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We study elementary particle reactions that result from the interaction of an atomic system with a very
intense laser wave of circular polarization. As a specific example, we calculate the rate for the laser-driven
reaction e�e� ! ����, where the electron and positron originate from a positronium atom or,
alternatively, from a nonrelativistic e�e� plasma. We distinguish accordingly between the coherent
and incoherent channels of the process. Apart from numerical calculations, we derive by analytical means
compact formulas for the corresponding reaction rates. The rate for the coherent channel in a laser field of
circular polarization is shown to be damped because of the destructive interference of the partial waves
that constitute the positronium ground-state wave packet. Conditions for the observation of the process via
the dominant incoherent channel in a circularly polarized field are pointed out.
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I. INTRODUCTION

The interaction of electrons and atoms with laser radia-
tion is intensively and successfully being studied for many
years now. However, due to a rapid technological progress,
the high-power laser systems available today can generate
peak intensities up to 1022 W=cm2 in the range of near-
optical infrared frequencies [1], and a further increase can
be expected within the next few years [2]. Consequently,
the ponderomotive energy of an e� (or e�) inside such a
laser wave is of the order of 1 GeV, which is far beyond the
typical energetic range of atomic physics but rather reaches
the energy scale characteristic for elementary particle
physics. If electrons or an e� and e� collide at such high
energies, then particle reactions like heavy lepton-pair
creation or hadron production can occur. This indicates
that there might be a way to merge laser physics with high-
energy physics [3,4]. Similar efforts are being undertaken
with respect to laser physics and nuclear physics [5–8].

The high-energy process of photon-induced e�e� pair
creation by a projectile particle colliding with an intense
laser beam has already been investigated before, both
experimentally [9] and theoretically [10,11]. An essential
ingredient to these studies is the ultrarelativistic energy of
the incoming particle. In its rest frame, the doppler-shifted
laser frequency and field strength are considerably en-
hanced. As a consequence, the projectile actually faces
an x-ray beam of near-critical intensity.

Instead, in the present paper we study a situation where
elementary particle reactions arise from the interaction of a
strong laser field with a nonrelativistic atomic system. To
this end, we suppose that a positronium (Ps) atom is
brought into an intense laser wave. We note that the life-
times of ortho-Ps (� 10�7s) and para-Ps (� 10�10 s) are
much longer than the typical duration of a strong laser
pulse. Because of the equal masses of its constituents, the
dynamical response of the positronium to the electromag-
netic forces exerted by the laser field is rather unique [12]:
The laser’s linearly polarized electric field leads to an

antiparallel oscillatory motion of the particles in the trans-
verse direction, while the magnetic Lorentz force causes an
identical ponderomotive drift motion along the laser propa-
gation direction. This leads to periodic e�e� (re)collisions
(see, in particular, Fig. 1 in Ref. [12]). If the energy of the
relative e�e� motion is large enough, then in these coher-
ent collisions [13] particle reactions can occur. Thus, we
shall study high-energy processes induced by e�e� anni-
hilation resulting from a laser-driven Ps atom. Considering
the case of a circularly polarized laser field we will find as a
main result, however, that the various partial waves that
constitute the Ps ground-state interfere destructively,
which causes a heavy suppression of the coherent reaction
rate. This quantum effect can be related to the classical
trajectories of the colliding particles in the laser field.
Furthermore, when the characteristic size of these trajec-
tories (or the size of the spreading particle wave packets)
exceeds the interatomic distance, then collisions between
particles originating from different Ps atoms will come into
play, which opens the incoherent channel of the process.
Surprisingly it turns out that, in a circularly polarized laser
field, the incoherent channel is dominant as the interfer-
ence in the coherent channel is destructive. In order to
study the incoherent process we replace the Ps atom by a
nonrelativistic e�e� plasma. In this situation, exclusively
incoherent e�e� collisions occur.

It should be stressed that in the described setup the e�e�

collision energy is basically determined by the kinetic
energy �mc2� contained in the transversal motion of the
particles, which is considerably smaller than the pondero-
motive energy�mc2�2 mentioned above. Here, mc2 is the
electron rest energy and � � ea=mc2 denotes the so-called
laser intensity parameter with the electron charge �e and
the laser’s vector potential a. For the highest intensities
attainable at present � is of order 102. In this respect, the
underlying laser acceleration of the particles is consider-
ably different from the usual laser acceleration techniques,
since the latter try to extract the ponderomotive energy
gain along the laser propagation direction. Nevertheless,
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the energetic thresholds for muon or pion production might
be within reach. We further notice, that the principal diffi-
culties of laser acceleration implied by the Lawson-
Woodward theorem (see, e.g., Ref. [14]) are completely
absent here since the e� and e� collide inside the laser
wave.

Against this background, we consider the specific pro-
cess e�e� ! ���� which is one of the most fundamental
in high-energy physics. Its cross section sets the scale for
all e�e� annihilation cross sections [15]. For example, at
high energies one has �e�e�!hadrons � 4�e�e�!���� ,
where �e�e�!hadrons denotes the total cross section for the
production of any number of strongly interacting particles
[16]. The threshold energy for the reaction e�e� !
���� amounts to 2Mc2 in the field-free case, where M
denotes the muon mass. According to the above, a naive
estimate thus suggests that a laser intensity corresponding
to � � M=m � 200 is required to produce a muon pair in a
laser-driven e�e� collision. This value is reached, e.g., for
a linearly polarized laser beam of 3:8� 1022 W=cm2 in-
tensity and 1 eV photon energy.

To the best of our knowledge, the process e�e� !
���� in a laser field has not been considered before.
The most closely related article treats the laser-assisted
Bhabha scattering e�e� ! e�e� [17]. In Ref. [17] the
low-intensity case (i.e., �� 1) is analyzed in detail with
the emphasis lying on the resonances that can occur in the
scattering cross section due to the interaction of the leptons
with the background laser field. We will come back to this
point later. Another similar process, that has found the
interest of several authors, is the Møller scattering e�e� !
e�e� in a laser field (see [18–21] and references therein).

The paper is organized as follows. In Sec. II we develop
a formalism that allows us to calculate the rate for the
reaction Ps! ���� in a strong laser field. Our treatment
will be based upon the Volkov solutions to the Dirac
equation. Afterwards we analyze in detail the reaction
kinematics. Here we show, in particular, that the minimal
laser intensity parameter required is indeed given by
�min � M=m [cf. Eq. (36)]. Further, the kinematical analy-
sis will help us to derive a compact formula that gives an
approximation to the total reaction rate and displays its
main dependences [cf. Eq. (51)]. In Sec. III we present our
(numerical) results on the total and differential production
rates and compare them with the known cross section for
the field-free process e�e� ! ����. Furthermore, we
briefly consider the related process of muon pair produc-
tion by a superstrong laser wave interacting with a non-
relativistic e�e� plasma. In this situation the interference
effect does not play a role. We finish with a conclusion.

II. THEORETICAL FRAMEWORK

A. Transition amplitude and reaction rate

We calculate the rate for positronium decay into muons
in a strong laser field, i.e., the rate for the laser-driven

process Ps! ����. We assume a photon energy of about
1 eV and a laser intensity parameter of order M=m� 200
or larger [22]. For mathematical simplicity, the laser field is
taken to be a monochromatic, plane wave of circular
polarization with the classical four-potential [23]

 A��x	 � a�1 cos�kx	 � a�2 sin�kx	: (1)

As usual, A� is assumed to be adiabatically switched on
and off in the remote past and the distant future, respec-
tively. In Eq. (1), k� � !�1; 0; 0; 1	 is the wave four-vector
and a�1;2 are constant four-vectors chosen as a�1 �
�0; a; 0; 0	 and a�2 � �0; 0; a; 0	 with a denoting the ampli-
tude of the vector potential. From now on we use relativ-
istic units (@ � c � 1), except where otherwise stated. We
notice that in the circularly polarized laser field (1) the e�

and e� are permanently colliding since, according to the
classical equations of motion, they are corotating in the
polarization plane.

The Ps atom is assumed to be initially at rest and in its
ground state. In a usual field theoretic formalism [15], this
bound initial state can be expressed as a superposition of
products of free states  p
 for the electron and positron
with definite momenta p
 � 
p. The superposition is
weighted by the probability amplitude ~��p	 for finding a
particular value of p. Note that this amplitude is just the
Compton profile of the Ps ground state (i.e., the Fourier
transform of its wave function) and p can be viewed as the
relative momentum of the electron-positron two-body sys-
tem (i.e., as the momentum of an effective particle of
reduced mass m=2). When submitted to the strong laser
field (� * 200) the Ps atom will instantaneously be ion-
ized, and the dynamics of the ionized e� and e� will be
governed by the laser field, which predominates over the
influence of the Coulomb interaction between the particles.
Therefore, in the spirit of the strong-field approximation
theories [24], we may replace the free leptonic states  p

by laser-dressed Volkov states [25,26]. Within this frame-
work, the amplitude for the laser-driven process Ps!
���� can be written as

 S Ps!���� �
1����
V
p

Z d3p

�2�	3
~��p	Se�e�!���� (2)

with a normalization volume V and

 

Se�e�!���� � �i�f

Z
d4x

Z
d4y ��p�;s��x	�

��p�;s��x	

�D���x� y	 ��P�;S��y	�
��P�;S��y	 (3)

being the amplitude for the process e�e� ! ���� in a
laser wave (cf. Fig. 1). In Eq. (3), �f denotes the fine
structure constant,
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 D���x� y	 �
Z d4q

�2�	4
eiq��x�y	

q2 g�� (4)

is the free photon propagator [27,28], and the laser-dressed
states for the electron and positron are given by [25,26]

 �p
;s
�x	 �

�������
m

p0



s �
1


e6k 6A
2�kp
	

�
up
;s
eif�
	 (5)

with

 f�
	 � 
�q
x	 �
e�p
a1	

�kp
	
sin�kx	 �

e�p
a2	

�kp
	
cos�kx	:

In Eq. (5), p
 are the initial free four-momenta of the

electron and positron (outside the laser field), s
 denote the
particle spin states, the up
;s
 are free Dirac spinors [29],
and

 q�
 � p�
 �
e2a2

2�kp
	
k� (6)

are the effective four-momenta of the particles in the laser
field [26]. Note that Eq. (6) implies q?
 � p

?

 and thus

q?� � q
?
� � 0, where the label ? denotes the momentum

component that is perpendicular to the laser propagation
direction. The corresponding effective mass reads m2

� �
q2

 � �1� �

2	m2 with the dimensionless laser intensity
parameter

 � �
ea
m
: (7)

Like free states, the Volkov states in Eq. (5) are normalized
to a �-function in p
 space [26,30]. Analogous expres-
sions hold for the Volkov states �P
;S
 , the free momenta
P
, the spin states S
, the effective momenta Q�


, the
effective mass M� � M�1��2	1=2, and the intensity pa-
rameter � � ea=M of the muons. Note that the amplitude
(3) fully accounts for the interaction of the leptons with the
laser field, while their interaction with the QED vacuum is
taken into account to lowest order. Similar approaches
have been used for the theoretical description of laser-
assisted e�e� [17] and e�e� [18–21] scattering.

By the standard procedure of using the generating func-
tion of the Bessel functions [31], one can perform the
space-time integrations in Eq. (3) to get

 

Se�e�!���� � �i�2�	4�f
m�������������
p0
�p

0
�

q M��������������
P0
�P

0
�

q Z d4q

q2

X
n;N

M��p�; p�jn	M��P�; P�jN	��q� � q� � q� nk	

� ��Q� �Q� � q� Nk	 (8)

with the electronic spinor-matrix product

 M ��p�; p�jn	 � �up�;s�

��
�� �

e2a2k� 6k
2�kp�	�kp�	

�
b0
n �

�
e��6ka6 1

2�kp�	
�
ea6 16k�

�

2�kp�	

�
b�n �

�
e�� 6ka6 2

2�kp�	
�
ea6 2 6k�

�

2�kp�	

�
b�n

�
up�;s� (9)

and a corresponding expression M��P�; P�jN	 for the
muons. The coefficients in Eq. (9) are given by
 

b0
n � Jn��	e

�in’0 ;

b�n �
1

2

Jn�1��	e�i�n�1	’0 � Jn�1��	e�i�n�1	’0�;

b�n �
1

2i

Jn�1��	e

�i�n�1	’0 � Jn�1��	e
�i�n�1	’0�

(10)

with � �
������������������
�2

1 � �
2
2

q
, ’0 � arccos��1=�	 �

arcsin��2=�	, and

 �j �
e�ajp�	

�kp�	
�
e�ajp�	

�kp�	
(11)

for j � 1, 2. As is expressed by the energy-momentum
conserving �-function at the first vertex, the integer num-
ber n in Eq. (8) counts the laser photons that are emitted (if
n > 0) or absorbed (if n < 0) by the electron and positron.
Similarly, N is the number of laser photons emitted (if N <
0) or absorbed (if N > 0) by the muons. Denoting the total
number of absorbed laser photons by r :� N � n and
integrating over the virtual photon momentum yields

e−

µ+

e+

q

µ−

p− , q−

P− , Q−

p+ , q+

P+ , Q+

FIG. 1. Feynman diagram for the process e�e� ! ���� in a
laser field. The arrows are labeled by the free and effective
momenta of the corresponding particle cf. Eq. (6).
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 S e�e�!���� � �i�2�	4�f
m�������������
p0
�p

0
�

q M��������������
P0
�P

0
�

q X
n;r

M��p�; p�jn	M��P�; P�jn� r	
��q� � q� �Q� �Q� � rk	

�q� � q� � nk	
2 :

(12)

In general, the denominator �q� � q� � nk	2 in Eq. (12)
could become zero. By way of a renormalization proce-
dure, such mathematical singularities can be transformed
into physical resonances that appear in the production
process [17–20]. One can easily see, however, that in the
present situation, due to the large value of the laser inten-
sity parameter and the nonrelativistic electron and positron
momenta p
, one is always far off resonance [32]. Namely,
on the one hand we have
 

�q� � q� � nk	
2 � 2m2

� � 2�q�q�	 � 2n�kp�	

� 2n�kp�	 � 4m2
� � 4n!m

which becomes zero for

 nres � �2 m
!
� 1010: (13)

On the other hand, the Bessel functions Jn��	, that enter
the production amplitude through the coefficients in
Eq. (10), practically vanish unless � * n. Since q�� �
q�� and m�, q? � qz, the argument approximately equals

 � � 2
ea
!

jq?j

q0 � qz
� 4�

m
!
jq?jqz
m2
�

;

where we have dropped the particle labels
. Now, jq?j �
jp?j �m�f and qz � m�2=2. Hence,

 �� �f�
m
!
� 106 (14)

which, according to Eq. (13), is orders of magnitude
smaller than would be required for a resonance to occur.

The above argument can be further exploited. From
Eq. (14) we know that the main contribution to the pro-
duction amplitude comes from photon numbers n with
jnj & 106. But for those numbers we have to a very good
approximation

 �q� � q� � nk	
2 � �q� � q�	

2

which, thus, can be pulled out of the sum in Eq. (12):

 

Se�e�!���� � �i�2�	4�f
m�������������
p0
�p

0
�

q M��������������
P0
�P

0
�

q 1

�q� � q�	
2

X
n;r

M��p�; p�jn	M��P�; P�jn� r	

� ��q� � q� �Q� �Q� � rk	: (15)

The summation over n can now be performed analytically by virtue of Graf’s addition theorem [31] with the result

 

X
n

M��p�; p�jn	M��P�; P�jn� r	 � Jru
�U� � K

�
r �u

�V� � v
�U�	 � K

�
r �u

�W� � w
�U�	 � L

�
r v

�V�

�Mr�v
�W� � w

�V�	 � L
�
r w

�W�: (16)

Here we have used the abbreviations

 

u� � �up�;s�

�
�� �

e2a2k�6k
2�kp�	�kp�	

�
up�;s�

v� � �up�;s�

�
e�� 6ka6 1

2�kp�	
�
ea6 1 6k�

�

2�kp�	

�
up�;s�

w� � �up�;s�

�
e�� 6ka6 2

2�kp�	
�
ea6 2 6k��

2�kp�	

�
up�;s�

(17)

and similarly U�, V�, and W� for the muons. The coef-
ficients in Eq. (16) read

 

Jr � Jr��		r;

K�r �
1

2

Jr�1��		

r�1 � Jr�1��		
r�1�;

K�r �
i

2

Jr�1��		

r�1 � Jr�1��		
r�1�;

L
r �
1

4

2Jr��		r 
 Jr�2��		r�2 
 Jr�2��		r�2�;

Mr �
i

4

Jr�2��		

r�2 � Jr�2��		
r�2�;

(18)

with
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 � � 
� �ei�’0��0	; � � j�j; and 	 �
�
�

ei�0 ;

where 
 and �0 are the muonic quantities that correspond
to � and ’0. We will see later that � � 
 since �� 
 for
the typical parameters. An insignificant overall phase fac-
tor of eir�0 can be dropped in Eq. (18).

Now we come back to the reaction Ps! ����. In
order to obtain the corresponding amplitude we have,
according to Eq. (2), to multiply Eq. (15) by the
Compton profile ~��p	 of the positronium ground state
and integrate over the relative momentum p. It turns out
that this integration is a very difficult task that can only be
done in an approximate way:

First, within the momentum range given by ~��p	 the
electronic spinor-matrix products in Eq. (17) are practi-
cally constant (on the 1% level since jpj=m� �f) and can
therefore be pulled out of the integration. The same holds
for the kinematic factors p0


 � m, �q� � q�	2 � 4m2
�, and

the energy-momentum conserving �-function [33]. Hence,
we are left with integrals of the form

 

�J r �
1����
V
p

Z d3p

�2�	3
~��p	Jr��	e

ir�; (19)

where � � arctan
� sin�’0 � �0	=�� cos�’0 � �0	 � 
	�
such that exp�i�	 � �=�. The highly oscillating factor

exp�ir�	 leads to a very small value of �Jr. The oscillatory
damping of the amplitude is due to a destructive interfer-
ence of the various partial waves within the Ps wave
packet. Classically, this interference effect can be related
to the extended motion of the e� and e� in the polarization
plane of the laser. Therefore, the mean impact parameter of
the e�e� collisions is much larger than the initial Ps size
and the resulting ���� production amplitude is sup-
pressed. The laborious evaluation of the integral (19) is
performed in the appendix. The result is

 

�J r � �

���
2
p

�3=2a3=2
0

����
V
p

�
!

m�f�

�
2

1=3Jr�
	 (20)

with the Ps radius a0 � 2=�fm. The damping factor can
also be written as �!=m�f�	

2 � ��a0=
�	
2 � 10�12.

Note that 2
� gives the average impact parameter of the
e�e� collisions since, according to their classical trajecto-
ries, the particles corotate in the polarization plane on
opposite sides of a circle of radius 
�. However, the
classical picture suggests that the process probability is
proportional to �a0=
�	

2. Instead, this factor is contained
in the process amplitude such that the probability scales as
�a0=
�	

4. This indicates that the damping factor is truly of
quantum mechanical origin.

The square of the amplitude reads

 

jSPs!����j
2 � �2�	4�2

f

m2

p0
�p

0
�

M2

P0
�P

0
�

1

�q� � q�	
4

X
r

��������X
n

M��p�; p�jn	M��P�; P�jn� r	
��������2

� ��q� � q� �Q� �Q� � rk	VT; (21)

where
P
n indicates the sum over n in Eq. (16) averaged

over the Ps ground state, as described above, p
 (q
) are to
be understood as some typical values of the electron and
positron (effective) momenta, and the factors of volume V
and time T come, as usual, from the square of the
�-function. Note that the energy-momentum conserving
�-function, in particular, implies Q?� �Q

?
� � 0. From

Eq. (21) we get the total reaction rate by averaging over
the initial spin states, summing over the final spin states,
and integrating over the final momenta:

 RPs!���� �
1

T

Z d3P�
�2�	3

Z d3P�
�2�	3

1

4

X
s
;S


jSPs!����j
2:

(22)

In the next but one subsection we derive a compact ana-
lytical formula that gives an estimate for the muon pro-
duction rate (22). But before, we analyze in some detail the
reaction kinematics.

B. Kinematical considerations

In the following we provide estimates for the minimal
(rmin) and the typical ��r	 photon numbers that are net
absorbed during the production process. From the latter
we also find the typical momenta of the created muons.

A lower bound on r can be derived from the equation

 �q� � q� � rk	
2 � 2�q� � q� � rk	 �Q
 (23)

that follows from the energy-momentum conservation con-
dition expressed by the � function in Eq. (21). Setting
Qr � q�0 � q

�
0 � r! and qr � q�z � q

�
z � r!, this can

be rewritten as

 cos�Q
 �
2QrQ

0

 � �Q

2
r � q

2
r	

2qrjQ
j
(24)

with the polar angle �Q
 � ��k;Q
	. Demanding
cos2�Q
 � 1, we get

 

��������Q0

 �

Qr

2

��������� qr
2

�
1�

4M2
�

Q2
r � q2

r

�
1=2
: (25)
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Hence, it is required that 4M2
� � Q2

r � q
2
r � �q� � q� �

rk	2, i.e., the laser-dressed collision energy has to exceed
twice the laser-dressed muon mass. Using �q� � q� �
rk	2 � 4m2

� � 4r!m, we find

 r * rmin �
M2 �m2

!m
�
M2

!m
: (26)

This means that, e.g., for ! � 1 eV at least 2� 1010

photons have to be absorbed from the laser wave for
muon production to take place from the initially low-
energy e�e� pair. This number is independent of the laser
intensity.

Assuming a symmetric situation with Q0
� � Q0

�,
Eq. (26) implies that the minimal muon energy is approxi-
mately given by

 Q0
min �

1

2
Qrmin

�
m
2

�
�2 �

M2

m2

�
�
M2

m
: (27)

Hence, the muons are typically produced with highly
relativistic momenta such that their dispersion relation
approximately reads Q0


 � jQ
j. Furthermore, they are
emitted roughly along the laser propagation direction
(note that Qz � Q? since qr � m�2 � r!, Qr � 2m�
m�2 � r! so that qr � Qr). More precisely, by solving
Eq. (24) for Q0


 we find that the polar emission angle
satisfies the relation

 cos�Q
 �
Qr

qr

�
1�
�Q2

r � q
2
r	

2

4Q2
rM2
�

�
1=2
�

�
1�

4m2

M2
�

�
1=2
:

(28)

For these reasons one can say that the muon kinematics is
similar to that of the laser photons. This ‘‘photonlike’’
nature of the muons results from the fact that they are
essentially produced by a huge number of laser photons
whose total energy, according to Eq. (27), exceeds the
initial nonrelativistic energy of the e� and e� by orders
of magnitude.

The typical number of absorbed laser photons can be
estimated by exploiting the properties of the Bessel func-
tion Jr�
	 in Eq. (20). To this end, let us again assume a
symmetric situation, which allows us to drop the particle
indices 
 in what follows. The energy-conservation con-
dition then can approximately be written as 2Q0 � 2q0 �
r!. Because of the photonlike muon momenta this can be
expressed as

 2Qz

�
1�

Q2
? �M

2
�

2Q2
z

�
� 2qz

�
1�

q2
? �m

2
�

2q2
z

�
� r!; (29)

where qz � q0 � m�2=2. Applying the momentum con-
servation condition 2Qz � 2qz � r!, we thus get

 

Q2
? �M

2
�

Qz
�
q2
? �m

2
�

qz
: (30)

Now, let r0 � q0=! and ‘ � r=r0. Then, again by the

momentum conservation condition, Qz � �1� ‘=2	qz.
Hence, Eq. (30) implies

 Q? �
��

1�
‘
2

�
m2
� �M2

�

�
1=2
; (31)

where m� � q? was used. Thus, the argument of the
Bessel functions in Eq. (20) approximately equals

 
 � 2
ea
!

Q?
Q0 �Qz

� 4�
m
!

Q?Qz

Q2
? �M

2
�

� 2�
Q?
!

� 2�
m
!

�
r!
m
�
M2

m2

�
1=2
: (32)

We note that, according to Eq. (26), the expression under
the square root on the right-hand side of Eq. (32) is
positive. By the properties of the Bessel functions [31],
the typical number of absorbed laser photons is expected to
be determined by the condition 
 � r. This yields

 r� �r � 2�2 m
!
�1�

���������������
1� �2

p
	 (33)

with � � M=m� [34]. The corresponding typical muon
momenta read
 

�Q? � m��1�
���������������
1� �2

p
	;

�Qz �
m
2
�2
1� 2�1�

���������������
1� �2

p
	�:

(34)

Using the Eq. (6) between the effective and the free four-
momenta and the relations (45) below, we find for the
typical values of the muon momenta after the interaction
with the laser field
 

�P? � �Q? � m��1�
���������������
1� �2

p
	;

�Pz � �Qz �
m
2
�2 � m�2�1�

���������������
1� �2

p
	:

(35)

For example, for � � 250 and ! � 1 eV we have �r �
1011, �Q? � �P? � 2M, �Qz � 620M, and �Pz � 470M.
From Eqs. (33) and (35) we see that the typical final energy
of the muon pair satisfies the relation 2 �P0 � �r!, which
reflects the law of energy conservation after the laser has
been switched off. Equation (33) also implies that the
minimal intensity parameter required for the process to
have a significant probability (i.e., to be able to fulfill r �

�r	) amounts to

 �min �
M
m

(36)

which agrees with our earlier naive estimate.
We notice that the partial rate for muon production by

the absorption of r � rmin photons is zero. Namely, accord-
ing to Eqs. (31) and (32), for ‘ � rmin=r0 � 2M2=m2�2 the
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transverse muon momentum and with it the argument of
the Bessel functions practically vanish. According to the
above, the partial rate reaches a maximum at r� �r, which
at � � �min is twice as large as the minimal number of
photons: �r � 2rmin.

It is interesting to observe that the typical muon mo-
menta in Eq. (35) can be interpreted by employing a
classical simple man’s model of the creation process. In
the classical picture, the threshold value of the laser inten-
sity (36) corresponds to the situation when, in the center-
of-mass frame of the e�e� system, the kinetic energy is
large enough to create muons at rest; i.e., denoting the laser
phase by � � !�t� z	, we have

 P0?��0	 � P0z��0	 � 0 (37)

at the creation phase �0, where the prime indicates the
center-of-mass frame. The classical equation of motion
for a muon in a laser field with the initial condition (37)
has the solution
 

P0?��	 � eA��	 � eA��0	;

P0z��	 �
e2

2M

A��	 � A��0	�

2:
(38)

Consequently, after the interaction with the laser field the
muon momenta equal

 P0? � m�; P0z �
m2

2M
�2: (39)

Because of the e�e� longitudinal drift motion in the laser
field, the relative velocity between the center-of-mass
frame and the lab frame amounts to vrel � qz=q0 �
�2=�2� �2	 [see Eq. (6)]. The Lorentz transformation to
the lab frame thus yields

 P? � m�; Pz �
M
2

�2��������������
1� �2

p �
m2

2M
�2

��������������
1� �2

q
:

(40)

The latter coincides with the typical muon momenta at the
threshold � � �min given by the quantum theory: �Pz �
M2=m and �P? � M [see Eq. (35)]. The typical number
of absorbed photons is determined by the muon final
energy: �r! � 2�P0 �m	 � 2M2=m, which is in agree-
ment with Eq. (33).

Our simple man’s model can also explain a peculiarity in
the angular distribution of the muons (see Fig. 4 in
Sec. III A). Since Pz � P?, the muons move in a narrow
cone with the axis parallel to the laser propagation direc-
tion, but at very small angles the angular spectrum has a
dip. The dark region in the angular distribution occurs
because the muons, although having been created with
zero transverse momentum in the laser field, acquire a
nonvanishing transverse momentum after switching off
the laser field [see Eqs. (37) and (38)].

C. An approximative formula for the total rate

Equation (22) for the total rate of the reaction Ps!
����, although looking rather innocent, is actually quite
involved and can be evaluated only numerically. Therefore
it is desirable to find, by analytical means, an approxima-
tion to Eq. (22) that displays its main physical content. To
this end, we consider the contribution to the total rate
stemming from the first term on the right-hand side of
Eq. (16). From our numerical calculations we learn that
this term gives by far the main contribution (� 90%).
Thus, we need to calculate

 

~RPs!���� �
�2

fa0

27�5

�
!
�

�
4 m2

p0
�p

0
�

M2

�q� � q�	4
Z d3P�

P0
�

Z d3P�
P0
�

X
r


Jr�
	�2
2=3
X
s
;S


ju�U�j
2��q� � q� �Q� �Q� � rk	:

(41)

With the help of the �-function and the relations [26]

 

d3P

P0



�
d3Q

Q0



; d3Q� � jQ�jQ
0
�dQ

0
�d cos�Q�d�Q�

we can integrate over d3Q� and dQ0
� to find

 

~R Ps!���� �
�2

fa0

211�5

�
!
�

�
4 M2

m4
�

Z
d�Q�

Z
d cos�Q�

X
r


Jr�
	�2
2=3
X
s
;S


ju�U�j
2; (42)

where the relations p0

 � m, �q� � q�	2 � 4m2

�, and jQ�j � Q0
� have been used. The spin sum in Eq. (42) can be

converted in the usual way into a product of two traces:
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T uU;uU :�
X
s
;S


ju�U�j
2

� Tr
��
�� �

e2a2k�6k
2�kp�	�kp�	

�
6p� �m

2m

�
�� �

e2a2k�6k
2�kp�	�kp�	

�
6p� �m

2m

�

� Tr
��
�� �

e2a2k� 6k

2�kP�	�kP�	

�
6P� �M

2M

�
�� �

e2a2k�6k
2�kP�	�kP�	

�
6P� �M

2M

�
: (43)

We want to find some typical value of T uU;uU. The standard trace technology yields
 

T uU;uU �
2

m2M2 
�p�P�	�p�P�	 � �p�P�	�p�P�	� �
2�P�P�	

M2 �
2�p�p�	

m2

�
2��

mM

�p�P�	 � �p�P�	 � �p�P�	 � �p�P�	 � 2�P�P�	 � 2�p�p�	� � 4�2 � 4�2 � 4�2�2 � 4:

(44)

Here we have used the (remarkable) relations

 !m � �kp�	 � �kp�	 � �kP�	 � �kP�	 (45)

that hold to a good approximation since

 �kP	 � �kQ	 � !
Q2
? �M

2
�

2Qz
� !

q2
? �m

2
�

2qz
� �kq	

� �kp	 (46)

by Eq. (30). With �p�p�	 � m2, �p
P
	 � mP0, and
�P�P�	 � M2 � 2P2

? the expression in Eq. (44) becomes

 T uU;uU �
4

M2 �P0 �m�
2	2 � 8�2 P

2
?

M2 (47)

with P0 and P? denoting some characteristic values of the
muonic energies and transversal momenta that, by
Eq. (35), amount to P0 � 2m�2 and P? � 2m� at ��
�min. This leads to the desired typical value of

 T uU;uU � 36�4 m
2

M2 ; (48)

which can be pulled out of the integration in Eq. (42). We
proceed by performing the further approximations

 

Z
d�Q� � 2�;

Z
d cos�Q� �

�2
max

2
;


2=3 � �r2=3;
X
r


Jr�
�r		�
2 � 1;

(49)

where, according to Eq. (28), the maximum polar emission
angle is given by

 �max �
2m
M�

: (50)

Putting all pieces together, we arrive at the handy formula

 

~R Ps!���� �
32

26�4

�2
f

�2

�
!2

m�M�

�
2
�
4m�2

!

�
2=3 1

re
; (51)

where re denotes the classical electron radius [35].

Equation (51) is the desired analytical estimate for the
rate of laser-driven Ps decay into muons.

We notice that Eq. (51) can also be represented in the
form

 

~R Ps!���� �
�

a3
0

�
a0


�

�
4
�
4m�2

!

�
2=3
: (52)

Here � � �9=8	��2
f =M

2
�	 stands for the process cross sec-

tion, which for �� �min becomes

 � �
9

8

r2
e

�2 : (53)

Recalling the simple man’s model and using the electron
energy in the center-of-mass frame p00 � m�, we can infer
that Eq. (52) is based on the process cross section

 ��
r2
e

�2 ; (54)

with � � p00=m � � being the electron gamma-factor in
the center-of-mass frame. Equation (54) is in accordance
with the known field-free cross section for muon produc-
tion in e�e� collisions [see Eq. (56)].

If the interaction volume contains N positronium atoms,
then the rate will increase correspondingly:

 R�N	
Ps!���� � NRPs!���� : (55)

Here we have assumed that each Ps atom independently
creates a muon pair, i.e. there is no interference between
electrons (positrons) stemming from different Ps atoms.
The latter is the case when the electron wave packets from
different atoms do not overlap, i.e. when 
�� n�1=3,
where n is the Ps density. Otherwise, when the spatial
extension of the electron wave packet is large, then the
gas of Ps atoms transforms into an e�e� plasma. Against
this background, in the following we will denote the rate in
Eq. (55), respectively (22) as the coherent rate for muon
production since the colliding e� and e� originate from
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one and the same Ps atom. In contrast to that, the rate for
muon creation from an e�e� plasma, that might have been
formed from an initial Ps gas, will be referred to as
incoherent rate. In this situation, electrons and positrons
from different Ps atoms can collide which gives a total
number of N2 incoherent collisions. In the next section we
will present our results both on the coherent and the
incoherent channel of muon production.

III. RESULTS AND DISCUSSION

A. Muon pair creation by a laser-driven Ps atom:
The coherent process

Based on Eq. (22), we have numerically calculated the
coherent rate for ���� pair creation from a single Ps
atom submitted to a strong laser field of circular polariza-
tion. The laser frequency has been taken to be ! � 1 eV,
throughout. For the laser intensity parameter we
have chosen the three different values � � 250, 500, and
1000. The corresponding laser intensities amount to 1:1�
1023 W=cm2, 4:5� 1023 W=cm2, and 1:8� 1024 W=cm2,
respectively.

In Fig. 2, the dependence of the total muon creation rate
on the laser intensity parameter is shown. For the intensity
parameters under consideration we find production rates
of 1:0� 10�15 s�1 (� � 250), 1:6� 10�16 s�1 (� �
500), and 1:1� 10�17 s�1 (� � 1000). The analytical ap-
proximation (51) overestimates these numbers, but is still
in rather good agreement with them (cf. Fig. 2). The reason
for the overestimation, in particular, for � � �min, are the
rather large values of P0 and P? used in Eq. (47). A total
production rate of 10�15 s�1 means that in a finite laser
pulse of femtosecond duration the probability to create a
muon pair from a single Ps atom is of order 10�30. We

notice that a typical laser focal volume will contain only
one Ps atom on average since the highest positronium
densities achievable at present are on the order of
108 cm�3 [36]. However, proposals to reach a Ps density
of 1014 cm�3 [37] or even a Ps Bose-Einstein condensate
of 1018 cm�3 [38] are being considered. The above num-
bers of created muons seem too small to be experimentally
accessible. Clearly, the main reason for the smallness of
the coherent reaction rate lies in the damping factor
�a0=
�	

4 � 10�26 [cf. Eq. (20)]. The latter results from
the destructive interference of the partial waves constitut-
ing the Ps wave packet in the laser field, which makes the
recollision of an e� and e� from the same Ps atom highly
unlikely. From a simplified, classical point of view, the
reason for the damping lies in the large collisional impact
parameter of order 
� that is due to the equal handed
rotations of the particles in the laser polarization plane
[39].

In Fig. 3, the partial production rates with respect to the
number r of absorbed laser photons are shown (i.e., the
contributions to the total rate stemming from a net absorp-
tion of r laser photons in the production process). The
photon number is given in units of r0 � m�2=2!, which
amounts to 1:6� 1010 (� � 250), 6:4� 1010 (� � 500),
and 2:6� 1011 (� � 1000), respectively. The shape of
the curves in Fig. 3 can be understood with the help of
the kinematical analysis in Sec. II B. First, according to
Eq. (26), the minimal number of laser photons required
from kinematical constraints amounts to rmin �
2:2� 1010, independent of the laser intensity. If we express
this number with respect to the respective values of r0, then
we get rmin=r0 � 1:4 (� � 250), 0.3 (� � 500), and 0.1
(� � 1000). The partial reaction rate for r � rmin is always
zero, as can be seen in Fig. 3. Further, in agreement with
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FIG. 3. Partial rates for the laser-driven reaction Ps! ����

as a function of the number of absorbed laser photons r for an
intensity parameter of � � 250 (solid line), 500 (dashed line),
and 1000 (dotted line). The latter two curves are enhanced by
factors of 102 and 5� 103, respectively.
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FIG. 2. Total rates for the laser-driven reaction Ps! ���� as
a function of the intensity parameter � of the applied laser field.
The black squares show the results of our numerical calculations
based on Eq. (22); the solid line shows the analytical estimate via
Eq. (51).
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Eq. (33), the curves exhibit maxima at r � �r; for � � 250
the maximum is located at �r=r0 � 6, while for � � 500
and 1000 we have �r=r0 � 8. This feature reflects the
mathematical properties of the Bessel functions and is
correctly predicted by our simple man’s model.

Figure 4 shows the angular distribution dR=d�Q for one
of the produced muons. For symmetry reasons, the spectra
for the muon �� and the antimuon �� are identical. The
differential rate is expressed with respect to the polar angle
�Q � ��k;Q	 of the effective muon momentum. The
value of the laser intensity parameter is chosen to be � �
250. One can see that the muon is emitted into a very
narrow angular range starting from 1:3� 10�3 rad �
0:07� and extending to 4:7� 10�3 rad � 0:27�, which is
in agreement with Eq. (50). In other words, as has already
been mentioned before, the muon moves practically paral-
lel to the propagation direction of the laser beam. The
occurrence of a minimal emission angle arises from the
fact that, according to Eq. (32), the argument of the Bessel
function is proportional to the transverse momentum com-
ponent Q?, which itself is proportional to sin�Q � �Q.
Thus, the emission angle cannot be too small because
otherwise the Bessel function will vanish. Since P? �
Q?, a dark angular region also exists in the angular spec-
trum dR=d�P with respect to the muon momentum outside
the laser beam. An alternative explanation of this phe-
nomenon in terms of a simple man’s model has been given
at the end of Sec. II B.

B. Comparison with the field-free process
e�e� ! ����

In this subsection we want to draw a comparison be-
tween the coherent muon creation from a laser-driven Ps
atom and the corresponding field-free process e�e� !
����. In the high-energy limit, the cross section for
this reaction reads [15]

 �free �
4�
3

m2

s
r2
e; (56)

where
���
s
p
� 2M denotes the collision energy. In the case

with laser field, the square root of the quantity

 �q� � q� � �rk	2 � 4m2
� � 4�r!m � 20m2�2 (57)

can be regarded as some average collision energy. For the
�-values considered in this paper, the laser-dressed colli-
sion energy is thus about 1 GeV. Hence, the reference cross
section in Eq. (56) to compare with should be taken at���
s
p
� 1 GeV, where its value is about 100 nbarn. To trans-

form this cross section into a reaction rate, we have to
multiply by the incident particle flux. In collider experi-
ments, instead of the incoming flux, the luminosity is more
commonly used. When a beam of N� positrons collides at
high energy with a beam of N� electrons, then the lumi-
nosity is given by

 L �
N�N�
UA

; (58)

where U is the circumference of the collider ring and A is
the beam cross sectional area at the collision point. To
make the comparison with a single laser-driven Ps atom,
we use N
 � 1 along with the typical values U � 103 m
and A � 10�5 cm2. Note that the corresponding mean
impact parameter �

����
A
p

of the field-free collision is of
the same order of magnitude as the electron-positron spa-
tial separation �
� in the laser wave. The resulting lumi-
nosity L� 1011 cm�2 s�1 leads to a muon creation rate of
10�20 s�1. This number is considerably smaller than the
production rates we found in Sec. III A. However, in a real
collider experiment one has bunches of N
 � 1010 parti-
cles leading to much higher luminosities and reaction rates,
of course.

C. Muon production from laser-plasma interaction:
The incoherent process

We have seen in Sec. III A that the large electron-
positron wave packet size during the motion in the laser
field suppresses the coherent reaction rate dramatically. To
reduce this size and achieve e�e� collisions at micro-
scopic impact parameters, one can think of employing
different, more complicated field configurations [13].
Otherwise, the muon creation from Ps atoms will be domi-
nated by the incoherent production channel introduced at
the end of Sec. II C. The latter coincides with the process of
muon creation, when a low-energy e�e� plasma interacts
with a strong laser beam. We have redone our calculation
for this situation, i.e., for a free, initially nonrelativistic e�

and e� that collide in a strong laser field and create a
���� pair by annihilation. Our results on the partial
production rates for reasonable experimental parameters
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FIG. 4. Angular spectrum with respect to the polar angle of the
effective momentum for one of the produced muons at � � 250.
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(see below) are shown in Fig. 5. The shape of the curves is
similar to those in Fig. 3.

From Eqs. (20) and (51) one can infer that the total rate
for muon creation from laser-plasma interaction approxi-
mately reads

 R �
9

16�
m2r2

e

M2
�

N�N�
Vint

; (59)

where N
 denotes the number of electrons and positrons in
the interaction volume Vint, which is given by the laser
focal volume. From Eq. (59) we can estimate the total
number of produced muons N� � R�Ns during the inter-
action with Ns laser shots, each single shot having a pulse
duration of �. When plugging in some reasonable numbers:
� � 100 fs, Vint � �10
	3 � 10�9 cm3, and assuming that
the presently achievable number of positrons N� � 107 �
N� [40] can be compressed into the interaction volume or,
alternatively, is created via a newly emerging laser-based
technique [41], then we get N� � 1 muon production
event during Ns � 1010 shots. This number, being based
on rather optimistic experimental parameters (especially
concerning the positron compression), indicates that the
realization of the incoherent muon creation process might
be not inhibitory difficult, but still it will be very hard with
modern experimental techniques.

IV. CONCLUSION

In this paper we have studied ���� production by
e�e� annihilation from a laser-driven Ps atom. To this
end, a calculational framework has been developed where
the initial bound state is described as a superposition of

Volkov states weighted by the Compton profile of the Ps
ground state. By virtue of the interaction with the QED
vacuum, which is treated in the first order of perturbation
theory, this initial state can decay into a laser-dressed
���� pair. Also, the related process of muon creation
by the interaction of a strong laser field with a low-energy
e�e� plasma has been examined.

We have found that the minimal laser intensity required
for the process to occur corresponds to an intensity pa-
rameter of � � M=m � 200. In the case of a near-optical
laser wave of circular polarization, e.g., this value is
reached for an intensity of 7� 1022 W=cm2. This means
that, starting from a nonrelativistic Ps atom or e�e�

plasma, fundamental particle reactions can be ignited by
a superstrong laser field of an intensity that is just 1 order of
magnitude larger than the highest values available today.

However, in the Ps case, the total production rate result-
ing from the coherent recollisions is extremely small and
amounts to about 10�15 per second only. The strong sup-
pression is caused by a destructive interference of the
different partial waves constituting the bound initial state
in the superintense laser field. This phenomenon is also
expressed by a compact formula for the total rate that we
derived by analytical means. As a consequence, in the
considered setup the production rate will be dominated
by the muon creation via incoherent e�e� scattering, for
which the system of Ps atoms has no advantage compared
to an e�e� plasma. For the incoherent collisions, the
interference plays no role and the resulting muon creation
rate is significantly larger than the corresponding rate from
the coherent production channel. Nevertheless, very de-
manding experimental conditions are required in order to
achieve observable muon yields.

Finally, we note that similar reaction rates can be ex-
pected for laser-driven ���� production from e�e� or
����. A more promising alternative within circularly
polarized field configurations might be the process
e�e� ! e�e� � e�e�, the field-free cross section of
which being several orders of magnitude larger than the
one for ���� creation in Eq. (56) [42].

APPENDIX

In this appendix we calculate the integral in Eq. (19).
Using cylindrical coordinates it reads

 

�J r �
1

�2�	3
����
V
p

�
Z �1
�1

dpz
Z 1

0
p?dp?

Z ��
��

d’ ~��p	Jr��	eir�

(A1)
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FIG. 5. Partial rates for the reaction e�e� ! ���� from a
laser-driven nonrelativistic plasma. It is assumed that N
 � 107

particles are contained in the interaction volume Vint �
10�9 cm3. The laser intensity parameter is � � 250 (solid
line), 500 (dashed line), and 1000 (dotted line). The latter two
curves are enhanced by factors of 2� 102 and 2� 104, respec-
tively.
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� � 
�2 � 
2 � 2�
 cos�’0 � �0	�
1=2;

� �
2m�
!

p0p?
p2
? �m

2 ;

� � arctan
�

� sin�’0 � �0	

� cos�’0 � �0	 � 


�
;

~��p	 �
8
����
�
p

a3=2
0


1� �a0p?	2 � �a0pz	2�2
;

and 
 � r being of order 1011 for the laser parameters
under consideration [see Eq. (33)]. Note that ’0 coincides
with the azimuthal angle ’. Going over to the variables
a0p? ! x, a0pz ! z, and �’0 � �0	 ! ’, Eq. (A1) reads

 

�J r �
2

�5=2a3=2
0

����
V
p

�
Z 1

0
dz
Z 1

0
x dx

Z ��
��

d’
Jr��	e

ir�

�1� x2 � z2	2
: (A2)

For brevity, the overall factor 2=��5a3
0V	

1=2 will be
dropped in what follows and only restored in the final
result [see Eq. (A14)]. Since �� 
 we can expand the
functions � and �:

 

� � 
� � cos’�O

�
�2




�
;

� � �
�



sin’�O

�
�2


2 cos2’
�
:

Note here that, since �2=
 & 1 [see Eq. (14)], we may
drop terms of this order in the expansion of �. Further,
since the Bessel function Jr��	 is exponentially or oscilla-
torily damped unless jr� �j & r1=3, the main contribution
to the integral comes from the region with j� cos’j &

r1=3 � 
1=3. Accordingly, terms of order r�� cos’=
	2 &


�1=3 may be neglected in the phase r�. Hence, we obtain

 

�Jr �
Z 1

0
dz
Z 1

0

xdx

�1� x2 � z2	2

�
Z ��
��

d’Jr�
� � cos’	e�i� sin’:

Next we observe that �Jr � 2 ReIr with

 

Ir �
Z 1

0
dz
Z 1

0

xdx

�1� x2 � z2	2

�
Z �

0
d’Jr�
� � cos’	e�i� sin’

�
Z 1

0
dz
Z 1

0

xdx

�1� x2 � z2	2

Z �=2

0
d’
Jr�
� � cos’	

� Jr�
� � cos’	�e�i� sin’

� 2
Z 1

0
dz
Z 1

0

xdx

�1� x2 � z2	2

�
Z �=2

0
d’Jr�
� � cos’	e�i� sin’: (A3)

In the last step we exploited the fact that the contributing
ranges within the exponential and oscillatory regions of the
Bessel function have a similar size. Let now

 � �
x
������������������������������
x2 � z2 � 	�2

p
x2 � 	�2 ; � � � cos’

with 	 � �f=2, such that � � �0� with �0 � 2m�=!.
Performing the substitution of variables �x; z; ’	 !
�x; �; �	 we obtain

 Ir � 2
Z 1

0

x4dx

�x2 � 	�2	3

Z 1
�min

�d������������������������
�2 � x2

x2�	�2

q

�2 � x2�	�2�1	

�x2�	�2	2
�2

�
Z �

0

d������������������
�2 � �2

p Jr�
� �0�	e�i�0

�����������
�2��2
p

;

with �min � x=
�������������������
x2 � 	�2
p

. As mentioned above, the value
of Jr�
� �0�	 will be exponentially small unless � &

�0 � 
1=3=�0. Therefore, we can approximately write

 Ir � 2Jr�
	
Z 1

0

x4dx

�x2 � 	�2	3

�
Z 1
�min

�d������������������������
�2 � x2

x2�	�2

q

�2 � x2�	�2�1	

�x2�	�2	2
�2

�
Z �max

0

d������������������
�2 � �2

p e�i�0

�����������
�2��2
p

(A4)

with �max � minf�; �0g.
In the following, the integral in Eq. (A4) will be eval-

uated in several steps. Let us first consider the integral over
�. We show:

 I��	 �
Z �max

0
d�

e�i�0

�����������
�2��2
p

�����������������
�2 � �2

p

�

8>>><
>>>:
�
2 �� � ��1

0 	;����
2

p ei��=4	������
��0

p e�i�0� ���1
0 � � � �0�2

0	;
�0

� e�i�0� �� � �0�
2
0	:

(A5)

Note that, for the parameters of interest, we have ��1
0 �
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10�8 and �0 � 10�5 such that �0�
2
0 � 10�2. In the first

range (� � ��1
0 ) we get

 I��	 �
Z �

0

d������������������
�2 � �2

p �
�
2
:

The second range we split into two cases. For ��1
0 � � <

�0 the integrand is highly oscillating and the main contri-
bution comes from the boundary terms:

 I��	 �
Z �

0
dy

e�i�0y����������������
�2 � y2

p �
1

i�0�
�
Z �

dy
e�i�0y����������������
�2 � y2

p
�

e�i�0�������
2�
p

Z
0
dt

ei�0t��
t
p �

����
�
2

r
ei��=4	���������
��0

p e�i�0� ;

where in the first and second steps the substitutions y ������������������
�2 � �2

p
and t � � � y were made. Note here that the

contribution from the lower bound can be neglected since
�0� � 1. Similarly, for �0 < � � �0�

2
0 we can write

 I��	 �
Z � �����������

�2��2
0

p dy
e�i�0y����������������
�2 � y2

p
�

e�i�0

�����������
�2��2

0

p

i�0�0
�
Z �

dy
e�i�0y����������������
�2 � y2

p
�

����
�
2

r
ei��=4	���������
��0

p e�i�0� :

Finally, in the third range (� � �0�
2
0) we obtain

 I��	 �
Z �0

0

d�
�

e�i�0� �
�0

�
e�i�0� :

This shows Eq. (A5).
Now we continue with the integrations over dxd� . To

this end, let us divide the integration range into five re-
gions:
 

I: 0 � x � x1; �min � � � �1;

II: 0 � x � x1; �1 � � � �2;

III: x1 � x � x2; �min � � � �2;

IV: 0 � x � x2; � � �2;

V: x � x2; � � �min;

with

 x1 �
1

�0	
� 10�6; x2 �

�0�2
0

	
� 1;

�1 �
1

�0
� 10�8; �2 � �0�

2
0 � 10�2:

Note that �1 and �2 coincide with the values of �min taken at
positions x1 and x2, respectively. Hence, it is easily seen,
that this division covers the whole range of integration, i.e.:

 Ir � I�I	r � I
�II	
r � I

�III	
r � I�IV	r � I�V	r :

Taking into account Eq. (A5), we find in the first range

 I�I	r � Jr�
	�
Z ��0		�1

0

x4dx

	�6

�
Z ��1

0

x	

�d����������������������
�2 � x2	2

p

�2 � x2	4�	�2 � 1	�2

� Jr�
	�
	

�2
0

�
Z 1

0
x4dx

Z 1

x

�d�����������������
�2 � x2

p
��2 � x2 � x2	2	2

;

where in the second step the transformations �0	x! x,
�0� ! � have been made. Introducing the variable t �
�2 � x2, this becomes

 I�I	r � Jr�
	
�
2

	

�2
0

Z 1

0
x4dx

Z 1�x2

0

dt��
t
p
�t� x2	2	2

� Jr�
	
�
2

1

�2
0	

2

�
	
Z 1

0

x2
��������������
1� x2
p

dx

�1� x2 � x2	2	

�
Z 1

0
x arctan

� ��������������
1� x2
p

x	

�
dx
�
; (A6)

where in the second step formula 1.2.15.13 from Ref. [43]
was used. Since both integrals in Eq. (A6) are of order
unity, we conclude that

 I�I	r � Jr�
	
�
2

1

�2
0	

2 : (A7)

Turning to the second range, we get similar as before

 I�II	r � Jr�
	

�������
2�
�0

s
ei��=4	

Z ��0		�1

0

x4dx

	�6

Z �0�2
0

��1
0

���
�
p

e�i�0�d����������������������
�2 � x2	2

p

�2 � x2	4�	�2 � 1	�2

� Jr�
	
�������
2�
p 	

�2
0

ei��=4	
Z 1

0
x4dx

Z �2
0�

2
0

1

���
�
p

e�i�d�����������������
�2 � x2

p
��2 � x2 � x2	2	2

:

The main contribution to the highly oscillating integral over � comes from the lower boundary. In this way we find

 I�II	r � Jr�
	
�������
2�
p 	

�2
0

ei��=4	
Z 1

0

x4dxe�i

i
��������������
1� x2
p

�1� x2 � x2	2	2
: (A8)
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The remaining integral can be done analytically. Its value is �
4 	
�3 such that we get

 I�II	r � Jr�
	
�
�
2

�
3=2 e�i��=4	e�i

�2
0	

2 : (A9)

In the third region the integral reads

 I�III	r � Jr�
	

�������
2�
�0

s
ei��=4	

Z �0�2
0	
�1

��0		�1

x4dx

	�6
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���
�
p
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�2 � x2	2

p
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� Jr�
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2�
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0�
2
0
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x4e�ixdx

Z �2
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2
0�x

0

�����������
t� x
p

e�itdt�������������������
t�t� 2x	

p

t�t� 2x	 � x2	2�2

;

where first the same transformations as before were made (�0	x! x, �0� ! �) and then the variable t � � � x was
introduced. Because of the highly oscillating integrand and the singularity, the main contribution to the t integration comes
from the region around t � 0. Thus, we arrive at

 I�III	r � Jr�
	
�������
2�
p 	

�2
0

ei��=4	
Z �2

0�
2
0

1

x4e�ix ���
x
p�����

2x
p
�x		4

dx
Z 1

0

e�it��
t
p dt � Jr�
	

i�

�2
0	

3 �e
�i�2

0�
2
0 � e�i	: (A10)

According to Eq. (A5), in the fourth range we have

 I�IV	r � 2Jr�
	�0

Z �0�2
0	
�1

0

x4dx

	�6

Z 1
�0�2

0

e�i�0�d����������������������
�2 � x2	2

p

�2 � x2	4�	�2 � 1	�2

� 2Jr�
		�0�
3
0

Z 1

0
x4dx

Z 1
1

e�i�2
0�

2
0�d�����������������

�2 � x2
p

��2 � x2 � x2	2	2
;

where we have substituted ��0�2
0	
�1	�1x! x and

��0�2
0	
�1� ! � . The highly oscillating integral over �

can be evaluated with the same methods as before to give

 I�IV	r � 2Jr�
	
	�0

�0

Z 1

0

x4dxe�i�2
0�

2
0

i
��������������
1� x2
p

�1� x2 � x2	2	2
:

(A11)

The integral over x we have already encountered in
Eq. (A8). Hence:

 I�IV	r � Jr�
	
�
2i

�0

�0	
2 e�i�2

0�
2
0 : (A12)

In the fifth range, after the substitution 	x! x, the integral
can be written as

 I�V	r � 2Jr�
		�0

Z 1
�0�2

0

x4dx

�1� x2	3

�
Z 1
x=
��������
1�x2
p

e�i�0�d���������������������
�2 � x2

1�x2

q

�2 � x2�1�	2	

�1�x2	2
�2
:

With the definitions a � x=
��������������
1� x2
p

and b � x2�	2 �
x2	=�1� x2	2, the � integral can be cast into the form

 

Z 1
a

e�i�0�d������������������
�2 � a2

p
��2 � a2 � b	2

�
e�i�0a������

2a
p
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Z 1
0

e�i�0tdt��
t
p

�

���������
�

2�0

s
e�i��=4	���
a
p
b2 e�i�0a;

where the substitution t � � � a was made and the oscil-
latory nature of the integrand exploited. This yields
 

I�V	r � Jr�
	

�������
2�
�0

s
	�0e�i��=4	

Z 1
�0�2

0

�1� x2	5=4���
x
p
�x2 � 	2	2

� e�i�0�x=
��������
1�x2
p

	dx:

The main contribution to this integral stems from the lower
boundary since for x� 1, where the oscillations fade
away, the integrand is damped by the power x�13=4. For
this reason we obtain

 I�V	r � Jr�
	
�������
2�
p e�i�3�=4	e�i�2

0�
2
0

�2
0	

3 : (A13)

In summary we have shown that

 I�I	r � I
�II	
r � 10�12Jr�
	; I�III	r � I�V	r � 10�10Jr�
	;

I�IV	r � 10�9Jr�
	;

i.e., the main contribution to the integral (A4) comes from
region IV. Consequently,

 

�J r � 2 ReI�IV	r � �
2

�3=2a3=2
0

����
V
p


1=3

�2
0	

2 Jr�
	 sin�
2=3	

(A14)

where we have restored the factor 2=��5a3
0V	

1=2 that was
dropped from Eq. (A2).
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We note that Eq. (A14) introduces a fast oscillating
factor sin2�
2=3	 to the differential reaction rate. Since
�
2m�2=! these oscillations depend on the laser intensity
and frequency [see also Eq. (32)]. In reality, however,
neither of these parameters has a definite value in a short
laser pulse but spreads over a certain range. In an experi-

ment the oscillations are therefore averaged out, and we
shall do the same:

 

�J r � �

���
2
p

�3=2a3=2
0

����
V
p


1=3

�2
0	

2 Jr�
	: (A15)
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