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The weak form factor for B! K1B where K1B is the 1P1 state is calculated in the light-cone sum rules
(LCSR). Combining the quark model result for the form factor of B! K1A with K1A being the 3P1 state,
we have larger values for B! K1 form factors than the previous LCSR results. The increased form factors
reduce the discrepancy between theory and the experimental data for B! K1�. Some phenomenological
meanings are also discussed.
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I. INTRODUCTION

Radiative B decays to K are a rich laboratory for the
standard model and new physics. Especially, B! K�� is
well understood theoretically via the b! s� transition as
well as experimentally. Recently, higher resonant kaons are
observed by CLEO and B factories [1]. For example,
BELLE Collaboration has measured the radiative B!
K1 decays for the first time [2]:

 

B�B� ! K�1 �1270��� � �4:28� 0:94� 0:43� � 10�5;

B�B� ! K�1 �1400���< 1:44� 10�5; (1)

where K1 is the orbitally excited axial vector meson. In the
theoretical side, recent developments of the QCD factori-
zation (QCDF) [3] make it possible to calculate the hard
spectator contributions systematically in a factorized form
through the convolution at the heavy quark limit. B! K��
is already studied in this line [4–7]. One good point about
K1 is that there are lots of things shared with B! K��.
Basically both of them are governed by b! s�. And the
distribution amplitudes (DA) of K� and K1 are the same
except the overall factor of �5 which makes few differ-
ences in many calculations.

A straightforward extension of the analysis for B!
K�� to B! K1� was given in [8]. But the BELLE mea-
surements of Eq. (1) reveal that theory predicts much
smaller branching ratio than data [9,10]. This is an opposite
situation to that of B! K�� where theory predicts larger
branching ratio. Considering the resemblance between K�

and K1, it is quite unlikely that the same theoretical frame-
work would produce discrepancies with the experiment in
a reversed way.

In the previous analysis the main uncertainty of theory
lies in the nonperturbative form factors. Reference [8]
relies on the light-cone sum rule (LCSR) results for the
B! K1 form factors [11]. In [11] only the leading twist

DAs are considered without any nonasymptotic contribu-
tions. In this paper we revisit the B! K1 form factors in
the LCSR. There are three improvements compared to
[11]. First, higher-twist DAs are included; second, non-
asymptotic contributions are also considered; third, terms
proportional to m2

A, where mA is the mass of axial meson,
are not neglected.

For B! K� form factors, the LCSR results are updated
[12] up to the one-loop corrections to twist-2, 3 contribu-
tions and leading order twist-4. It is thus legitimate to
improve the theoretical accuracy for B! K1 form factors.

It is believed that the physical K1�1270� and K1�1400�
states are the mixtures of angular momentum eigenstates
1P1�K1B� and 3P1�K1A�. The mixing angle is not known
precisely, but is close to the maximal. This is a very natural
and convenient way to explain the suppression of one
decay mode compared to the other. For the suggestive
angles � � �37	;�58	 [13], negative ones are disfavored
by (1).

In [14], some of the Gegenbauer moments of K1B DAs
are calculated by the LCSR. With this information, we
explicitly calculate the B! K1B form factor in the
LCSR. Since K1B and K1A have different G-parity, their
Gegenbauer expansion will not be the same. Future study
on K1A is necessary to reinforce the reliability of current
work. We use the results from model calculations for K1A
to give B! K1 form factors. This form factor will also be
available for nonleptonic decay modes [15]

The paper is organized as follows. In the next section the
weak form factors and axial vector meson DAs are defined.
The LCSR evaluation is given in Sec. III. Section IV deals
with the LCSR results. In Sec. V, some discussions about
the results and their meanings appear. Conclusions are also
added at the end of this section.

II. FORM FACTORS AND DISTRIBUTION
AMPLITUDES

For the axial vector A�pA; ��, where pA (�) is the mo-
mentum (polarization) of A, the relevant B! A transition
matrix elements are defined as [8,16]*Electronic address: jplee@kias.re.kr
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hA�pA; ��j �qi���q
�bjB�pB�i � FA��q

2�
��� � q��pB � pA�� � �
�
��m

2
B �m

2
A�� � F

A
��q

2�
��� � q�q� � �
�
�q

2�

�
FA0 �q

2�

mBmA
��� � q�
�m2

B �m
2
A�q� � �pB � pA�q

2�; (2)

 hA�pA; ��j �qi����5q�bjB�pB�i � �iFA��q
2���������q��pA � pB��; (3)

where q � pB � pA and mB�mA� is the B (axial vector) meson mass. We use �0123 � �1.
The distribution amplitudes of the axial vector meson are given by [14,17,18]

 hA�pA; ��j �q1�y����5q2�x�j0i � ifAmA

Z 1

0
du ei�upy� �upx�

�
�� � z
p � z

pA�
	k�u� � g
�v�
? �u�� � �

�
�g
�v�
? �u�

�
�� � z

2�p � z�2
m2
Az�
�	k�u� � 2g�v�? �u� � g3�u��

�
; (4)

 hA�pA; ��j �q1�y���q2�x�j0i � �ifAmA��������p�z�
Z 1

0
du ei�upy� �upx� 1

4
g�a�? �u�; (5)

 

hA�pA; ��j �q1�y�����5q2�x�j0i � f?A
Z 1

0
du ei�upy� �upx�

�
����p

A
� � �

�
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A
��	?�u� �

�� � z

�p � z�2
m2
A�p

A
�z� � p

A
�z��

�
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1

2
	?�u� � h

�t�
k
�u� �

1

2
h3�u�

�
�

m2
A

2p � z
����z� � ���z��
�	?�u� � h3�u��

�
; (6)

 hA�pA; ��j �q1�y��5q2�x�j0i � f?A m
2
A��

� � z�
Z 1

0
du ei�upy� �upx� 1

2
h�s�
k
�u�: (7)

Here z � y� x and

 p� � p�A �
m2
Az�

2pA � z
(8)

is the lightlike vector, and �u � 1� u. The DAs 	k (twist-
2), g�v�? , g�a�? (twist-3), and g3 (twist-4) are antisymmetric
under the change u! �u while 	? (twist-2), h�t�

k
, h�s�

k
(twist-3), and h3 (twist-4) are symmetric in the SU�3� limit,
because of the G-parity. Thus

 

Z 1

0
duf�u� � 0; for f � 	k; g

�a�
? ; g

�v�
? ; g3: (9)

The leading twist DAs are expanded with the Gegenbauer
polynomials. In general, we can expand

 

	k�u� � 6u �u
X1
l�0

akl C
3=2
l �u� �u�;

	?�u� � 6u �u
�

1�
X1
l�0

a?l C
3=2
l �u� �u�

�
:

(10)

For twist-3 DAs, the Wandzura-Wilczek type approxima-
tion will be used;

 

g�v�? �u� ’
1

2

�Z u

0
dv
	k�v�

�v
�
Z 1

u
dv
	k�v�
v

�
;

g�a�? �u� ’ 2
�

�u
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0
dv
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�v
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Z 1

u
dv
	k�v�
v

�
;

h�t�
k
’ �u� �u�

�Z u

0
dv
	?�v�

�v
�
Z 1

u
dv
	?�v�
v

�
;

h�s�
k
’ 2

�
�u
Z u

0
dv
	?�v�

�v
� u

Z 1

u
dv
	?�v�
v

�
:

(11)

The twist-4 DAs will not be considered afterwards. The
first few Gegenbauer coefficients are recently calculated by
QCD sum rules [14].

III. SUM RULE EVALUATION

The main point of LCSR is to evaluate the two point
correlation function:

 �A � i
Z
d4x e�ipB�xhA�pA; ��jT
J�0�j

y
B�x��j0i: (12)

Here jyB�x� � �b�x�i�5q�x� is the interpolating current for
the B meson, and J�y� � �q�y��b�y� is the heavy-to-light
current with � being an appropriate gamma matrix. To
establish the sum rule, one calculates �A in two ways.
On one hand, �A is described in terms of hadronic ob-
servables. We call this �had

A . Explicitly,
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 �had
A �

hAjJ�0�jBihBjjyB�0�j0i

m2
B � p

2
B � i�

� �res:�; (13)

where the first term is the B meson contribution and (res.)
is the higher resonance one. The term hAjJ�0�jBi defines
the transition form factor while

 hBj �bi�5qj0i �
m2
B

mb
fB (14)

is proportional to the B meson decay constant fB. Here
�had
A is considered as an analytic function of p2

B. Using the
dispersion relation,

 �had
A �

Z 1
m2
b

ds

had�s�

s� p2
B

; (15)

where 
had�s� is the spectral density function. This is
another expression of Eq. (13), from which we can extract
the form of 
had.

On the other hand, �A can be written by quarks and
gluons, and hence by light-cone distribution amplitudes
(LCDAs). We call this �LC. From the dispersion relation

 �LC
A �

Z 1
m2
b

ds

LC�s�

s� p2
B

�
1

�

Z 1
m2
b

ds
Im�LC

A �s�

s� p2
B

; (16)

where the imaginary part of �LC
A will be expressed by the

LCDAs. At this stage, one assumes the quark-hadron dual-
ity for (res.) in Eq. (13) as

 �res:� �
1

�
ds
Z 1
s0

Im�LC
A �s�

s� p2
B

; (17)

up to possible subtractions. Here s0 is the continuum
threshold from which higher multiparticle states begin. In
the numerical analysis, s0 is considered as a hadronic
parameter.

Combining all this, one arrives at

 

hAjJ�0�jBihBjjyB�0�j0i

m2
B � p

2
B

�
1

�

Z s0

m2
b

ds
Im�LC

A �s�

s� p2
B

: (18)

After the Borel transformation over p2
B, we have the final

expression for the sum rule:
 

e�m
2
B=ThAjJ�0�jBihBjjyB�0�j0i

�
1

�

Z s0

m2
b

ds e�s=T Im�LC
A �s�; (19)

where T is the Borel parameter.
Among the three form factors FA�;0�q

2�, the most im-
portant one is FA��q

2 � 0� since only it is responsible for
the radiative decay of B! K1. Also, it can be shown that
FA��0� � FA��0� [12]. To extract FA�, we find it convenient
to choose J�0� � �qi����5q�b. The left-hand-side
(L.H.S.) of Eq. (19) is simply

 �L:H:S:� � �iFA��q
2���������q��pB � pA��

�

�
m2
B

mb
fB

�
e�m

2
B=T: (20)

The right-hand-side (R.H.S.) of Eq. (19) is rather involved.
After contracting the b �b quarks,

 

�R:H:S:� �
1

�

Z s0

m2
b

ds e�s=T Im
Z
d4x

Z d4k

�2��4
ei�k�pB��x

k2 �m2
b � i�


�hAj �q�0����q
�6kq�x�j0i �mbhAj �q�0����q

�q�x�j0i�: (21)

The two matrix elements in the above equation can be written, after some gamma matrix algebra, in terms of the LCDAs,
Eqs. (4)–(7). In Eqs. (4)–(7), the position coordinate x can be replaced effectively by

 x� !
@

i@� �up��
; (22)

which is guaranteed by the presence of ei �upx. On the other hand, for the factor 1=p � x

 

1

p � x
	�u� ! i

Z u

0
dv	�v�;

1

�p � x�2
	�u� ! i2

Z u

0
dv

Z v

0
dw	�w� �	 � 	?; g

�a�
? g

�v�
? ; g3�; (23)

where the surface terms are vanishing. In this way, one can remove x-dependence in the R.H.S. except in the exponent.
Thus the integration over x yields a delta function, 
�4�k� pB � �up�. Another delta function appears in the imaginary
part of 1=�k2 �m2

B � i��. Combining all together, one arrives at

 �R:H:S:� � �i��������q�p
�
A

Z s0

m2
b

dse�s=T
Z 1

0
duffAmA

1
4g
�a�
? �u�
�2�s � ��us� um2

A � �1� �u�q2��0s�

� fAmA
�k�u��s � ug
�v�
? �u��s �m

2
AG3�u��0s� � f?A mb
	?�u��s �m2

AH3�u��0s�g: (24)

Here we use the short-hand notation, �s � ��s�m2
b � 2 �up � pB�, and the differentiation is with respect to �up. It is

understood that at the final stage of calculation, p! pA. And the newly defined functions are
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 �k�u� �
Z u

0
dv
	k�v� � g

�v�
? �v��; G3�u� �

Z u

0
dv

Z v

0
dw
�	k�w� � 2g�v�? �w� � g3�w��;

H3�u� �
Z u

0
dv
h3�v� �	?�v��:

(25)

Equating Eqs. (20) and (25), after a little algebra, we have the final expression for the form factor FA��q
2 � 0�

 

FA��0� �
1

2
em

2
B=T
�
mb

m2
BfB

��
fAmA

e�s0=T

s0 �m2
A

�
�
s0 �m2

A

4
g�a�? �u0� �m

2
A
G3�u0�

u0

�

� fAmA

Z 1

u0

du
u

exp
�
�
m2
b � �um2

A

uT

��
�
uT �m2

b � �1� 2u�m2
A

4uT
g�a�? �u� ��k�u� � ug

�v�
? �u� �

m2
A

T
G3�u�
u

�

� f?A mbe
�s0=T

m2
A

s0 �m2
A

H3�u0�

u0
� f?A mb

Z 1

u0

du
u

exp
�
�
m2
b � �um2

A

uT

��
	?�u� �

m2
A

T
H3�u�
u

��
; (26)

where

 u0 �
m2
b �m

2
A

s0 �m2
A

: (27)

IV. RESULTS

In what follows, only the case where q2 � 0 is consid-
ered. The basic input constants are summarized in Table I.
The LCSR involves two important parameters, the contin-
uum threshold s0 and the Borel parameter T. Naively
thinking, the continuum threshold is roughly

 s0 ’ �mB �
���2 � �2mB �mb�

2; (28)

where �� � mB �mb. Numerically,

 s0 ’ �2mB �mb�
2 � s� � 33 GeV2; (29)

for mB � 5:27 GeV and mb � 4:8 GeV is consistent with
literature [12]. We take this value as a starting point to fix
s0.

In principle, FA� is independent of the unphysical Borel
parameter T. But in reality there is a sum rule window of T
where a physical quantity is stable. If T is too small, then
the higher-twist terms proportional to 1=Tn (n � 1; 2; � � � )
become too large. One requires, for example,

 

� 1
Tn terms�

�totalFA��
& 30%: (30)

This condition imposes the lower bound of T. The number
30% might be changed, but we adopt this value here. On
the other hand, if T is too large, then the contributions from
the continuum states become too large. We require that

 

1
�

R
1
s0
dse�s=T Im��s�

1
�

R
1
m2
b
dse�s=T Im��s�

& 30%: (31)

This constraint imposes the upper bound of T. Note that the
condition of Eq. (31) is used in [12] to determine the lower
bound of continuum threshold, s0. In this analysis, how-
ever, we start with s0 � s� to determine the sum rule
window, and then we fix s0 from the best stability of FA�
within the sum rule window.

From Eqs. (30) and (31) with s0 � s�, we have

 6:8 � T � 21:7 �GeV2�: (32)

This window has overlaps with that of [11], but not with
that of [12] where only vector mesons are considered. As
an illustration, plots of FA� over T for various s0 around s�
are given in Fig. 1. To find the best value of s0, we impose a
simple condition. We scan s0 which minimize the value

7.5 10 12.5 15 17.5 20 22.5

0.22

0.24

0.26

0.28

0.3

0.32

0.34

F A
+ (0)

T (GeV 2)

s∗ + 2 (GeV2)
s∗ + 1
s∗

s∗ − 1

s∗ − 2

FIG. 1. FA��0� vs T for various s0 around s�.

TABLE I. Input values. Gegenbauer moments are from [14].

Hadronic information
(in GeV)

Gegenbauer moments
(at 1 GeV)

mB 5.27 ak0 0.26

mb 4.8 ak1 �1:75

fB 0.161 ak2 0.13

mA 1.370 a?1 �0:13

fA 0.195 a?2 �0:02

a?3 �0:02
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FA��Tc � 5 GeV2� � FA��Tc � 5 GeV2�, where Tc is the
central value of T within the sum rule window. We find
that the best value of s0 is

 sb � 34:3 GeV2: (33)

Plots of FA� for various s0 around sb are shown in Fig. 2. A
closer look of Fig. 2 is given in Fig. 3, and the 3- dimensional plot of FA� against s0 and T is given in

Fig. 4. From the above analysis, we get

 FA��q
2 � 0;Tc� � 0:256�0:0040

�0:0044; (34)

where the errors are from the variation of s0 around sb by
�1 GeV2.

The observed axial kaons K1�1270� and K1�1400� are
mixtures of 1P1 and 3P1 states. Their form factors are
related via mixing angle � as [13,19]

 FB!K1�1270�
i � FA3

i sin�� FAi cos�;

FB!K1�1400�
i � FA3

i cos�� FAi sin�;
(35)

where i � 0;�;�. Here, FA3
i are the 3P1 form factors. We

use the result of [13], FA3
� �q

2 � 0� � 0:11. The mixing
angle � is not yet fixed precisely. Reference [13] suggests
� � �37	;�58	. Table II shows the values of FB!K1�1270�

�

and FB!K1�1400�
� for these angles. For negative angles, we

find

 FB!K1�1270�
� <FB!K1�1400�

� : (36)

Since other parameters of the branching ratio are not so
different in B! K1�1270�� and B! K1�1400��, one ex-
pects B�B! K1�1270���<B�B! K1�1400��� for the
negative mixing angles. This is not consistent with the
experimental data.

V. DISCUSSIONS AND CONCLUSIONS

As discussed in [9], the discrepancy between theory and
experiment for B�B! K1�1270 1400�� is mainly due to
the smallness of the relevant form factors. If there is no
mixing (i.e., � � 0), then FB!K1�1270�

� � FA� � 0:256. This
is considerably larger than the previous LCSR result of
[11], FB!K1�1270���

�;Safir � 0:14� 0:03. The mixing effects are
only 5.7% and �10:6% for � � 37	, 58	, respectively. In
[11], only the asymptotic form of leading twist DA,

 	asy
? �u� � 6u�1� u�; (37)

contributes to the sum rule. According to Eq. (31) of [11],

 FA�;Safir�0� �
1

2
em

2
B=T
�
mb

m2
BfB

�
f?A mb

Z 1

u0

du
u

� exp
�
�
m2
b � �um2

A

uT

�
	asy
? �u�: (38)

It should be compared with Eq. (27). Equation (27) im-
proves Eq. (38) in three ways: (1) higher-twist DAs are

10 12 14 16 18 20

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

F A
+ (0)

T (GeV 2)

FIG. 3. A closer look of Fig. 2.
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5
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0.22
0.24
0.26
0.28
0.3

33.5

34

34.5

35

F A
+ (0)

s0 (GeV 2)

T (GeV 2)

FIG. 4 (color online). 3-dimensional plot of FA�.

TABLE II. FB!K1�1270�
� and FB!K1�1400�

� for various �.

� 37	 �37	 58	 �58	

FB!K1�1270�
� 0.271 0.138 0.229 0.042
FB!K1�1400�
� �0:066 0.242 �0:159 0.276

7.5 10 12.5 15 17.5 20 22.5

0.22

0.24

0.26

0.28

0.3

0.32

0.34

F A
+ (0)

T (GeV 2)

sb + 2 (GeV2)
sb + 1
sb

sb − 1
sb − 2

FIG. 2. FA��0� vs T for various s0 around sb.
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included; (2) nonasymptotic contributions are also in-
cluded; (3) there is no term proportional to m2

A in
FA�;Safir�0�. With the parameter set used in the previous
section, we have FA�;Safir�0; s � sb;T � Tc� � 0:187.

This is larger than the value of FB!K1�1270���
�;Safir �

0:14� 0:03. But if we take the sum rule window of
Borel parameter adopted in [11], FA�;Safir�0; s � sb;T �
7:5 GeV2� � 0:151, which assures the consistency of the
present analysis. We can check how much the new im-

provements contribute to the form factor. The results are
summarized in Table III. One finds that nonasymptotic and
higher-twist DA contributions as well as nonzero mass
effects are considerable.

The increase of the form factor will reduce the discrep-
ancy between the theoretical predictions and experimental
data [9]. At next-to-leading (NLO) order of �s, the branch-
ing ratio of B! K1� is given by [8,9]

 B �B0 ! K0
1�� � 0:003

�
1�

m2
K1

m2
B

�
3
jFA��0���0:385� i0:014� � �f?A =GeV���0:024� i0:022�j2: (39)

The resulting branching ratios are given in Table IV. The
enhancement is significant and the theoretical prediction
becomes closer to the experimental data compared to the
previous analysis [8], though there is still a gap.

There are a few possibilities to improve further. First, the
precisions are different between Eqs. (27) and (39).
Equation (39) contains the hard spectator interactions
which appear as a convolution between the jet function
and the meson DAs. The DAs contributing to Eq. (39) are
leading twist ones and of asymptotic form. It is thus
necessary to include higher-twist and nonasymptotic con-
tributions in Eq. (39) at the same accuracy as was done in
this work. Also, Eq. (27) contains terms proportional to
m2
A, but Eq. (39) is the result of the heavy quark limit. One

can easily expect that the NLO of �QCD=mb corrections to
the QCDF framework might include the terms of mA=mb,
but there are no systematics so far. The hard spectator
interactions are given by the convolution of hard kernel
and meson DAs. Similar nonzerom2

A terms will also appear
in the axial vector DAs to affect the hard spectator inter-
actions. But this effect is not expected to be large.
According to [8], the hard spectator contributions amount
to roughly about 5% at the amplitude level.

Second, FA3
� could be larger. Actually there is no clue

about the size of FA3
� , but it might be that FA3

� is compa-
rable in size to FA�, just as in [13]. If this is the case, then
the form factor can be enhanced via mixing

 FB!K1�1270�
� � 0:256� �sin�� cos�� � 0:35
 0:36;

(40)

for � � 37	, 58	, which results in a large branching ratio,

 B �B0 ! K1�1270�0�� � 5:3� 10�5: (41)

In conclusion, we have calculated the B! K1B form
factor in LCSR. This analysis improves the previous one in
a few respects by including higher-twist DAs, nonasymp-
totic contributions, and nonzero m2

A terms. The value is
rather larger than the previous calculation and that from the
quark model result. Larger value is well accommodated to
the experimental data. One needs more information about
K1A and the mixing angle to reduce theoretical uncertain-
ties. To go beyond the current work, one can include the
NLO of �s which might not be so different from that for
B! K� [12]. And the study of B! K1� at higher accu-
racy comparable to this work will be necessary.
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