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We study the transition of a heavy quark pair from octet to singlet color configurations at next-to-next-
to-leading order in heavy quarkonium production. We show that the infrared singularities in this process
are consistent with nonrelativistic QCD factorization to all orders in the heavy quark relative velocity v.
This factorization requires the gauge-completed matrix elements that we introduced previously to prove
next-to-next-to-leading-order factorization to order v2.
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I. INTRODUCTION

Heavy quarkonium production serves as a testing ground
for perturbative and effective field theory treatments of
QCD, particularly nonrelativistic QCD (NRQCD) [1].
NRQCD, which relies on an expansion in the heavy quark
relative velocity, as well as in �s, has provided compelling
explanations for quarkonium production at collider [2] and
fixed target experiments [3]. At the same time, puzzles
remain, especially from polarization measurements at the
Tevatron [4] and associated production at the B factories
[5]. Heavy quarkonium production in the evolving QCD
medium at the RHIC and CERN LHC [6] may also play a
role in the detection and analysis of new states of strongly
interacting matter. For recent updates on heavy quark-
onium production at zero and finite temperature QCD,
see Refs. [7,8].

The application of NRQCD to heavy quarkonium pro-
duction processes is based on a very specific factorization
property [1], for which a complete proof has not yet been
developed [8]. With this in mind, we tested the factoriza-
tion hypothesis at next-to-next-to-leading order (NNLO) in
Ref. [9]. We found that, as a necessary condition for
factorization, the conventional O�v2� octet NRQCD pro-
duction matrix elements must be redefined by incorporat-
ing Wilson lines that make them manifestly gauge
invariant. We referred to these as gauge-completed matrix
elements.

This result was derived by employing an eikonal ap-
proximation for the coupling of soft radiation to the heavy
quarks. To order v2, this approximation is adequate to treat
the lowest-order electric dipole transitions [10] that trans-
form an octet pair to a singlet, without modifying the spin.
In this paper, we extend our eikonal NNLO analysis, and
show that the factorization of such transitions can be ex-
tended from order v2 to finite v, that is, to all orders in the
relative velocity, in terms of gauge-completed NRQCD
matrix elements. The essential result is that, at all orders
in v, the infrared divergence at NNLO is independent of
the direction of the lightlike Wilson line that renders the
matrix element gauge invariant. We find this result intrigu-

ing, and while this modest extension of our previous result
does not address the behavior of spin-dependent operators,
it should encourage further work on the factorization
theorem.

In the following section we review the role of gauge-
completed matrix elements in NRQCD factorization, and
the requirements that factorization places on these matrix
elements and the infrared poles in dimensional regulariza-
tion that they must match. We also introduce the specific
NNLO eikonal factor that we will calculate to test factori-
zation at this order, and give the result of our calculations.
The details of our NNLO calculation are presented in
Sec. III, where we verify that the necessary conditions
for NRQCD factorization are met to all powers in the
relative velocity, after which we give a brief conclusion.

II. INFRARED POLES AND NRQCD
FACTORIZATION

In NRQCD, the production cross section for heavy
quarkonium H at transverse momentum pT factorizes
into a sum of perturbative functions times universal matrix
elements,

 d�A�B!H�X�pT� �
X
n

d�̂A�B!c �c�n��X�pT�hOH
n i; (1)

where each matrix element hOH
n i represents the probability

for a heavy quark pair in state �n� to produce quarkonium
state H. The states n may, in particular, be color octet or
singlet.

Correspondingly, at large pT , the fragmentation function
for parton i to evolve into a heavy quarkonium is factorized
according to [10]

 DH=i�z;mc;�� �
X
n

di!c �c�n��z;mc;��hOH
n i; (2)

in terms of the same matrix elements, along with perturba-
tive functions di!c �c�n��z;mc;�� that describe the evolution
of an off-shell parton into a quark pair in state �n�, includ-
ing logarithms of �=mc.
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Although we cannot compute the full fragmentation
function in perturbation theory, for NRQCD factorization
to hold we must be able to compute the function
di!c �c�n��z;mc;�� in Eq. (2) systematically. To do this, we
must be able to use regularized perturbation theory to
compute probabilities for the production of a singlet quark
pair from any local source, and match the infrared singu-
larities of these probabilities to the matrix elements in the
sum over n in Eq. (1) and/or Eq. (2).

A. Gauge-completed matrix elements

As advocated in [9], it is natural to define gauge-
invariant octet NRQCD operators OH

n , of the general form

 hOH
n �0�i � h0j�y�0��n;e �0��

�A�y
l �0�eb

��ayHaH��
�A�
l �0�ba 

y�0��0n;a��0�j0i; (3)

in terms of heavy quark ( ) and antiquark (�) operators,
and local combinations of color and spin matrices and/or
covariant derivatives, denoted by �n;e and �0n;a. The opera-
tor ayH creates quarkoniumH, and the operators ��A�l �0� are
Wilson lines, that is, ordered exponentials, constructed
from the gauge field in adjoint matrix representation,
A�A�� , as

 ��A�l �0� � P exp
�
�ig

Z 1
0
d�l 	 A�A��l��

�
; (4)

where P denotes path ordering and l� is the velocity of the
source. In (complex conjugate) amplitudes, (anti)time-
ordering is understood.

For NRQCD factorization to hold, a necessary, and
superficially paradoxical, property of the gauge-completed
matrix elements is that their long-distance behavior must
be independent of the vector l� that we choose to define
them [9]. Such a dependence would be inconsistent with
NRQCD factorization, because the infrared divergences of
OH
n must match those of cross sections, in which there is no

information on l�. In Ref. [9], we have verified the
l-independence of the infrared pole to order v2 in the
relative velocity of the pair, at order NNLO. We will extend
this result below to all powers in v, again at NNLO.

B. Matrix elements and infrared universality

In this paper, we will study the infrared behavior of the
octet, S-wave matrix elements
 

M�8!I��P1; P2; l�

�
X
X

h0j�y�0�T�q�e  �0���A�yl �0�ebj�c�P1� �c�P2��
�I�Xi

� hX�c�P1� �c�P2��
�I�j��A�l �0�ba 

y�0�T�q�a ��0�j0i;

(5)

where I � 1, 8 labels the color of the heavy quark pair,
with momenta P1 and P2. The T�q�i are color generators in

the quark fundamental representation. We will compute the
infrared poles of Eq. (5) to NNLO. At lowest order, of
course, only I � 8 contributes in the final state. At higher
orders, however, the octet state mixes with the singlet state,
through radiation to states X. The phase space of X is cut
off at a UV scale �, which we take to be of the order of the
heavy quark mass.

In Eq. (5), we specify the pair’s momenta in a conven-
tional fashion, in terms of the total pair (P) and relative
momentum (q), and center-of-mass velocity (v) by

 P1 �
P
2
� q; P2 �

P
2
� q; v2 �

~q2

E
2
; (6)

where 2E
 is the total center-of-mass energy of the pair in
the pair’s rest frame. We note that our convention for the
relative velocity here differs from the one in our previous
study, Ref. [9], where we defined the relative velocity as
2 ~q=m, with m the heavy quark mass.

NRQCD requires that, when we expand M of Eq. (5) in
powers of q in perturbation theory, we should find infrared-
finite coefficient functions times infrared-sensitive but uni-
versal NRQCD matrix elements,

 M �8!I��P1; P2; l� �
X
n

Ĉ�8�n �P1; P2; l�hOI
ni; (7)

where Ĉ�8�n is a perturbative coefficient function for
NRQCD operator OI

n with the sum over all operators n
for a given final state in which the heavy quark pair has
color I. To test these ideas, we must study the infrared
behavior of such a matrix element when the color of the
final state is fixed as a singlet, I � 1.

The formation of a heavy quarkonium state, of course,
cannot be realized to any fixed order of perturbation theory.
Nevertheless, the factorization expressed in Eqs. (1), (2),
and (7) is useful to the extent that we can systematically
compute corrections to short-distance functions in each
case. This, in turn, requires that the infrared poles encoun-
tered in the evolution of the heavy quark pair from octet to
singlet in hOH

n i in Eq. (2) match those of cross sections for
the production of a singlet quark pair. As already noted, a
necessary condition for this matching is that the poles in
the matrix element should not depend on the direction of
the vector l� that is introduced in gauge completion of the
matrix elements, Eq. (3), since the choice of l� is a matter
of convention.

Now we are ready to describe the NNLO calculation that
tests these ideas. A full NNLO calculation of M�8!1� in
Eq. (5) would be impractical, but its infrared singularities
are easier to compute. These divergences can be generated
by a factorization that is much simpler than Eq. (7), and
which can be carried out at fixed momenta P1 and P2,

 M �8!1��P1; P2; l� �
X
J

C8J�P1; P2; l�E�J!1��P1; P2; "�:

(8)
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All spin information in M�8!1� is contained in another
short-distance function C8J, which describes a transition of
octet to color configuration J at short distances. Although
C8J may depend on l�, it must be finite for "! 0. All 1="
poles are absorbed into an infrared factor, E�8!1�, whose
pole structure, however, must be independent of l�. The
expansion of the infrared factor, E�J!1��P1; P2; "�, in the
relative velocity, v, of the pair should lead us back to a set
of l-independent operator matrix elements for producing a
color-singlet quark pair (I � 1) in Eq. (7). The essential
result of this paper is that at NNLO the infrared poles of the
function E�8!1��P1; P2; "� are indeed independent of the
vector l, for arbitrary v. This generalizes the result of
Ref. [9] from v2 ‘‘electric dipole’’ transitions to arbitrary
powers of v at NNLO.

Specifically, we will find an explicit single-pole contri-
bution, which can be written as a prefactor determined by
Nc (the number of colors) times a function that depends
only on the relative velocity,

 E �8!1��P1; P2; "� � �
Nc
4
�N2

c � 1�I8!1�v; "�: (9)

The velocity-dependent factor I8!1�v; "� is given by

 I �8!1��v; "� �
�2
s

4"

�
1�

1

2f�j ~vj�
ln
�

1� f�j ~vj�
1� f�j ~vj�

��
; (10)

where v � j ~vj is the relative velocity of the quark and
antiquark in the pair center of mass, and where f�v� �
2v=�1� v2�. As anticipated, I8!1�v; "� is independent of
l. We will compute the color factor given in Eq. (9) below.
To derive the result of Eq. (10), we will first recall the use
of the eikonal approximation to isolate infrared behavior.

C. Soft gluon interactions

The eikonal approximation reproduces all infrared di-
vergences in the evolution of the pair into the final state,
and it must be defined by an infrared regularization. We
will use a continuation to 4� 2" dimensions, with " < 0.

The eikonal approximation for the interactions of the
heavy quarks with soft gluons is generated by ordered
exponentials, this time in fundamental representations
and in the directions of the heavy quark and antiquark
momenta. The perturbation theory rules for the ordered
exponentials are equivalent to the eikonal approximation.
Eikonal quark propagators and gluon-quark vertices are
specified, respectively, by

 

i
�� 	 k� i��

; �igsT
�q�
a ��; (11)

where the plus is for the antiquark and the minus for the
quark vertices, and where �� is a timelike four-velocity.
Because the product of an eikonal propagator and vertex is
always scale invariant, we will use below the momenta
defined in Eq. (6) for the eikonal velocities of the quark
pair.

The long-distance evolution of the pair from octet to
singlet color configurations is given by the infrared factor
E�8!1� of Eq. (8), which can be represented as a matrix
element. This matrix element is given in the notation of
Eq. (5) by
 

E�8!1��P1;P2;"�

�
X
N

h0j��� �q�yP2
�0��IJ�T

�q�
e �JK��

�q�y
P1
�0��KI�

�A�y
l �0�ebjNi

�hNj��A�l �0�ba��
�q�
P1
�0��LM�T

�q�
a �MN��

� �q�
P2
�0��NLj0i:

(12)

Here we have exhibited all color indices: those in the
adjoint representation by a; b . . . , and those in the funda-
mental representation by I; J . . . , to indicate the trace
structure, which imposes a color-singlet configuration on
the quark pair in the final state. In Eq. (12) and below,
overall time-ordering of the field operators is understood in
the amplitude, and anti-time-ordering in its complex
conjugate.

The operators ��q� and �� �q� are the ordered exponentials
that represent the quark and antiquark. The quark (anti-
quark) ordered exponential has the same (opposite) order-
ing compared to time-ordering. To be specific, we
represent normal (reverse) matrix ordering by P ( �P ), and
define

 ��q�P1
�0� � P exp

�
�ig

Z 1
0
d�P1 	 A

�q��P1��
�
;

�� �q�P2
�0� � �P exp

�
ig
Z 1

0
d�P2 	 A

�q��P2��
�
:

(13)

For classical fields, �� �q�n �0� is the Hermitian conjugate of
��q�n �0�. The matrix A�q�	 �

P
aT
�q�
a A	;a is the gauge field

operator in the quark fundamental representation.
The matrix element in Eq. (12) is equal to unity when

q � 0. In Ref. [9] we expanded Eq. (12) to second order in
q, and found an expression in terms of field strength
operators,
 

E�8!1�
2 �p�q;p�q;"��

X
N

Z 1
0
d�0�0h0j��A�yl �0�bd0

���A�p ��0�
y
d0a0 �p

�q	F	�;a0 ��
0p��jNi

�
Z 1

0
d��hNj��A�l �0�bd

��p�q	F	�;a��p���
�A�
p ���adj0i:

(14)

In this expression, the momenta p� and q� are taken to be
dimensionless, scaled by the heavy quark mass m. We
notice that in the heavy quark rest frame, p � �1=2m��
�P1 � P2�rest � 
�0, the relevant operator is precisely the
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chromo-electric field F�0, and the matrix elements de-
scribe an electric dipole transition.

The basic result of Ref. [9] was to identify an infrared
pole in E�8!1�

2 , associated with the exchange of gluons
between the heavy quark pair and the eikonal source �l.
The presence of such a pole showed first that the infrared
behavior of the fragmentation function is not summarized
by ‘‘topologically factorized’’ diagrams alone in an arbi-
trary gauge [10]. The specific form, however, depends on
the relative velocity of the pair only. In terms of the center-
of-mass velocity of the heavy quark and antiquark, defined
as in Eq. (6) above, the result is1

 E �8!1�
2 �v� �

Nc
4
�N2

c � 1��2
s

1

3"
v2: (15)

The prefactor here is the same color factor given in Eq. (9)
above. The crucial point is that the pole due to topologi-
cally nonfactored diagrams is independent of the direction
of the lightlike vector l�. In Ref. [9] we showed that this
implies that the gauge completion of the NRQCD matrix
element is adequate to match this infrared structure in
production processes with arbitrary numbers of recoiling
jets. This verified the NRQCD factorization of Eq. (2) at
NNLO in soft gluon corrections for octet operators. We
will show here that this result generalizes to all orders in v
for the full infrared factor E�8!1�.

In our calculation below, we will keep q, or equivalently
the relative velocity v, finite and nonzero, and evaluate
Eq. (12) directly to NNLO (�2

s), without an expansion in
velocity. Restricting ourselves to this order in �s, an ex-
pansion in v will be describable at any order in terms of
derivatives of the electric field strength. In this sense our
calculation identifies the infrared pole in the sum of elec-
tric multipole transitions generated by NNLO. Because of
the eikonal approximation, no information on spin depen-
dence is included in the calculation, and the consequences
for matching are similar to the v2 case. We will once again
find an infrared pole to any order in v2, and we will once
again find that the pole is independent of the direction of
the vector l�. This surprising result shows that matching to
gauge-completed NRQCD matrix elements is not limited
to lowest order in v2 but, to this order in �s and for this
class of electric dipole transitions, is true to all orders in the
relative velocity v.

III. FINITE-v DIAGRAMS

A. Ladder and three-gluon diagrams

Our goal is to calculate the noncanceling infrared pole
term in Eq. (12), the eikonal infrared factor at finite relative
velocity v. As in Ref. [9], we need only consider diagrams

that are not topologically factorized. As indicated above,
we take the quark momentum as P1, the antiquark as P2,
and the momentum of the gauge line as l, with l2 � 0. The
gauge line may be thought of as part of a fragmentation
function, or as representing an approximation to a recoiling
jet in a hard-scattering cross section.

The relevant diagrams are illustrated in Fig. 1, with
quark-antiquark eikonal lines on top, and the gluon eikonal
below. In each case, the vertical line indicates the color-
singlet heavy quark pair, and the sum over other possible
final states is understood. The left- and right-most vertices
in each diagram couple the lightlike color octet eikonal on
the bottom of the diagram with the color octet projection of
the eikonals on the top that represent the heavy quark pair,
in the fundamental representations.

The quark lines radiate soft gluons to transform them-
selves from color octet to color singlet, as in the classic
description of the color octet mechanism. At NNLO, how-
ever, these soft gluons can scatter from the eikonal gluon in
the l direction. To this order, the diagrams either contain
the three-gluon coupling as in Fig. 1(a), or are QED-like as
in Fig. 1(b). Of these, only the former gives rise to non-
canceling infrared poles, generalizing the result of
Ref. [9].2 The color factor in Eq. (10) is thus found entirely
from Fig. 1(a). This factor is the product of two simple
traces in the fundamental representation, and the color
tensors from two three-gluon vertices,

 Fcolor � Tr�T�q�e T�q�g �Tr�T�q�a T�q�h �feaifihg;

� �
Nc
4
�N2

c � 1�: (16)

2P P2

l

P P

l

1 1

1

1

k

2

k2

kk

(a)

P2 2P

k k2

l

P P

l

1 1

1

P22P

1 2k

PP

l l

1 1

k

2PP2

2

k2
k

l

P P

k

l

1 1

1

(b)

FIG. 1. Examples of NNLO diagrams for quarkonium produc-
tion. (a) Three-gluon diagram, (b) QED-like diagrams. The
projection of the quark pair onto a color singlet in the final state
is understood.

1The coefficient of v2 here is 4 times larger than in Ref. [9],
where the velocity was defined by 2 ~q=m, as noted in connection
with Eq. (6) above.

2It is worth noting that the color factor of the left-most
diagram in Fig. 1(b) vanishes in the matrix element of Eq. (12).
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The two traces reflect the projection of the quark-antiquark
eikonal pair onto the singlet in the final state that is built
into the matrix element of Eq. (12). In the traces, one
generator is associated with the operator in the correspond-
ing matrix element and the other with the corresponding
quark-gluon vertex shown in Fig. 1(a). We now turn to the
calculation of the velocity dependence of E�8!1�.

B. Velocity dependence of E�8!1�

We will give a detailed discussion of the cut diagrams
illustrated in Fig. 2(a). In these four cut diagrams, a soft
gluon is emitted by one member of the (eikonal) heavy
quark pair in the amplitude and is absorbed by one in the
complex conjugate amplitude. This soft gluon rescatters
from the spectator eikonal gluon of momentum l in either
the amplitude or the complex conjugate. For each of these
diagrams the leading order v2 expansion of this contribu-
tion to E2, Eq. (14), was calculated in detail in Ref. [9]
(where it was referred to as diagram IIIA). Here we extend
this calculation to all orders in v by directly calculating the
full velocity dependence of E�8!1�.

All of the diagrams in Fig. 2 have the same color factor
[the same as in Eq. (16) above] when the quark pair is
projected onto a color singlet in the final state. We will
suppress the common color factor in our calculation below,
and denote the sum of the relevant NNLO diagrams as
I �8!1� � E�8!1�=Fcolor. We label the diagrams of Fig. 2,
whose sum gives I �8!1�, by

 I �8!1��P; q; l� � 2 Re
� X
i;j�1;2

IPiPj�P; q; l�
�
; (17)

where the first superscript, Pi, on the right identifies the
gluon coupling in the amplitude to the quark, P1, or
antiquark, P2, and the second, Pj, identifies the gluon

coupling in the complex conjugate. As in Ref. [9], we fix
the momentum of the eikonal l in the minus light cone
direction,

 l� � 
��: (18)

The momenta P1 and P2 remain arbitrary. We have used
the scale invariance of the eikonal diagrams to set l� to
unity.

1. The P1P1 gluon rescattering diagram

We begin with the diagram IP1P1 , Fig. 2(a), which
describes the interference between the order g3

s rescatter-
ing of a gluon that is emitted by the heavy quark (P1)
eikonal line and the lowest-order process in which it is
emitted by the same line.

Written out with the momentum structure of the eikonal
vertices in Eq. (11) shown explicitly, this diagram is given
by
 

IP1P1�P; q; l� �
Z dDk1

�2��D
dDk2

�2��D
2�
�k2

2�

�
�i

��k2 � k1�
2 � i��

�i

�k2
1 � i��

� ��g�"V	;�;��k1; k2 � k1;�k2��

�
i��ig�"�P	1
�P1 	 k1 � i��

�i�ig�"�P�1
�P1 	 k2 � i��

�
�i��g�"l��

�l 	 �k2 � k1� � i��
; (19)

where the three-gluon vertex (with all momenta flowing in)
is
 

V�1;�2;�3
�q1;q2;q3�� �q1�q2��3

g�1�2
��q2�q3��1

g�2�3

��q3�q1��2
g�3�1

: (20)

2PP2

1

1

1

k

2

k2

kk

ν

µ
l

λP P

l

1

2PP2

1

1

1

k

2

k2

kk
l

P P

l

1

2PP2

1

1

1

k

2

k2

kk
l

P P

l

1

P2P2

1

1

1

k

2

k2

kk
l

P P

l

1

(a)

2P2P

1

1k

1

k

2

2

kk

ν

µ
l

λP P

l

1

(b)

FIG. 2. (a) The four relevant cut diagrams with three-gluon vertices. The P1, P2, and l lines are eikonal. The full contribution of each
diagram to I �8!1� is found by summing over other cuts that include the singlet pair. (b) An example of a two-gluon final state that
cancels the �k2 � k1�

2 � 0 pole, as discussed in the text. As in Fig. 1, the projection of the quark pair onto a color singlet in the final
state is understood.
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As in Eq. (6), P and q are the total and relative momenta of
the pair. As in I �8!1�, Eq. (12), P1 and P2 are the momenta
of the heavy quark and antiquark, respectively, and l is the
momentum of the lightlike eikonal. As indicated in the
diagram, we take k1 as the momentum of the soft gluon
emitted in the amplitude, to the left of the cut in Fig. 2, and

k2 as the momentum of the soft gluon flowing to the right in
the figure.3

Following the procedure of Ref. [9], we find it useful to
integrate first the minus components of k1 and k2.
Performing the k�2 integration by using the mass-shell delta
function, and evaluating the numerator factors, we find

 

IP1P1�P; q; l� � i
g4�4"

�2��2D�1

Z 1
�1

dD�2kT1
Z 1
�1

dk�1
Z 1
�1

dk�1
Z
kT2<�

dD�2kT2
Z �

0

dk�2
2k�2

��
P�1

�
kT2

2

2k�2
� k�1

�
� P�1 �k

�
2 � k

�
1 �

� PT1 	 �k
T
2 � k

T
1 �

�
�
P2

1

P�1
�k�2 � k

�
1 �

�
1

�k�2 � k
�
1 � i��

1

�
P�1 k

T2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2 � i��

�
1

�2�k�1 � k
�
2 ��k

�
1 �

kT2
2

2k�2
� � �kT1 � k

T
2 �

2 � i��

1

�2k�1 k
�
1 � k

T2
1 � i��

1

�k�1 �
P�1 k

�
1

P�1
�

PT1 	k
T
1

P�1
� i��

: (21)

Below we will generally suppress limits on the loop (k1)
and real-gluon momentum (k2) integrals, except where
they are necessary for the argument. The k1 integrals are
unbounded, while the k2 integrals are understood to be cut
off at the order of the quark mass. These upper limits are
set by the phase space cutoff, denoted � here, and dis-
cussed above in connection with the basic matrix element
of Eq. (5).

The next step is the loop integral k�1 in Eq. (21), which
we perform by contour integration. The integrand of (21)
has three poles in k�1 ,

 

k�
1�k2

1�
�
kT2

1 � i�
2k�1

;

k�
1��k1�k2�

2�
�
kT2

2

2k�2
�
�kT1 � k

T
2 �

2 � i�
2�k�1 � k

�
2 �

;

k�1�P1	k1�
�
PT1 	 k

T
1

P�1
�
P�1 k

�
1

P�1
� i�;

(22)

labeled according to the denominator that vanishes.

The pattern of poles encountered here is similar to those
for the order-v2 calculation of Ref. [9], and the role of each
term is similar. When we close the k�1 contour in the lower
half-plane, we pick up the k�

1�k2
1�

pole when k�1 > 0, the

k�
1��k1�k2�

2�
pole when k�1 > k�2 , and the k�1�p1	k1�

pole for all

values of k�1 . The contribution from the k�
1�k2

1�
pole van-

ishes, because the resulting integral is antisymmetric under
the exchange of the remaining components of k1 and k2.
The k�

1��k1�k2�
2�

contribution, on the other hand, cancels

against the corresponding cut in which the gluon with
momentum k1 � k2 appears in the final state, as in
Fig. 2(b).

This leaves us with the third, k�1�P1	k1�
, pole only, whose

calculation we describe in detail below for IP1P1�P; q; l�
and IP1P2�P; q; l�. We note that, in the sum of IP1P2�P; q; l�
and IP2P1�P; q; l�, the symmetry argument for the cancel-
lation of the k�

1�k2
1�

pole continues to apply.

In summary, to derive the infrared contribution to
IP1P1�P; q; l� from Fig. 2, we close the k�1 integration in
Eq. (21) in the lower half-plane at the pole k�1�P1	k1�

, and find

 

IP1P1�P; q; l� � ��2�i��i�
g4�4"

�2��2D�1

Z
dD�2kT1

Z
dk�1

Z
dD�2kT2

Z dk�2
2k�2

�
P�1

�
kT2

2

2k�2
�

�
PT1 	 k

T
1

P�1
�
P�1 k

�
1

P�1

��

� P�1 �k
�
2 � k

�
1 � � P

T
1 	 �k

T
2 � k

T
1 � �

P2
1

P�1
�k�2 � k

�
1 �

�
�1

�k�1 � k
�
2 � i��

1

�
P�1 k

T2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2 � i��

�
1

�2�k�1 � k
�
2 ���

PT1 	k
T
1

P�1
�

P�1 k
�
1

P�1
� �

kT2
2

2k�2
� � �kT1 � k

T
2 �

2 � i��

1

�2k�1 �
PT1 	k

T
1

P�1
�

P�1 k
�
1

P�1
� � kT2

1 � i��
: (23)

In this expression we have two (D-2 dimensional) transverse and two plus integrals remaining. We begin by applying a
Feynman parametrization to the final two denominators,

3In the discussion that follows, we will compute diagrams with loops in the amplitude, in contrast to the complex conjugate
amplitude as in Ref. [9]. Since our result is real, the analysis is otherwise completely equivalent.
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IP1P1�P; q; l� � �
g4�4"

�2��2D�2

Z 1

0
dx
Z
dD�2kT2

Z
dk�1

Z dk�2
2k�2

Z
dD�2k0T1

�
P�1

�
kT2

2

2k�2
�

�
PT1 	 �k

0T
1 � K

T�P1��

P�1
�
P�1 k

�
1

P�1

��

� P�1 �k
�
2 � k

�
1 � � P

T
1 	 �k

T
2 � k

0T
1 � K

T�P1�� �
P2

1

P�1
�k�2 � k

�
1 �

�

�
1

�k�1 � k
�
2 � i��

1

�
P�1 k

T2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2 � i��

1

�k0T2
1 � L�P1� � i��

2 ; (24)

where to complete the square we have shifted to k0T1 �
kT1 � K

T�P1�, with

 KT�P1� � x
�
kT2 �

�k�1 � k
�
2 �

P�1
PT1

�
� �1� x�

k�1
P�1

PT1 :

(25)

In addition, in the final denominator of (24) we introduce
the function

 L�P1� � x
�
k�1
k�2
� x

���
kT2 �

k�2
P�1

PT1

�
2
�
k�2 k

�
1

xP�2
1

P2
1

�
: (26)

Here and below, to simplify the notation we suppress the k1

and k2 dependence in L�P1� and KT�P1�.
We now perform the k0T1 integration of Eq. (24) in D �

4� 2" dimensions, obtaining

 

IP1P1�P; q; l� � ��1�"��1� "�
g4�4"

�2��2D�2

Z 1

0
dx
Z
dk�1

Z
dD�2kT2

Z dk�2
2k�2

��
P�1

kT2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2

�

�
P2

1

P�1
�k�2 � k

�
1 �

�
1

�k�1 � k
�
2 � i��

1

�
P�1 k

T2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2 � i��

1

�L�P1� � i��1�"
: (27)

Simplifying this expression algebraically, we put it into a form that will facilitate the combination of diagrams below,
 

IP1P1�P; q; l� � ��1�"��1� "�
g4�4"

�2��2D�2

Z 1

0
dx
Z
dD�2kT2

Z dk�2
2k�2

Z
dk�1

1

�k�1 � k
�
2 � i��

1

�L�P1� � i��
1�"

�

�
1�

P2
1

P�1
�k�2 � k

�
1 �

P�1 k
T2
2

2k�2
� P�1 k

�
2 � P

T
1 	 k

T
2 � i�

�
: (28)

Of particular interest in this expression is the first term, 1, in square brackets. This term has up to four poles in dimensional
regularization, corresponding to momentum configurations in which both momenta k1 and k2 vanish and are collinear to
the lightlike eikonal line l in Fig. 2. We will see that, as in Ref. [9], these singularities cancel, leaving only a single real 1="
(and imaginary 1="2) pole in dimensional regularization.

2. The P1P2 diagram and collinear cancellation

Before continuing with the integrals, we turn our attention to the third diagram in Fig. 2(a), which describes interference
between gluon (k1) rescatterring after emission from the heavy quark (P1) line in the amplitude with gluon (k2) emission
from the antiquark (P2) line in the complex conjugate amplitude. We denote this diagram by IP1P2�P; q; l�.

The momentum-space integral for the P1P2 rescattering diagram, IP1P2�P; q; l�, is

 I P1P2�P; q; l� � �ig4�4"
Z dDk2

�2��D
dDk1

�2��D
2�
�k2

2�P
	
1l
�P�2V	;�;��k1; k2 � k1;�k2�

�
1

�P1 	 k1 � i���P2 	 k2 � i���l 	 �k2 � k1� � i����k1 � k2�
2 � i���k2

1 � i��
: (29)

The integral IP1P2 has an overall ��1� relative to IP1P1�P; q; l�, associated with the connection of one gluon to the P2

eikonal line, which is in the antiquark representation.
Performing on IP1P2�P; q; l� the same steps as above for the k�i and kT1 integrals in IP1P1�P; q; l�, we can put this integral

into a form analogous to Eq. (28), although slightly more complex,
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IP1P2�P; q; l� � �1�"��1� "�
g4�4"

�2��2D�2

Z 1

0
dx
Z
dD�2kT2

Z dk�2
2k�2

Z
dk�1

1

�k�1 � k
�
2 � i��

1

�L�P1� � i��1�"

�

�
1�

P1	P2

P�1
�k�1 � k

�
2 � �

2
P�1
�k�1 � k

�
2 ��P

�
2 P
�
1 � P

�
1 P
�
2 � � 2P�2 �

PT2
P�2
�

PT1
P�1
� 	 �KT�P1� � kT2 �

�
P�2 k

T2
2

2k�2
� P�2 k

�
2 � P

T
2 	 k

T
2 � i��

�
: (30)

Combining the expressions for IP1P1�P; q; l� and IP1P2�P; q; l�, Eqs. (28) and (30), we see that, as anticipated above, the
collinear-singular terms (the 1’s) in the square brackets cancel.

Our goal now is to evaluate the infrared poles from the expressions in Eqs. (28) and (30). For this purpose we need to
perform the k�1 integration, which ranges from�1 to�1. Noting that the numerators are at most linear in k�1 , we rewrite
factors of k�1 in the numerator as �k�1 � k

�
2 � � k

�
2 . The �k�1 � k

�
2 � term then cancels the corresponding denominator in

Eq. (30). We next reorganize the contributions of the P1P1 and P1P2 diagrams to I �8!1� as

 I P1P2 � IP1P1 � �J P1P2 � J P1P1� � �KP1P2 �KP1P1�; (31)

where, for example, J P1P2 is obtained from IP1P2 by canceling the �k�1 � k
�
2 � factors in the numerator and denominator,

and KP1P2 represents the remaining terms in IP1P2 . We now turn to the identification of infrared poles in these expressions,
using slightly different procedures in the two cases.

C. The IR pole from the J terms

We begin with the terms that lack the pole in k�1 � k
�
2 . From Eq. (30) we find

 

J P1P2�P; q; l� � J P1P1�P; q; l� � ��1�"��1� "�
g4�4"

�2��2D�2

Z 1

0
dx
Z
dk�2

Z
dD�2kT2

Z 1
�1

dk�1

�

P1	P2

P�1 P
�
2
� 2

P�1 P
�
2
�P�2 P

�
1 � P

�
1 P
�
2 � � 2�

PT2
P�2
�

PT1
P�1
� 	

PT1
P�1

�L�P1� � i��1�"�kT2
2 �

P�2
P�2

2k�2
2 � 2k�2

PT2
P�2
	 kT2 � i��

� �P2 ! P1�: (32)

In these terms, the remaining (quadratic) k�1 dependence is in the L�P1� denominator. The integral is elementary, and we
find
 

J P1P2�P; q; l� � J P1P1�P; q; l� � �21�2"��1� i���1=2�"B�1=2; 1=2� "��1�"��1� "�
g4�4"

�2��2D�2

�
P2

1

P�2
1

�
" Z 1

0

dx

x1�2"

�
Z �

0

dk�2
k�1�2"

2

Z
kT2<�

dD�2kT2
k�2

2

P1	P2

P�1 P
�
2
� 2

P�1 P
�
2
�P�2 P

�
1 � P

�
1 P
�
2 � � 2�

PT2
P�2
�

PT1
P�1
� 	

PT1
P�1

��
kT2
k�2
�

PT1
P�1
�2 �

P2
1

P�2
1
�1�2"��

kT2
k�2
�

PT2
P�2
�2 �

P2
2

P�2
2
�

� �P2 ! P1�: (33)

The leading behavior of this expression is a purely imagi-
nary double pole in ", from the lower limits of the x and k�2
integrals. The remaining transverse integration is both
infrared and ultraviolet finite, and real, for "! 0, so that
an expansion in " of this integral can give rise to only
imaginary single poles, which vanish in the cross section.
The overall factor of ��1� i���", however, can convert an
imaginary double pole to a real, single infrared pole. To
isolate the residue of this pole, we need only evaluate the
kT2 transverse integral at " � 0. An important point is that,
because we are interested only in noncanceling infrared
poles, we may extend the upper limit of the kT2 integral to
infinity. We can do this because, at finite kT2 >�, only the
k1 line can produce an infrared pole, at one loop. But, as

discussed in [9], for example, all one-loop infrared diver-
gences factorize in the sense of NRQCD.

A simple change of variables, yT � kT2=k
�
2 , simplifies

the transverse integration, evaluated at " � 0 as just de-
scribed,

 

Z d2kT2
�k�2 �

2

1

��
kT2
k�2
�

PT1
P�1
�2 �

P2
1

P�2
1
���

kT2
k�2
�

PT2
P�2
�2 �

P2
2

P�2
2
�

�

�
P�2

1

P2
1

�Z
d2yT

1

�y2
T � 1���yT � aT�2 �

P2
2

P�2
2

P�2
1

P2
1
�
;

(34)

where we define
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 aT �
�
PT1
P�1
�
PT2
P�2

� ���������
P�2

1

P2
1

s
: (35)

Next, introducing another Feynman parametrization, w, for
yT and integrating over yT we get

 

Z
d2yT

1

�y2
T � 1���yT � aT�

2 �
P2

2

P�2
2

P�2
1

P2
1
�

� �
Z 1

0
dw

1

�1� w� w2a2
T � w�a

2
T �

P2
2

P�2
2

P�2
1

P2
1
��
: (36)

After integrating over w we then find, for the original kT2
integral,

 

Z d2kT2
�k�2 �

2

1

��
kT2
k�2
�

PT1
P�1
�2 �

P2
1

P�2
1
���

kT2
k�2
�

PT2
P�2
�2 �

P2
2

P�2
2
�

�
�
c

ln
�
a� c
a� c

�
; (37)

where

 a �
2P1 	 P2

P�1 P
�
2

c � a

�����������������������������
1�

P2
1P

2
2

�P1 	 P2�
2

s
: (38)

We are now ready to isolate the real single pole, as in-
dicated above. The poles of the remaining x and k�2 inte-
grations in Eq. (33) are found by using
1=f1�a � �
�f�=a, and for the "-dependent phase, the
expansion

 ��1� i��" � e�i�" � 1� i�"�O�"2� � . . . (39)

gives the corresponding " term. We then find from

Eq. (33), adding the two remaining diagrams (which are
determined by simple substitution),

 2 Re�J P1P2 � J P2P1 � J P1P1 � J P2P2�

�
�2
s

4"

��
1�

P�1 P
�
2

P1 	 P2
�P2

�
1

2h
ln
�

1� h
1� h

�
� 1

�
; (40)

where �P2 and h depend on the momenta of the pair as

 �P2 �

�
P1

P�1
�
P2

P�2

�
2
; h �

�����������������������������
1�

P2
1P

2
2

�P1 	 P2�
2

s
: (41)

It is easy to see that h is proportional to the velocity of the
heavy quarks in the center-of-mass system. We will give an
explicit expression for its full v dependence below, after
identifying the poles of the K terms. Taken in isolation,
however, the sum of the J terms is manifestly not inde-
pendent of the choice of l�, because of the explicit depen-
dence on the factors P�i � Pi 	 l in (40).4 Independence
from the direction of the lightlike Wilson line used to
define the underlying matrix element will, however,
emerge below, once we find the infrared poles of the K
terms.

D. The IR pole from the K terms

Now we evaluate the remaining terms in Eq. (30), for
which the factor k�1 � k

�
2 remains in the denominator, such

as KP1P2 � IP1P2 � J P1P2 . In these cases, the virtual k�1
dependence in the denominators is no longer quadratic, and
the integral requires a slightly more elaborate approach.
Specifically, the contributions from the P1P2 and P1P1

diagrams are given by

 

KP1P2�P; q; l� �KP1P1�P; q; l� � ��1�"��1� "�
g4�4"

�2��2D�2

Z 1

0
dx
Z dk�2

2k�2

Z
dk�1

Z
dD�2kT2

1

�k�1 � k
�
2 � i��

�
1

�L�P1� � i��1�"

�P1	P2

P�1
�2k�2 � � 2P�2 �

PT2
P�2
�

PT1
P�1
� 	 �GT�P1� � kT2 �

�
P�2 k

T2
2

2k�2
� P�2 k

�
2 � P

T
2 	 k

T
2 � i��

�
� �P2 ! P1�; (42)

where

 GT�P1� � xkT2 � �1� x�k
�
2

PT1
P�1

: (43)

At this stage we employ another Feynman parametrization (y) to organize and perform the kT2 integration. As for the J
terms, we may extend the upper limit of the transverse integral to infinity, with the result
 

KP1P2 �KP1P1 �
�1

32�4 g
4�4��2�2"��1� 2"�

Z 1

0
dx
Z 1

0
dyy"

Z
dk�1

Z dk�2
k�2

k�2
�k�1 � k

�
2 � i��

�

�
k�2

�
P1 	 P2

P�1 P
�
2

� �P2�1� x��1� y�
��

1

�M� i��1�"�N � i��1�2" � �P2 ! P1�; (44)

where we define

4It is interesting to observe that the overall result in (40) is invariant under independent rescalings of P1, P2, and l, as expected for the
eikonal approximation.
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 M�x
�
k�1
k�2
�x

�
;

N�k�2
2

�
�y�1�y��P2�

y
x

�
k�1 P

2
1

k�2 P
�2
1

��x�x=y�
P2

2

P�2
2

��
;

(45)

with �P2 defined in Eq. (41). In Eqs. (42) and (44), we
have exhibited KP1P2 , from the third diagram in Fig. 2(a).
The other term may be found as indicated, simply by
replacing P2 everywhere by P1, which leads to a number
of simplifications. For example, �P2 is replaced by zero in
these terms.

Equation (44) can be reorganized slightly to yield
 

KP1P2 �KP1P1 �
�1

32�4 g
4�4��2�2"��1� 2��

Z 1

0
dx
Z 1

0
dyy"

Z �

0

dk�2
k�1�4"

2

Z 1
�1

dz
z� 1� i�

�
1

�x�z� x� � i��1�"�y=x�1�2"

1

��x�1� y��P2 P
�2
1

P2
1
� x�1=y� 1�

P�2
1

P�2
2

P2
2

P2
1
� z� i��1�2"

�
P�2

1

P2
1

�
1�2"

�

��
P1 	 P2

P�1 P
�
2

��P2�1� x��1� y�
��
� �P2 ! P1�; (46)

where we define z � k�1 =k
�
2 . The variable z appears in three denominators, one of which is a simple pole at z � 1 in the

upper half-plane. To perform the z integral in Eq. (46), we combine the remaining two denominators by introducing
another Feynman parameter, y0,

 

1

�x�z� x� � i��1�"
1

��x�1� y��P2 P
�2
1

P2
1
� x�1=y� 1�

P�2
1

P�2
2

P2
2

P2
1
� z� i��1�2"

�
1

x1�"

��2� 3"�
��1� "���1� 2"�

Z 1

0
dy0

y0"�1� y0�2"��1� i���1�2"

��2y0 � 1�z� x�1� y0���1� y��P2 P
�2
1

P2
1
� 1�y

y
P�2

1

P�2
2

P2
2

P2
1
� � xy0 � i��2�3"

: (47)

Notice that, before the combination of these two z-dependent denominators with fractional powers, we factor �1� i�
from the second of the two, so that the i� on the right-hand side of (47) has a definite sign:�i�. It is perhaps worth noting
further how we determine this prescription. As z varies from �1 to �1, the second (and first) denominator in (47) can
vanish, but for any variable denominator, denoted W, we have

 W � i� � W if W > 0; W � i� � ��1� i����W � i�� if W < 0: (48)

The factor ��1� i��" � 1� i�"� . . . in this expression will be particularly important in the calculation below, because
as above it will convert an imaginary double pole in " to a real single pole.

Although Eq. (47) is a bit complicated overall, the combined denominator on the right-hand side gives a branch cut in the
z plane that is in the lower (upper) half-plane for 0< y0 < 1=2 (1=2< y0 < 1). Inserting the expression in Eq. (47) back
into Eq. (44), we then easily perform the z integral. For y0 > 1=2 we can complete the z contour in the lower half-plane
without enclosing any singularities, and the z integral vanishes. For y0 < 1=2 we close in the upper half-plane and pick up
the simple pole at z � 1.

The result of this procedure is

 

KP1P2 �KP1P1 �
�i��1� i���1�"

16�3

��2� 3"�
��1� "�

g4�4��2�2"
Z dk�2
k�1�4"

2

Z 1

0
dxx"

Z 1

0
dyy1�2"

Z 1=2

0
dy0y0"�1� y0�2"

�

�
P�2

1

P2
1

�
1�2"

�
P1 	 P2

P�1 P
�
2

� �P2�1� x��1� y�
�

�
1

��1� 2y0�y� x�1� y��1� y0�f�P1; P2� � xyy0 � i��2�3" � �P2 ! P1�; (49)

where

 f�P1; P2� �
P�2

1

P�2
2

P2
2

P2
1

� y�P2 P
�2
1

P2
1

: (50)

In the above equation, ��1� i���1�" is obtained by multi-
plying the overall factor ��1� i���1�2", from Eq. (47),
together with ��1� i���2�3", from the denominator on
the right-hand side of (49), after the z integration. Although
the result has the same number of integrations, the infrared
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behavior of the y0 integral is straightforward to analyze,
which will simplify our determination of the infrared poles.

We can check the infrared behavior of the y0 integration
by expanding in ",

 y0"�1� y0�2" � 1� "�lny0 � 2 ln�1� y0�� � . . . : (51)

The term in square brackets is finite at the end point y0 �

1=2. Because the denominator is finite at y0 � 0, the be-
havior at y0 � 0 is then no worse than logarithmic,R1=2

0 dy0 lny0, and the y0 integral is finite and real for " �
0. Thus, to identify the real infrared pole, we can replace
y0"�1� y0�2" by unity and integrate over y0 in (49) to obtain
an expression that includes the entire real single pole,

 

KP1P2 �KP1P1 � i��1� i���1�" ��1� 3"�
��1� "�

1

16�3 g
4�4��2�2"

Z dk�2
k�1�4"

2

Z 1

0
dxx"

�
Z 1

0
dyy1�2" P

�2
1

P2
1

�
P1 	 P2

P�1 P
�
2

� �P2�1� x��1� y�
�

1

��2y� x�1� y�f�P1; P2� � xy�

�

�
1

�12 x�1� y�f�P1; P2� �
1
2 xy�

1�3" �
1

�y� x�1� y�f�P1; P2��
1�3"

�
� �P2 ! P1�: (52)

Here we note that terms of order " from the y integration
can also produce, at worst, imaginary single poles in ".

The steps that isolate the real infrared pole for the K’s
follow the procedure of the previous subsection. The x and
y integrals in Eq. (52) are real, and we must identify a 1="
pole from these. The resulting double pole then combines
with the i�" term from the expansion of the prefactor
��1� i���1�" to give a real pole term that survives in
the full sum of diagrams.

It is easy to check that the x and y integrals of the second
fraction in square brackets in Eq. (52) are both real and
finite for "! 0. We may thus limit our analysis to the first
fraction, which is proportional to 1=x1�3". The x! 0 limit
thus generates another infrared pole, which can be isolated
by using the distribution identity, 1=x1�a � �
�x�=a,
while the y integral can be performed at " � 0.

For the remaining analysis, it is convenient to combine
Eq. (52) with the corresponding results from the other two
diagrams in Fig. 2(a), which can be found by substitution.
After performing the x integration in (52) we obtain,
suppressing the finite part,
 

KP1P2 �KP2P1 �KP1P1 �KP2P2

�
i��1� i���1�"

32�3"

��1� 3"�
��1� "�

23"g4�4��2�2"

�
Z �

0

dk�2
k�1�4"

2

Z 1

0
dyy2"

�
P�2

1

P2
1

�
1�2"

�
P1 	 P2

P�1 P
�
2

� �P2�1� y�
�

1

�y� �1� y�f�P1; P2��
1�3"

� �P1 $ P2� � �P2 ! P1� � �P1 ! P2�: (53)

Taking into account the k�2 integral, we see that this
expression has an overall imaginary double pole which,
however, cancels when the complex conjugate diagrams
are combined.

The leading, real pole in " can be obtained from the
above equation by setting "! 0 in the y integral, which

then reduces to the sum of two elementary integrations.
The first has a y-independent numerator in the integrand,

 

Z 1

0
dy

P�2
1 =P2

1

�y� �1� y�f�P1; P2��

�
Z 1

0
dy

P�2
2 =P2

2

�y� �1� y�f�P2; P1��
�

1

c
ln
�
a� c
a� c

�
; (54)

with a and c defined in Eq. (38). The additional term is
linear in y in the numerator, and is given by

 

Z 1

0
dyy

P�2
1 =P2

1

�y� �1� y�f�P1; P2��

�
d�P1; P2�

2c
ln
�
a� c
a� c

�
�

1

2�P2 ln
�
P2

1P
�2
2

P2
2P
�2
1

�
; (55)

where a and c are defined in (38), �P2 in (41), and

 d�P1; P2� � 1�
1

�P2

�
P2

1

P�2
1

�
P2

2

P�2
2

�
: (56)

Although the integral of Eq. (55) is not symmetric in P1

and P2, once we add the four diagrams we obtain sym-
metric results, equal to (54),

 Z 1

0
dyy

�
P�2

1 =P2
1

y� �1� y�f�P1; P2�
�

P�2
2 =P2

2

y� �1� y�f�P2; P1�

�

�
1

c
ln
�
a� c
a� c

�
: (57)

Combining the results above in Eq. (53), and using

 ��1� i��" � e�i�" � 1� i�"�O�"2� � . . . ; (58)

we obtain for the infrared pole
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 2 Re�KP1P2 �KP2P1 �KP1P1 �KP2P2�

�
�2
s

4"

�
2�

�
2P1 	 P2

P�1 P
�
2

��P2

�
1

c
ln
�
a� c
a� c

��

�
�2
s

4"

�
2�

�
2�

P�1 P
�
2

P1 	 P2
�P2

�
1

2h
ln
�
1� h
1� h

��
; (59)

with h defined in Eq. (41). Again, we find a dependence on
the choice of vector l, which, however, cancels in the sum
of the J ’s and K’s.

E. The IR pole in I 8!1

Now adding Eqs. (40) and (59) we find from Eq. (30)

 I �8!1� � 2 Re�IP1P2 � IP2P1 � IP1P1 � IP2P2�

�
�2
s

4"

�
1�

1

2h
ln
�
1� h
1� h

��
; (60)

with the function h defined in Eq. (41). This is the general
expression for the pole part of I �8!1�. A short calculation
shows that the lowest-order expansion of Eq. (60) repro-
duces the result of Ref. [9], Eq. (15) given above for the
infrared pole at order v2 (electric dipole). As anticipated
above, our result is independent of the direction of the
lightlike vector l� that defines the integrals.

To derive an equivalent form in terms of the relative
velocity, we use P � P1 � P2 and 2q � P1 � P2 and re-
call that we identify the relative velocity with the heavy
quark velocity in the center of mass of the pair: ~v � ~q=E
,
where 2E
 is the total energy of the heavy quark pair in this
frame. In these terms, we may replace the quantity h of
Eq. (60) with an explicit function of velocity,

 I �8!1� �
�2
s

4"

�
1�

1

2f�j ~vj�
ln
�

1� f�j ~vj�
1� f�j ~vj�

��
; (61)

where with v � j ~vj, the function f�v� is given by

 f�v� �
2v

1� v2 : (62)

Equation (61) is the general result at NNLO for the infrared
pole. As Eqs. (61) and (62) show, the infrared term is
independent of the eikonal momentum l for finite v.

Hence the infrared pole structure at NNLO in �s is con-
sistent with factorization, which at this order in �s is valid
to all orders in the relative velocity v in the heavy quark-
onium system.

IV. CONCLUSIONS

Equations (61) and (62) provide a remarkably compact
expression for the single pole in the infrared factor I �8!1�

of Eq. (12) at NNLO for finite relative velocity v, or
equivalently, expanded to all orders in v. This result is
independent of the direction l� of the octet Wilson line,
and hence is consistent with NRQCD factorization, as
discussed in connection with Eq. (8). As shown in
Ref. [9], the absence of l dependence in gauge-completed
matrix elements enables them to match all NNLO infrared
divergent corrections to multijet cross sections. All the
arguments in that reference for matching at order v2 apply
here to all orders in v.

Although limited to NNLO, our result suggests that the
decoupling of light parton dynamics from heavy quark pair
production is robust in perturbation theory at the level of
infrared divergences. Evidently, at NNLO, while a light-
like, energetic parton can resolve the color structure of a
heavy quark pair, it does so in a way that is independent of
the direction of the relative motion of the pair. This sug-
gests to us that the results derived here may generalize to
higher orders in soft gluon exchange.

In closing we note that there are, of course, many terms
in a general NRQCD velocity expansion that are not given
by the eikonal approximation, in particular, those that deal
with spin. The eikonal approximation, however, does re-
produce infrared divergences as they appear in perturbative
calculations of heavy quark production. Clearly, an exten-
sion of this analysis to higher orders in the coupling will be
of interest.
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