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We present a simultaneous analysis, within an impact parameter dependent saturated dipole model, of
exclusive diffractive vector meson (J= , �, and �) production, deeply virtual Compton scattering and the
total ��p cross section data measured at HERA. Various cross sections measured as a function of the
kinematic variables Q2,W and t are well described, with little sensitivity to the details of the vector meson
wave functions. We determine the properties of the gluon density in the proton in both longitudinal and
transverse dimensions, including the impact parameter dependent saturation scale. The overall success of
the description indicates universality of the emerging gluon distribution and proton shape.
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I. INTRODUCTION

Exclusive diffractive processes at HERA, such as ex-
clusive vector meson production or deeply virtual
Compton scattering (DVCS), are excellent probes of the
proton shape in the perturbative regime. Several investiga-
tions have already shown that these processes can be well
described within a QCD dipole approach with the vector
meson wave functions determined by educated guesses and
the photon wave function computed within QED; see, for
example, Refs. [1–11]. It was also pointed out some time
ago that the exclusive vector meson and DVCS processes
provide severe constraints on the gluon density at low-x
[12–21].

The vector meson and DVCS processes are measured at
HERA [22–31] in the small-x regime where the behavior
of the inclusive deep-inelastic scattering (DIS) cross sec-
tion, or the structure function F2, is driven by the gluon
density. The dipole model allows these processes to be
calculated, through the optical theorem, from the gluon
density determined by a fit to the total inclusive DIS cross
sections. Usually, it is assumed that the evolution of the
gluon density is independent of the proton shape in the
transverse plane. The investigation of Kowalski and
Teaney (KT) [1] has shown that the Gaussian form of the
proton shape, implied by the data, has implications on the
emerging pattern of QCD evolution and saturation effects.
The interplay of saturation and evolution effects was first
investigated by Bartels, Golec-Biernat, and Kowalski [32],
where it was found that the total inclusive DIS cross
sections, or F2, can be described either by strong saturation
and weak evolution or by strong evolution and weak satu-
ration effects. The investigation of Ref. [1], which took
into account also the proton shape in the transverse plane,
concluded that saturation effects are substantial in the
proton center, but that the Gaussian form implies that a
large contribution to the cross section has to come from the
outskirts of the proton, where the gluon density is diluted.
Hence the evolution effects have to be strong and play an

important role. An alternative approach to determining the
impact parameter dependent gluon distribution, based on a
two-Pomeron model, is discussed in Refs. [33,34].

Another important result of dipole model investigations
is that a wide variety of DIS data can be described with
only a few assumptions. The investigations of
Refs. [32,35–38] show that the inclusive DIS cross section
can be described together with the inclusive diffractive DIS
cross section. Moreover, in Ref. [1] it was shown that the
inclusive DIS process can be described together with in-
clusive charm production and exclusive diffractive J= 
photoproduction. This description preserves also the
main properties of the inclusive diffractive DIS cross sec-
tion [39].

In this paper we will extend the analysis of Ref. [1] and
show that the same minimal set of assumptions allows the
description of a much wider set of recently measured data
on exclusive J= , �, and � photo- and electroproduction
and also the DVCS process. The cross sections for these
processes have been measured as a function of the photon
virtuality, Q2, the ��p center-of-mass energy, W, and the
squared momentum transfer, t. In addition, for vector
mesons the ratios of the cross sections for longitudinally
and transversely polarized incoming photons have been
determined as a function of Q2.

To perform the analysis we use an impact parameter
dependent saturated dipole model in which the gluon den-
sity is determined by a DGLAP fit to the total inclusive DIS
cross sections. The wave function of the virtual photon is
known from QED and the proton and vector meson wave
functions are assumed to have a Gaussian shape. The
parameters of these Gaussian distributions are easily de-
termined from data. The results are compared to numerous
data distributions provided by the HERA experiments. In
this framework the W distributions are mainly sensitive to
the square of the gluon density and theQ2 distributions and
�L=�T ratios to the properties of the vector meson wave
functions. The proper choice of the wave functions is also
confirmed by the agreement of the predicted size of the
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cross sections with data. In the dipole model the absolute
normalization of the vector meson cross sections follows
from the optical theorem.

The t-distributions determine the area size of the inter-
action region, BD. The parameter BD is obtained by mak-
ing a fit to the t-distributions of the form
d�=dt / exp��BDjtj�. For scattering of very small dipoles
BD is connected to the proton radius Rp via BD � R2

p=3.
However, for larger dipoles the size of the interaction area
depends not only on the proton radius but also on the size
of the produced vector meson or real photon, which we
take into account following the work of Bartels, Golec-
Biernat and Peters (BGBP) [40]. This allows the data for
all vector mesons and DVCS to be described using a
unique Gaussian proton shape, independent of the pro-
duced final state.

II. THE DIPOLE MODEL

In the dipole model, deep-inelastic scattering is viewed
as the interaction of a color dipole, that is, mostly a quark-
antiquark pair, with the proton. The transverse size of the
pair is denoted by r and a quark carries a fraction z of the
photon’s light-cone momentum. In the proton rest frame,
the dipole lifetime is much longer than the lifetime of its
interaction with the target proton. Therefore, the elastic
��p scattering is assumed to proceed in three stages: first
the incoming virtual photon fluctuates into a quark-
antiquark pair, then the q �q pair scatters elastically on the
proton, and finally the q �q pair recombines to form a virtual
photon. This is shown schematically in Fig. 1.

The amplitude for the elastic process ��p! ��p,
A��p�x;Q;��, is simply the product of amplitudes of
these three subprocesses integrated over the dipole varia-
bles r and z:
 

A��p�x;Q;�� �
X
f

X
h; �h

Z
d2r

Z 1

0

dz
4�

���
h �h
�r; z; Q�Aq �q�x; r;���h �h�r; z;Q�;

(1)

where �h �h�r; z;Q� denotes the amplitude for the incoming
virtual photon to fluctuate into a quark-antiquark dipole

with helicities h and �h and flavor f. We suppress here
references to the photon helicities for simplicity.
Aq �q�x; r;�� is the elementary amplitude for the scattering
of a dipole of size r on the proton, � denotes the transverse
momentum lost by the outgoing proton, and x is the
Bjorken variable. Note that, following Ref. [1], we choose
a slightly different convention from that commonly used,
in that we include a factor of 1=�4�� in the integration
measure; this convention is reflected in the normalization
of the photon and vector meson wave functions.

The elementary elastic amplitude Aq �q is defined such
that the elastic differential cross section for the q �q pair
scattering on the proton is

 

d�q �q

dt
�

1

16�
jAq �q�x; r;��j

2; (2)

where t � ��2. It can be related to the S-matrix element
S�x; r; b� for the scattering of a dipole of size r at impact
parameter b:

 A q �q�x; r;�� �
Z

d2be�ib��Aq �q�x; r; b�

� i
Z

d2be�ib��2�1� S�x; r; b�	: (3)

This corresponds to the intuitive notion of impact parame-
ter when the dipole size is small compared to the size of the
proton. The optical theorem then connects the total cross
section for the q �q pair scattering on the proton to the
imaginary part of the forward scattering amplitude:

 �q �q�x; r� � ImAq �q�x; r;� � 0�

�
Z

d2b2�1� ReS�x; r; b�	: (4)

The integration over b of the S-matrix element motivates
the definition of the q �q� p differential cross section as

 

d�q �q

d2b
� 2�1� ReS�x; r; b�	: (5)

The total cross section for ��p scattering, or equiva-
lently F2, is obtained, using (1) and (4), by integrating the
dipole cross section with the photon wave functions:

 ��
�p
T;L �x;Q� � ImA��p

T;L �x;Q;� � 0�

�
X
f

Z
d2r

Z 1

0

dz
4�
�����fT;L�q �q�x; r�; (6)

with the overlap of the photon wave functions �����fT;L
defined as

 �����fT 

1

2

X
h; �h

���
h �h;���1

�h �h;���1

���
h �h;���1

�h �h;���1	; (7)

 �����fL 

X
h; �h

��
h �h;��0

�h �h;��0; (8)

γ* γ*

z

1-z
r

p p

FIG. 1 (color online). The elastic scattering of a virtual photon
on a proton in the dipole representation.
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where � denotes the photon helicity and f the flavor of the
q �q pair. The dependence on the quark flavor f is specified
below in Sec. II A. In the perturbative region, that is, for
small dipole sizes r, the dipole cross section corresponds to
exchange of a gluon ladder; see Fig. 2 (left). The same
diagram applies for exclusive final state production if the
wave function of the outgoing virtual photon is replaced by
the wave function of a specific final state; see Fig. 2 (right).

The amplitude for production of an exclusive final state
E, such as a vector meson (E � V) or a real photon in
DVCS (E � �), is given by

 A ��p!Ep
T;L �x;Q;�� �

Z
d2r

Z 1

0

dz
4�

����E��T;LAq �q�x; r;�� (9)

 � i
Z

d2r
Z 1

0

dz
4�

Z
d2b���E��T;Le�ib��2�1� S�x; r; b�	;

(10)

where ���E��T;L denotes the overlap of the photon and
exclusive final state wave functions. For DVCS, the am-
plitude involves a sum over quark flavors. This expression,
used in the analysis of exclusive J= photoproduction by
Kowalski and Teaney [1], is derived under the assumption
that the size of the quark-antiquark pair is much smaller
than the size of the proton. The explicit perturbative QCD
calculation of Bartels, Golec-Biernat, and Peters [40]
shows that the nonforward wave functions can be written
as the usual forward wave functions multiplied by expo-
nential factors exp��i�1� z�r ��=2	. Effectively, the mo-
mentum transfer � should conjugate to b� �1� z�r, the
transverse distance from the center of the proton to one of
the two quarks of the dipole, rather than to b, the transverse
distance from the center of the proton to the center-of-mass
of the quark dipole; see the right-hand diagram of Fig. 2.

Assuming that the S-matrix element is predominantly
real we may substitute 2�1� S�x; r; b�	 in (10) with
d�q �q=d2b.

These two changes lead to
 

A��p!Ep
T;L �x; Q;�� � i

Z
d2r

Z 1

0

dz
4�

Z
d2b���E��T;L

� e�i�b��1�z�r	�� d�q �q

d2b
: (11)

The elastic diffractive cross section is then given by

 

d��
�p!Ep
T;L

dt
�

1

16�
jA��p!Ep

T;L j2

�
1

16�

��������
Z

d2r
Z 1

0

dz
4�

�
Z

d2b���E��T;Le�i�b��1�z�r	�� d�q �q

d2b

��������
2
:

(12)

This is the basic equation for the simultaneous analysis of
different exclusive processes performed in this paper.

A. Forward photon wave functions

The forward photon wave functions were perturbatively
calculated in QCD by many authors; see, for example,
Refs. [5,41]. The normalized photon wave function for
the longitudinal photon polarization (� � 0) is given by [9]

 �h �h;��0�r; z; Q� � efe
������
Nc

p
�h;� �h2Qz�1� z�

K0��r�
2�

;

(13)

and for the transverse photon polarizations (� � �1) by
 

�h �h;���1�r; z; Q� � �efe
���������
2Nc

p
fie�i	r�z�h;�� �h;

� �1� z��h;� �h;�	@r �mf�h;�� �h;�g

�
K0��r�

2�
; (14)

where e �
���������������
4�
em

p
, the subscripts h and �h are the helic-

ities of the quark and the antiquark, respectively, and 	r is
the azimuthal angle between the vector r and the x-axis in
the transverse plane. K0 is a modified Bessel function of
the second kind, �2 
 z�1� z�Q2 �m2

f and Nc � 3 is the
number of colors. The flavor f dependence enters through

γ ∗

p p

z

1 − z

b
x x

V = J/

p p

z

1 − z

b

(1 − z )

x x

γ ∗ γ ∗ ρψ φ, ,

FIG. 2 (color online). The elastic scattering amplitude for inclusive DIS (left) and vector meson production (right). For DVCS, the
outgoing vector meson in the right-hand diagram is replaced by a real photon.
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the values of the quark charge ef and mass mf, and
@rK0��r� � ��K1��r�.

1. Total DIS cross sections

In the case of the total DIS cross section ��
�p, which is

obtained from the elastic ��p! ��p amplitude via the
optical theorem, the squared photon wave functions
summed over the quark helicities for a given photon po-
larization and quark flavor are given by the tree-level QED
expressions:

 �����fT 

1

2

X
h; �h��1

2
���1

��
h �h;�

�h �h;�

�
2Nc
�


eme2
ff�z

2 � �1� z�2	�2K2
1��r�

�m2
fK

2
0��r�g; (15)

 �����fL 

X

h; �h��1
2

��
h �h;��0

�h �h;��0

�
8Nc
�


eme
2
fQ

2z2�1� z�2K2
0��r�: (16)

At small dipole sizes these expressions are well motivated
since they can be derived from the LO kt-factorization
formulae. At large dipole sizes the wave functions are
suppressed, since for large values of the argument the
modified Bessel functions behave as K0��r�, K1��r� ������������������
�=�2�r�

p
exp���r�. At larger Q2 values the wave func-

tions are suppressed for large r unless z is close to the end-
point values of zero or one.1 Near the end points or at small
Q2 the wave functions are sensitive to the nonzero quark
masses mf, which prevent the integrals over r of the
modified Bessel functions from diverging. Of course,
near the end points or at small Q2 the expressions (15)
and (16) should be considered as a model in which the
value of the light quark masses provides a cutoff scale
which should be related to the physical cutoff scale gen-
erated by confinement effects. It is therefore customary in
dipole models to identify the light quark masses with the
pion mass.

2. Deeply virtual Compton scattering

In addition to the total DIS cross section ��
�p, the

photon wave functions determine also the DVCS process,
��p! �p. Here the outgoing photon is real and therefore
the process is directly observed at HERA. For real photons,
only the transversely polarized overlap function contrib-

utes to the cross section. Summed over the quark helicities,
for a given quark flavor f it is given by
 

������fT �
2Nc
�


eme
2
ff�z

2 � �1� z�2	�K1��r�mfK1�mfr�

�m2
fK0��r�K0�mfr�g: (17)

B. Forward vector meson wave functions

Various conventions are used in the literature for the
forward vector meson wave functions. Recently, Forshaw,
Sandapen, and Shaw (FSS) [9] suggested some guidelines
for bringing order into this problem. We will adopt their
prescription in this section, apart from the overall normal-
ization factor of 1=�4�� discussed previously, which in our
case appears in the integration measure.

The simplest approach to modelling the vector meson
wave function is to assume, following Refs. [1,5,9], that
the vector meson is predominantly a quark-antiquark state
and that the spin and polarization structure is the same as in
the photon case. In complete analogy to the transversely
polarized photon wave function (14), the transversely po-
larized vector meson wave function is
 

�V
h �h;���1

�r; z� � �
���������
2Nc

p 1

z�1� z�
fie�i	r�z�h;�� �h;

� �1� z��h;� �h;�	@r �mf�h;�� �h;�g

��T�r; z�: (18)

The longitudinally polarized wave function is slightly
more complicated due to the fact that the coupling of the
quarks to the meson is nonlocal, contrary to the photon
case [9]. It is given by

 �V
h �h;��0

�r; z� �
������
Nc

p
�h;� �h

�
MV � �

m2
f �r

2
r

MVz�1� z�

�
�L�r; z�;

(19)

where r2
r 
 �1=r�@r � @

2
r and MV is the meson mass. The

difference in the structure of the longitudinal wave func-
tion is due to the nonlocal term proportional to �, which
was first introduced by Nemchik, Nikolaev, Predazzi, and
Zakharov (NNPZ) [2,4].

Formulae (18) and (19) uniquely define the scalar part of
the vector meson wave function �T;L�r; z�, which is ob-
tained from the photon wave function by the replacement

 efez�1� z�
K0��r�

2�
! �T;L�r; z�; (20)

with the prefactor 2Q! MV for the case of the longitudi-
nal polarization. Note that this definition of �T;L�r; z�jr�0

matches, up to a constant factor, the definition of the
distribution amplitude in QCD.

The overlaps between the photon and the vector meson
wave functions read then:

1This is the origin of the statement that the transverse cross
section is more inherently nonperturbative than the longitudinal
cross section, since the contribution from the end points is
suppressed for the longitudinal but not the transverse case, see
(15) and (16).
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���V��T � êfe
Nc

�z�1� z�
fm2

fK0��r��T�r; z�

� �z2 � �1� z�2	�K1��r�@r�T�r; z�g; (21)

 

���V��L � êfe
Nc
�

2Qz�1� z�K0��r�
�
MV�L�r; z�

� �
m2
f �r

2
r

MVz�1� z�
�L�r; z�

�
; (22)

where the effective charge êf � 2=3, 1=3, or 1=
���
2
p

, for
J= ,�, or �mesons, respectively. Although it seems to be
more natural to set � � 1 as it was done in Refs. [2,4,9], we
shall also use the value � � 0 in order to match the
assumptions of other models [1,5]. Note that the additional
factor of 1=�z�1� z�	 in (21) and (22) as compared to the
photon overlap functions (15) and (16) is due to the iden-
tification (20).

The usual assumption that the quantum numbers of the
meson are saturated by the quark-antiquark pair, that is,
that the possible contributions of gluon or sea-quark states
to the wave function may be neglected, allows the normal-
ization of the vector meson wave functions to unity:

 1 �
X
h; �h

Z
d2r

Z 1

0

dz
4�
j�V

h �h;�
�r; z�j2: (23)

Thus, in the scheme presented here the normalization
conditions for the scalar parts of the wave functions are
 

1 �
Nc
2�

Z 1

0

dz

z2�1� z�2
Z

d2rfm2
f�

2
T � �z

2 � �1� z�2	

� �@r�T�
2g; (24)

 1 �
Nc
2�

Z 1

0
dz
Z

d2r

�
MV�L � �

m2
f �r

2
r

MVz�1� z�
�L

�
2
:

(25)

Another important constraint on the vector meson wave
functions is obtained from the decay width. It is commonly
assumed that the decay width can be described in a factor-
ized way; the perturbative matrix element q �q! �� !
l�l� factorizes out from the details of the wave function,
which contributes only through its properties at the origin.2

The decay widths are then given by
 

fV;T � êf
Nc

2�MV

Z 1

0

dz

z2�1� z�2
fm2

f � �z
2 � �1� z�2	

� r2
rg�T�r; z�jr�0; (26)

 fV;L � êf
Nc
�

Z 1

0
dz
�
MV � �

m2
f �r

2
r

MVz�1� z�

�
�L�r; z�jr�0:

(27)

The coupling of the meson to the electromagnetic current,
fV , is obtained from the measured electronic decay width
by

 �V!e�e� �
4�
2

emf2
V

3MV
: (28)

In order to complete the model of the vector meson wave
function the scalar parts of the wave functions �T;L�r; z�
should be specified. In the photon case the scalar part is
given by modified Bessel functions, whereas for vector
mesons various quark models tell us that a hadron at rest
can be modeled by Gaussian fluctuations in transverse
separation. The proton wave function is also directly
seen to have a Gaussian form from the t-distributions of
vector mesons at HERA; see the discussion of the proton
shape below. After assuming a Gaussian form the model-
ling freedom reduces to the choice of a fluctuating variable.

Dosch, Gousset, Kulzinger, and Pirner (DGKP) [5]
made the simplest assumption that the longitudinal mo-
mentum fraction z fluctuates independently of the trans-
verse quark momentum k, where k is the Fourier conjugate
variable to the dipole vector r. In what follows, this type of
scalar wave function will be called the factorized wave
function. In the DGKP model the parameter � � 0 in (22),
(25), and (27). The DGKP model was further simplified by
Kowalski and Teaney [1], who assumed that the z depen-
dence of the wave function for the longitudinally polarized
meson is given by the short-distance limit of z�1� z� [17].
For the transversely polarized meson they set �T�r; z� /
�z�1� z�	2 in order to suppress the contribution from the
end points �z! 0; 1�. This leads to the ‘‘Gaus-LC’’ [1]
wave functions given by3

 �T�r; z� � NT�z�1� z�	2 exp��r2=2R2
T�; (29)

 �L�r; z� � NLz�1� z� exp��r2=2R2
L�: (30)

The values of the constants NT;L and RT;L in (29) and (30),
determined by requiring the correct normalization and by
the condition fV � fV;T � fV;L, are given in Table I.

The main advantage of the factorized wave functions is
their simplicity. Probably a more realistic approach starts
from the observation of Brodsky, Huang, and Lepage [42]
that the fluctuation of the quark three-momentum p in the
rest frame of the meson could be described in a boost-
invariant form. In the meson rest frame, the momentum p
is connected to the q �q invariant mass by M2 � 4�p2 �

m2
f�. In the light-cone frame, the q �q invariant mass is given

2Usually, one assumes that the factorization holds and that the
perturbative QCD corrections are similar for the process of
vector meson production ���Q2� � 2g! V and for the vector
meson decay V ! �� ! l�l�, thus the corrections can be ab-
sorbed into the wave function.

3Kowalski and Teaney [1] used a somewhat different conven-
tion; see the appendix for more details.
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by M2 � �k2 �m2
f�=�z�1� z�	. This leads to

 p2 �
k2 �m2

f

4z�1� z�
�m2

f; (31)

and a simple ansatz for the scalar wave function in mo-
mentum space of

 

~�T;L�k; z� / exp
�
�
R2

8

�k2 �m2
f

z�1� z�
� 4m2

f

��
: (32)

This is the basis for the ‘‘boosted Gaussian’’ wave function
of FSS [9], which was first proposed by NNPZ [2,4].4 In
the configuration space these wave functions are given by
the Fourier transform of (32):

 �T;L�r; z� �N T;Lz�1� z� exp
�
�

m2
fR

2

8z�1� z�

�
2z�1� z�r2

R2 �
m2
fR

2

2

�
: (33)

Note that the ‘‘boosted Gaussian’’ wave function has the
proper short-distance limit, �z�1� z�, for mf ! 0.
Following the authors of the model we set � � 1 in
Eqs. (22), (25), and (27), defining the longitudinally polar-
ized overlap, the normalization and the decay constant,
respectively. We choose the ‘‘radius’’ parameter R to
reproduce the experimentally measured leptonic decay
width of the vector meson for the longitudinally polarized
case. This means that the calculated decay width for the
transversely polarized case will be slightly different. The
parameters R and N T;L are determined by the normal-
ization conditions (24) and (25) and the decay width con-
dition (27).

The parameters of the ‘‘boosted Gaussian’’ wave func-
tion are given in Table II, where we also show the value of
fV;T (26) computed using the given values of R and N T .
(Recall that we require that fV;L � fV .)

The ‘‘boosted Gaussian’’ wave function is very similar
to the ‘‘Gaus-RF’’ wave function used in the KT inves-
tigation [1], except for the Jacobian of the transformation
from the rest frame variables to the light-cone variables.
We focus here on the ‘‘boosted Gaussian’’ version because
of the proper short-distance limit of the z dependence. The

‘‘CORNELL’’ wave function used in Ref. [1] cannot be
used for light vector mesons since it was obtained within
the nonrelativistic bound-state model.

Comparing the values of the radius parameters given in
Tables I and II we note that the meson description with the
‘‘boosted Gaussian’’ wave function is more self-consistent;
the values of the radius parameters RT and RL for the
‘‘Gaus-LC’’ wave functions are very different indicating
that there are large dynamical corrections to at least one of
the meson polarization states. For the ‘‘boosted Gaussian’’
there is only one radius parameter R, since the description
of the meson is assumed to be boost-invariant between the
meson rest frame and the light-cone frame. The shortcom-
ing of this approach is that the predicted decay constant fV
differs slightly between the transverse and the longitudinal
polarization components. However, the differences be-
tween the decay constants of the ‘‘boosted Gaussian’’
wave function are relatively small compared to the differ-
ences between the radii of the ‘‘Gaus-LC’’ wave function.
To quantify this effect we fix the parameter RT of the
‘‘Gaus-LC’’ wave function to the same value as RL, then
we predict the value of the decay constant fV;T (allowing
for NT to be determined from the normalization con-
straint). The resulting values of fV;T were 0.44, 0.13 and
0.33 for J= , �, and � mesons, respectively, to be com-
pared with the experimental values of fV ( � fV;L) of 0.27,
0.08 and 0.16. That is, the differences between fV;T and
fV;L for the ‘‘Gaus-LC’’ wave function are much larger
than the equivalent differences for the ‘‘boosted Gaussian’’
wave function; see Table II.

The agreement between the decay constants for the
longitudinal and transverse polarization with the ‘‘boosted
Gaussian’’ wave function is particularly good for the �
meson wave function. We note, en passant, that the differ-
ence between the two decay constants fV;T and fV;L de-
pends on the assumed quark mass; for the � meson the
difference is minimal for the strange quark mass of
0.14 GeV, for the J= meson it is minimal for the charm
quark mass of 1.15 GeV, and for the � meson it decreases
slightly with decreasing quark mass but there is still a
significant difference even when the quark mass is set to
zero.5

TABLE II. Parameters of the ‘‘boosted Gaussian’’ vector me-
son wave functions.

Meson MV=GeV fV mf=GeV N T N L R2=GeV�2 fV;T

J= 3.097 0.274 1.4 0.578 0.575 2.3 0.307
� 1.019 0.076 0.14 0.919 0.825 11.2 0.075
� 0.776 0.156 0.14 0.911 0.853 12.9 0.182

TABLE I. Parameters of the ‘‘Gaus-LC’’ vector meson wave
functions.

MesonMV=GeV fV mf=GeV NT R2
T=GeV�2 NL R2

L=GeV�2

J= 3.097 0.274 1.4 1.23 6.5 0.83 3.0
� 1.019 0.076 0.14 4.75 16.0 1.41 9.7
� 0.776 0.156 0.14 4.47 21.9 1.79 10.4

4Following FSS [9] we set the Coulombic part of the NNPZ
wave function [2,4] to zero to avoid singular behavior at the
origin. This should be reasonable for � and � mesons, but has
less justification for J= mesons.

5For the � meson, the relative difference of decay constants
fV;T and fV;L is 11% for ms � 0:3 GeV and 3% for ms �
0:05 GeV. For the � meson, the relative difference of decay
constants is 36% for mu;d � 0:3 GeV and 14% for mu;d �
0:05 GeV.
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FIG. 3 (color online). Overlap functions (21) and (22) between the photon and vector meson wave functions integrated over z for the
three different vector mesons at Q2 values representative of the data.
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In Fig. 3 we show the overlap functions between the
photon and vector meson wave functions integrated over z
for the three different vector mesons at Q2 values repre-
sentative of the data discussed later in Sec. III. To be
precise, we plot the quantity

 2�r
Z 1

0

dz
4�
���V��T;L: (34)

The plots show that the longitudinal overlap functions for
the ‘‘Gaus-LC’’ and ‘‘boosted Gaussian’’ cases are more
similar than the transverse overlap functions for all three
vector mesons. For the � meson there is also a good
agreement for the transverse overlap function. This indi-
cates that observable quantities for � mesons computed
with either the ‘‘Gaus-LC’’ or ‘‘boosted Gaussian’’ wave
functions should be very similar, in spite of the sizable
disagreement between R2

T and R2
L for the ‘‘Gaus-LC’’ wave

function.

C. Dipole cross sections

1. Review of dipole cross sections

The dipole model became an important tool in inves-
tigations of deep-inelastic scattering due to the initial ob-
servation of Golec-Biernat and Wüsthoff (GBW) [35,36]
that a simple ansatz for the dipole cross section integrated
over the impact parameter b, �q �q, was able to describe
simultaneously the total inclusive and diffractive DIS cross
sections:

 �GBW
q �q �x; r� � �0�1� e�r

2Q2
s �x�=4�; (35)

where �0 is a constant and Qs�x� denotes the x dependent
saturation scale, Q2

s�x� � �x0=x�
�GBW GeV2. The parame-

ters �0 � 23 mb, �GBW � 0:29 and x0 � 3� 10�4 were
determined from a fit to the F2 data without including
charm quarks. After inclusion of the charm quark contri-
bution with massmc � 1:5 GeV into the fit, the parameters
of the GBW model changed to �0 � 29 mb, �GBW � 0:28
and x0 � 4� 10�5. Although the dipole model is theoreti-
cally well justified for small-size dipoles only, the GBW
model provided a good description of data from medium
Q2 values (� 30 GeV2) down to low Q2 (� 0:1 GeV2).
The saturation scale Q2

s is intimately related to the gluon
density in the transverse plane. The exponent �GBW deter-
mines therefore the growth of the total and diffractive cross
sections with decreasing x. For dipole sizes which are large
in comparison to 1=Qs the dipole cross section saturates by
approaching a constant value �0, which becomes indepen-
dent of �GBW. It is a characteristic feature of the GBW
model that a good description of data is due to large
saturation effects, that is, the strong growth due to the
factor x��GBW is, for large dipoles, significantly flattened
by the exponentiation in (35).

The assumption of dipole saturation provided an attrac-
tive theoretical background for investigation of the transi-

tion from the perturbative to nonperturbative regimes in the
HERA data. Despite the appealing simplicity and success
of the GBW model it suffers from clear shortcomings. In
particular it does not include scaling violations, that is, at
large Q2 it does not match with QCD (DGLAP) evolution.
Therefore, Bartels, Golec-Biernat, and Kowalski (BGBK)
[32] proposed a modification of the original ansatz of (35)
by replacing Q2

s by a gluon density with explicit DGLAP
evolution:
 

�BGBK
q �q �x; r� � �0f1� exp

� ���2r2
s��2�xg�x;�2�=�3�0�	g: (36)

The scale of the gluon density, �2, was assumed to be
�2 � C=r2 ��2

0, and the gluon density was evolved ac-
cording to the leading-order (LO) DGLAP equation with-
out quarks.

The BGBK form of the dipole cross section led to
significantly better fits to the HERA F2 data than the
original GBW model, especially in the region of larger
Q2. The good agreement of the original model with the DIS
diffractive HERA data was also preserved. However, the
contribution from charm quarks was omitted in the BGBK
analysis.

The BGBK analysis found, surprisingly, that there exist
two distinct solutions, both giving a very good description
of the HERA data, depending on the quark mass in the
photon wave function. The first solution was obtained
assuming mu;d;s � 0:14 GeV and led to the initial gluon
density, xg�x;�2

0� / x
��g , with the value of exponent �g �

0:28 at �2
0 � 0:52 GeV2, which is very similar to the

�GBW. As in the original model, the good agreement with
data was due to substantial saturation effects. In the second
solution, which took mu;d;s � 0, the value of the exponent
was very different, �g � �0:41 at a fixed �2

0 � 1 GeV2.
The initial gluon density no longer rose at small x; it was
valencelike, and QCD evolution played a much more
significant role than in the solution with mu;d;s �
0:14 GeV.

The DGLAP evolution, which is generally used in the
analysis of HERA data, may not be appropriate when x
approaches the saturation region. Therefore, Iancu, Itakura
and Munier [37] proposed a new saturation model, the
color glass condensate (CGC) model, in which gluon satu-
ration effects are incorporated via an approximate solution
of the Balitsky-Kovchegov equation [43–45]. The CGC
dipole cross section is

 �CGC
q �q �x;r���0

�

8><
>:
N 0

�
rQs

2

�
2��s��1=��Y� ln�2=rQs��

: rQs�2

1�e�Aln2�BrQs� : rQs>2
;

(37)

where Y � ln�1=x�, �s � 0:63, � � 9:9, and Qs 


Qs�x� � �x0=x��=2. The free parameters �0, N 0, �, and
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x0 were determined by a fit to HERA F2 data. The coef-
ficients A and B in the second line of (37) are determined
uniquely from the condition that �CGC

q �q , and its derivative
with respect to rQs, are continuous at rQs � 2:

 A � �
N 2

0�
2
s

�1�N 0�
2 ln�1�N 0�

;

B �
1

2
�1�N 0�

��1�N 0�=�N 0�s�:

(38)

Later, also Forshaw and Shaw (FS) [38] proposed a
Regge-type model with saturation effects. The CGC and
FS models provide a description of HERA inclusive and
diffractive DIS data which is better than the original GBW
model and comparable in quality to the BGBK analysis.
Both models find strong saturation effects in HERA data
comparable to the GBW model and the solution of the
BGBK model with mu;d;s � 0:14 GeV.

All approaches to dipole saturation discussed so far
ignored a possible impact parameter dependence of the
dipole cross section. This dependence was introduced in
this context by KT [1], who assumed that the dipole cross
section is a function of the opacity �, following for in-
stance Ref. [3]:

 

d�qq
d2b

� 2�1� e���=2��: (39)

At small x the opacity � can be directly related to the
gluon density, xg�x;�2�, and the transverse profile of the
proton, T�b�:

 � �
�2

Nc
r2
S��2�xg�x;�2�T�b�: (40)

The formulae of (39) and (40) are called the Glauber-
Mueller dipole cross section. The diffractive cross section
of this type was used around 50 years ago to study the
diffractive dissociation of deuterons by Glauber [46] and
reintroduced by Mueller [47] to describe dipole scattering
in deep-inelastic processes.

2. Applied dipole cross sections

Since the description of exclusive vector meson produc-
tion is the focus of this investigation we concentrate here
on impact parameter dependent dipole cross sections. First,
we use the same form of the differential dipole cross
section as in the KT investigation [1]:

 

d�q �q

d2b
� 2

�
1� exp

�
�
�2

2Nc
r2
S��

2�xg�x;�2�T�b�
��
:

(41)

Here, the scale �2 is related to the dipole size r by �2 �
4=r2 ��2

0. The gluon density, xg�x;�2�, is evolved from a
scale �2

0 up to �2 using LO DGLAP evolution without
quarks:

 

@xg�x;�2�

@ ln�2
�

S��2�

2�

Z 1

x
dzPgg�z�

x
z
g
�
x
z
;�2

�
: (42)

The initial gluon density at the scale�2
0 is taken in the form

 xg�x;�2
0� � Agx��g�1� x�5:6: (43)

The values of the parameters �2
0, Ag, and �g are deter-

mined from a fit to F2 data. For the light quarks, the gluon
density is evaluated at x � xB (Bjorken-x), while for charm
quarks, x � xB�1� 4m2

c=Q2�. The contribution from
beauty quarks is neglected. For vector meson production,
the gluon density is evaluated at x � xB�1�M

2
V=Q

2�. The
LO formula for the running strong coupling 
S��2� is
used, with three fixed flavors and �QCD � 0:2 GeV.

The proton shape function T�b� is normalized so that

 

Z
d2bT�b� � 1: (44)

We consider first a Gaussian form for T�b�, that is

 TG�b� �
1

2�BG
e��b

2=2BG�; (45)

where BG is a free parameter which is fixed by the fit to the
differential cross sections d�=dt for exclusive vector me-
son production. This distribution yields the average
squared transverse radius of the proton,

 hb2i � 2BG: (46)

Assuming that the Gaussian distribution given by (45)
holds also in three dimensions (with a different normaliza-
tion factor) we obtain the relationship between the parame-
ter BG and the Hofstadter radius of the proton Rp, namely
R2
p � 3BG. Note that the Hofstadter experiment [48] mea-

sured the electromagnetic radius whereas we probe the
gluonic distribution of the proton.

The two-dimensional Fourier transform of (45) has the
exponential form which is supported by the data6:

 

d��
�p!Vp

dt
/ e�BGjtj: (47)

Alternatively, we assume that the gluonic density in the
proton is evenly distributed over a certain area within a
sharp boundary, and is zero beyond this boundary. That is,
we assume a step function, again normalized as in (44):

 TS�b� �
1

�b2
S

��bS � b�; (48)

where bS is a free parameter, for which the average squared
transverse radius of the proton is

6Note that for exclusive diffractive processes at large values of
�M2

V �Q
2� the typical dipole size r is small, and the

t-dependence of the cross section is determined entirely by the
proton transverse profile.
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 hb2i �
b2
S

2
: (49)

This is the form of T�b� implicitly used in all
b-independent parameterizations of the dipole cross sec-
tion. That is, it is usually assumed that

 

d�q �q

d2b

 2�1� ReS�x; r; b�	 
 2N �x; r; b�

� 2N �x; r���bS � b�; (50)

so that integration over b gives

 �q �q�x; r� � �0N �x; r�; (51)

where the parameter �0 
 2�b2
S is usually obtained by

fitting to the F2 data. This is the form assumed in the GBW
model (35), the BGBK model (36), and the CGC model
(37). Note that the scattering amplitudes N �x; r; b� or
N �x; r� can vary between zero and one, where N � 1
is the unitarity limit.

To introduce the impact parameter dependence into the
CGC model [37], we modify (37) to obtain the ‘‘b-CGC’’
model:

 

d�q �q

d2b

 2N �x; r; b�

� 2�

8><
>:
N 0

�
rQs

2

�
2��s��1=��Y� ln�2=rQs��

: rQs � 2

1� e�Aln2�BrQs� : rQs > 2
;

(52)

where now the parameter Qs depends on the impact pa-
rameter:

 Qs 
 Qs�x; b� �
�
x0

x

�
�=2
�

exp
�
�

b2

2BCGC

��
1=2�s

: (53)

Note that, in contrast to the parameter BG in the KT
approach, a straightforward interpretation of BCGC in terms
of the proton size is not possible due to the r and Y
dependence of the exponent 2��s �

1
��Y ln 2

rQs
� in (52).

Following KT [1] we define the saturation scale Q2
S 


2=r2
S, where the saturation radius rS is the dipole size where

the scattering amplitude N has a value of 1�
exp��1=2� ’ 0:4, that is, rS is defined by solving

 N �x; rS; b� � 1� e��1=2�; (54)

with the same condition for the b-independent dipole
models. For the GBW model (35), the saturation scale
Q2
S � 2=r2

S defined by (54) coincides with Q2
s�x� 


�x0=x�
�GBW GeV2. However, for the CGC (37) and b-CGC

(52) models, the saturation scale QS defined by (54) differs
from the parameter Qs. Note that we use uppercase S and
lowercase s to distinguish between these two scales. The
saturation scale QS is the quantity we shall later compute
and compare for the different dipole models in Sec. V.

3. Phenomenological corrections for exclusive processes

After performing the angular integrations, (11) reduces
to

 A ��p!Ep
T;L � i

Z 1
0

dr�2�r�
Z 1

0

dz
4�

Z 1
0

db�2�b�

� ���E��T;LJ0�b��J0��1� z	r��
d�q �q

d2b
;

(55)

where J0 is the Bessel function of the first kind and E � V,
� denotes either the exclusive vector meson or DVCS final
state. The derivation of the expression for the exclusive
vector meson production or DVCS amplitude, (11), relies
on the assumption that the S-matrix is purely real and
therefore the exclusive amplitude A is purely imaginary.
The real part of the amplitude can be accounted for by
multiplying the differential cross section for vector meson
production or DVCS, (12), by a factor (1� 2), where is
the ratio of real to imaginary parts of the scattering ampli-
tude A and is calculated using

  � tan���=2�; with � 

@ ln�A��p!Ep

T;L �

@ ln�1=x�
: (56)

This procedure (or similar) is adopted in other descriptions
of vector meson production to account for the real part of
the amplitude; see, for example, Refs. [4,9,19].

For vector meson production or DVCS, we should use
the off-diagonal (or generalized) gluon distribution, since
the two gluons in the right-hand diagram of Fig. 2 carry
different fractions x and x0 of the proton’s (light-cone)
momentum. In the leading ln�1=x� limit, the skewed effect
vanishes. However, the skewed effect can be accounted for,
in the limit that x0 � x� 1, by multiplying the gluon
distribution xg�x;�2� in (41) by a factor Rg, given by [49]
 

Rg��� �
22��3����
�
p

���� 5=2�

���� 4�
;

with � 

@ ln�xg�x;�2�	

@ ln�1=x�
: (57)

This skewedness effect is also accounted for in the calcu-
lation of vector meson production by Martin, Ryskin and
Teubner (MRT) [19], but is neglected in most other dipole
model descriptions.

III. DESCRIPTION OF HERA DATA WITH THE
‘‘B-SAT’’ MODEL

In this section we describe HERA data within the gen-
eralized impact parameter dipole saturation (‘‘b-Sat’’)
model in which the dipole cross section is given by (41)
and the proton shape function T�b� is assumed to be purely
Gaussian (45). The total DIS cross section is given by (6)
and the photon overlap functions by (15) and (16). For
exclusive processes, the differential cross sections are
given by (12) with the phenomenological improvements
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described in Sec. II C 3. For vector mesons the overlaps of
wave functions are given by (21) and (22), and for the
DVCS process by (17).

The light quark masses are taken to be mu;d;s �
0:14 GeV, the value of the pion mass, which ensures the
proper exponential cutoff of the photon wave functions
(15) and (16) at large distances. The value of the charm
mass was chosen to be mc � 1:4 GeV, but other choices
for the charm and light quark masses are also discussed
below. The free parameters of the model are�2

0, Ag, and �g
of the initial gluon distribution, xg�x;�2

0� � Agx��g�1�
x�5:6, and the proton width BG. The aim of the model is to
describe with these four parameters the total DIS cross
section for xB � 0:01 and all total and differential cross
sections for J= , �, and � meson production, as well as
DVCS. The dipole cross section as determined in the b-Sat
model is shown at various impact parameters in Fig. 4.

A. Total ��p cross section

The parameters in the initial gluon distribution (43) are
determined by fitting the ZEUS F2 data [22,23] with xB �
0:01 and Q2 2 �0:25; 650	 GeV2. They are obtained in a
quickly converging iterative procedure in which the F2

data are fitted alternately with the t-distributions of the

vector meson data (see Sec. III C) which determine the
parameter BG � 4 GeV�2. As well as our main fit with
mu;d;s � 0:14 GeV and mc � 1:4 GeV, shown in the first
line of Table III, we also make alternative fits with different
quark masses. As in Ref. [1], the best fit to F2 is obtained
with very low light quark masses, mu;d;s � 0:05 GeV. The
quark mass of 0.14 GeV, which is more appropriate as a
cutoff mass for vector meson bound states, gives a fit to F2

of still acceptable quality; see Table III. The last line of
Table III shows also the fit results performed with the
steplike proton shape defined by (48) with the parameter
bS � 4 GeV�1, which we discuss further in Sec. V.

To compare with the fits obtained by global analysis
using the NLO DGLAP formalism, we evaluated the �2 for
a subset of the ZEUS F2 data [23] with xB � 0:01 and
Q2 � 2 GeV2 comprising of 116 data points. The main b-
Sat fit shown in the first line of Table III gave a �2 of 114,
while the most recent NLO DGLAP fit by the MRST group
[50] gave a �2 of 96 for the 116 data points.

In Fig. 5 we show the comparison of the main b-Sat fit
results with measurements of the total DIS cross section
��

�p
tot . In the same figure we also show the comparison for

the rate of rise of the total DIS cross section, �tot, defined
by ��

�p
tot / �1=x�

�tot . Both comparisons show a very good
agreement between data and the b-Sat model results.

Let us make some general remarks about the sensitivity
of the fit to the assumed quark masses and the proton shape.
Table III shows that the variation of the charm quark mass
does not sizably change the fit parameters. On the other
hand, the choice of the light quark mass influences the
value of the �g parameter and consequently the evolution
of the gluon density. In Fig. 6 we show the gluon distribu-
tion for different scales �2 or dipole sizes r. The correla-
tion between the assumed value of the light quark mass and
the �g and �2

0 parameters was investigated in detail in
Ref. [1]. Consequently, in the b-Sat model the description
of the change of the parameter �tot withQ2 is mainly due to
evolution effects and not to saturation effects as in, for
example, the GBW model [35,36].

B. Vector meson total cross sections

We now compare our predictions for exclusive vector
meson production with recent published HERA data for

TABLE III. Parameters of the initial gluon distribution (43) determined from fits to F2 data [22,23]. All predictions using the b-Sat
model in this paper are evaluated with the set of parameters given in the first line unless explicitly stated otherwise.

Model T�b� Q2=GeV2 mu;d;s=GeV mc=GeV �2
0=GeV2 Ag �g �2=d:o:f:

b-Sat Gaussian [0.25, 650] 0.14 1.4 1.17 2.55 0.020 193:0=160 � 1:21
b-Sat Gaussian [0.25, 650] 0.14 1.35 1.20 2.51 0.024 190:2=160 � 1:19
b-Sat Gaussian [0.25, 650] 0.14 1.5 1.11 2.64 0.011 198:1=160 � 1:24
b-Sat Gaussian [0.25, 650] 0.05 1.4 0.77 3.61 �0:118 144:7=160 � 0:90
b-Sat Step [0.25, 650] 0.14 1.4 1.50 2.20 0.071 199:6=160 � 1:25

FIG. 4 (color online). Dipole cross section at various impact
parameters, as determined in the b-Sat model.
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J= [25–27], � [28] and � [29] meson production.7 The

H1 J= cross sections [27] are measured in the range jtj<
1:2 GeV2 while ZEUS measure jtj< 1 GeV2 for electro-
production [26] and jtj< 1:8 GeV2 (J= ! ����) or
jtj< 1:25 GeV2 (J= ! e�e�) for photoproduction
[25]. The ZEUS � data [28] have jtj< 0:6 GeV2, while
the H1 � data [29] have jtj< 0:5 GeV2.

In Fig. 7 we show the (Q2 �M2
V) dependence of the

total cross section � for all three vector mesons at a fixed
value of W. The inner error bars indicate the statistical
uncertainties only, while the outer error bars include the
systematic uncertainties added in quadrature. The predic-
tions are given integrated over the appropriate t range. For
the J= data, the predictions shown correspond to the H1 t
range. The predictions of the model are in good agreement
with data for both vector meson wave functions. The model
reproduces the Q2 dependence as well as the absolute
magnitude of the data. The prediction for the absolute
normalization is determined mainly by the gluon density
obtained from the fit to the total DIS cross section (or F2)
and the shapes of the ‘‘Gaus-LC’’ and ‘‘boosted Gaussian’’
wave functions, discussed in Sec. II B. Although these two
vector meson wave functions are quite different, they lead
to similar predictions using the constraints from the nor-
malization and vector meson decay width conditions given
in (24)–(27). Note that, unlike the MRT calculations [19]

FIG. 5 (color online). Top: The total DIS cross section ��
�p

tot vs
W2 for different Q2. The data points plotted are from ZEUS
[22,23]. Bottom: The �tot parameter for inclusive DIS defined by
��

�p
tot / �1=x�

�tot . The data points plotted are from ZEUS [22,23]
and H1 [24].
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7The ZEUS ��p cross sections [25,26,28] are given as � �
�T � �L, while H1 [27,29] give � � �T � "�L, where " �
�1� y�=�1� y� y2=2� and h"i � 0:99. We use the ZEUS defi-
nition in our calculations.
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compared to the H1 J= data in [27], we do not require an
additional normalization factor �2 to achieve agreement
with the data. Note also that the MRT calculations [19],
based on kt-factorization using an unintegrated gluon dis-
tribution, take as input the gluon density determined from
the global analyses using collinear factorization. There is
no a priori reason why the fitted parameters in the two

gluon distributions determined in these two calculational
frameworks should be identical. The dipole approach is
self-consistent in that the gluon density is determined from
the inclusive process and applied to exclusive processes
within the same calculational framework.

In Fig. 8 we show the W dependence of the total cross
section � for fixed values of Q2. Here, the ‘‘boosted
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Gaussian’’ vector meson wave function gives a slightly
better description of the data. In Fig. 9 we show the effect
of changing the charm quark mass from the default value of
1.4 GeV to 1.35 GeVor 1.5 GeV. We also show the effect of
changing the light quark masses from 0.14 GeV to
0.05 GeV. In each case, we refit the F2 data to determine
the gluon distribution with parameters given in Table III.
The absolute magnitude of the J= cross sections is

strongly dependent on the choice of the charm quark
mass, particularly at small Q2 values. The cross sections
for the � and � vector mesons are only weakly dependent
on the choice of the light quark masses. This is because, in
the Q2 range considered in this paper, the scale for light
vector meson production, given by �2 � z�1� z�Q2 �m2

f,
is predominantly given by Q2 whereas for J= mesons the
scale �2 is dominated by the square of the charm quark
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FIG. 9 (color online). Total vector meson cross section � vs W compared to predictions from the b-Sat model using the ‘‘boosted
Gaussian’’ vector meson wave function for different quark masses.
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mass. Note also that for all vector mesons the sensitivity of
the cross section to the quark mass decreases with increas-
ing Q2.

We then perform a fit to the theory predictions shown in
Fig. 8 of the form � / W� and compare the values of �
obtained to the experimental values; see Fig. 10. For �
production, we instead show 
P�0� calculated from � �
4�
P�hti� � 1	, where 
P�hti� � 
P�0� � 
0Phti, hti �
�1=BD, BD is the theoretical prediction (see Fig. 14),

and 
0P � 0:25 GeV�2. We observe again a reasonable
agreement of the model results with data.

A variable which is more sensitive to the details of the
wave function is the ratio of the longitudinal to the trans-
verse cross sections, R 
 �L=�T , shown in Fig. 11. This is
due to the fact that the ratio �L=�T probes the behavior of
the transversely polarized vector meson wave function
close to the end points (z! 0; 1). At large values of Q2,
the contributions from the intermediate values of z ’ 1=2
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follow the simple, perturbative scaling that leads to
�L=�T �Q2. This simple scaling is affected by the Q2

evolution of the anomalous dimension of the gluon distri-
bution [15,19], and by the contributions from the end
points to the transverse cross section, which are different
for the ‘‘Gaus-LC’’ and ‘‘boosted Gaussian’’ vector meson
wave functions. Figure 11 shows that the ‘‘boosted
Gaussian’’ wave function is favored by the � meson data,
where the ‘‘Gaus-LC’’ wave function leads to a value of
�L=�T which rises too rapidly with increasing Q2. For
J= and�mesons, both vector meson wave functions lead
to a similar behavior. In Fig. 12 we show the effect of
changing the quark masses when using the ‘‘boosted
Gaussian’’ wave function. For � mesons, the ratio
�L=�T shows a strong dependence on the quark mass. A
more precise analysis, which goes beyond the scope of this
paper, shows that the ratio �L=�T is very sensitive to the
behavior of the wave functions at the end points (z! 0; 1).

C. Vector meson t-distributions

The observed t-distributions of the vector meson pro-
cesses are an important source of information on the shape
of the proton in the low-x region. Figure 13 shows the
HERA data on t-distributions for J= [25–27] and � [28]
meson production. Figure 14 shows the effective slope of
the t-distribution, the parameter BD, for J= ,� and � [29]
vector mesons as a function of (Q2 �M2

V). The parameter
BD describes the area size of the interaction region and is
obtained by making a fit to the observed (or computed in
the model) t-distributions of the form d�=dt /

exp��BDjtj�. The theory predictions for BD are all ob-
tained by making fits to d�=dt in the range jtj< 0:5 GeV2.
Figures 13 and 14 show that the t dependence and the
(Q2 �M2

V) dependence of BD are well described by the
dipole model predictions for all three vector mesons
whether using either the ‘‘Gaus-LC’’ or the ‘‘boosted
Gaussian’’ vector meson wave functions. We note that
this good description is obtained with only one value of
the width of the proton shape, BG.

The proton shape, in the b-Sat model, is assumed to be
purely Gaussian (45). The width of the Gaussian, BG,
determined by optimising the agreement between the
model predictions and data for the t-distributions of the
vector mesons and their effective slopes BD, is found to be
BG � 4 GeV�2. This value is mainly determined by the
t-distributions of J= mesons measured by ZEUS [25,26]
and H1 [27]. We note, however, that although the values of
the BD parameters measured by the two experiments are in
agreement within errors, the spread of their values is some-
what large; see the first plot of Fig. 14. We estimate the
error on the value of the parameter BG as being around
0:5 GeV�2.

The value of BG � 4 GeV�2 found in this investigation
is slightly smaller than in the KT [1] investigation where
BG � 4:25 GeV�2 was determined using only the ZEUS
J= photoproduction data [25]. Figure 14 shows that the
subsequent ZEUS measurements of J= electroproduction
[26] exhibit higher values of BD and therefore require a
higher value of BG. Note that the effect of taking the size of
the vector meson into account, that is, including the BGBP
[40] factor in (12) arising from the nonforward wave
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functions, exp�i�1� z�r ��	, lowers the cross section for
nonzero t and therefore lowers the required value of BG;
recall that this factor was neglected by KT [1].

Note also that the obtained values of BD at the same
(Q2 �M2

V) are larger for light vector mesons than for J= ,
in accordance with the data. This occurs because the scales
Q2 and m2

f enter the photon wave function in slightly

different ways. We shall illustrate this by comparing J= 
photoproduction with light vector meson electroproduction
at the same value of (Q2 �M2

V), implying Q2 ’ 4m2
c. The

characteristic size of the scattering dipole is set by 1=�with
�2 � z�1� z�Q2 �m2

f. For the photoproduction of J= , �
has no z dependence, �2 � m2

c. In contrast, for light vector
mesons �2 varies with z from Q2=4 at z � 1=2 down to
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predictions from the b-Sat model using two different vector meson wave functions.
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m2
u;d;s at z! 0 and z! 1, so that the effective value of �2

is significantly lower than Q2=4�m2
u;d;s ’ m

2
c. Therefore,

for light vector meson production at Q2 ’ 4m2
c, the typical

dipole size is larger than for photoproduction of J= . This
is particularly pronounced at the end points z! 0 and z!
1 for the transversely polarized light vector mesons. At
sufficiently large values of Q2, however, the longitudinally
polarized mesons dominate and the typical dipole size
becomes small enough to have a negligible contribution

to BD for both light and heavy mesons. Hence, at large
(Q2 �M2

V), BD tends to a universal value determined by
the proton shape alone.

It is important to realize that the dependence of BD on
(Q2 �M2

V) observed for light vector mesons originates
from the enlargement of the interaction area due to the
dipole transverse extension. Recall that this effect is taken
into account by the BGBP [40] prescription of the QCD
dipole scattering at t � 0. It also partly arises from the

W  (GeV)
10

2
)2

/d
t 

 (
n

b
/G

eV
σd

1

10

10
2

10
3

2 = 0.05 GeV
2

 p,  Qψ J/→ p γ

)2|t|  (GeV

0.03
0.10
0.22

0.43

0.83

W  (GeV)
10

2

)2
/d

t 
 (

n
b

/G
eV

σd

1

10

10
2

10
3

H1

VΨBoosted Gaussian 

VΨGaus-LC

2 = 8.9 GeV
2

 p,  Qψ J/→*pγ

)2|t|  (GeV

0.05

0.19

0.64

W  (GeV)
0 50 100 150

)2
/d

t 
 (

n
b

/G
eV

σd

1

10

10
2

ZEUS

VΨBoosted Gaussian 

VΨGaus-LC

 pφ→*pγ
2 = 5 GeV2Q)

2
|t|  (GeV

0.025

0.12

0.25

0.45

0.73

FIG. 16 (color online). Differential vector meson cross section d�=dt vs W compared to predictions from the b-Sat model using two
different vector meson wave functions.

)2|t|  (GeV
0 0.2 0.4 0.6 0.8 1 1.2

(t
)

IPα

1

1.1

1.2

1.3

1.4
)2 = 0.05 GeV

2
H1  (Q

)2 = 0 GeV
2

ZEUS  (Q
VΨBoosted Gaussian 

VΨGaus-LC

 p  (photoproduction) ψ J/→ p γ

)2|t|  (GeV
0 0.2 0.4 0.6 0.8 1 1.2

(t
)

IPα

1

1.1

1.2

1.3

1.4
)2 = 8.9 GeV

2
H1  (Q

)2 = 6.8 GeV
2

ZEUS  (Q
VΨBoosted Gaussian 

VΨGaus-LC

 p  (electroproduction)ψ J/→*pγ

)
2

|t|  (GeV

0 0.2 0.4 0.6 0.8

(t
)

IPα

0.8

0.9

1

1.1

1.2

ZEUS

VΨBoosted Gaussian 

VΨGaus-LC

 pφ→*pγ

2 = 5 GeV2Q

FIG. 17 (color online). The Pomeron trajectory 
P�t� vs jtj, where 
P�t� is determined by fitting d�=dt / W4�
P�t��1	, compared to
predictions from the b-Sat model using two different vector meson wave functions.

H. KOWALSKI, L. MOTYKA, AND G. WATT PHYSICAL REVIEW D 74, 074016 (2006)

074016-18



saturation effects which play a stronger role for the larger
typical dipole sizes at small (Q2 �M2

V). We investigate the
interplay between these two mechanisms on the value of
BD in Fig. 15. We show the effect of switching off the
eikonalization, that is, replacing the dipole cross section
(39) by the opacity � (40). We also show the effect of
omitting the BGBP [40] factor, exp�i�1� z�r ��	, in (12).
Without these two effects, which diminish with increasing
(Q2 �M2

V), the t-slope BD tends to the universal value of
BD � BG � 4 GeV�2. Without the BGBP factor, the ei-
konalization has a significant effect for � and � mesons,
but it is not enough to describe the BD data points. With the
BGBP factor, the eikonalization has only a small effect and
the rise of BD with decreasing (Q2 �M2

V) nicely reprodu-
ces the rise observed in the data.

We also investigated, for completeness, the W depen-
dence of the t-distributions. In Fig. 16 we show the W
dependence of d�=dt for fixed values of jtj and Q2. For
each value of t, we make a fit of the form d�=dt /
W4�
P�t��1	 and then plot 
P�t� against jtj; see Fig. 17.
We also fit the same data to the form d�=dt /
exp��BDjtj� for each value of W, then we plot BD against
W; see Fig. 18.

D. Deeply virtual Compton scattering

We now compare to the recently published DVCS data
from H1 [30] and ZEUS [31]. We use the b-Sat model with
a Gaussian T�b� and BG � 4 GeV�2, and quark masses
mu;d;s � 0:14 GeV andmc � 1:4 GeV. In Fig. 19 (left) we
show the Q2 dependence of the cross section integrated
over jtj up to 1 GeV2 forW � 82 GeV compared to the H1
data [30]. We also show the ZEUS data [31] at W �
89 GeV rescaled to W � 82 GeV using � / W�, with
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FIG. 18 (color online). The t-slope parameter BD vs W, where
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predictions from the b-Sat model using two different vector
meson wave functions.
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� � 0:75 [31]. In Fig. 19 (right) we show the W depen-
dence of the cross section integrated over jtj up to 1 GeV2

for Q2 � 8 GeV2 compared to the H1 data [30]. We also
show the ZEUS data [31] at Q2 � 9:6 GeV2 rescaled to
Q2 � 8 GeV2 using� / Q�2n, with n � 1:54 [31]. Fitting
the theory predictions to the form � / W� gives � � 0:80
to be compared with the experimental value of 0:77�
0:23� 0:19 [30]. We see from Fig. 19 that the Q2 and W
dependence of the DVCS data, as well as the absolute
normalization, are well described by the b-Sat model.

The t-distribution is shown in Fig. 20 for Q2 � 8 GeV2

andW � 82 GeV compared to the H1 data [30]. At small t
the data are well-described, while at larger t the prediction
slightly overestimates the data, due to a t-slope which is
too small. Fitting the theory prediction to the form d�=dt /
exp��BDjtj� for jtj< 0:5 GeV2 gives BD � 5:29 GeV�2,
to be compared with the experimental value of 6:02�
0:35� 0:39 GeV�2 [30]. When comparing these values
one should bear in mind that the value of the parameter
BG � 4 GeV�2 determined from the t-distributions of the
vector meson data has a possible uncertainty which could
be as large as 0:5 GeV�2.

Summarizing, we can see that the agreement of the
predictions from the b-Sat model with DVCS data is
remarkably good, especially if we note that the DVCS
data were not used in fixing any parameters of the model.

IV. IMPACT PARAMETER DEPENDENT CGC
MODEL

We have seen that almost all features of the exclusive
diffractive HERA processes are well described by the
impact parameter dependent saturation (‘‘b-Sat’’) model
with a Gaussian T�b� of width BG � 4 GeV�2. The b-Sat
model assumes the validity of DGLAP evolution which
may not be appropriate when x approaches the saturation
region. Therefore, we also investigated the impact parame-
ter dependent CGC (‘‘b-CGC’’) model, in which the dipole
cross section is given by (52) and (53). In the b-CGC model
the evolution effects are included via an approximate
solution to the Balitsky-Kovchegov equation [43–45].

Similar to the b-Sat model, the parameter BCGC �
5:5 GeV�2 in (53) is determined by requiring a good
description of the t-slopes of vector meson data, while
the three parameters N 0, �, and x0 in (52) and (53) are
determined by fitting the F2 data [22,23] with xB � 0:01
and Q2 2 �0:25; 45	 GeV2. The results of the fit are shown
in Table IV. The fit to the F2 data with the b-CGC model
gives a sizably worse description than the b-Sat model as
seen from the value of the �2=d:o:f: in Table IV and the
comparison with data of the parameter �tot shown in the
bottom plot of Fig. 5. The significant deterioration of the fit
quality is due to the fact that in the impact parameter
dependent description, saturation effects can only be siz-
able in the core of the proton, see the discussion in Sec. V.
The relatively poor quality of the fit is the main reason why
we prefer to use a DGLAP-evolved gluon density together
with the Glauber-Mueller dipole cross section, that is, the
b-Sat model.

Although almost all features of the vector meson and
DVCS data are well described by the b-Sat model, there is
one exception, namely 
0P. It is predicted to be close to
zero, due to the assumed factorization of T�b� from the
gluon distribution xg�x;�2�, in some disagreement with
the data; see Figs. 17 and 18. In the b-CGC model theW (or
x) dependence is not factorized from the b dependence.
Therefore, an appreciable 
0P is achievable, as shown in
Fig. 21. Here, we use the ‘‘boosted Gaussian’’ vector
meson wave function in both cases. In fact, for photo-
production, a fit to the model predictions of the form BD �
B0 � 4
0P ln�W=�90 GeV�	 gives 
0P � 0:075 for the b-
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FIG. 20 (color online). Differential DVCS cross section d�=dt
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TABLE IV. Parameters of the b-CGC model, (52) and (53), determined from a fit to F2 data
[22,23].

Model Q2=GeV2 mu;d;s=GeV mc=GeV N 0 x0=10�4 � �2=d:o:f:

b-CGC [0.25,45] 0.14 1.4 0.417 5.95 0.159 211:2=130 � 1:62
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CGC model compared to 
0P � 0:004 for the b-Sat model.
However, the value of 
0P from the b-CGC model is still
slightly low when compared to the values of 0:116�
0:026�0:010

0:025 [25] or 
0P � 0:164� 0:028� 0:030 [27]

measured by experiment. We note that, with the exception
of 
0P, the b-CGC model gives a considerably worse over-
all description of exclusive processes than the b-Sat model.

V. SATURATION AND RELATED TOPICS

A frequently asked question, whether or not the HERA
data require saturation, is answered in the saturation mod-
els like GBW [35,36] or CGC [37] with a clear yes. In the
impact parameter dependent models, such as the models
discussed in this paper, the answer is more involved. In this
section, we will therefore discuss the saturation effects in
some detail.

In the GBW model the effects of saturation are clearly
seen, for example, in the change of rate of rise, �tot, of the
total DIS cross section with Q2, see Fig. 5 (bottom). In this
model the value of the observed parameter �tot is related to
the value of the constant �GBW � 0:3 modulated by the
saturation effects. Since the variation of �tot with Q2 is
substantial, saturation has to be an important effect. Note
that, in the GBW model, saturation is the only mechanism
which can modulate the parameter �tot.

The saturation effects are best quantified by the value of
the saturation scaleQ2

S 
 2=r2
S, where the saturation radius

rS is defined as the solution of (54). In Fig. 22 we show the
saturation scale for the impact parameter dependent (left)
and independent (right) models. Figure 22 (right) shows
that the saturation scale in the GBW model is significantly
higher than in the CGC model. (The GBW and CGC fits
shown here are described in more detail in Sec. V B.) This
is understandable since in the CGC model the variation of
the �tot parameter is partly due to evolution in addition to
the saturation effects. However, even in the CGC model the
saturation effects are fairly strong, as discussed by Iancu,
Itakura, and Munier [37] and by Forshaw and Shaw [38].
Figure 22 (left) shows that in the b-Sat and b-CGC models
the saturation scale is strongly dependent on the impact
parameter b. In the center of the proton (b � 0), the b-Sat
and b-CGC models have a similar saturation scale, com-
parable to the value in the GBW model. As b increases the
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value of the saturation scale drops quickly in both models.
This is again understandable since, in the b-Sat model with
a Gaussian proton shape, at larger values of b the gluon
density is diluted by the factor T�b� and so the smaller
gluon density leads to smaller saturation scales. In this
model, the variation of �tot with Q2 is mostly due to
evolution effects, since the gluon density at the initial scale
�2

0 is characterized by a low value of the parameter �g �
0. The observed large values of �tot can only be generated
by evolution, as discussed in detail by KT [1].

In Fig. 23 we show the b-dependence of the total cross
section to give a feeling for the relative contributions from
the different impact parameters. The median value of this
distribution is around b � 2:6 GeV�1, that is, the majority
of the cross section is determined by the dilute gluon
region, where the saturation scale is small.

To summarize, in the impact parameter dependent di-
pole models, evolution plays a greater role than saturation
on average. However, in the center of the proton (b � 0),
the saturation effects are large in both the b-Sat and b-CGC
models. In the center of the proton the saturation scale is
comparable to the saturation scale found in the original
GBW model.

The GBW model is theoretically very attractive since all
observables in this model are a function of only one
variable, r2Q2

s�x�, where Q2
s�x� � �x0=x�

�GBW . This leads
to so-called geometric scaling in which ��

�p is only a
function of � � Q2=Q2

s�x�, which is confirmed to some
accuracy by data [51].8 A similar scaling has recently been
observed for (t-integrated) diffractive DIS data [52]. The

notion of geometric scaling is essential for development of
the theoretical approach to saturation. Indeed, geometric
scaling seems to be a universal feature of a wide class of
evolution equations with saturation effects, irrespective of
the form of the nonlinear term [53–55]. In the b-Sat model,
approximate geometric scaling is also present, as it is
imposed by the fit to the data. This scaling, however, is
not an intrinsic feature of the b-Sat model because of the
greater importance of DGLAP evolution compared to satu-
ration effects, and also because of the additional scale
introduced by the impact parameter dependence.

The theoretical understanding of saturation phenomena
follows from evolution equations obtained within pertur-
bative QCD. It is therefore interesting to ask the question
whether the saturation effects determined in the models
from fits to HERA data belong in the perturbative or non-
perturbative domain. As shown in Fig. 22, the saturation
scale determined in the proton center in the b-Sat model is
around 0:5 GeV2 at x � 10�3. This number lies in-
between the value of �2

QCD � 0:04 GeV2, being clearly
nonperturbative, and the value of around 1 GeV2, consid-
ered to be perturbative. Therefore it is not obvious to what
extent the saturation dynamics are driven by the perturba-
tive effects. The models discussed here are, however, by
construction perturbative; the renormalization and factori-
zation scale �2 � 4=r2 ��2

0, used to evaluate the strong
coupling and the gluon density, is bounded from below by
�2

0 ’ 1 GeV2 and is around 2 GeV2 if Q2
S 
 2=r2

S ’
0:5 GeV2. Moreover, in the center of the proton, the value
of the saturation exponent

 �S 

@ ln�Q2

S�

@ ln�1=x�
(58)

varies between �S � 0:19 at x � 10�2 and �S � 0:27 at
x � 10�4, as shown in Fig. 24. Therefore, the values of this
exponent are greater than the value of �S ’ 0:08 expected
for a ‘‘soft’’ process, and are close to the expectations from
theoretical studies of perturbative nonlinear evolution
equations; see, for example, Refs. [56–58]. This indicates
that the saturation phenomena studied in the b-Sat model is
outside of the nonperturbative region.

A. Step T�b�

We also performed an alternative fit to F2 data using the
b-Sat model with the step function T�b� given by (48), with
the parameter bS � 4 GeV�1; see the last line of Table III.
Recall that this form of T�b� is implicitly used in all
b-independent parameterizations of the dipole cross sec-
tion. The fit was of similar quality and gave a slightly larger
gluon distribution compared to the corresponding fit with a
Gaussian T�b�, see Fig. 6, indicating a slight shift in the
balance between evolution and saturation effects. Note
from (46) that a step T�b�with bS � 4 GeV�1 corresponds
to hb2i � 8 GeV�2, the same value as for the Gaussian
T�b� with BG � 4 GeV�2 from (46).

FIG. 23 (color online). The b-dependence of the total cross
section, ��

�p
tot , for Q2 � 0:4, 4 and 40 GeV2 with x � 10�4,

10�3 and 10�2 respectively, using a Gaussian T�b� of width
BG � 4 GeV�2.

8Note, however, that the inclusion of the charm quark con-
tribution violates geometric scaling to a certain extent.
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For small jtj, the results with a step T�b� are close to
those with a Gaussian T�b�, and so the total cross sections
for exclusive processes are also similar. However, for
larger values of jtj, the step T�b� gives a dip in the
t-distributions, which is not observed in the data, as seen
in Fig. 25 for J= production. Here, we have used the
‘‘boosted Gaussian’’ vector meson wave functions in both
cases. The reason for the dip at large jtj can be explained by
noticing that the two-dimensional Fourier transform of the
step function (48) gives the Bessel function of the first
kind, 2J1�bS��=�bS��, which oscillates through zero,
whereas the two-dimensional Fourier transform of a
Gaussian is simply another Gaussian. Although there is
some uncertainty in the measured cross section at large jtj
due to the treatment of proton dissociation, the uncertainty
is not expected to account for the large discrepancy be-
tween the predictions with the step T�b� and the data, and
so the step T�b�must be ruled out as a model for the proton
shape.

B. The GBW and CGC models without impact
parameter dependence

For completeness we give here the results of the fits
using the impact parameter independent GBW (35) and
CGC (37) dipole models. We first make fits to ZEUS F2

data [22,23] with x � 0:01 and Q2 2 �0:25; 45	 GeV2 us-
ing the CGC model (37) with N 0 � 0:7 (fixed), first
without any charm quark contribution as in the original
paper [37], then including the charm contribution. We also
show the effect of including the data with higher Q2 >
45 GeV2. For comparison, we perform similar fits using
the original GBW model (35). We take x � xB for light
quarks and x � xB�1� 4m2

c=Q2� for charm quarks. The

light quark masses are taken to bemu;d;s � 0:14 GeV, with
the charm quark mass mc � 1:4 GeV. The results of these
fits are shown in Table V.

We note that the description of the data by the CGC
model is sizably better than by the GBW model. This is
presumably due to the lack of evolution effects in the GBW
model and can be seen from the fact that the worsening of
the �2 value when the data points with Q2 > 45 GeV2 are
included is more prominent for the GBW model than the
CGC model; see the right-hand column of Table V.

Notice also that the saturation scale in the CGC fit is
dramatically lowered with the introduction of charm
quarks, as shown in Fig. 26. The fact that saturation effects
are very sensitive to the presence of the charm contribution
was first noticed in the original GBW paper [35] and also in
the KT [1] impact parameter dependent analysis. In par-
ticular, Thorne [59] has emphasized the importance of the
charm contribution, which has been omitted in some analy-
ses of the saturation scale at HERA.

In Fig. 27 we show the dipole cross section �q �q�x; r� at
fixed x � 10�4, integrated over the impact parameter b,
obtained in the fits using the b-Sat, b-CGC, GBW, and
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CGC models with mu;d;s � 0:14 GeV and mc � 1:4 GeV.
At smaller values of r the b-Sat model has a slightly larger
dipole cross section than the other models due to the
presence of DGLAP evolution. At larger r the GBW and
CGC models tend to a constant value of�0, while the b-Sat
and b-CGC models continue to increase with increasing r;
see also the discussion in Ref. [1]. However, as discussed in

TABLE V. Parameters of the GBW (35) and CGC (37) models determined from fits to F2 data
[22,23].

Model Q2=GeV2 mu;d;s=GeV mc=GeV �0=mb x0=10�4 � �2=d:o:f:

GBW [0.25, 45] 0.14 — 20.1 5.16 0.289 216:5=130 � 1:67
GBW [0.25, 45] 0.14 1.4 23.9 1.11 0.287 204:9=130 � 1:58
GBW [0.25, 650] 0.14 1.4 22.5 1.69 0.317 414:4=160 � 2:59
CGC [0.25, 45] 0.14 — 25.8 0.263 0.252 117:2=130 � 0:90
CGC [0.25, 45] 0.14 1.4 35.7 0.00270 0.177 116:8=130 � 0:90
CGC [0.25, 650] 0.14 1.4 34.5 0.00485 0.188 173:7=160 � 1:09
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FIG. 26 (color online). The saturation scale Q2
S 
 2=r2

S, where
rS is defined as the solution of (54), found in the GBW and CGC
models with and without charm quarks. The presence of charm
quarks dramatically lowers the saturation scale, especially for
the CGC model.
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FIG. 27 (color online). The dipole cross section �q �q�x; r� at
fixed x � 10�4, integrated over the impact parameter b, obtained
in the b-Sat, b-CGC, GBW, and CGC models.

FIG. 28 (color online). The distribution of dipole sizes r
contributing to the total inclusive DIS cross section in the b-
Sat model for various virtualities, Q2, of the photon. The median
values are indicated by vertical arrows.
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Sec. II A 1, the contribution to the total cross section from
large dipole sizes is generally suppressed by the photon
wave functions, as is clearly seen in Fig. 28.

VI. SUMMARY AND OUTLOOK

We have presented an analysis of exclusive diffractive
vector meson and DVCS data measured at HERAwithin an
impact parameter dependent saturated dipole (‘‘b-Sat’’)
model. Various cross sections measured as a function of
Q2, W and t can be described by a model with a minimal
number of free parameters, namely, the parameters �2

0, Ag
and �g of the initial gluon distribution, xg�x;�2

0� �

Agx
��g�1� x�5:6, and the proton width BG. The wave

functions of the virtual photon are known from QED, while
the vector meson wave functions are assumed to have a
Gaussian shape. The variable which fluctuates in the
Gaussian is, of course, not known precisely. However, we
have shown that the observed distributions are fairly in-
sensitive to the particular assumptions, with possible ex-
ception of the�L=�T ratio for the �meson. A more precise
measurement of this distribution and of the spin density
matrix elements would allow better constraints to be made
on the form of the vector meson wave functions.

An important finding of this investigation is that,
although the vector meson wave functions are not fully
known, one obtains a good description of the measured
data. The model parameters, which were fixed by the fit to
the total inclusive DIS cross section and the vector meson
t-distributions, describe the measured Q2 and W depen-
dence of vector meson production and DVCS very well,
together with the absolute normalization. The measured
DVCS t-distribution agrees with the model expectation
within the measurement error. We expect that the high
luminosity achieved by HERA will allow the
t-distributions of vector mesons and DVCS to be measured
more precisely. They provide important information about
the proton size and the transverse dynamics of the evolu-
tion process.

The b-Sat model, which gives the best description of
data, uses the Glauber-Mueller dipole cross section (41)
with DGLAP evolution of the gluon density. Although the
overall description of exclusive processes is very good, this
approach has some limitations, seen most clearly in the
lack of W dependence of BD in J= photoproduction,
Fig. 18. Although this is a delicate effect, the measurement
precision is sufficient to show that there is a coupling
between the transverse and longitudinal evolution varia-
bles, that is, 
0P � 0. We therefore introduced impact
parameter dependence into the CGC model, the ‘‘b-
CGC’’ model, which leads to a considerably poorer fit to
F2 than the b-Sat model and a worse overall description of
exclusive processes, but a better description of the 
0P
parameter. The saturation scale Q2

S evaluated in this inves-
tigation does not depend sizably on the adopted evolution
scheme and is consistent with the results of Ref. [1].

An important finding of this investigation is that the
t-dependences of all three vector mesons and the DVCS
process can be simultaneously described with one univer-
sal shape of the proton. The parameter characterising the
size of the proton, BG � 4 GeV�2, determined in this
investigation, corresponds to a root-mean-square impact

parameter
���������
hb2i

p
, given by (46), of 0.56 fm. This is rather

smaller than the proton charge radius of 0:870� 0:008 fm
[60].9 This leads to a rather surprising result that gluons are
more concentrated in the center of the proton than quarks.
DVCS measurements planned at JLab should help clarify
this somewhat puzzling picture (see, for example, [61]).

The investigation presented here demonstrates that a
wide class of high-energy scattering processes measured
at HERA may be understood within a simple and unified
framework. The key ingredient is the gluon density which
is probed in the longitudinal and transverse directions. The
success of the description indicates the universality of the
emerging gluon distribution.

Let us finish with a general remark that vector meson
and DVCS processes may be used to probe the properties
of nuclear matter in a new way. In measurements with
polarized beams it is possible to achieve precision which
would allow a holographic picture of protons and nuclei to
be obtained [62–64]. Such a measurement could be per-
formed at an ep collider with roughly a third of the HERA
center-of-mass energy, similar to the one described in the
eRHIC proposal [65,66].
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APPENDIX: CONNECTION TO THE KT PAPER

In the preceding analysis [1] of J= photoproduction in
the impact parameter dependent dipole saturation model,
Kowalski and Teaney (KT) used a somewhat different
convention to define the wave functions and to calculate
the decay constants and the overlaps.

KT [1] defined the overlap functions between the vector
meson and the photon wave functions in the following
way:

 

���V��T � êfe

���������
2Nc
p

2�mf
fm2

fK0��r� ��T�r; z�

� �z2 � �1� z�2	�K1��r�@r ��T�r; z�g; (A1)

9The proton charge radius was first measured by Hofstadter
[48] to be 0:74� 0:24 fm.
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 ���V��L � êfe

���������
2Nc
p

2�
2QK0��r�z�1� z� ��L�r; z�; (A2)

where the scalar ‘‘Gaus-LC’’ wave functions ��T;L�r; z�
were defined as the Fourier transforms of factorized wave
functions given in the momentum space by

 

~�T;L�k; z� � �NT;Lz�1� z� exp��k2R2
T;L=2�; (A3)

leading to

 

��T;L�r; z� �
Z d2k

�2��2
exp�ik � r� ~�T;L�k; z�

� �NT;Lz�1� z�
Z d2k

�2��2
exp�ik � r�

� exp��k2R2
T;L=2�

�
�NT;L

2�R2
T;L

z�1� z� exp
�
�

r2

2R2
T;L

�
: (A4)

In that representation the normalization conditions were
given by

 1 �
Z d2k

�2��2
Z 1

0

dz
4�

�
�z2 � �1� z�2	

k2

m2
f

� 1
�
j ~�T�k; z�j

2;

(A5)

 1 �
Z d2k

�2��2
Z 1

0

dz
4�
j ~�L�k; z�j2; (A6)

and the decay constants read,
 

fV;T � êf
���������
2Nc

p mf

MV

Z d2k

�2��2
Z 1

0

dz
4�z�1� z�

�

�
�z2 � �1� z�2	

k2

m2
f

� 1
�

~�T�k; z�; (A7)

 fV;L � êf
���������
2Nc

p
2
Z d2k

�2��2
Z 1

0

dz
4�

~�L�k; z�: (A8)

It is straightforward to observe that the KT formulae
(A1), (A2), and (A5)–(A8) may be obtained from the
formulae of the present paper (21), (22), and (24)–(27) if
� � 0 and the previously used wave functions ��T and ��L
are expressed in terms of the wave functions �T and �L
written in the conventions of this paper:

 

��T�r; z� �

���������
2Nc
p

z�1� z�
mf�T�r; z�; (A9)

 

��L�r; z� �
���������
2Nc

p
MV�L�r; z�: (A10)

Note the modification of the z-dependent part of �T�r; z�.
Of course, the radius parameters RT;L are the same in both
conventions. The normalization factors are, however,
transformed according to

 

�N T �
���������
2Nc

p
mf2�R2

TNT; (A11)

 

�N L �
���������
2Nc

p
MV2�R2

LNL: (A12)

The parameters of the ‘‘Gaus-LC’’ wave functions in its
initial formulation are given in Table VI.
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