.

Let us next discuss the form of the nonperturbative
charming penguin contributions that arise from the time-
ordered product of Oc �cn �n with the operators in the weak
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Hamiltonian. We work out the details for the operator
Oc

1 � 4� �q��PLc�� �c��PLb� (q � d; s) that matches onto
the SCET operator

 O qbc �c� �!2� � 4� �q �n; �!2
���

�PL�Y
y
n bv���

� � �cv �cc
Yyn ����PL�Y

y
�n c�v �cc

���; (B6)

where �, � are color indices. The treatment of other
operators is similar. The matrix element for the contribu-
tion of weak operator Oc

1 in Fig. 3 is then
 

hMXjHc �c
W jBi�

GF���
2
p ��q�c i

Z
d!d �!1d �!2

Z
d4y

X
~pn;~p �n

�ei��2mcv �cc	~pn�~p �n��yHc �cn �n�!; �!1�Hqbc �c� �!2�

�hMXjTOc �cn �n�!; �!1;y�Oqbc �c� �!2;0�jBi;

(B7)

where Hc �cn �n � �4��s=�! �!1� and Hqbc �c � 1	O��s�
are the Wilson coefficients of the operators Oc �cn �n and
Oqbc �c in Eqs. (B5) and (B6).

Using the factorization of �n-collinear quarks from usoft
and n-collinear degrees of freedom the matrix element
(B7) can be rewritten as
 

GF���
2
p
N
��q�c cBMq hM

Z 1

0
du


�
�u�

4r2

xM

�
�M�u�H�u; xM�

� hXjQc �cjBi; (B8)

where
 

hXjQc �cjBi��4i
Z
d4yhXjT �qn�y����M��PL

�Ta�Yy�n c�v �cc
��0�� �c�v �cc

Y �n��T
aYyn cv �cc

��y�

�� �cv �cc
Yn��PLY

y
n bv��0�jBi: (B9)

The delta function in (B8) is obtained from the exponent of
the label momenta in Eq. (B7) using �n � p � mb, n � pM �
xMmb. The hard kernel is H�u; xM� �
4��s�2mc�C1=� �uxMm

2
b� 	O��2

s�. In obtaining (B8) the
relation

 hMj�q �n�a �q �n
�u� n � P
y=n � pM��bj0i

� �hM��M�ab�M�u� (B10)

was used, with M � P, L, T denoting pseudoscalar, lon-
gitudinally, and transversely polarized vector mesons, re-
spectively. The product hM�M is

 hM�M �
n � pM

8

8><
>:
ifP 6n��5; �M � P�;
ifV 6n�; �M � L�;
f?V �

��
? �

?
� 6n� �M � T�:

(B11)

The coefficients cBMq describe the flavor content of the
meson M and are

���
2
p
cBsMd � ��1;�1; 1� for �B0

s !
��0; �0; !�, while cBMq � 1 for other decays.

In order to obtain the corrections from nonperturbative
charming penguin to the inclusive decay rates, the optical
theorem is used in a similar way as in Sec. IV. To first order
in �s�2mc� only the time-ordered product shown in Fig. 7,
 

T c �c �
i
mB

Z
d4z e�ip

0�zhBjTJyH�z�Qc �c�0�jBi

� 4
Z
d4z d4y eimb�1�xM� �n�z=2hBvjT �bvYn 6n�PLqn��z�

� � �qn��y����M��PLTa�Y
y
�n c�v �cc

��0��

�  �c�v �cc
Y �n��TaY

y
n cv �cc

��y�

�  �cv �cc
Yyn ��PLY

y
n bv��0�jBvi; (B12)

and its hermitian conjugate are needed. The time-ordered
product hBjTQy

c �c�z�Qc �c�0�jBi contributes at order
�2
s�2mc� and is neglected in our discussion. In Eq. (B12),

the time-ordered product of the n-collinear fields can be
factored out into the jet function
 

h0jTqn�z� �qn�y�j0i � i
6n
2

�n � �z� y��
�z? � y?�

�
Z dn � k

2�
e�in�k �n��z�y�=2

� J �n�p�n � k	 i�; (B13)

and T c �c becomes
 

T c �c � 4
Z dn � k d �n � z

4�
i
Z
d4yeimb�1�xM��n�k� �n�z=2

� ein�k �n�y=2Jmb
�n � k	 i�

�
Bv

��������T �bvYn

�
�n � z
2

�

�
6n�
2
PL
6n
2
���M�

�PLT
aYy�n c�v �cc

�0� �c�v �cc
Y �n��

� TaYyn cv �cc
�y� � �cv �cc

Yyn ��PLY
y
n bv�0�

��������Bv
	
: (B14)

FIG. 7. Nonperturbative charming penguin contribution to the
forward scattering amplitude. The blob is the nonperturbative
charm contribution and the mirror image is omitted.
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If the mesonM is a transversely polarized vector meson,
�M � ��?6n�=2, and T c �c vanishes because of the spin sym-
metry. Equation (B14) thus implies that charming penguin
effects could give a contribution to B! VTX decays only
at subleading orders in �=mc and/or �s�2mc�. We expect
that a similar conclusion holds also for the two-body non-
leptonic exclusive decays. There large transverse polariza-
tion fractions, RT � 0:5, have been measured in �S � 1
B! VV decays (such as B! �K�) that can be charming
penguin-dominated [48–50]. This may signal substantial
1=mc corrections. In naive factorization the transverse
component on the contrary is expected to be suppressed
by O�m2

V=m
2
B� due to a spin flip. In order to explain this

large transverse rate, several possibilities of enhanced
higher-order contributions in 1=mb were suggested [51–
53]. The long-distance charming penguin at leading order
has also been proposed to contribute to large RT [19].

For pseudoscalar or longitudinally polarized vector me-
son, on the other hand, the nonperturbative charming pen-
guin contribution is

 

T c �c � 8
Z dn � k d �n � z

4�
i
Z
d4yeimb�1�xM��n�k� �n�z=2

� e	in�k �n�y=2Jmb
�n � k	 i�

�
Bv

��������T �bvYn�
�n�z
2 ��

�
?

6n�
2
��

� PLT
aYy�n c�v �cc

�0� �c�v �cc
Y �n�

?
�T

aYyn cv �cc
�y�

� �cv �cc
Yn��PLY

y
n bv�0�

��������Bv
	
: (B15)

The factorization in T c �c is more apparent if we rewrite it in
a more compact form as

 

T c �c � �2
Z ��

�mb�1�xM�
dn � lf�1�c �c �mb�1� xM� 	 n � l; n � l�

� Jmb
�n � k	 i� (B16)

where we have introduced a new, in general complex,
nonperturbative function f�1�c �c

 Z ��

�mb�1�xM�
dn � l ein�l �n�z=2f�1�c �c �n � k; n � l� � �2i

Z
d4y ein�k �n�y=2

�
Bv

��������T
�
� �bvYn�

�
�n � z
2

�
��?6n��

�PLT
a�Yy�n c�v �cc

��0�
�

�  �c�v �cc
Y �n�?�TaY

y
n cv �cc

��y� �cv �cc
Yyn ��PLY

y
n bv��0�

��������Bv
	
: (B17)

The integration over n � l can be interpreted as the integra-
tion over soft fluctuations of bv. Taking the discontinuity of
the jet function in T c �c we finally obtain
 

F �1�c �c � 2
Z ��

�mb�1�xM�
dn � l f�1�c �c �mb�1� xM� 	 n � l; n � l�

�

�
�

1

�
ImJmb

�n � k	 i�
�
: (B18)

The jet function can be systematically computed in powers
of �s�

����������
�mb

p
�. Instead of pursuing this option, we can treat

the convolution of jet function and f�1�c �c as a nonperturbative
function to be determined from experiment. The nonper-
turbative charming penguin contribution to the decay rate
corresponding to a sum of Fig. 7 and its mirror image is
then
 

d��1�c �c �B! MX�
dEM

� 16�2�s�2mc�
G2
F

N
f2
ME

3
M

16�2

1

8r2m2
b

��M�1� 4r2=xM��
�q�
c cBMq C1�mb�

� 2 ReT �q��
M �mb�F

�1�
c �c �xM��: (B19)

If we include all the possible contributions from the four-
quark operators, the nonperturbative charming penguin
contribution to the decay rate at leading order in 1=mc;b
and �s�2mc� is written as

 

d��cc�B! XM�
dEM

�
G2
F

8�
f2
Mm

2
bx

3
M�s�2mc��

�q�
c cBMq

��M�1� 4r2=xM� � 2 ReT �q��
M F c �c;

(B20)

where the hard coefficients T �q�
M are listed in Table I, while

 

F c �c �
�

8Nr2mb
fC1�mb� 	 C4�mb� 	 C10�mb��F

�1�
c �c

	 C2�mb� 	 C3�mb� 	 C9�mb��F
�2�
c �c

	 ��q�u =�
�q�
c �C4�mb� 	 C10�mb��F

�1�
c �c

	 �C3�mb� 	 C9�mb��F
�2�
c �c �g: (B21)

The nonperturbative function F �2�c �c arises from the weak
operators with the same color structure as Oc

2, so that

 

F �2�c �c � 2
Z ��

�mb�1�xM�
dn � l f�2�c �c �mb�1� xM� 	 n � l; n � l�

�

�
�

1

�
ImJmb

�n � k	 i�
�
; (B22)

where

SEMI-INCLUSIVE HADRONIC B DECAYS IN THE ENDPOINT REGION PHYSICAL REVIEW D 74, 074022 (2006)

074022-17



 Z ��

�mb�1�xM�
dn � l ein�l �n�z=2f�2�c �c �n � k; n � l�

� �2i
Z
d4ye	in�k �n�y=2

�
Bv

��������T �bvYn

�
�n � z
2

�
��?6n��

�PLT
a

� Yy�n bv�0� �c�v �cc
Y �n�

?
�T

aYyn cv �cc
�y�

� �cv �cc
Yyn ��PLY

y
n c�v �cc

�0�

��������Bv
	
: (B23)

The terms proportional to ��q�u in (B21) are smaller than

<2%�<0:1%� of the terms in the first row of (B21) for
�S � 0��S � 1� decays and can be safely neglected.

The function F c �c is independent of the outgoing meson
M. In obtaining Eq. (B20) an expansion in �s�2mc� was
used. If the expansion does not converge one can still
parametrize the nonperturbative charming penguins by
treating the product of �s�2mc�, the LCDA, and F c �c as a
new nonperturbative parameter, to be extracted from ex-
periment. Unlike F c �c, however, this new parameter de-
pends on M.
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