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We calculate the electric dipole moments (EDM) of the neutral 199Hg atom, deuteron, nucleons and
neutral hyperons �, �0 and �0 in the framework of a generic SUSY model without R-parity conservation
( 6RpSUSY) on the basis of the SU(3) version of chiral perturbation theory (ChPT). We consider
CP-violation in the hadronic sector induced by the chromoelectric quark dipole moments and
CP-violating 4-quark effective interactions. From the null experimental results on the neutron and
199Hg atom EDMs we derive limits on the imaginary parts of certain products Im��0�0�� of the trilinear
6Rp-couplings and demonstrate that they are more stringent than those existing in the literature. Using
these limits we give predictions for the EDMs of neutral hyperons. We also estimate the prospects of
future storage ring experiments on the deuteron EDM and show that the expected improvement of the
above limits in these experiments may reach several orders of magnitude.
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I. INTRODUCTION

Electric dipole moments (EDMs) of neutral atoms, had-
rons and leptons are flavor blind CP-odd observables
which are recognized to be sensitive probes of physics
beyond the standard model (SM). As is known, the SM
predictions for these observables are at least 6–7 orders of
magnitude below the current experimental limits. Thus an
observation of EDMs at larger values would witness the
presence of a non-SM source of CP-violation (CPV).
Physics beyond the SM brings in new complex parameters
and, therefore, new sources of CPV which may contribute
to EDMs. In supersymmetric (SUSY) models, these pa-
rameters come from the soft SUSY breaking sector and the
superpotential �-term and, if R-parity is not imposed,
additional CPV phases appear from the R-parity violating
trilinear and bilinear parameters.

During the last few years significant progress has been
achieved in experimental studies of various EDMs [1– 4].
Presently there exist stringent upper bounds on the neutron
EDM, dn, [2] and the EDM, dHg, of the neutral 199Hg atom
[3]:

 jdnj � 3:0� 10�26 e � cm; (1)

 jdHgj � 2:1� 10�28 e � cm: (2)

Recently it was also proposed to measure the deuteron
EDM, dD, in storage ring experiments [4] with deuteron
ions instead of neutral atoms. The advantage of these
experiments is the absence of Schiff screening, which
introduces significant uncertainties in the case of neutral
atoms. This allows a direct probe of the value for dD. In the
near future it is hoped to obtain the experimental upper

bound of

 jdDj � �1� 3� � 10�27 e � cm: (3)

The upper limits for the EDMs, derived from the above null
experimental results, stringently constrain or even reject
various models of CPV [5]. For the case of SUSY models
with the superpartner masses around the electroweak scale
	100 GeV–1 TeV, these limits imply that the CPV SUSY
phases are very small. Various aspects of the calculation of
the EDMs within the popular versions of SUSY models
with [6,7] and without [8–12] R-parity conservation have
been studied in the literature.

In the present paper we are studying the EDMs of the
199Hg atom and the deuteron as well as of the light baryons
(nucleon and neutral hyperons �, �0 and �0) in the frame-
work of a generic SUSY model without R-parity conser-
vation ( 6RpSUSY) on the basis of the SU�3� version of
chiral perturbation theory (ChPT) [7,13–15]. We consider
CP-violation in the hadronic sector originating from the
quark chromoelectric dipole moments (CEDMs) and CPV
4-quark effective interactions which are induced by the
complex phases of the trilinear 6Rp-couplings �0. From the
experimental bounds of Eqs. (1) and (2) we derive upper
limits on the imaginary parts of the products of the trilinear
6Rp-couplings and compare these limits to the existing
ones. On this basis we predict the values for the EDMs
of the light neutral hyperons. We also discuss the prospects
of the deuteron EDM experiments (3) from the view point
of their ability to improve these limits.

II. HADRONIC EDMS IN CHIRAL PERTURBATION
THEORY

Here we briefly outline the formalism we use for the
calculation of the EDMs of the neutral 199Hg atom, the
deuteron and light baryons n, p, �, �0 and �0.
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The 199Hg is a diamagnetic atom with a closed electron
shell. Its EDM is dominated by the nuclear CP-violating
effects characterized by the Schiff moment SHg, generating
a T-odd electrostatic potential for atomic electrons. The
199Hg atomic EDM is given by [16]

 dHg 
 �2:8� 10�4SHg � fm�2: (4)

The deuteron EDM is a theoretically rather clean problem
[17] since the deuteron represents the simplest nucleus
with a well understood dynamics. The corresponding
EDM can be written as the sum of the three terms

 dD 
 dp � dn � d
NN
D ; (5)

where dn, dp are the neutron and proton EDMs, respec-
tively, and dNND is due to the CP-violating nuclear forces.

For the evaluation of the proton-neutron CP-odd nuclear
term, dNND and the Schiff moment SHg we are using a one-
meson (� or �) exchange model with CP-odd meson-
nucleon interactions [7,17–19].

The baryon EDM dB is given by the value of the corre-
sponding form factor at zero recoil, i.e. dB 
 DB�0�. The
EDM form factor DB�Q2� is defined in the standard way
through the baryon matrix element of the electromagnetic
current:
 

hB�p0�jJ��0�jB�p�i
 �un�p
0�

�
��F

1
B�Q

2�

�
i

2mB
���q�F2

B�Q
2�

�����5q�DB�Q2�

����q2�2mNq���5AB�Q2�

�
un�p�;

(6)

where, in addition, F1
B�Q

2� and F2
B�Q

2� are the well-known
CP-even electromagnetic form factors and AB�Q2� is the
baryon anapole moment form factor.

In what follows we evaluate the EDMs of light baryons,
dn, dp, d�, d�0 and d�0 on the basis of the SU�3� version of
Chiral Perturbation Theory (ChPT) [7,14,15]. We use the
Lagrangian of SU�3� ChPT of order O�p� and restrict
ourselves to the meson-loop diagrams given in Fig. 1. As
it is known and was discussed before in the literature (see
e.g. Ref. [7]), an accurate calculation of the baryon EDMs
should also include the contribution of the unknown low-
energy constants (LECs) which parameterize the short-
distance effects and remove the ultraviolet divergences.
However, we assume that at the level of accuracy necessary
for the analysis of the 6RpSUSY in hadronic EDMs the one-
loop meson-cloud approximation [7,14,15] is adequate.

The CP-conserving vertices of the diagrams in Fig. 1
correspond to the terms of the ChPT Lagrangian which is
given by the sum of leading meson and meson-baryon
pieces:

 

L 

F2
�

4
hu�u

� � ��i � h �B�i 6D�mB�Bi

�
D
2
h �B���5fu�Bgi �

F
2
h �B���5�u�B
i

where D 
 0:80 and F 
 0:46 are the baryon axial cou-
pling constants, mB is the baryon mass in the chiral limit,
the symbols h. . .i, f. . .g and �. . .
 denote the trace over flavor
matrices, anticommutator and commutator, respectively.

We use the standard notation for the basic blocks of the
ChPT Lagrangian [13] where

 U 
 u2 
 exp�iP
���
2
p
=F�� (7)

is the chiral field collecting pseudoscalar fields P in the
exponential parametrization with F� 
 92:4 MeV being
the octet leptonic decay constant, D� denotes the chiral

(a) (b)

(c) (d)

(e) (f)

FIG. 1 (color online). Meson-loop diagrams contributing to the
EDMs of baryons. Solid, dashed and wiggly lines refer to
baryons, pseudoscalar mesons and electromagnetic field, respec-
tively. A CP-violating vertex is denoted by a black filled circle.
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and gauge-invariant derivative, u� 
 iuyD�Uu
y, �� 


uy�uy � u�yu, � 
 2B�s� ip�, s 
M� . . . and M 

diagfmu;md;msg are the charge and the mass matrix of
current quarks, respectively; B is the quark vacuum con-
densate parameter. The explicit form of the octet matrices
of pseudoscalar mesons P and baryons B can be found e.g.
in Refs. [7,14,15]. In our analysis we take into account
�0 � � meson mixing [13] with the corresponding mixing
angle " given by

 tan2" 


���
3
p

2

md �mu

ms � m̂
(8)

where m̂ 
 �mu �md�=2. In the numerical calculations we
use the standard set of current quark masses:mu 
 5 MeV,
md 
 9 MeV and ms 
 175 MeV. For the pion and kaon
masses we use the values of the charged mesons: M� 

M�� 
 139:57 MeV and MK 
 MK� 
 493:677 MeV.
For the baryon masses we use the universal parameter,
the value of the octet baryon mass in the chiral limit, which
for convenience is identified with the proton mass: mB 


mp 
 938:27 MeV. Note that the Lagrangian (7) generates
the CP-even meson-baryon, photon-meson and photon-
baryon coupling.

TheCP-odd meson-baryon Lagrangian has been derived
in Ref. [7] where one can find its complete form. Here we
explicitly only show the CPV pion-nucleon terms:
 

LCPV
MBB 
 �gMBB

�BMB


 �Nf �g�0��NN ~� ~	� �g�1��NN�
0 � �g�2��NN� ~� ~	�3�0	3�gN

� . . . (9)

where �g�0��NN , �g�1��NN and �g�2��NN are the corresponding iso-
scalar, isovector and isotensor coupling constants.

III. EDMS IN 6Rp SUSY: QUARK LEVEL

The effective CP-odd Lagrangian in terms of quark,
gluon and photon fields up to operators of dimension six,
normalized at the hadronic scale 	1 GeV, has the follow-
ing standard form:
 

LCPV 

�


16�2 tr� ~G��G
��� �

i
2

X
i
u;d;s

di �qi�
���5eF��qi

�
i
2

X
i
u;d;s

~di �qi����5gsGa
��Taqi

�
1

6
CWf

abcGa
��G

b�
� G

c
��"

����; (10)

whereGa
�� is the gluon stress tensor, ~G�� 


1
2 
����G

�� is
its dual tensor, and Ta and fabc are the SU�3� generators
and structure constants, respectively. In this equation the
first term represents the SM QCD 
-term, while the last
three terms are the nonrenormalizable effective operators
induced by physics beyond the SM. The second and third

terms are the dimension-five electric and chromoelectric
dipole quark operators, respectively, and the last term is the
dimension-six Weinberg operator. The light quark EDMs
and CEDMs are denoted by di and ~di, respectively. In what
follows we adopt the Peccei-Quinn mechanism, eliminat-
ing the �
-term as an independent source of CPV.

We also consider the 4-quark CPV interactions of the
form [20,21]

 L CPV
4q 


X
i;j

fCPij� �qiqi�� �qji�5qj� � C
T
ij� �qi���qi�

� � �qji�
���5qj�g; (11)

where the sum runs over all the quark flavors i, j 
 u, d, s,
c, b, t. The operators of the above Lagrangians in Eqs. (10)
and (11) can be induced by physics beyond the SM at loop
or tree level after integrating out the heavy degrees of
freedom.

Here we are studying the CPV effects in the hadronic
sector induced by the trilinear interactions of 6RpSUSY
models. The corresponding part of the Rp-violating super-
potential reads:

 W 6Rp 
 �0ijkLiQjD
c
k; (12)

where the summation over the generation indices i, j, k is
understood, L, Q and Dc are the superfields of lepton-
sleptons, quarks-squarks and CP-conjugated quarks-
squarks, respectively, and �0ijk are the complex coupling
constants violating lepton number conservation.
Equation (12) results in the interactions

 L �0 
 ��0ijk�~�iL �dkPLdj � ~djL �dkPL�i � ~dkR �djPR�ci

� ~liL �dkPLuj � ~ujL �dkPLli � ~dkR �ujPRl
c
i � � H:c:

(13)

with PL;R 
 �1� �5�=2.
The interactions of the Lagrangian (13) generate the

terms in the effective CPV Lagrangians (10) and (11) at
certain orders in the �0-couplings. It is straightforward to
derive the corresponding contribution to the 4-quark con-
tact terms (11). It arises from a tree level contribution
induced by sneutrino �~�� exchange given by

 L CPV
4q 
 �CPsd� �ss� � C

P
bd�

�bb�
� �di�5d� (14)

with

 CPsd 

X
i

Im��0i22�
0�
i11�

2m2
~��i�

; CPbd 

X
i

Im��0i33�
0�
i11�

2m2
~��i�

;

(15)

where m~� is the sneutrino mass. Note, that the four-quark
term involving only d-quarks is absent in (14) due to
Im��0i11�

0�
i11� � 0.

The interactions of the Lagrangian (13) generate the
quark EDMs, dq, and CEDMs, ~dq, starting from 2-loops
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[9,10] and the dominant R6 p-contributions are of second
order in the �0-couplings. It was shown in Ref. [10] that the
up-quark EDM and CEDM are suppressed by the light
quark mass and mixing angles, which, therefore, can be
neglected. The quark EDMs are irrelevant for our study
based on the pion-exchange model with the interaction
Lagrangian (9). We also do not consider the Weinberg
term, which does not appear at the order of O��02� unlike
the quark CEDMs and 4-quark contact terms. In our analy-
sis we use for the d-quark CEDMs the 2-loop result of
Ref. [10]. The dominant contribution coming from the
virtual b-quark takes the form:

 

~d k 
 6:2� 10�7 �GeV�1�
X
i

Im��0i33�
0�
i11�F

�
m2
b

m2
~��i�

�
;

(16)

where k 
 1, 2 and d1 � dd, d2 � ds. The scaling factor
F originates from the loop integration and can be written
as
 

F �	� 

F�	�
F�	300�

; F�	� 
 	
�
�2

3
� 2� ln	� �ln	�2

�
;

(17)

where 	300 
 �mb=300 GeV�2 and mb 
 4:5 GeV. For
convenience the scaling factor F is normalized as
F �	300� 
 1 which corresponds to m~� 
 300 GeV.

IV. EDMS IN 6RpSUSY: HADRONIC LEVEL

In order to link the CP-violation at the quark and had-
ronic levels we have to relate the parameters of the
Lagrangian in Eq. (9) to the quark CEDMs, ~dq, and the
CPV 4q-couplings CPij. Towards this end we apply the
standard matching of the quark-level (10) and (11) and
hadronic-level (9) Lagrangians. This allows us to express
the CP-odd meson-baryon couplings in terms of the quark
CEDMs [7] and the CPV 4q-couplings CPij as

 �g �0��NN 

h �uu� �ddi

2F�

�
Au � Ad �

"

3
���
3
p �Au � Ad�

�
; (18)

 

�g�1��NN 

h �uu� �ddi

2F�

�
Au � Ad �

"���
3
p �Au � Ad�

�

�
h �ssi
2F�

4"���
3
p As � F�

M2
�

2md
�CPsdh �ssi � C

P
bdh

�bbi�;

(19)

 

�g�2��NN 

h �uu� �ddi

2F�

"

3
���
3
p �Au � Ad�;

�gK�n�� 

h �ss� �ddi

2F�
�Au � As�; � � �

(20)

If the Peccei-Quinn (PQ) symmetry is imposed the parame-

ters Aq are expressed through the quark CEDMs ~dq as
Aq 
 �0:27~dq GeV. Here h �qqi � hpj �qqjpi are the scalar
quark condensates in the proton [7,22,23]:
 

h �uui 
 3:5; h �ddi 
 2:8;

h�ssi 
 �0:64� 3:9�; h �bbi 
 9� 10�3:
(21)

Note that the values of strange and bottom condensates in
the nucleon are subject to significant uncertainties. In our
analysis we use the estimates from Refs. [22,23]. For the
value of h �ssi we indicate the interval according to
Ref. [22]. For h �bbi we only need an order of magnitude
estimate since it is associated with the subdominant term
not essential for our analysis.

Now we are in the position to calculate the diagrams
which contribute to the baryon EDMs (see Fig. 1). The
calculation of the Feynman diagrams in Fig. 1 is straight-
forward and discussed before e.g. in Refs. [14,15]. The
diagrams in Fig. 1(a) and 1(b) contribute to the chiral
logarithms [24], the constant terms plus higher-order terms
which can be neglected in the chiral expansion:
	�log�mB=MP� � 1�O�MP�
. The diagrams in Fig. 1(c)
and 1(d) are dominated by the constant terms in the chiral
expansion: 	�1�O�MP�
. Finally, the diagrams in
Fig. 1(e) and 1(f) cancel each other. For the neutral baryons
(n, �, �0 and �0) both sets of diagrams in Fig. 1(a)–1(d)
contribute in such a way that the constant terms cancel
each other. This is not the case for the EDMs of charged
baryons where both chiral logarithms and constant terms
give a nontrivial contribution. In the case of the neutron
EDM the leading-order contributions of the diagrams in
Figs. 1(a)–1(d) in terms of CP-even and CP-odd meson-
baryon coupling constants are [7]:
 

d1�a�b�
n 


eg�NN �g�NN
4�2mB

�
log

mB

M�
� 1

�

�
egKN� �gK�n��

4�2mB

�
log

mB

MK
� 1

�
(22)

and

 d1�c�d�
n 


eg�NN �g�NN
4�2mB

�
egKN� �gK�n��

4�2mB
; (23)

where

 g�NN 

mB

F�
�D� F�; gKN� 


mB

F�
�D� F�; (24)

 �g �NN 
 �g�0��NN � �g�2��NN: (25)

The complete result for the neutron EDM is:

 dn 

eg�NN �g�NN

4�2mB
log

mB

M�
�
egKN� �gK�n��

4�2mB
log

mB

MK
: (26)

Substituting the expressions of the baryon-meson cou-
plings Eqs. (18)–(20) in terms of the parameters of the
ChPT Lagrangian and quark CEDMs [7] we have
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 dn 
 �~d�udc
�
ud�D� F� log

mB

M�
� �~d�usc

�
ds�D� F� log

mB

MK

(27)

where ~d�q1q2

 ~dq1

� ~dq2
, c�q1q2


 h �q1q1 � �q2q2i and � 


0:27e=�8�2F2
��. In Eq. (26) we neglected the pion-eta

meson mixing (" 
 0).
In a similar way we calculate the EDMs of other bary-

ons. Here we indicate the final results of these calculations:

 

dp 
 ��~d�udc
�
ud�D� F� log

mB

M�
� �~d�us

�
Fc�us �

D
3
�c�ud � c

�
ds�

�
log

mB

MK

�
�
3

~du�D�5c
�
ud � c

�
us� � 3F�2c�ud � 2c�us � c

�
ds�
 �

�
3

~dd�D�5c
�
ud � 5c�ds � 2c�us� � 3Fc�us


�
�
3

~ds�D�c
�
us � 5c�ds� � 3F�2c�us � 2c�ds � c

�
ud�
; (28)

 d� 
 �d�0 

�
2

~d�us�Dc�us � F�c�ud � c
�
ds�
 log

mB

MK
; (29)

 d�0 
 �~d�udc
�
ds�D� F� log

mB

M�
� �~d�usc

�
ud�D� F� log

mB

MK
: (30)

As it is known [7] the proton and neutron contributions to
the deuteron EDM cancel out in leading order of the chiral
expansion in the SU�2� version of ChPT [25]. However it
does not hold in the SU�3� extension [7]. Therefore, the
contribution of the strangeness sector to the deuteron EDM
becomes important. Note, in the final expressions for the
neutron and proton EDMs, Eqs. (27), we disagree with the
results of Ref. [7] by a factor 2. We discuss this issue in the
Appendix.

The deuteron EDM also receives a contribution from P-
and T-odd proton-neutron forces generated by �- and
�-meson exchange between two nucleons with one
CP-even and one CP-odd vertex. With the corresponding
potential one can calculate the dNND term in Eq. (5) as the
expectation value of er=2, where r is the relative proton-
neutron coordinate. In this way one obtains the following
result [17,18]:

 dNND 
 �
eg�NN �g�1��NN

12�m�

1� �

�1� 2��2
; (31)

where � 

��������������
MNEB
p

=m� and EB 
 2:23 MeV is the deu-
teron binding energy. Expressing the CP-even and CP-odd
pion-nucleon couplings in terms of the CEDMs and pa-
rameters of the chiral Lagrangian we get:

 dNND ’ ��1�D

�
~d�udc

�
ud �

4"���
3
p ~dsh �ssi

�
� ��2�D �C

P
sdh�ssi

� CPbdh �bbi
 (32)

where

 ��1�D 
 0:13�F�D�
emB

24�M�F
2
�
;

��2�D 
 0:48�F�D�
emBM�

24�md
:

(33)

Recently, the Schiff moment SHg [19] has been calculated
within a reliable nuclear structure model which takes full
account of core polarization on the basis of the P- and
T-odd one-pion-exchange potential. Note that in Ref. [7] it
was shown that the contribution of the eta-meson exchange
to the Schiff moment is suppressed by a factor 10�3 with
respect to the pion exchange. The result for the Schiff
moment, taking into account a finite range interaction
and the core polarization effect is
 

SHg 
 �0:055g�NNf0:007 �g�0��NN � �g�1��NN

� 0:16 �g�2��NNg e � fm3: (34)

Therefore, only the isovector channel is sufficient for the
evaluation of the Schiff moment [7,19]. In terms of the
quark EDMs and ChPT parameters the latter is given by
 

SHg ’

�
��1�Hg

�
~d�udc

�
ud �

4"���
3
p ~dsh �ssi

�

� ��2�Hg�C
P
sdh �ssi � C

P
bdh

�bbi

�
e � fm3; (35)

where

 ��1�Hg 
 0:015�F�D�
mB

2F2
�
;

��2�Hg 
 0:055�F�D�
mBM

2
�

2md
:

(36)

V. CONSTRAINTS ON 6Rp SUSY FROM HADRONIC
EDMS

Let us summarize the formulas for the considered had-
ronic EDMs in terms of the trilinear 6Rp-couplings. Using
Eqs. (4), (5), (27)–(30), (32), and (35) we get the following
expressions with numerical coefficients:
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dp 
 �10�20 �F

�
m2
b

m2
~��i�

�
��1:67� 2:21� Im��0i33�

0�
i11�

� �0:23� 0:48� Im��0i33�
0�
i22�
 e � cm; (37)

 

dn 
 10�20 �F

�
m2
b

m2
~��i�

�
�0:82 Im��0i33�

0�
i11�

� ��0:12� 0:23� Im��0i33�
0�
i22�
 e � cm; (38)

 

dHg 
 10�23 �F

�
m2
b

m2
~��i�

�
�11:4 Im��0i33�

0�
i11�

� �0:28� 1:62� Im��0i33�
0�
i22�
 e � cm

� �0:90� 5:49� � 10�23

�
300 GeV

m~��i�

�
2

� Im��0i22�
0�
i11� e � cm; (39)

 

dD 
 10�20 �F

�
m2
b

m2
~��i�

�
��11:79� 12:34� Im��0i33�

0�
i11�

� ��0:41� 0:03� Im��0i33�
0�
i22�
 e � cm

� �0:4� 2:5� � 10�20

�
300 GeV

m~��i�

�
2

� Im��0i22�
0�
i11� e � cm; (40)

 

d� 
 �d�0


 �0:08� 0:25� � 10�20F

�
m2
b

m2
~��i�

�
Im��0i33�

0�
i22� e � cm;

(41)

 d�0 
 10�20F

�
m2
b

m2
~��i�

�
���0:35� 0:69� Im��0i33�

0�
i11�

� 0:28 Im��0i33�
0�
i22�
 e � cm: (42)

In the above equations the summation over i 
 1, 2, 3 is
implied. The uncertainties in the coefficients are due to the
variation of the strange quark sea in the proton. Note that
the contribution from Im��0i22�

0�
i11� appears solely via the 4-

quark CPV interactions (14).
Comparing Eqs. (38) and (39) with the corresponding

experimental bounds Eqs. (1) and (2) we derive constraints
on the imaginary parts of the products of 6Rp-couplings
given in Table I. In the last column of Table I we also show
for comparison the existing limits on j�0i33�

0�
i11j, j�

0
i22�

0�
i11j

and j�0i33�
0�
i22j [26]. It is seen that the presently most

stringent limits on jIm��0ikk�
0�
i11�j, jIm��

0
i33�

0�
i22�j come

from the 199Hg atom EDM (2). The forthcoming experi-
ments on the deuteron EDM (3) are going to improve these
limits by about one to 3 orders of magnitude. Note, that we
obtained about 1-order of magnitude improvement for the
limit jIm��0i33�

0�
i11�j � 1:2� 10�5 previously derived in

Ref. [10] from the neutron EDM constraint (1) on the basis
of the SU�6� quark model. The existing limits on the
absolute values of the corresponding products do not ex-
clude the values of jIm��0ikk�

0�
i11�j, jIm��

0
i33�

0�
i22�j within the

limits derived from EDMs. Using the limits from Table I
we can predict on the basis of Eqs. (41) and (42) for the
EDMs of neutral light hyperons the following upper limits:

 

jd�j 
 jd�0 j � 1:9� 10�25 e � cm;

jd�0 j � 2:4� 10�25 e � cm

which might have some future phenomenological
implications.

TABLE I. Upper limits on the imaginary parts of the products of the trilinear 6Rp-couplings derived from the experimental bounds on
the EDMs of the neutron [1], the neutral 199Hg atom [3] and the deuteron [4]. The existing constraints from other experiments on the
absolute values of the corresponding products of 6Rp-coupling are taken from Ref. [26]. The scaling factor F is defined in Eq. (17) and
takes the values F 
 1, 0.34 and 0.15 for m~� 
 300 GeV, 600 GeV and 1 TeV, respectively.

Couplings dn [1] dHg [3] dD [4] Existing limits [26]

jIm��0i33�
0�
i11�j �F �

m2
b

m2
~��i�
� � 3:6� 10�6 � 1:8� 10�6 � �0:8� 2:5� � 10�8 j�0133�

0
111j � 4:5� 10�5

j�0233�
0
211j � 5:4� 10�3

j�0333�
0
311j � 1:3� 10�3

jIm��0i22�
0�
i11�j � �

300 GeV
m~��i�

�2 � �0:4� 2:3� � 10�5 � �0:4� 7:5� � 10�7 j�0122�
0
111j � 4:5� 10�5

j�0222�
0
211j � 1:3� 10�3

j�0322�
0
311j � 1:3� 10�3

jIm��0i33�
0�
i22�j �F �

m2
b

m2
~��i�
� � �1:3� 2:5� � 10�5 � �1:3� 7:5� � 10�5 � 2:4� 10�7 j�0133�

0
122j � 4:0� 10�5

j�0233�
0
222j � 2:5� 10�3

j�0333�
0
322j � 3:0� 10�3
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VI. SUMMARY

We have studied the contributions of the trilinear
6Rp-couplings to the EDMs of 199Hg atom, deuteron, nu-
cleon and neutral hyperons within the SU�3� ChPT, apply-
ing the meson-exchange model of CPV nuclear forces. We
have analyzed the 6Rp-contributions via the d-quark CEDM
and CPV 4-quark interactions. We have shown that the
latter contribute only to the nuclear EDMs via the CPV
nuclear forces and are irrelevant for the EDMs of the
nucleon and neutral hyperons. We have also found that
these two mechanisms give rise to a dependence of the
hadronic EDMs proportional to different �0-couplings.
Therefore, taking into account both mechanism allows
one to obtain a complimentary information on the imagi-
nary parts of the products of the �0-couplings. The corre-
sponding upper limits from the null experimental results on
measurements of the above mentioned hadronic EDMs are
given in Table I. On the basis of the derived constraints on
the trilinear 6Rp-couplings we have given predictions for the
EDMs of neutral hyperons which might have some phe-
nomenological implications in future.

We have also demonstrated that the present limits from
the 199Hg EDM experiments are by a factor 	6 more
stringent than those from the experiments on the neutron
EDM and that the planned storage ring experiments with
the deuterium ions would be able to significantly improve
these limits.
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APPENDIX: ON NEUTRON AND PROTON EDMS

As we mentioned in Sec. IV our final expressions,
Eqs. (27) and (28), for the neutron and proton EDMs
disagree with the results of Ref. [7] by a factor of 2. In
order to check these results we compare them with the
well-known result of chiral perturbation theory in the two-
flavor scheme, involving only pion loops. In this case all
chiral approaches (see Refs. [14,15,24]) give the same
model-independent expression for the leading-order neu-
tron and proton EDMs in the chiral expansion, the so-
called ‘‘chiral logarithm’’. Neglecting kaon loops in our
formulas Eqs. (27) and (28) we reproduce the result of the
chiral approaches:

 dn 
 �dp 

eg�NN �g�NN

4�2mp
log

mp

M�
: (A1)

On the contrary, the result of Ref. [7] given in their Eq. (50)

 dn 
 �dp



e

4�2F2
�
�D� F��Au � Ad��h �uui � h �ddi� log

mp

M�

(A2)

differs from this formula by a factor 2. Indeed, using the
expressions for g�NN and �g�NN:

 g�NN 
 �D� F�
mp

F�
;

�g�NN 
 �Au � Ad�
h �uui � h �ddi

2F�

(A3)

one can rewrite Eq. (A2) in the form

 dn 
 �dp 

eg�NN �g�NN

2�2mp
log

mp

M�
; (A4)

which disagrees with Eq. (A1) by the factor 2 in the
denominator.
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