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Two-loop soft anomalous dimension matrix and resummation at next-to-next-to-leading poles
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We extend the resummation of dimensionally regulated amplitudes to next-to-next-to-leading poles.
This requires the calculation of two-loop anomalous dimension matrices for color mixing through soft
gluon exchange. Remarkably, we find that they are proportional to the corresponding one-loop matrices.
Using the color-generator notation, we reproduce the two-loop single-pole quantities H? introduced by
Catani for quark and gluon elastic scattering. Our results also make possible threshold and a variety of
other resummations at next-to-next-to-leading logarithm. All of these considerations apply to 2 — n

processes with massless external lines.
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I. INTRODUCTION

The description of partonic hard scattering in quantum
chromodynamics (QCD) is central to the analysis of final
states at hadronic colliders. The calculation of cross sec-
tions for such processes requires a combination of virtual
and real radiative corrections, organized according to
underlying factorization theorems. This is the case for
higher-order calculations to next-to-leading or next-to-
next-to-leading order in «; (NLO, NNLO, ...). It holds
as well for resummed cross sections, in which selected
corrections associated with soft and collinear gluon radia-
tion are organized, at leading, next-to-leading, or next-to-
next-to-leading logarithms (LL, NLL, NNLL, ...) to all
orders in «j.

In both fixed-order and resummed calculations, the co-
herence properties of soft gluon radiation play an essential
role. An anomalous dimension matrix for inclusive wide-
angle soft gluon radiation was introduced in Refs. [1,2] and
computed to leading order for quark and gluon scattering
processes in Ref. [3]. The one-loop matrix of soft anoma-
lous dimensions has been applied to the NLL threshold
resummation of jet cross sections [4,5] and of distributions
of event-shape variables [6,7] that are ‘““global” in the
sense of Ref. [8]. At two loops, the same matrix, combined
with resummed form factors, was shown in Ref. [9] to
control the single infrared poles of dimensionally regular-
ized partonic scattering amplitudes in ¢ = 2 — D/2. In this
paper we will show how to compute this matrix directly at
two loops, from a relatively limited set of diagrams in the
eikonal approximation, using Wilson lines, giving as an
explicit example quark-antiquark scattering.

The full analysis given below applies to any 2 — n
partonic amplitude in dimensional regularization. The
two-loop soft anomalous dimension matrix allows the ex-
ponentiation of next-to-next-to-leading infrared poles,
which appear in the combination «”(1/&)""! in the expo-
nent, a level equivalent to next-to-next-to-leading loga-
rithms. The resulting resummed amplitudes can be
expanded out to the two-loop order, and the poles in &
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can be compared to explicit two-loop scattering ampli-
tudes, for example, the basic 2 — 2 scattering processes
[10-12]. Those poles were expressed in terms of the color-
space notation [13] and the organization of two-loop sin-
gular terms presented in Ref. [14]. (Related work at one
loop was performed in Refs. [15,16].) We will verify that
the expansion of the resummed amplitudes to two loops
matches precisely the full infrared pole structure of the
known two-loop scattering amplitudes, including the
single poles in . Remarkably, we will find, as reported
in Ref. [17], that the two-loop anomalous dimension ma-
trix is related to the one-loop matrix by a constant, the
same constant, K, appearing in the DGLAP splitting ker-
nel, that relates the one- and two-loop anomalous dimen-
sions for the Sudakov form factor. (The analogous matrix
appears in the electroweak Sudakov corrections to four-
fermion scattering, and has been extracted at two loops
from the QCD four-quark scattering amplitude in
Ref. [18].) The simplicity of this result will facilitate the
development of practical resummed cross sections with
color exchange at NNLL.

This paper is organized as follows. The next section
reviews the collinear and infrared factorization of exclu-
sive amplitudes. In that section, we provide a new explicit
scale-setting choice for the soft function, which is neces-
sary to define the scales of logarithms in the relevant
anomalous dimensions. The third section describes the
expansion of the jet functions to two loops. Here we
describe a new ‘““minimal’’ reorganization of the factorized
amplitude, to facilitate the comparison to fixed-order cal-
culations. In the fourth section, we describe in detail the
one- and two-loop calculations necessary to determine the
soft anomalous dimension matrix, for the specific case of
quark-antiquark scattering. Here, we will employ the eiko-
nal approximation, and the scale-setting choice for the soft
function from Sec. II. We show that diagrams attaching
gluons to three different eikonal lines either vanish or
represent the exponentiation of the one-loop soft matrix.
We close Sec. IV by generalizing these calculations to
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arbitrary flavors for incoming partons and arbitrary flavors
and numbers of outgoing partons. To do so, we present the
color-mixing anomalous dimension matrix in the color-
space notation of Refs. [13,14]. Finally, in Sec. V we
employ this notation, along with the results of Sec. IV
for the soft anomalous dimensions and known two-loop
elastic form factors for quarks and gluons, to give the
explicit form of the two-loop single-pole terms in &, for
arbitrary 2 — n partonic processes in QCD. We show that
these pole terms agree with the single-pole “H®” terms
found in NNLO 2 — 2 calculations [10-12,19] whose
poles have been organized according to the formalism of
Ref. [14]. Our results also agree with the proposal of
Ref. [20] for the single poles for the case of 2 — n gluon
processes, which was based on the consistency of collinear
factorization of amplitudes. We provide an appendix with
explicit forms of Sudakov anomalous dimensions, and two
appendixes illustrating calculations of soft anomalous di-
mensions using eikonal methods. The final appendix de-
tails the computation of a particular commutator of color-
space matrices, which is needed to compare our results
with the explicit NNLO calculations.

II. FACTORIZED AMPLITUDES IN DIMENSIONAL
REGULARIZATION

Our considerations apply to 2 — n scattering processes,
denoted as “f,”

f: fi(p1, 1) + f2(pa 1) = f3(p3. 13) + fa(pa, 14)

t+et fn+2(pn+2’ rn+2)-
2.1

The labels f; refer to the flavor of the participating partons,
each of momenta {p;} and color {r;}. The amplitude for this
process, j\/l[f], is a color tensor with indices associated
with the external partons {r;} = {ry, rp,...}. It is conve-
nient to express these amplitudes in a basis of C indepen-
dent color tensors, (c;);,}, so that [3,14]

M (B 5 as(u?), 8)

2
= Z M[Lf]<ﬁj’ % a,(p?), 8>(CL){ri}
L=1

= |My), (2.2)

where the ket may be thought of as a vector M[Lf] with C
elements in the space of color tensors c;. We will analyze
these amplitudes at fixed momenta p; for the participating
partons, which we represent as

pi = 0B, :812 =0,

where the 3; are four-velocities, and where Q is an overall
momentum scale. For the purposes of this analysis, and to
compare with existing NNLO calculations, we take all of

(2.3)
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the partons massless, as indicated. To be specific, we may
take B; - B, = 1 for the incoming partons in Eq. (2.1),
which implies Q% = s/2, but this is not necessary.

In dimensional regularization (D = 4 — 2¢), on-shell
amplitudes may be factorized into jet, soft, and hard func-
tions, which describe the dynamics of partons collinear
with the external lines, soft exchanges between those par-
tons, and the short-distance scattering process, respec-
tively. This factorization follows from the general space-
time structure of long-distance contributions to elastic
processes [21]. A formal proof for the case n =2 in
QCD (quark-quark scattering) was presented long ago [1].

The general form of the factorized amplitude is

m[”(ﬁ,,Q— a(u)e) = [f](% a(u).o)

2 123
X SE;(BV %’ %» as(lufz)> 8)

E”(ﬁ,,Q—z,g—f, @),

(2.4)

where u is the renormalization scale. JIfl is the product of
jet functions for each of the external partons, as above
denoted collectively by [f], SU1 is the soft function, and
H! is the short-distance function. For example, when the
process is 1 + 2 — 3 + 4, the product of jet functions is

ﬂﬂ(i o s) = ] M(%z () e)

i=1,23,4
(2.5)
Construction of the soft and jet functions requires the
specification of at least one independent momentum scale,
Q', which plays the role of a factorization scale. Such a
scale, distinct from Q and w, may be useful when one or
more invariants obey strong ordering. Here, however, we
shall consider “fixed-angle’ scattering configurations, in
which the parameter Q sets the scale for all invariants, up
to numbers of order unity. With this in mind, we will
simplify Eq. (2.4) somewhat, and pick Q' = u, that is,
equal factorization and renormalization scales. Both the
soft and jet functions then depend on a,(u?) only, and we
will suppress their Q"> dependence, now expressing the
same amplitude as

2
N[Lf]<'8i’ % a,(u?), 8) = I (a,(u?), €)

QZ

X S[Lf}(ﬁi, () e)

w1 5 2 0w
[ (/Bi,pasw )), 2.6)
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that is, we suppress dependence on those variables that are
set to unity by our choice of scales.

Clearly, any jet-soft-hard factorization of the sort de-
scribed above is unique only up to finite factors in the
various functions. There is an additional ambiguity be-
tween the jet and soft functions at the level of a single
infrared pole per loop in dimensional regularization. In the
remainder of this section, we will provide specific defini-
tions for the jet and soft functions that will enable us to
define and resum them unambiguously, and which will be
useful in our calculations below. We begin with the jet
functions.

A. The jet functions and the Sudakov form factor

The factorization (2.4) holds for any exclusive ampli-
tude, including the elastic, or Sudakov, form factor. A very
natural definition of the jet functions is, therefore, the
square root of the form factor [9]. Here, we will choose
the case of the elastic scattering form factor with a color-
singlet source, and spacelike momentum transfer.
Reverting to the general case of jet momentum scale Q"
not necessarily equal to the renormalization scale, this is

n 2

[¥)
= |:j]vl[i—>i]<Q_2, as(,uz), 8)}1/2.
y7
2.7

Below, we shall take u as the MS renormalization scale,
wu? = plexp[—e(yg — In(4))]. With this choice, we
may rely on the explicit form of the quark spacelike
electromagnetic Sudakov form factor in D = 4 — 2¢ di-
mensions. A similar definition may be given for gluon jets
in terms of matrix elements of conserved, singlet operators.
In either case, the all-orders expression for the (square root
of the) resummed form factor, organizing all pole terms,
and implicitly specifying all finite terms of the jet defined
as in Eq. (2.7), is [22-24]

J[ﬂ(i—f, (1), ) - p{% ﬁ - "g—fz [ac[ﬂ(as(yﬂ), e)

(2.8)

where we use a notation for the running coupling that
emphasizes its reexpansion in terms of the coupling at
fixed scale w. For our purposes below, we shall need
only the “leading” form of the running coupling,
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o) o )

n=0
X as(uz)}", (2.9)
with the one-loop coefficient
11 4
BO :?CA _gTFnF. (2]0)

In the expression for the jet functions above, the choice
Q” = u? can be imposed trivially. The functions KU,
Gl and 75? are anomalous dimensions that can be deter-
mined by comparison to fixed-order calculations of the
Sudakov form factors for quarks and gluons. These form
factors are now known in QCD up to three loops [25-27].
Notice that the coupling in the argument of K7 is fixed at
M, so that the integral of this term alone is not well defined
at £ = 0 even for D # 4. This apparent divergence, how-
ever, is cancelled by contributions from the upper limit of
the @2 integral of the anomalous dimension ygé], and
relates the latter to KL order by order in perturbation
theory. We will provide explicit expansions for these func-
tions in Appendix A.

B. The soft function

We will broadly follow Ref. [3] in the definition of the
soft function for partonic amplitudes, although we will
modify certain details in the construction. The fundamental
observation of Ref. [3] is that the soft function, describing
color exchange between the jets, is independent of col-
linear dynamics, and may be constructed from an eikonal
amplitude, that is, the vacuum expectation of products of
ordered exponentials. For each external parton of flavor f;,
we introduce a non-Abelian path-ordered phase operator,

CI)E’:"](O", o) = Pexp[—ig [(r dAv; -A[ff]()lv,»)}
2.11)

where vf* ~ B is a four-velocity. For specific calculations
at two loops, it will be useful to choose these velocities to
be slightly timelike,

0<viIxl (2.12)

The “opposite moving™ velocity v projects out the large
component of v¥. The gauge field AU/l is a matrix in the
representation of parton i. In the construction of the soft
function, we will eventually take all v? — 0, or equiva-
lently, v¥ — B%. In perturbation theory, the operators
CI)%’:"](OO, 0) and (I)B:"](O, —o00) respectively generate out-
going and incoming eikonal lines in the v; directions.
The eikonal sources couple to gluons at vertices in the
color representation of parton i. An essential feature of
these diagrams is that they are invariant under rescalings of
the velocities, v; — ov;.
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We are now ready to construct eikonal multipoint am-
plitudes from products of ordered exponentials, tied to-
gether by the same color tensors, c¢;, that appear in the
expansion of the partonic amplitudes, Eq. (2.2). For the
2 —2case, 1 +2— 3 + 4, this gives

] _ [ vi'vj
W[{rk} - (CL){rk}WLI( 3 2)
AU v;

= S0 (0,0),, 4, ®)(0,0),, 4,
{di}

X (€D d,ds dod, ‘D%{'](O, —00) 4 1 (I)E,’;Z](O, —00),, ,.|0).
(2.13)

Such a product is gauge invariant. The eikonal amplitude,
or web function, W depends, in general, on both the
invariants v; - v; and the invariant lengths v?. The basic
observation of Ref. [3] is that all potentially collinear
divergent ratios factorize from dependence on wide-angle
radiation for eikonal as well as partonic amplitudes. We
can use this factorization to isolate the soft function sys-
tematically, using only calculations in the eikonal
approximation.

Because of the factorization of collinear singularities,
such dependence is universal, depending only on the num-
ber and flavors of the external jets. In particular, as ob-
served above, form factors, with two external lines and
trivial color flow, generate the same collinear dependence.
Thus, all collinear dependence cancels in the ratio of our
four-point eikonal amplitude W; and the product of two
eikonal form factors, just as in the ratio of the four-point
partonic amplitudes to the corresponding form factors. We
shall define S;; by this ratio. Notice that information on
color flow is not affected at all by the eikonal jet functions,
which, like partonic jets, are diagonal in color. Thus, we
define

-3 wiflvivi
SEf}(:BI ﬁj) — lim L.I(.Uz) ’ (214)
o T )]
icf v
where, as above, the velocities B; are the lightlike limits of
the v;. The denominators are eikonal versions of the elastic
form factors, defined with incoming velocities v; and out-
going v;, where v? = 97 = v? and v; - U; = ug, with ug a

constant of order unity, independent of i, namely
W“‘*”(”—S) — 0V (o0, )Y (0, —0)]0).  (2.15)
v v

This form factor generates the square of the collinear poles
associated with the eikonal jet of flavor i in W, ;, and hence
the soft function (2.14) is free of collinear divergences. We
may thus take the lightlike limit for the velocities to define
the soft function in the ratio.

Equation (2.14) allows us to compute the soft function,
once we determine how to choose the variable u, so that
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we may match the eikonal calculation to the partonic
amplitude. We can determine the correct choice as follows.

We first reexpress Eq. (2.6) for the partonic amplitude,
converting it into an expression for the soft function as a
ratio analogous to Eq. (2.14),

S[Lf}<,3ir /QL—; as(,U«z), 8>Hgf]<3i, /QL—; as(M2)>

_ MPBLE () 6)
T(a,(4?), 2)

(2.16)

This simple result enables us to set the scale u, in the
definition of the eikonal form factors of Eq. (2.14). In
Eq. (2.16), S can depend on the velocities only through
the ratios B; - B;0%/u*. When § is calculated in this way
from the ratio of partonic quantities, Q sets the scale of all
momenta in the amplitude, and w, the factorization scale in
Eq. (2.6), may be reinterpreted as the momentum transfer
in the form factors that define the jet functions. When
calculated from the eikonal ratio, on the other hand, S
depends only on the variables B3; - 8;/uy. To match the
soft function computed in the eikonal approximation with
the partonic amplitude, we need only require

,Bi'ﬁj
U M

28.- B, 2
_ QBB B @

2 U =

This relation will be used in our explicit calculations later.
We are now ready to provide an all-orders expression for
the soft function, analogous to Eq. (2.8) for the jet
functions.

C. Resumming the soft function

We will use the MS scheme for renormalization through-
out. Before renormalization, all of the purely eikonal am-
plitudes discussed in the previous subsection give (only)
scaleless integrals in perturbation theory. Such integrals
vanish identically in dimensional regularization. In fact,
these functions are only nontrivial because of renormaliza-
tion, with every infrared pole resulting from the subtraction
of a corresponding ultraviolet pole. This is the case
whether or not W is collinear-regulated by introducing
masses for its eikonal phases.

Thus, for both the web function W and the soft function
S, we have (suppressing indices)

whl — 1 = ZW,.(as(M)’ S)Wr[gl’

bare
gl gl

bare 1= ZSf(as(M)r €)Sten,

(2.18)

and similarly for the eikonal form factors in the ratio
(2.14). Both S and W are therefore defined entirely by their
anomalous dimension matrices,
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d(Zy)ks I Za)ks
dinu g
(2.19)

Ty = (Z 1)11< = ( AI)IKB(& g)————

which are given in any minimal scheme by the residues
ZXf)l, with A = W; or Sy, of single ultraviolet poles in 1/,
at kth order in the expansion

n=1+ 3 (%) e = 5 (%) 20

(2.20)

Then, for example, from the one-loop bare integrals we
find the one-loop anomalous dimension from the residues
of the one-loop single ultraviolet poles,

) = -2z, @.21)

where Fg”) is the nth-order coefficient of (a,/7)" in I'y.
Similarly, to order O(«a?), after one-loop renormalization
we find the two-loop anomalous dimensions from the two-
loop single poles,

'Y = -4z, (2.22)

From the definition of S, Eq. (2.14), the soft anomalous
dimension matrix is found from the matrix for the corre-
sponding eikonal amplitude by simply subtracting the
anomalous dimensions for the eikonal jets. We denote

the latter by Fg](uo /v?, a), and write
.. . v. . U .
st 1J<IBZBJ, as) = lim [wa Ij(lizjr as)
’ Ugy 2 ’ v

v—0
ﬂ (2.23)

_ 5”ZFD](
ief
In 'y, all sensitivity to collinear dynamics, and therefore
to the choice of v2, is cancelled, and the coefficients
depend only on the invariants B; - B;.
The matrix renormalization group equation for the ei-
konal amplitude SEK is then

Bi - B;0?
< + B(g & )—>S[f] = st,11<lu—2] )S_[[f]](;
(2.24)

from which we can solve directly for S as a path-ordered
exponential,

Sf<Bib;0Bj,as(M2)’8>=PeXp[_% OMZdﬂ—'a;
xrsf<ﬁ"b;f’}c‘n<g2 o, (12), em

(2.25)

where boldface (with a subscript for flavor flow) indicates a
matrix. In summary, the matrix of anomalous dimensions,
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and hence the soft matrix itself, can be computed order by
order purely from eikonal diagrams.

III. THE JET FUNCTIONS TO TWO LOOPS

In this section, we expand the jet functions in the fac-
torized amplitude (2.6) to fixed (second) order in «g, in a
form that is convenient for comparison to explicit partonic
calculations.

To determine the jet anomalous dimensions, as well as to
use the resummed forms of the jet and soft functions with
fixed-order calculations, we reexpand the running coupling
in terms of a coupling at fixed scale. It is important to do so
consistently in dimensional regularization, using the ex-
plicit form for the running coupling, Eq. (2.9). It will also
be convenient to use Eq. (2.8) as a starting point to isolate
the truly universal pole terms in the logarithm of the jet
function, separating them from the finite terms. To this end,
we introduce the notation

o0 n ntl plilin)
InJ (e, (1), Z( s(M2)> Zl Ei " (e)

= m=1 g"
+ Z( ) 10 (),
= E(a,(u?), ) + ell(a,(u?), ),

3.1

in terms of the coupling a,(u?) at fixed scale u. As in
Eq. (2.6), we set the jet factorization scale Q' = w. The
pure pole terms in Eq. (3.1) have been expanded at each
order as

n+1 rlil(n)
e = 3 En o),

m=1

(3.2)

8i’l’l

while the functions el (g) absorb all terms that remain
finite for &€ = 0, order by order in «,. The coefficients
EEZL](") and the functions el (&) are determined, of course,
by the expansions of the functions yg, K and G, which
depend, in general, on the definition (2.7) of the jet. This
separation, however, eliminates the remaining arbitrariness
in choosing the form factor by defining a “minimal” jet,
consisting of the exponential of pole terms only,

T Wy (u?), &) = explE(ay, €)]. (3.3)

In this notation, we rewrite our basic factorization,
Eq. (2.6), in minimal form as
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“(B,,Q— (). e) = [ ) )

ief

.. . 2
< SPLE o)

X Hm([%,— a (,U~2)>
(3.4)

where we have absorbed the (color-diagonal) finite factors
into the perturbative definition of the short-distance func-
tion

H [ﬂ(ﬁp L aud)e ) - exp[;em(awx s>}
x HEf](ﬁ,-, ff—i, as(,uz))- (3.5)

We will also find it useful to write this expression in the
color-state notation of Eq. (2.2), as

.- RB.02
M) =[]0, 008 P ) )19

ief
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where again the matrix structure of the soft function is

denoted by boldface and where we treat FH Ef] in the
notation of Eq. (2.2).

Before this refactorization, the logarithm of the full jet
function JUI at two loops is given by

I, (42), £) = H_<ﬂ><212 S 1 g[t](l)(8)>

T o

e S

(3.7)

To determine the coefficients EY™ in the minimal two-
loop jet function, we only need to expand the functions

Gl (e),
Gl (g) =

Explicit forms for these anomalous dimensions can be
found in Appendix A. In terms of these quantities, we
readily find that the full single-pole terms in the logarithm

gg](n) + eGlIQ) + - - -. (3.8)

(3.6)  of the jet function are given at one and two loops by
|
g — _ Lo g _ 0" g = 3Bo i gier _ Po g _ L lie
2 g’k ! 4 3 128 'K 32 37k
e _ E{](z) Bo G (0)
El - + ’
38 5 961 11 65 G2
412 _ 2
E Zc Q)+ {B) |- —=cC,C —02)—=¢B) |+ —=C;T +70) |,
1 = 2 G316 3400+ L)~ 16 CaCi 31e + 540~ 540) |+ e CTons] G+ 40)|
y 1 346 11 64  ((2)
B = 3202[ o —§(2)+§(3)} CATFnF[27 3} Ty,

where for E[li](z) we give the explicit expressions for the
quark and gluon cases. Notice that the full single-pole term
includes a contribution from the running of the finite term
at one loop, which appears as an O(g) contribution in

Gtim,

IV. EIKONAL AMPLITUDES AT ONE AND TWO
LOOPS

We begin this section with a calculation of the soft
anomalous dimension matrix for quark-antiquark elastic
scattering at one and two loops, in terms of a specific color
basis [3], and then discuss the representation of the matrix
in the color-generator notation of Refs. [13,14]. We will
see that the basic result of our calculation, the proportion-
ality of the one- and two-loop matrices, applies to a much
wider class of processes.

A. 2 — 2 eikonal diagrams at one loop

Here we will present the calculation for one-loop cor-
rections to W, Eq. (2.13), for quark-antiquark scattering,
and by using Eq. (2.21) we will derive the corresponding
one-loop soft anomalous dimension matrix. Representative
one-loop diagrams are shown in Fig. 1. One can write the
amplitude for any diagram D as

(a) (b) (©)

(1)

FIG. 1. One-loop diagrams that contribute to I'y
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Mp = Fp X Cp, @.1)

where F'p is the corresponding Feynman integral in dimen-
sional regularization and Cp; is the color tensor. We will
refer to Fpp as the velocity factor below, because it absorbs
all dependence on kinematic variables. To uniquely define
the normalizations of the velocity factors, and hence the
color tensors, we define them to equal the corresponding
integrals for the scattering of eikonal lines that couple to
the exchanged gluons via color-independent “Abelian”
vertices. In particular, we absorb into the velocity factors
the (—1) associated with a gluon coupled to an eikonal line
in the antiquark representation. Note that this separation of
color and velocity factors is possible even if the eikonal
lines are in the adjoint representation. This method will
facilitate our eventual comparison to results expressed in
the formalism of Ref. [14].

Consider the left-hand diagram in Fig. 1, which we will
call a ““¢-channel diagram,” referring to the pair of eikonal
lines to which the gluon is connected. We will follow
Refs. [28,29], and express the velocity factor as an integral
in configuration space. For an arbitrary one-gluon correc-
tion to a phase operator of the form of Eq. (2.13), such a
correction is given by

Fo=(igu) [ du, [ anpa-y, @2
G C;

where integration is performed over the positions of gluons

on the paths of the Wilson lines, C; and C;. For the lines in

Eq. (2.13) these paths are specified by

Ci = UiB’ C] = U]‘CY, (43)

where & and B run from —oo to 0 (0 to 00) for an incoming
(outgoing) path. For the t-channel diagram shown in
Fig. 1(a), for example, where t= (p; — p3)? =
(p, — p4)?, we may have {i, j} = {1, 3} or {2, 4}.

In Feynman gauge the coordinate-space gluon propaga-
tor, in dimensional regularization with D =4 — 2¢g, is
given by [29]

I'a-e 1
D) = 8 D0) = 8=y = (7 e (4
Using this expression in Eq. (4.2), we have
00 0
F, = (,-gMe)zf daf dBv"D,,(v;a — v, BN
0 —00
- I'(l—e)
= (ign®)*(v; - Uj)m
) 00 1
X d d . 4.5
R e e

As observed above, all such integrals vanish in dimen-
sional regularization, since they are scaleless. The contri-
bution of each such velocity-dependent integral is given by
its counterterm, equal to its infrared pole and hence to the
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negative of its ultraviolet (UV) pole. Of course, F, may be
evaluated as a momentum-space integral with equivalent
results.

In order to isolate the (single) UV pole in Eq. (4.5), we
apply an infrared cutoff for the integral by introducing a
small parameter A with units of mass. This can be effected
simply by inserting #(1/A — ) in Eq. (4.5). The « and B
integrals are then easily related to a single integral in terms
of z = ﬁ [see Eq. (B3) in Appendix B]. We find

() ra -0,
8 ﬁl e+ 55@ - P

The single UV pole term in this expression is given by
[28,29]

F,=

(4.6)

07

S, N 1
FiP (v, v)) = _<F>_ vijcothy;, 4.7

2¢e

where

v;

i
2,,2
NURY

Because there is only a single, overall infrared divergence
in F,, any such cutoff will give the same ultraviolet pole.
In the high-energy limit (y;; > 1), we have

5.p. ag\ 1
Fy7 (v, v)) = _<;>£%]’-
For {i, j} = {1, 3} and {i, j} = {2, 4} the answers are iden-
tical, in this 2 — 2 process. In the high-energy limit we
define

v

coshy;; = 4.8)

4.9)

Yi3=7vu=T, Ya=vs3=U0, @.10)

Yi2 =Y =S,
where

T — 1n<2v1 ;v3> _ 1n<2v2 ;v4>’

v v
2u; -+ 2V, *

U= 1n<”172v4> - 1n(”272v3>, .11

v v

S = 1n<_2”12' ”2> - 1n<_2v32' v“),
v v

with v? = v? for all i. The velocity factors for u- and
s-channel diagrams are found by taking into account the
extra minus sign associated with coupling to an eikonal
line in the antiquark representation, as well as that from
crossing substitutions, which change the sign of cothy;;
from unity to —1 in the high-energy limit,

Fu(vi’ U/) = _Ft(vi’ Uj)r Fs(vi’ vj) = Ft(vi’ _vj)'
(4.12)
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Here, {i, j} = {1, 4} and {2, 3} for the u-channel diagrams,
and {i, j} = {1, 2} and {3, 4} for the s-channel diagrams.
The function F has the same overall sign as F; because it
differs both by an antiquark connection and by crossing,
while F, has the opposite sign.

In summary, the single poles for the velocity factors for
the diagrams in Fig. 1 are given by

; a1 ; a1
F‘s.pA _ _[Zs —T, F‘\.p. _ (& —U,
! <7T>28 “ <7T>28

P = (%)L
’ T )2¢e
To construct the counterterms, of course, we must also
compute the corresponding color tensors for each diagram.

(4.13)

We will use CE’] to denote the color tensor for the
t-channel diagram in Fig. 1, with color tensor ¢;, i = 1, 2
at short distances. For the latter, we choose the basis
tensors shown in Fig. 2. The coefficients of the color
tensors absorb all overall factors not included in the veloc-
ity factors of Eq. (4.13).

One can calculate these color tensors from the basic
identity for the generators of SU(N,),

1

37 _W rory Orsry:
c

6,,0

rary

1
Z(Tu)rzrl (Tu)r3r4 = E

(4.14)

In the color basis given in Fig. 2, the color tensors of the
t-channel diagrams are given by

1 1

Gtz Gl

N1
2N,

C[lt] = — Cyr = CFCQ.

(4.15)

We will employ a similar notation below for other one-loop
and for two-loop diagrams. Color tensors for the u- and
s-channel diagrams are computed in a similar way with the
results

u 1 1 U 1 1
C[l]=—2Nccl+§Cz, CE]:ECI_ZNCCZ’
(4.16)
and
GmCre,  Gmte-sa @)
1 2 2N,
1 3 1 3
Cl = 0=
2 4 2 4

FIG. 2. Color basis {c;, c,} for the four-quark process.
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We summarize these relations in matrix form by

= Y ed
J=12

(4.18)

where the matrix element d[f}] specifies the mixing from
color tensor c; to tensor c¢; by the exchange of a gluon in
channel a = ¢, u, s. An important identity that we will use
below is

dfl + db) = d) = cr8y, (4.19)

which we easily verify from the relations above. Note that
this equality holds in an arbitrary representation.’
The contribution of each diagram to the matrix counter-

term Z%,I) is now found by the product of the corresponding
color factor times the pole part of the velocity factor,

Fiv
ag/m’

in terms of the single-pole terms of Eq. (4.13) and the color
factors read off from Egs. (4.15), (4.16), and (4.17). Given

the counterterm matrix, we can evaluate Fg,‘) by using
Eq. (2.21) with the result

o _ N%(U —T) + 2CrS
W (T - U)

(Z%/z)n =2 Z d[ﬁ]

a=s,t,u

(4.20)

(§—U)
NLC(U -8+ ZCFT)'
4.21)

Exactly the same calculation gives Fg’], the anomalous
dimension for the eikonal jet function, defined as the
square root of the eikonal singlet form factor, Eq. (2.15).
In Eq. (4.9), we simply let coshy;; — up/v* = u?/(Q*v?)
[using Eq. (2.17)], in the limit v> — 0. The one-loop result
for parton i is then given by

2
[ 4o\ _ 1 o
M0 (5) = 5 i gee)

with C; = Cf for quarks and C, for gluons. By using this
expression and the definition for I's , Eq. (2.23), we find

(4.22)

ro_ v (U—=T)+2CcS (S —U)
o (T - L(U-8) +26,T )
(4.23)
where
T

Il
=3
N
T
]~
v
Il
5
//
t‘|
SIS
\‘/
05
Il
5
/
3:||
S
N————

(4.24)
After performing the subtraction of the jet functions, we set
1Equation (4.19) is equivalent in this case to the well-known

identity >, T; = 0 in the color-generator notation that we will
review below.
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v; — B;, and then use Eqs. (2.3) and (2.17) to recast the
result in terms of the usual Mandelstam variables, ¢, u, and
s. We notice that, as anticipated, all collinear logarithms,
and hence sensitivity to our choice of collinear regulation,

. . . . 1
are absent in the soft anomalous dimension matrix, F(sf)-

B. 2 — 2 eikonal diagrams at two loops

Figure 3 shows the classes of topologically inequivalent
diagrams that contribute to Fg_), when combined with their
one-loop counterterm diagrams. One obtains the full set
from all different combinations of external legs with these
topologies. It is easy to see that the number of graphs for
each inequivalent set is N, =6, N, =6, N. =6, N; =
12, N, =12, Ny =12, N, =4, N = 24, and N; = 3,
which in total gives 85 two-loop diagrams. As in the one-
loop case, we find anomalous dimensions from the combi-
nations of velocity factors and color tensors.

Consider first diagram (i), which is the only two-loop
topology involving all four eikonal lines. Diagram (i) does
not have a surviving single UV pole when we add its one-
loop counterterms.

Regarding the remaining cases, we consider first those
diagrams involving two eikonal lines only, which we refer
to as “2E” diagrams. Next, we will show that diagram (g)
vanishes, which we consider a very important result.
Finally, we will calculate all the contributions from the
surviving “3E” diagram type (h). In this case, we will find
that the diagrams, although nonvanishing, reduce to the

1 3
2 4
(a) (b) (c)

(d) (e) (f)

(9) (h) (i)

FIG. 3. Two-loop diagrams that contribute to F%).
f
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product of one-loop diagrams, and thus do not contribute to
the two-loop anomalous dimensions.

1. The 2E diagrams and I EZ)

In the 2E diagrams, (a), (b), (c), (d), (e), and (f), the
gluons connect to only two of the four eikonal lines in W.
These same diagrams also contribute to the two-loop cusp

anomalous dimension, F[zi](z), and their single UV poles are
well known [29]. We review their velocity factors here,
because they are needed for the two-loop anomalous di-
mension matrix. Additional details are given in
Appendix C.

The color factors of the 2E diagrams are proportional to
the color-mixing matrix elements for single #-channel
gluon exchange, d'J, defined in Eq. (4.18). This is mani-
festly the case for the individual diagrams (c), (d), (e), and
(f). For the sum of diagrams (a) and (b), it relies on the
result [28,29] that the single-pole terms in the velocity
factors of these two diagrams are the negatives of each
other. The net color factor for the (a) and (b) single poles is
then proportional to the commutator of two generators,
which allows it to be expressed in terms of the one-loop
color factor, as C Ad[f,]. We can thus present the contribu-
tions of all the 2E diagrams in terms of the d[j}], witha = s,
t, u.

In terms of the factors d[j} the two-loop counterterms>
for the diagrams (a), (b), (¢), and (f) in the high-energy
limit are, analogously to the one-loop velocity factors,
Eq. (4.13),

@royy (¥ nCa 1T Q) {B)
@ <w>d”228 s "2y

¢ a2 a1 1 /31 5
(Z(Wz)ll = _<F> d[ﬁz Z(% Cy— §TpnF>T, (4.25)
and
a\2 1Cy 1 73
(Z(v;,).)u = _<?> d[JIIJTA R{[_ 3 + (1 - {(2))Ti|

T2
+ [2 —T+ g(z)“, (4.26)
with T the logarithm of 2v, - v3/v?, as in Eq. (4.11). In
Eq. (4.26), the second term in square brackets gives the
result of those numerator terms that are proportional to v3
before the integration. (See Appendix C.) The entire T
dependence of these terms cancels against the contribu-
tions from diagrams (d) and (e), which are also propor-
tional to v3 before integration and are given individually by

>These results, of course, require that we combine these
diagrams with the corresponding one-loop counterterms for their
divergent subdiagrams. Notice that diagram (b) in Fig. 3 does not
have a one-loop counterterm since it does not have a divergent
subdiagram.
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a\2 1 1 T? {(2)
—(=) dyjCpr—| ——=+T—
<7T> J1 F4s[ 2 2 }

(e) a\? 1 AR (e
(Zw)ur = <?> dJI<CF >48[ > +T > }
4.27)

d
(Z(Wf))n =

The combined ¢-channel contribution from the six dia-
grams (a), (b), (c), (d), (e), and (f) to the soft anomalous
dimension matrix is found by adding Egs. (4.25), (4.26),
and (4.27),}

@D =22 + 24) + 223 + Z3) + 2§

=55 [ (67 )]
X (L 1 S e - o)

-(3) "mg( /)

where the last line recalls a standard notation [30] for the
quantity K,

¢,
e - )
(4.28)

10
K= CA< - g(z)) Teng (4.29)
The result (4.28) includes a factor of 2 for the other
t-channel exchange, between lines 2 and 4.
Analogous considerations, of course, apply to diagrams
with pairs of s- and u-channel 2E diagrams. Together with

the 7-channel diagrams, they contribute to the two-loop

anomalous dimension matrix for W according to
Eq. (2.22),
A —2eF"
e =k Y dil( =)+ 6,,C4Ci(L(2) — {3
We i;‘u JI (CYS/’?T) JI“A l(g( ) f( ))

= §F§‘vi +8,,CoCi£(2) — £(3)), (4.30)
where we have used the identity (4.19), and where F%,:,? is
the same one-loop anomalous dimension given in
Eq. (4.21).

In a precisely similar manner, we find for the two-loop
form factor (cusp) anomalous dimension for partonic rep-
resentation i,

r[;]@(%) Z[Kln<Q222>+CA(§(2) (3))}
431)

As at one loop, we combine Egs. (4.30) and (4.31) in
Eq. (2.23), in order to find the contribution of the 2E

*Note that one needs to multiply Eqgs. (4.26) and (4.27) by 2
because, for these diagrams, there are two ways of attaching the
gluons to the eikonal lines.
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diagrams to the two-loop soft anomalous dimensions for
scattering.

It is now clear that the two-loop soft anomalous dimen-
sion matrix inherits from the 2E diagrams a factor of K
times the one-loop anomalous dimension matrix. The re-
sult is

2E)(2 K 1
rg?? =21y, 4.32)

with Fglf) the same one-loop anomalous dimension given in
Eq. (4.23). All velocity-independent terms in the Z(uz,f) that

are not in I' (sl,) cancel in Eq. (2.23) against the correspond-
ing finite terms from the eikonal form factors in the two-
loop soft anomalous dimension, along with all collinear-
singular dependence. This is important, because the con-
stant terms depend, in general, on the eikonal approxima-
tion and our choice of collinear regularization. At the same
time, we have now used all the collinear-singular depen-
dence in the Sudakov anomalous dimensions, Eq. (4.31), to
cancel the Inv? dependence of the 2E diagrams of W. The
3E diagrams, represented by (g) and (h) in Fig. 3, have no
remaining subtractions. The combination of these classes
of diagrams must therefore be free of collinear singularities
at the two-loop level.

2. Vanishing of three-gluon diagram with three eikonal
lines

Now let us show that diagram (g) in Fig. 3 vanishes. Up
to overall factors which play no role, the velocity Feynman
integral for a generic three-gluon diagram can be written as

1 1

F(vy,, vg, = [ d°k,d"k

(UA Vs UC) ] ! 2UB'k1+i€UA‘k2+iE

1 1 1

ver (k) +ky) +iek? +iekd +ie
% 1

(ky + k))* + i€
+UA'vaB'(kl +2k2)
+ v vevy (—2k) — ky)]

X

X[vs-vpve: (k) — k)

(4.33)

where the term in square brackets is the three-gluon vertex
momentum factor. Here vy, vy, and v, are three different
eikonal velocities. We take lightlike v = v = 0. We can
then expand any momentum p* as

v;‘f vl
pHt = °p + vyt pt pT, (4.34)
Uy ® UB *Up
with p% the transverse components, satisfying v, - pr =
v pr =0.
For use in the integral, we introduce the variables
Uy " Ve Up " VUc
fl‘:ivlg’ki, 77i=7vA'ki. (435)
Uy " Up Vy ° Up
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We introduce these variables into the integral by using v,
and vy to define light-cone coordinates,

1
A" UB
Uy " Up

= dé&dn,,
(UA : Uc)(UB : Uc) Sidm;

dk; dk; = . d(vp - k)d(v, - k)

(4.36)

so that
|

Uy ° Up

(va - ve)vp - ve)

F(vy, vg,ve) =

X

2
l_[ d¢dnd” kg
i=1
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-9 (v - ki)(vg - ki)
Uy ° Up

k2

— 12
i ki,T

_ Vs " Us 2
=2 &imi — kip.
(va - ve)(vp - ve) or

4.37)

When we change variables in F' to the £’s and 7’s, we
find

1
V7 Up

_ 12 .
2 v $iMi T Kip i€
1 1

zw,yg)%(vli.vc)(fl + &)y + ) = (kg + kyp)* + i€ & +ie my + e

1

X .
St éE+n tn—ver (kg k) e
X[ —&+m—mm—ver (ky —ky)r + & + 26 — 2 — s

=0.

The integral vanishes because the numerator is antisym-
metric under &) < 1,, &, < ny, and k< k7, while
the product of the denominators is symmetric. Notice that
group factors play no part in this argument. This result is
therefore very general and applies to any 2 — n process
with lightlike velocities.

Our argument above clearly depends on the noncolli-
nearity of the three eikonals v,, vy, and v.. When, for
example, v is taken collinear to vg, the variables 7;
vanish identically or, equivalently, the Jacobian of the
transformation vanishes. These arguments therefore do
not show the vanishing of diagrams involving the forward
scattering of eikonal lines. In fact, the three-gluon dia-
grams connecting three eikonal lines do not vanish when
the forward limit is taken before the integrals are per-
formed, at least when the eikonals are taken to have non-
zero masses. This calculation is found in Ref. [29]. While

A
THECH

FIG. 4. (a)—(c): Pairs of 3E diagrams.

(4.38)

[
superficially similar, however, the meanings of these two
calculations are not the same. The factorization properties
of forward scattering amplitudes for Wilson lines or par-
tons are quite different than those of fixed-angle scattering
amplitudes. For example, unlike the factorization into two
incoming and two outgoing jets, as in Egs. (2.4) and (2.5)
above, amplitudes for 2 — 2 forward scattering factorize
into only two jet functions, each appearing in both initial
and final states, along with a soft matrix. The factorization
of forward scattering has been discussed for QED in
Ref. [31] and, from this point of view, for QCD in
Ref. [32], for example.

3. Exponentiation of the remaining 3E diagrams

The only remaining class of diagrams is illustrated by
diagram (h) in Fig. 3. Along with its companions found by
permuting the eikonal lines, we can refer to these as 3E
diagrams, since they are the only nonvanishing diagrams
with gluons connected to three eikonal lines. There are 24
such 3E diagrams, 8 of them with s- and #-channel gluon
exchanges, 8 of them with s- and u-channel gluons, and
finally 8 of them with - and u-channel gluons. They come
in pairs as shown in Fig. 4.

We now show that the analysis of the previous subsec-
tion regarding the three-gluon diagrams leads to a very
interesting result for the remaining 3E diagrams as well. In
this case, the diagrams do not vanish, but reduce to prod-
ucts of one-loop diagrams.* They therefore provide no
contribution to the two-loop anomalous dimension matrix.

“The reduction of a different class of multiloop eikonal dia-
grams, namely, the 2E diagrams of ladder type, to powers of one-
loop diagrams was previously observed in Ref. [33] to hold to all
loop orders.
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Each such 3E diagram contains one eikonal line with
two gluons attached to it, which we label as v.. The two
lines having one gluon attached are labeled v, and vgy. We
will consider a pair of 3E diagrams that are related simply
by exchanging the order in which the two gluons attach to
v, as in Fig. 4(a) for example. The two diagrams have
differing color and momentum structures, but we can
rewrite their sum as the sum of one term with symmetric
color and momentum integrals, plus a second term with

antisymmetric color and momentum integrals. In the spirit
|

1

(antisym)
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of the discussion above, we suppress the color matrices

held in common and write

Tab(vA’ Up, UC) = :}:Szm)(vA) Up, UC)

+ .T(aa;tisym)(UA, vg, Vo),

where the subscripts a and b refer to the color generators
on the v eikonal, contracted with generators on the v, or
vp line, respectively. Consider first the antisymmetric
term, which is given by

(4.39)

1 1 1 1

ab (UAr Up, Uc) =

E(TbTa - TaTb)]deldeZ

1 1
X - .
|:Uc'k1+i6 Uc'k2+i€:|

v k) tievy ky+ieki+ieks +ieve- (ky +ky) +ie

(4.40)

(In the color-generator notation described in Sec. IV D below, the color operator associated with this antisymmetric term
takes the form [Tg - T¢, T¢ - T4].) The same change of variables, Eq. (4.35), leads to an expression that is again manifestly
antisymmetric under the relabeling &1, < 21, ki 7 < ka7,

i« 1
Eza;t gym)(UA, Up, Uc) = E(TbTa - TaTb)

1 1 1

1
(V4 - UC)(UB ’ Uc) f

1
&mi — k%,T +ie

2
l_[dfidnidDizki,T Uav
11 2 A'UB

(vave)lvg-ve)

1

& tiemtieé& +m —ver-kirtie &+ —verkyp t i€
EE—&+m—n —ver (kb —k)r

Et &+t —ver(k k) +ie

The entire color-antisymmetric part of the infrared region
thus vanishes whenever the eikonal approximation is valid,
and the cancellation is exact for the eikonal amplitudes we
consider here.

Turning to the symmetric term, we need only use the
eikonal identity 1/[x(x + y)] + 1/[y(x + y)] = 1/(xy) to
rewrite it as the product of the two lowest-order single-
gluon exchange diagrams,

X 1
E;gm)(UA: vp, Uc) = E(TbTa + T,Tp)

1
X[deli,
vg k| + i€
1 1
veky +ie k3 +ie

1
x]d%i,
UA'k2+l€
1 1
Uc'k2+i6 k%+l€

(4.42)

(In the color-generator notation described in Sec. IV D, the
color operator associated with this symmetric term takes
the form {Ty - T¢, T¢ - Ts}.) These diagrams have the
correct color and kinematic structure to represent the
two-loop terms in the exponentiation of the color-matrix

(4.41)

[
of one-loop infrared poles. They are precisely cancelled in
the two-loop soft function by the corresponding products
of one-loop counterterms.’

We conclude that the entire two-loop anomalous dimen-
sion is due to the 2E diagrams and is given by Eq. (4.32), in
which we may remove the superscript (2E), to obtain

) _ K
re = 5 ry. (4.43)
We have thus determined that the two-loop anomalous
dimension color-mixing matrix is related to the one-loop
matrix by the same factor that relates the one- and two-loop
Sudakov anomalous dimensions, A(a;). Evidently, the
next-to-next-to-leading poles in amplitudes with color ex-
change are generated by the same exponentiation of
“webs” as for the elastic form factor [34,35].
Additionally, we note that, in the ‘“‘bremsstrahlung” or
CMW scheme [36], this contribution, along with the cor-
responding term in the cusp anomalous dimension, is
absorbed into a redefinition of the strong coupling, which
effectively boosts the strength of parton showering.

5Again, as in the discussion of the three-gluon three-eikonal
diagrams above, our change of variables does not apply in the
case of forward scattering.
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C. Expansion of the soft function

To relate the soft anomalous dimension to fixed-order
calculations, we expand the resummed soft function, given
as a path-ordered exponential in Eq. (2.25), to order O(a?).
The result is

BO A 1 1 e 2 2
2\ F*(gf) T F*(gf)
168 T de\ 7

where in the second equality we have used Eq. (4.43) for
the two-loop anomalous dimension matrix. Combining this
result with the second-order minimal jet function,
Eq. (3.7), in the formula for the factorized amplitude,
Eq. (3.4), we will derive a result to compare directly with
the pole structure of explicit two-loop calculations.

D. Iterative color-matrix form

Given the one- and two-loop soft anomalous dimension
matrices (4.23) and (4.43), and the expansion of the quark
jet function, as in Eq. (3.7), we can use the factorized
amplitude, Eq. (3.4), to calculate all infrared and collinear
poles at order a2 for quark-antiquark scattering. The result
will be a set of coefficients of the specific basis tensors in
color space that we have chosen, Fig. 2. In this basis, we
can perform threshold resummation for jet and other cross
sections.

To compare to explicit calculations at the two-loop level,
however, and to generalize to higher numbers of external
partons, it is convenient to make contact with a somewhat
different notation, in which the color interactions of soft
gluons are represented by a color matrix T¢ for the inser-
tion of a gluon on the external line i, with T¢ a generator in
the color representation of that parton, i, whose color-
matrix (rather than generator) indices are summed against
those of the lower-order amplitude that is “dressed” by
this soft gluon. In the notation of Eq. (2.2) above for the
color content of an amplitude, the action of the generators
may be made explicit as the action of a vector, with indices
in the adjoint representation; for example, fori =1,

(T¢I M, .. —M[“(ﬁ,, a (1), e )

X 81(T )d]rl (CL){r],rz...}’

where §; = *1 absorbs minus signs associated with anti-
particles and crossing. In the convention of Ref. [14], §; =
1 when i is an eikonal line representing an outgoing quark

(4.45)
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or gluon, or incoming antiquark; 6; = —1 for an incoming
quark or gluon, or outgoing antiquark. Defined in this way,
the vector color-generator matrices obey the fundamental
relation Y, T; = 0, which is an expression of gauge invari-
ance. The T;’s are conventionally normalized to T; - T; =
C;,, withi=gq, g.

A gluon exchanged between two parton lines i and j
produces the product T; - T}, which acts on an amplitude in
a fashion precisely similar to Eq. (4.45). This notation
allows for a convenient iterative expression for color ex-
change due to soft gluon exchange, without requiring an
explicit choice for the color basis.

The color-space notation above may be applied to the
computation of the soft function as well as to the amplitude
itself. Consider the soft function at a single loop, deter-
mined by the one-loop soft anomalous dimension. As we
have seen, the latter is built up from the contributions of
soft gluon exchanges between pairs of eikonal lines. From
each exchange, the contribution to the anomalous dimen-
sion is found from Eq. (2.21), where the one-loop single-
pole term in Zg_ equals the one-loop UV pole term com-
puted from the corresponding diagram.

Each diagrammatic contribution, then, is proportional to
a product T; - T; acting on the lower-order amplitude,
multiplied by the result of the eikonal integral. Referring
to Fig. 1, the relevant single-pole coefficients are given in
Eq. (4.13). The action of F(Sl‘_)
of all such terms, with a subtraction for the jet anomalous
dimensions; this subtraction is proportional to the identity
matrix in color space, as in Eq. (2.23). This gives

F§?( )IJ\M = [ < (isj”W;)

on the color tensor is the sum

> > (6T 6T

i€f j#ief
;F[ ](1>(Zo>}|m )
gz

Apem(g) |
ZZT T; ln<

tEt JFEL

>|mf> (4.46)

where s;; = (p; + p;)?, with all momenta defined to flow
into (or out of) the amplitude. For the four-parton case
above, s, = s, s;3 = ¢, and so forth. The overall 1/2
compensates for double counting in the sum. To derive
the final result, we have used the explicit forms of the J,’s
described above, as well as the identities > ;T; = 0 and
T, - T; = C; (in the quark scattering case, all C; = Cf). In
this notation the color identities enforce the cancellation of
the collinear-sensitive In(1/v?) terms.
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Identical considerations apply to the two-loop case. The
nonvanishing anomalous dimension matrix is again a sum
of diagrammatic contributions, corresponding to gluon
exchange processes involving two eikonal lines only. As
we have seen, these contributions have the same color-
generator structure, T; - T;, found at one loop. The 3E
diagrams have a more complicated color structure, but
they do not contribute to the two-loop soft anomalous
dimension matrix.

To be more specific, we saw that diagram (h) in Fig. 3
can be organized into antisymmetric and symmetric color
structures, which can be represented as commutators and
anticommutators of one-loop color structures, of the form
[T;- T, T, T,]and {T; - T;, T; - T, }. Note that the anti-
symmetric quantity can be written as

(4.47)

As the final form shows, it is totally antisymmetric under
permutations of the three eikonal lines. This is also the
form of the color factor for the other type of 3E diagram,
the three-gluon diagram (g) in Fig. 3.

As emphasized above, the velocity factors multiplying
both commutator and anticommutator structures vanish.
(In the case of the anticommutator, the vanishing occurs
after adding the one-loop counterterms.) Nevertheless, we
display the commutator in Eq. (4.47), because it has oc-
curred in the literature before. We will encounter such
terms below in our analysis of explicit two-loop calcula-
tions, and show how they are consistent with the specific
solution for the soft anomalous dimension, Eq. (4.44), in
which this combination of color generators does not
appear.

E. Generalizations

The analysis given above applies far beyond the 2 — 2
quark-antiquark scattering amplitude. When the soft
anomalous dimension is expressed in terms of color gen-
erators, as in Eq. (4.46) at one loop, and using this equation
and Eq. (4.43) to do so at two loops, the result is slightly
less explicit than, say, Eq. (4.23), but it is much more
general. When we generalize from quark and antiquark
to gluon lines, and when we add more partons in the final
state, the only change in our considerations above is to
change the color generators T;, and sum over more varia-
bles i and j. The eikonal momentum integrals that give rise
to the coefficients of the generators are the same for any
choice of parton pairs or triplets.

In these terms, the two-loop results organized in
Egs. (4.43) and (4.46) are not limited to quark-antiquark
scattering, but apply to the scattering of any flavor combi-
nation. Furthermore, these relations are by no means lim-
ited to 2 — 2 scattering, and apply to any 2 — n process, as
in multijet production. These results, therefore, are a step
toward threshold and related resummations in hadronic
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scattering [3,6] at the level of next-to-next-to-leading
logarithm.

At present, however, for the purposes of resummation
we must still rely upon the explicit form of the matrix as in
Eq. (2.25) to generate the amplitude at arbitrary orders.
Anticipating further applications, it will be useful to inves-
tigate flexible choices of color basis, perhaps based on the
trace notation described, for example, in Ref. [37] (this
point was noted in Ref. [6]). We reserve these consider-
ations for future work.

V. SINGLE POLES AT NNLO

In this section, we combine the expansions of the jet and
soft functions in the minimal factorized amplitude,
Egs. (3.4) and (3.6), and give an explicit expression for
infrared poles to two loops, including single poles. We go
on to compare these “‘postdictions’ of the two-loop single-
pole terms to the results of explicit calculations, and verify
that they agree. Traditionally, these results have been pre-
sented in a form proposed some time before by Catani [14],
and we will briefly review this formalism and relate it to the
two-loop expansion of our resummed expressions.

A. Two-loop poles from the factorized amplitude

Here, as above, we adopt the notation f(a,) =
S (ay /)" £ In this notation, we can express the Born
and one-loop amplitudes for process f in terms of the
factorized jet, soft, and hard functions of Eq. (3.6) as

| M) = 1H), (5.1)
| MOy = (ZE[M + S§1)>|3\4§°)> +1H Wy
ief
BVERE AL IR T ()
~ (a3 (gi g e)
1
+ grg))m;% + | HD), (5.2)

where for the jet functions we have used the minimal form

(3.3). In the second equality for Ij\/l(fl)), we have used
explicit expressions for the jet functions and the soft ma-
trix, the latter from Eq. (4.44). Using these results, we find
for the two-loop amplitude,

1 ) 2 .
|M2) = [§<ZE[‘](1) + sg”) +E 4 s
ief ief

1
_ §(S§1>)z}|m§m>

- (ZEWD + sﬁ”>|3{§”> +|HP).  (53)

ief

Now both the E1® and the SIS") are given by sums of pure
poles in &. As a result, their squares and products all begin
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at 1/&>. At two loops, then, the single-pole terms that

multiply the Born amplitude |:M§0)> in Eq. (5.3) are given
entirely by the single poles in EUI® and S?). From
Eq. (3.3) for the jets, and Eq. (4.44) for the soft matrix,
these poles are found from the coefficients of the soft and

jet anomalous dimensions,

M) = [ (ZE[I](I) o

ief

F(l)) +y Z 0

ief j=

1682

- [ZE[I"](Z) -

ief

. 1
i 4
- (E B+

ief

Bo F(l)}UVl;O))

1

Erng)}lj\/l§0)>

F<;f>>|3{ Oy 4 |HE), (5.4)

where we have separated the double- and higher-order pole
terms from single-pole terms that multiply the Born am-
plitude, followed by double and single poles times the one-
loop hard scattering, and finally the two-loop hard
scattering.

From Eq. (3.9), the two-loop single-pole terms that
multiply the Born amplitude IiMlgo)) in Eq. (5.4) are given
by

[ SR 4

ief

gg]@)

L o0y _ 1 Bo GV (0)
— =-| - +
ae LS }Wf ) s[ 8 32
K
+§F<;j}|jv1§°>>, (5.5)

where we recall the notation of Eq. (3.8) for the coefficients
Gl (g). Given that the one- and two-loop Gl have
been known for a long time, and that we have just calcu-
lated the two-loop soft anomalous dimension matrix, this
expression provides an explicit form for the intrinsic two-
loop single poles in dimensionally regulated amplitudes.
Note that a redefinition of Sgl) to include a non-pole term
would both change the definition of | §1)> at one loop in
Eq. (5.2), and introduce single-pole terms into the (ELI1D) +
S;l))2 contribution to the two-loop expression, Eq. (5.3). As
we shall see below, the Born-times-single-pole terms re-
main invariant under this shift only if the shift commutes
with the F(Slf). We therefore need all of the expansion (5.4),

in order to make contact with the results of explicit two-
loop calculations at the single-pole level.

B. One- and two-loop amplitudes in Catani’s notation

To compare to existing calculations, we now review the
notation of Ref. [14], in which they are normally presented.
We first observe that, in this notation, amplitudes are
organized in powers of (a,/2), rather than (a,/m). We
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will distinguish this trivial difference below by a prime in
the color states, as I.’M;(”)> = 2”|.’MIE") ).

In this formalism, the single- and double-pole structure
of one-loop amplitudes is expressed in terms of the color-
generator operators introduced above,

—ey(l)
1“)()—5“1 PRI T)[lﬁ”}

IEfj#:t
2 \e
>< < M ) '
—Sij

with (1) = — vy, the logarithmic derivative of the Gamma
function. Here y, = By/2 and Té = Cy for gluons (i =
), and y;/T? = 3/2 for i = q or G. The poles of the one-
loop amplitude in color-state notation are then represented
as

(5.6)

My = 1) M) + M. (5.)

The explicit relation to the resummation formalism at
one loop is found by expanding I;l) in powers of &,

1| MOy = [zzE[ 10 (g )+ F(“ L@ ZT2

ief =
2
)
2; Sij
Yi
o) o
= [ZZE[I](I)(S) + = F(l) + I(l)fm:||:]\/l/(0)>
ief

(5.8)

Taking into account the overall factor of 2 from the expan-
sion in a /217, the pole terms in Eq. (5.7) are thus identical
to those in Eq. (5.2). The matrix Ig) generates as well
explicit u-dependent finite contributions contained in
Ilgl)ﬁ“, which in the minimal factorization are absorbed
into the one-loop hard function | ;). The one-loop infra-
red finite amplitudes are related by

|g_[;(1)> _ |M;(1)fin> + I;l) finlmé(o)) (59)

This is an example of a finite shift of the sort mentioned
above, which redefines the finite function at one loop.

At two loops, Ref. [14] predicted the fourth- through
second-order poles in terms of the generators Igl), and
absorbed the then-unknown single-pole contributions in
terms of a color operator H(fz),
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1

1 (10 + £2) +
&

('BO + K) 11" (2¢) + HP (e).

eV (1 — 2¢)
I'a—-e

(5.10)

17(e) = —

The two-loop amplitude is then organized as

| My = 12 ()| MOy + 10 ()| My + | M2 iy,

(5.11)

In the intervening years, the color generators Hf) have
been determined by matching to the single-pole structure
of explicit two-loop QCD scattering amplitude calcula-
tions, for example, gg¢ — gg, 93 — g8, 94 — qg, and
ete” — ggg [10-12,19,20]. Here we follow Ref. [20]
and write

H{(e) {ZH(Z) + H<2>} +0(), (512

ief

where we split the single-pole factor into a color-diagonal
term, which can be represented as a sum of constants H 52)

for each external parton i, and a matrix I:I?) that includes
all color mixing. This matrix can be written as [10-
12,19,20]

'y (2 . a
HY =i fo06 TN TETE
(i,j.k)
X ln< ”)m( ”‘)m( Sk’), (5.13)
Sk ~Ski —Sij
where the sum is over distinguishable but unordered trip-
lets of external lines (i, j, k). We note the similarity to the
color structure from the 3E diagrams, Eq. (4.47). We
emphasize that this form has been obtained directly only
for processes with at most four partonic legs. In Ref. [20] it

was also shown to be consistent with the proper collinear
behavior of the 2 — n gluon amplitudes.
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It is these expressions that we will compare to the two-
loop expansion of the factorized amplitude, Egs. (5.4) and
(5.5). Rather than provide explicit expressions at this point
for the constants H f.z) from Ref. [20], we will derive below
expressions relating the constants Hl(z) to the jet anomalous
dimensions (in the MS scheme). Here we will find useful
an identity found in Ref. [38]. The matrix I:IEZ) in Eq. (5.13)
will emerge from our results for the two-loop soft anoma-
lous dimension matrix, plus the effects of a one-loop finite
color-mixing term. We now turn to this exercise.

C. H? from the anomalous dimensions

Inserting the definition of 1%, Eq. (5.10), into Eq. (5.11)
and expanding to the accuracy of £°, we readily find

M) = S AP ML) + [%(15”(2@ - 1)

- <1< - 385(2) ,30) 11"(2¢) + H(¢)

+ (9(80):||.7Vl;(0)> + IEI)(s)IMﬁ(I) fin>

+ | M) Finy, (5.14)

We will relate this expression to the single-pole result from
the factorized amplitude, Eqgs. (5.4) and (5.5).

The single-pole terms in Eq. (5.14) that multiply the
Born amplitude come from two sources: the (I;l))2 opera-
tor on the first line, and the terms in the square brackets on
the first and second lines, which also include finite correc-
tions indicated by +O(£?).

To make contact with the expansion of the resummed
amplitude, Eq. (5.4), we first separate the poles in each of

the Iﬁl) terms, according to Eq. (5.8),

in 'inl 1 fin fin
Ijvl;@)>—[ <22Em<1)(8)+ F‘”) +2<2Em<1>( )>I(l>f }IM’“’)H [(Ip)r gr(slf)+grfs]f)1§-l)f >+(I§‘“ )2}|«7\4§(O)>

ief ief

[30 (22 E0(25) ~ 23 EiN (5) -

ief

H(z)(8)+I(z)ﬁn}lj\,l/(o)>+[2ZE[ 10 (g) + — F(1)+I(1)f1ni||j\/l/(1)fm>+ |M/(2)f1n>

ief

(1)) +3§(2)BoZE[z]<1)+ K<2ZE[I]<1>(2 &)+ F(l))

ief

(5.15)

where in Igz)ﬁ“ we isolate the finite terms from If) that multiply the Born amplitude. Comparison with Eq. (5.4) requires
further that we commute the soft anomalous dimension matrices with poles to the left of the finite amplitudes, and that we
also reexpress | M'Vfiny in terms of | (V) using Eq. (5.9). The first step, in particular, leads to an additional commutator
contribution at the level of the single poles times the Born amplitude,
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| My = <22E[,](1>(8) 4+ F(l)) | MOy + [ﬁo <22Em<1>(28) — 25 E(e) FfJ}) + KZ }| M)

ief ief 2e

3{(2)Bo ia N1 I ()fin 0 2 0

- [788 SEY + K(Z L EFQ) + g[lﬁ) TYT+ Hy )(s)}lj\/lg( )
it i€t
[2215[ 0 (e) + - Fm}w{’“b +|H®), (5.16)
ief
Herq we hgve organized the expression just as in Eq. (5.4), |j]\/l’(2) | _ l Hz('Z) 3 £(2)Bo c
starting with the square of one-loop pole terms, two-loop £ >smgle pole X Bom = = Z 4 32 i
iet

second- and third-order poles, and then first-order poles, all
times the Born amplitude, followed by poles times the one-
loop hard amplitude and finally the two-loop hard part,

4 1 .
|1y = (If) fin _ 5(Ig) fm)2>|:M1/c(0)> I OLIE YO

+ | M2 iy, (5.17)

We are now ready to compare this expression to the two-
loop single-pole terms of Eq. (5.5). Higher-order poles can
easily be checked in a similar manner [9].

Consider first the matrix parts of Egs. (5.5) and (5.16).
Recalling the factor of 4 associated with changing from the

coefficient of (a,/7)? to (a;/27)?, we see that the KI'glf)

term is identical in the two expressions. Consistency then
requires the remarkable result that the commutator of

Ip)ﬁ" in Eq. (5.8) with the one-loop soft anomalous di-

mension in Eq. (4.46) precisely cancel the two-loop ﬁ(f2)
function as defined in Eq. (5.13),

[1;” o, rgg} ae

> (5.18)

In fact, a compact calculation, given in Appendix D, shows

that Eq. (5.18) indeed holds for the explicit matrix I:I?)
given in Eq. (5.13), for arbitrary 2 — 2 processes, and also
for 2 — n processes where all particles are identical. For
those processes with five or more partons for which the
quantities y;/T? are not all identical, the commutator is
more complicated, as can be seen by inspecting Eq. (5.8),
and as discussed in Appendix D. Because we know the
anomalous dimension matrix for all these processes, how-
ever, Eq. (5.18) can be turned around and taken as a
definition of the corresponding matrices I:I?). Recently,
the soft anomalous dimension matrix F(Szf) for 2 — 2 pro-
cesses was computed [18] by making use of just this
connection to I:If) , along with the explicit results for
IAI?) for quark-quark scattering [10].

The remaining, color-diagonal, single-pole terms in
Eq. (5.16) are found using the values of the one-loop
quantities EFV given in Eq. (3.9), and the form of H{”
given in Eq. (5.12). Then the single poles times Born
amplitudes of Eq. (5.16) are given by

KG[!](U i| I M/(()))

1 10

t 5 F§(_>|mf< ", (5.19)
where we have suppressed dependence that contributes
only at the level £°. The comparison of Eq. (5.19) with
the expansion from the resummed amplitude, Eq. (5.5), is
now trivial. We simply appeal to the striking identity noted
explicitly by Ravindran, Smith, and van Neerven [38],
which in our notation is written as

) {i1(1)
H;” 3¢ (2),3 G [1(2)
n 0 C; = 4E}"", (5.20)
where E[li](2) is given in Eq. (3.9). In Ref. [38] this expres-

sion was observed to imply a close relationship between

the H §2> constants and the form factors. We now see that,
aside from color mixing, all the single-pole terms are
identical to those in the form factors. Indeed, the precise

terms relating the Hl@) to the single-pole residues of the
elastic form factor are present simply to cancel a set of
“extra’ single-pole terms generated from the expansion of
IEI) in the two-loop amplitude. As in the case of the color-
mixing anomalous dimensions, we can also consider

Eq. (5.20) as a definition of the constants HEQ).

In summary, we have shown that the full single-pole
structure of the two-loop amplitudes can be reconstructed
from the same anomalous dimensions that determine the
next-to-next-to-leading poles of the factorized jet and soft
functions at all orders in pertubation theory. This relation,
and the explicit forms of the anomalous dimensions, hold
for partonic scattering amplitudes with arbitrary numbers
of external lines.

VI. CONCLUSIONS

We have extended the factorization and resummation
formalisms for exclusive amplitudes in QCD to next-to-
next-to-leading poles in these amplitudes. The same
anomalous dimension matrices, calculated here directly
for the first time at two loops, control a variety of re-
summed cross sections at NNLL. These calculations gen-
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eralize the determination of the Sudakov anomalous di-
mensions to nontrivial color mixing.

We verified the formalism and anomalous dimensions by
showing that they allow us to reproduce the very nontrivial
color and momentum structure of single infrared poles at
next-to-next-to-leading order for 2 — 2 processes in the
literature.

The calculation of the NNLO soft anomalous dimen-
sions opens the door to threshold resummation at next-to-
next-to-leading logarithm for multijet cross sections
[4,6,7]. Perhaps our most striking result is the discovery
that the two-loop soft anomalous dimension matrix is
obtained from the one-loop matrix simply by multiplying
by Ka,/(27), where K is the constant given in Eq. (4.29).
This is exactly the same property obeyed by the scalar
Sudakov or “cusp” anomalous dimension.

Aside from its intrinsic interest, this relation will make
possible next-to-next-to-leading logarithmic resummation
formulas in a closed form, since it will be possible to
diagonalize the two-loop anomalous dimension matrix
independently of the running of the coupling [34-36],
using the same color eigenvectors found at one loop
[4,6,7,39,40].

Our analysis applies not only to 2 — n processes rele-
vant to hadronic colliders, but also to the inelastic scatter-
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bers of partons from a color-singlet source in leptonic
annihilation. It will clearly also be of interest to extend
this analysis to massive external lines.
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APPENDIX A: ANOMALOUS DIMENSIONS

In this appendix, we provide the low-order anomalous
dimensions entering the jet function, as defined in
Egs. (2.7) and (3.7). We give the nth-order coefficients

ing of a parton by a color-singlet source, as in deep- 7[,?(”), KLU and GUA™ in an expansion in powers of
inelastic scattering, and to the creation of arbitrary num- a,(u?)/m,
|
. . 1
A0 Zoc, IO _ k=g, [ CA< _ §(2)> TF”F:| K0 = I,
&
A I 3
acte — o Posaw g =2, 4 oS - ) + 066
(g2 _ 22 1 2545 209
=3C —={(2)+L(3) |+ -C4C +—2—133—CT +=Z2 Al
G =33 15~ 540 + €0 |+ 1 CaC T + 5 4@ 133 | - Cetens S 4500 @y
G = B0 Cas) + 0Ge2)
10 11 1 13
Gy = 02[27 3@ 140 |+ Culteni| 5+ 2@ 5 Coteme + B

where Cq7 = Cp, Cg = (Cy4, and

34

B Z_Cfx

3 - 4CFTFnF

0
- ?CATFHF' (A2)

The results for g[i](n) were obtained from Ref. [27], which
also contains results through three loops. We shift the
gluonic expressions by terms proportional to SB-function
coefficients, which take into account the effects of renorm-
alizing the operator G¢,,G“*”, as explained in Ref. [38].
Because we only quote results through two-loop order,
some of the results for Gl could also have been ex-
tracted from the two-loop quark electromagnetic form

{
factor [25] and from the gg — Higgs boson amplitude
[26].

APPENDIX B: ONE-LOOP VELOCITY FACTORS

1. Basic integrals

Consider the one-loop #-channel diagram shown in
Fig. 1(a). The velocity factor is given by

F, = (ign®P(v; - v3) f " de f " dB D(vsar + v, )

8)2

= (igp P SF(I —&)(v; - v3)

1
. ﬁ) daj; s [(vza + v B)*]' %"

(B1)

074004-18



TWO-LOOP SOFT ANOMALOUS DIMENSION MATRIX ...
We will use the following change of variables:

a+ B=mn,
with Jacobian 7. For infrared regularization we impose

a<1l o n<-L.°Alsonote that 0 < z < 1. In terms of
the new variables, we have

a =zm, (B2)

F,= (igM8)24 - 8F(1 e)(v; - v3)
1//\z _ 1
f f sz+mﬂ—zWP*
1 1
= (ign*P =T = &)vy v3) 5
1
X d7’ , B3
|y % T ®9
with 7/ = % — 1. From the expansion of the above expres-

sion, the single-pole term and the finite part of the one-loop
diagram are given by

a, 1 !
F, = _(;>(”1 : v3){_11(1’1’ v3) + 5 (v, v3)
- 2

;[m(‘; > + ln(ﬂ'e”)}l (w1, v3)}

where we have defined the following integrals:

1 1 0 1
(v, v3) = dz—m— = / d7 ——M8M8M—,
v v3) /0 (v3z + v,2)? 0 (v3 + v12)?

o In(vs + v,7)?
I, (v, v3) = f d7 ———-,
S

withz=1-—z
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2. Evaluation of I; and 1,

We are evaluating eikonal diagrams derived from exter-
nal Wilson lines. By looking at the usual momentum-space
expressions for the amplitudes, one can easily see that all
these diagrams are scale independent in the eikonal veloc-
ities v;. With this property in mind we can simplify the
evaluations of the integrals by choosing v? = 1 without
loss of generality.

In order to evaluate I,(v;, v3) we use the following
change of variable [28]:

Y13
2 = £V z+1/ ze

(B6)
\/71 + \/7 e .
which gives
di 1 A/vivi(ers — e77n)
&2 P ®7

From this change of variable it is very easy to see that

0 1 _
IMWUQ:L‘”@+(mwy+wng+€7@@+N®]

"2 sinhy;

1 In(y + e~ 71)
oo |
251nhy13f { y+e s

It is easy to verify that the first and last terms in the right-
hand side of the final expression cancel, for example by
changing variables to u =y + ¢~ 13 in the first term and
u =y + e?5 in the last. This leaves us with

1 o (In(y + e13)
= dy - —
2 sinhy 3 fo { y+e B

_In(y + e ")
y —+ e713 }

Im(vl’ U3)

(B12)

SFor these one-loop diagrams there is one overall IR diver-
gence since all the collinear singularities factorize. Therefore, it
is sufficient to restrict only one of the gluon attachments.

Y13
d v?v?sinh dzi B8
Y =4Jvivy 713[ (waz + 0,27 (B3)
Therefore, we get
(B4) 1
L(v,v3) = —7i (B9)
\/vivisinhy s
Note that
1 :
Li(vy, —v3) = : (im = y13), (B10)
(BS) v?v3 sinhy 3
by analytic continuation.
With v? = 1, I,, can be written as
|
1 dld@+e”Wy+ﬂﬂ]ld@+e”®@+e“ﬂ
y y + e —VY13 y + 6713
ln(y +e") In(y+e ?3) In(y +e") B11
y —+ e_')/IB y —+ e’)/l3 y =+ 6713 }' ( )

[

In the high-energy limit y > 1, where e” > e~ 7, one
easily finds

1 . .
I,(vy, v3) = m[_le(_€27‘3) + Li,(1)
+ O(e™713)]
1 >
= — 4y + 0 )| (Bl
sinhy 3 [ 6 i3 Ole ):| (B13)

Following the same steps, one also gets
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1
sinhy 3

Im(vl’ _U3) = -

2
[% + vy + @(6_7‘3)}
(B14)

APPENDIX C: VELOCITY FACTORS FOR
2E DIAGRAMS

We begin our analysis of the 2E diagrams with the
diagram that has a three-gluon vertex, Fig. 3(f). We follow
Refs. [28,41] and write the three-gluon vertex as

M,,p(k L—k—10)= W,p(k )+ DM,,p(k, D), (C1H
where
M,,p(k H=QIl+ k)Mg,,p +2k,80 — 2k, 8 1) ©2)
,u,Vp(k l) Vg,up (k + l)pg/.un

and where k and [ are the loop momenta. Indices v and p
attach to the v line. The diagram resulting from V pvp 1
proportional to v3 before integration. We also note that the
contributions of Figs. 3(d) and 3(e) are entirely propor-
tional to v3 before integration, since a single gluon propa-
gator attaches twice to the same eikonal line. These v}
contributions turn out to cancel each other in the high-
energy limit. We give the result for the V,,,, contribution
below.

The contribution resulting from the D,,,, piece for the

diagram of Fig. 3(f) is given by

(1 Ca d’k  dPl 11
T2 ) @mP @mP K 1
1 |: 2'U3 Uy

“ ke 2L, ows )

W2E,3g*D(Ul: v3) = _(8M8)4d

U3 U }
+ (C3)
(vy - k)(vs - 1)
where we have suppressed factors of i€ in the denomina-
tors. One can evaluate the above expression in either
momentum or configuration space. We will not review
the derivation of the following result [28],

5. Cy 1
Wik p = <;> dm > {713 COth?’w(‘g + 16—85( ))

1

+ 8_12(7/13)}’ (C4)
€

where
Y13 i cothiy
Dy = smh2'y,;f ] dlpsinhz'y — sinh2y
13
sinhy 3

X 1 . C5

n( sinhy ) ©)

We analyze I, in order to get the high-energy behavior of
this amplitude. We start by writing 7, as
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Ly =1 T 1), (C6)
where
Ly = /713 aul - 2sinh23/1? In Sil'lh’yl3
0 sinh“y 3 — sinh“¢ sinhyy
X p(cothyy — 1)
_ 2]713 dy| 2sinh271_?, n Sil'lh’yw
0 sinh“y 3 — sinh“¢ sinhy
e
X (C7)
and where

I, =f713d . 2sinh2*y1.3 ; 1n<Si1:lh’yl3 g (CS)
0 sinh“y;3 — sinh“¢ sinhys

Note that /..,;—; is exponentially suppressed in ¢y when ¢y ~

sinh2y 3 —
v13. However, for small ¢ the factor ST 2+

O(e™713). Therefore we can rewrite I,,,_; as

Ly = ﬁ) " dtﬂ[Zln(%mﬂw(cothtp — 1)+ O )

- 2[713 fo ® dyplcothyy — 1) — ﬁ "y (cothy — 1)
- foo dipIn(1 — e 2¥)(cothyy — 1)}
0

=2(k;y13+ ky + k3). (C9)
We evaluate kq, k,, and k5 separately, starting with
[« () €_2¢
= [ dupteotny 1) =2 ["apn - g
0 0 1—e
(o) 00 1
=2 dippe 2DV = — £(2), C10
S | v S40) (C10)

We evaluate k, and k3 by using the same expansion with
answers

- 1
ky = — ﬁ dyleothy — 1) = = 34(3), (€I

and finally

ky = — E Ay Iin(1 — e=2¥)(cothyy — 1) = %5(3).
(C12)

Combining these results one finds
Lp—1 = £2)y13.

Now let us look at the remaining integral in Eq. (C6), I;.
After some trivial algebra one can rewrite /; as

(C13)

Iy = k4 + ks, (C14)

where
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1
(1 — e =9)(1 +

ky = ZJYI3 dp(ys — &)
+ O(e )

fyn

e~ (yu=¥)

72;1)\

MS

f}’l? Z 72)1)\ + @(3727‘3), (ClS)
with A = ;3 — ¢, from which
3 2 3
ky = 2[%4‘ 713¥_¥} (€10
Finally ks is given by
_ f dypin(l — e ) = 5(3)y (€17

by using the same kind of manipulations. Combining the
above results one finds

_ 7?3 + £(2)

L=+ 7o

Using Egs. (C13) and (C18), one finds, for the asymptotic
behavior of I,,

(C18)

7’13 35(2)

L(vy, v3) = =2+ —=—vy;3 + O(e™ ). (C19)

By using this result in the expression for the single-pole
S.D.
term, Wyg3,_p, we find

. a\2 1 1
W2£3g—D = <;> dFItI]CAE{_E'YIS
2
[3 Vit 4§(2>y13}} + 0@ )

1
+
16¢
L1
() [T 0= |
+ O(e™ 7). (C20)

The contribution of the \7#,,,) piece to the diagram in
Fig. 3(f) is given by [28]

a\2 r1Cy 1 £(2)
s.p- _(&s [1] ~A _
WzElfsng - <;> dn? E[ Yi3 t o
1
+ L) + (O(em)} (C21)
where
713 1
Li(yi3) = s1nh(2713)f smhzy sy
13
sinh?y;
X 1 . C22
n( sinhgs ) (€22)

One can analyze the high-energy asymptotics of /5 in a
similar way as above, with the result

372
Liy) = vh + —=— {( ) + O(e™ 7). (C23)
Combining Egs. (C20), (C21), and (C23), and letting
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vi3 =T, we find

s a\2 71Cy 1 T3
Wity = (L) i -5+ 0 -]
T2
+ [7 —T+ g(z)}} + 0@ ),
which is the result given in Eq. (4.26).

The amplitudes for diagrams (d) and (e) of Fig. 3 are
given in Ref. [29] and the high-energy asymptotics is
obtained with a similar analysis. The results are given in
Eq. (4.27). As mentioned above, these contributions cancel
the V uvp contribution from diagram (f), which is enclosed
by the second set of brackets in Eq. (C24).

Finally, let us look at the crossed-ladder diagram in

Fig. 3(b). The velocity factor in configuration space is
given by

(C24)

FCL»f(Ul’”3)=(igM8)4(v1‘v3)2ﬁ) dalﬁ 'da,
°° B
<[, 41| deDw + s

XD(v1a2+v3,81). (C25)

It is not difficult to show that the single-pole part of the
crossed-ladder velocity factor is precisely the negative of
that for the uncrossed-ladder diagram in Fig. 3(a).
Therefore, in the combination of the two diagrams, the
single-pole part of Eq. (C25) is multiplied by the difference
of the respective color factors. Although the individual
color factors are not proportional to the one-loop factor
d[f,] their difference evaluates to d[J’;CA /2. The following
result for the combination of diagrams (a) and (b) can also
be found in Ref. [28],’

Cy 1
Webr = ~(2) di Gt 5scomva Ltwr, ), (€20

J122

where we define

Y
Ii(vy, v3) = f P dyrp(yy3 — ) cothyp. (C27)
One can investigate the asymptotic behavior of I, in a way
similar to that presented for the three-gluon vertex diagram
in Fig. 3(f). One obtains the result

IR I )

=z + Y13
6 ) Yi3 — N O(e ).

Li(vy, v3 (C28)

By using the above relation in Eq. (C26), we find

5.p. 71Ca 1 2 3
W55+L”=_<w> W3 3 <6 g(z)y”_%)

+ O(e™ ). (C29)

"Needless to say, we can evaluate the integrals in momentum
space and get the same result.

074004-21



AYBAT, DIXON, AND STERMAN

Letting y;3 = T, this is the result given in Eq. (4.25), along
with the result for diagram (c) [28].

APPENDIX D: THE COMMUTATOR OF
1V AND T
The task of this appendix is to evaluate the commutator
[Igl)ﬁn, F(Slf)] appearing on the left-hand side of Eq. (5.18).
Note that the pole parts of Igl) can be identified with I’glf),

via Bq. (5.8). Writing out the O(&°) parts of II(pl)fin with
nontrivial color structure, the commutator of the finite and
pole parts of Ii-l) becomes

(1) fin (1) 1 1 2 M2
| P S 7 ZZ(Tk'TZ)<51n <:1<1>
3

[E7
2 2
Yk M M
+ Yegn(22)), (T,»T)ln(—)}
T% <_Skl>> ZJZ; ! —Sij
=C31+Cop, (D1)

where in the second equality we introduce notation to
separate the terms with three logarithms (C; ) from those
with two (Cy¢).

In the case where all external lines are gluons, or all are
quarks and/or antiquarks, all the ratios v,/ T% in the left-
hand side of the commutator are equal. This term is then
proportional to I‘(Slf), and C, ¢ vanishes. This argument does
not apply, of course, to mixed processes, such as gg — gg.
For the latter case, however, and for any other 2 — 2
process, we may use the color conservation identity
>4 T, = 0 and the simplicity of the kinematics to show
that C,¢ vanishes. The argument is simple, and may be
given for the case gg — gg without loss of generality. In
this case, we may take k = 1, 2 in Eq. (D1) to correspond
to the incoming quark and antiquark, and we consider just
these terms in the double-logarithmic part of the commu-
tator in Eq. (D1). We focus first on the terms with prefactor
¥,/T3 = 3/2. (The same argument applies to the remain-
ing terms, with prefactor v,/ Tz,.) These terms are propor-
tional to

[i PV T’1n<ﬂ—2>’ZZT"'Tfln<—Msz )} (D2)

=11F% Sk = 5F ij

This commutator would vanish if the sum over index k
were extended to k = 3 and 4. But this can by done by
observing that > ; T, = 0 implies, for example,
T, T,=T; T, +3T3+7T;-T; -T3), (D3)
where the squared terms commute with all combinations of
generators. At the same time, we have s, = s34. As a

result, in the left-hand term of the commutator (D2), we
may make the replacement
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2 2
Tl-T2ln<'u )—»T3~T41n<“ )
512 834

Analogous reasoning for each of the terms in the sum over
k and [ in Eq. (D2) shows that for 2 — 2 scattering the sum
of the missing terms with k = 3, 4 is identical in the
commutator to the sum from k£ = 1, 2. Inserting the miss-
ing terms, at the price of an overall factor of 1/2, the two
entries of the commutator become identical and it vanishes.
This argument, of course, is heavily dependent on the
specifics of 2 — 2 scattering. We know of no general
argument that would eliminate all double-logarithmic
terms in the commutator in 2 — n processes; indeed such
terms are generically present.

We now consider the triple-logarithmic terms in
Eq. (D1),

(D4)

O | m—

Cse

[Z T, T, > > T T.,-}bk,aij
k

*k i jFi

~

1
=5 Z [T, - T, T, T;]bya;;
ik
1 .
= 7 lfa,a2a3TZ|T;3T?2bkjaij> (D5)
£k

where in the first equality we have introduced the notation
by = In*(u?/(—sy)) = by, and a;j = 111(M2/(—Sij)) =
aj;. In the second equality in Eq. (D5) we have identified
the nonvanishing terms in the commutator, for which one
and only one pair of generators is matched between the two
entries of the commutator. Because the scalar products are
symmetric, there are four ways in which this matching may
occur, for fixed indices i # j # k. Finally, the third equal-
ity shows the result of performing the commutator explic-
itly for the generators on the j line. This form is
reminiscent of the color structure of I:IEZ), Eq. (5.13),
although the triple-logarithmic momentum factors are dif-
ferent, and depend on the renormalization scale .

To make contact between Eq. (D5) and the explicit

expression (5.13) for I:I(.Z), we convert the sum of unequal
choices of i, j, and k into a sum over distinguishable
triplets, denoted (i, j, k). For each such choice, there are
six permutations of the indices i, j, and k in the final
expression of Eq. (D5). These can be thought of as three
cyclic permutations, which leave the structure constants
the same, but change the momentum factors, and three
more (exchanges of i and k for fixed j, plus cyclic permu-
tations), which change the sign of the structure constants,
and change the kinematic factors.

Following this path, we define

Clij,jil = brjaji — bijajy (D6)

and rewrite Cs¢ as
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1 .

Cyp= 3 Z lfa,a2a3TZIT?Tz‘az[c[kj,ji] + ik T C[ji,ik]i|-
(i,j.k)

(D7)

A straightforward calculation shows that all of the u
dependence cancels in this expression. Relabeling the in-
dices, and using the antisymmetry of the structure con-
stants, we derive
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— I a ) rpas as
Cyp = — 5(;{).fa]a2a3TﬂTﬁTk“

—8;; =5 — Sk 1.
X ln< f)ln( ”‘)m( o ) = —_HP,
Sk ~ Ski —Sij 2
which establishes the result of Eq. (5.18). We emphasize

that, unlike our demonstration that C, ; vanishes, this result
holds for an arbitrary 2 — n process.

(D8)
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