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The Lorentzian anti-de Sitter/conformal field theory correspondence implies a map between local
operators in supergravity and nonlocal operators in the CFT. By explicit computation we construct CFT
operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general
dimension in global, Poincaré and Rindler coordinates. We find that the CFT operators can be taken to
have compact support in a region of the complexified boundary whose size is set by the bulk radial
position. We show that at finite N the number of independent commuting operators localized within a bulk
volume saturates the holographic bound.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [1–4], in its Lorentzian version [5–7],
states that any bulk excitation is encoded on the boundary
by some CFT operator or state. In the semiclassical limit of
large N and large ’t Hooft coupling we expect to have free
local fields in the bulk. These bulk fields should be encoded
in the CFT. To see how this works consider a bulk field with
normalizable falloff near the boundary of AdS

 ��z; x� � z��0�x�:

Here z is a radial coordinate which vanishes at the bound-
ary. The bulk supergravity field can be expressed in terms
of the boundary field �0 via a kernel K

 ��z; x� �
Z
dx0K�x0jz; x��0�x

0�:

We will refer to K as a smearing function. �0�x� corre-
sponds to a local operator O�x� in the CFT [8]

 �0�x� $ O�x�:

Thus the AdS/CFT correspondence implies that local bulk
fields are dual to nonlocal boundary operators [6,9–11]

 ��z; x� $
Z
dx0K�x0jz; x�O�x0�: (1)

Bulk-to-bulk correlation functions, for example, are equal
to correlation functions of the corresponding nonlocal
operators in the CFT.
 

h��z1;x1���z2;x2�iSUGRA�
Z
dx01dx

0
2K�x

0
1jz1;x1�

�K�x02jz2;x2�hO�x
0
1�O�x

0
2�iCFT

Smearing functions are central to understanding
Lorentzian AdS/CFT: they define the map by which, in
the semiclassical limit, local bulk excitations are encoded
on the boundary. The semiclassical limit tightly constrains
behavior at finite N. For example, as we will see, smearing
functions can be used to count the number of independent
commuting operators inside a volume in the bulk, even at
finite N. They can also be used to study bulk locality and
causality: for example in [12] we used them to understand
the causal structure of a black hole from the boundary point
of view.

The main purpose of this paper is to compute smearing
functions in various pure AdS geometries. This continues
the study started in [12], where a two-dimensional AdS
spacetime was considered. In the present paper we extend
the analysis to higher dimensions and compute smearing
functions for global AdSd�1, for the Poincaré patch in d�
1 dimensions and for AdS3 in Rindler coordinates.

It is important to recognize that smearing functions
are not necessarily unique. In some cases the boundary
fields do not involve a complete set of Fourier modes and
we are free to add to the smearing function terms that
integrate to zero against all boundary fields. This freedom
enables us to present the smearing function in different
forms, which is useful depending on which aspect one
wishes to study.

For the impatient reader, let us briefly summarize our
main results. In global coordinates we find that the smear-
ing function can be chosen to have support on boundary
points that are spacelike separated from the bulk point.
This is illustrated in Fig. 1. The exact form of the smearing
function depends on the dimension: for even-dimensional
AdS it is given in (20), for odd-dimensional AdS it is given
in (33).

We also construct smearing functions in the Poincaré
patch. For even-dimensional AdS we find that the smearing
function can be taken to have support at spacelike separa-
tion in the Poincaré patch: see (35). For odd-dimensional
AdS the smearing function has support on the entire
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Poincaré boundary: see (39). An alternate form of the AdS3

Poincaré smearing function is given in (C5).
In Rindler coordinates we show that to construct a

smearing function we must analytically continue the spa-
tial coordinates of the boundary theory to imaginary val-
ues. This enables us to find a smearing function with
support on a compact region of the complexified geometry.
The explicit result for AdS3 is given in (54).

It is desirable to work with smearing functions that make
the boundary operators as sharply-localized as possible.
Our strongest results in this direction are achieved in
Rindler coordinates, where we find operators with compact
support on the complexified boundary. This enables us to
obtain an improved understanding of bulk causality.
Furthermore the statement of scale-radius duality [13,14]
can be made in a sharper way, since the size of the smeared
operator is determined by the radial position of the bulk
point. We would also like to stress that, as in [12], light
cone singularities of bulk correlators arise from UV singu-
larities of the boundary theory. This is true even for bulk
points deep inside AdS. Thus regions deep inside the bulk
cannot be associated with a boundary theory with a con-
ventional UV cutoff.

An outline of this paper is as follows. In Sec. II we
compute the smearing function in global coordinates. In
Sec. III we compute the smearing function in Poincaré
coordinates. In Sec. IV we compute the smearing function
for AdS3 in Rindler coordinates, and in Sec. V we discuss
some of the implications of our results for bulk locality and
holography. Finally appendix A presents an alternate deri-

vation of the global smearing function in even-dimensional
AdS, appendix B shows that the smearing functions are
AdS-covariant, and appendix C presents an alternate deri-
vation of the Poincaré smearing function in AdS3.

II. GLOBAL ADS

In this section we construct smearing functions in global
coordinates. The construction is based on mode sums. We
treat even-dimensional AdS in section II B and odd-
dimensional AdS in section II C. In appendix A we present
an alternate approach to the even-AdS global smearing
function, where the construction is based on a Greens
function.

A. Preliminaries

We will describe AdSD�d�1 in global coordinates

 ds2 �
R2

cos2�
��d�2 � d�2 � sin2�d�2

d�1� (2)

where R is the AdS radius, �1< �<1, 0 � � < �=2,
and d�2

d�1 is the metric on a unit �d� 1�-sphere. An AdS-
invariant distance function is given by

 ��xjx0� �
cos��� �0� � sin� sin�0 cos����0�

cos� cos�0
(3)

where ���0 is the angular separation on the sphere. For
��< �� �0 <� points with �> 1 are spacelike sepa-
rated, while points with � � 1 are lightlike separated and
points with �< 1 are timelike separated (although they
can only be connected by a timelike geodesic if�1<�<
1). Solutions to the wave equation ���m2�� � 0 can be
expanded in normalizable modes
 

���; �;�� �
X1
n�0

X
l;m

anlme
�i�2n�l����cos��sinl�

� P����d=2�;l��d�2��1�
n �� cos2��Ylm���

� c:c: (4)

where P��;��n is a Jacobi polynomial, Ylm is a spherical
harmonic, and the conformal dimension of the correspond-

ing operator is � � d
2�

����������������������
d2

4 �m
2R2

q
. In global coordinates

we define the boundary value of the field

 �global
0 ��;�� � lim

�!�=2

���; �;��

cos��
: (5)

B. Even AdS: Mode sum approach

We assume that D is even and construct a smearing
function starting from the mode expansion (4). We first
work at the center of AdS (meaning � � 0), where only the
s-wave contributes, and later extend our results to arbitrary
bulk points. At the center

FIG. 1 (color online). In global coordinates AdS resembles an
infinite cylinder. We have drawn the light cones emanating from
a bulk point and intersecting the boundary. The CFT operator has
support on the strip indicated in yellow, at spacelike separation
from the bulk point.
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 ���; � � 0;��

�
X1
n�0

ane
�i�2n����P����d=2�;�d=2��1�

n ��1� � c:c:

(6)

We can split the corresponding s-wave part of the bound-
ary field into its positive and negative frequency compo-
nents,

 �global
0 ��� � �global

0� ��� ��global
0� ��� (7)

 �global
0� �

X1
n�0

ane
�i�2n����P����d=2�;�d=2��1�

n �1� (8)

 �global
0� �

X1
n�0

a	ne
i�2n����P����d=2�;�d=2��1�

n �1�: (9)

Note that

 an �
1

�vol�Sd�1�P����d=2�;�d=2��1�
n �1�

�
Z �=2

��=2
d�

Z
d�

�������
g�
p

ei�2n�����global
0� ���: (10)

Plugging this back into the bulk mode expansion (6) we
can write the field at the origin of AdS (meaning the point
�0 � �0 � 0) as
 

�jorigin �
Z �=2

��=2
d�

Z
d�

�������
g�
p

K���;�j�
0; �0;�0��global

0�

� ��;�� � c:c: (11)

where

 K� �
1

�vol�Sd�1�

X1
n�0

ei�2n���� P
����d=2�;�d=2��1�
n ��1�

P����d=2�;�d=2��1�
n �1�

:

(12)

The sum can be evaluated as
 

K� �
���� d

2� 1�

�vol�Sd�1���d=2�
ei��

X1
n�0

��n� d
2�

��n� �� d
2� 1�

� ��ei2��n

�
1

�vol�Sd�1�
ei��F

�
1;
d
2
;��

d
2
� 1;�ei2�

�
(13)

where strictly speaking to make the sum convergent we
should have replaced �! �� i�.

In terms of z � ei2� we have K� �
1

�vol�Sd�1�
z�=2F�1; d2 ;��

d
2� 1;�z�. At this point it is use-

ful to make a z! 1=z transformation of the hypergeomet-
ric function. This gives

 

K� �
z�=2

�vol�Sd�1�

�
���� d

2� 1���d2� 1�

��d=2����� d=2�
z�1

� F
�
1; 1�

d
2
� �; 2�

d
2
;�

1

z

�

�
���� d

2� 1���1� d
2�

��1����� d� 1�
z�d=2

� F
�
d��;

d
2
;
d
2
;�

1

z

��
: (14)

It is important to note that smearing functions are not
unique, since we could replace

 K� ! K� � z
�=2

X1
n�1

cnz
�n (15)

for any set of cn: the extra terms involve Fourier compo-
nents which are absent from the mode expansion (8), so
they drop out when integrated against�global

0� . This freedom
can be used to eliminate the first line in (14), as can be seen
by expanding the hypergeometric function there in powers
of 1=z [15]. Then using F��;�;�; x� � �1� x��� in the
second line of (14) we are left with

 K� �
���� d

2� 1���1� d
2�

�vol�Sd�1����� d� 1�

� ���
z
p
�

1���
z
p

�
��d

: (16)

Note thatK� is real, so we can setK � K� � K�. The full
smearing function for a bulk point at the origin is then
given by

 K �
���� d

2� 1���1� d
2�

�vol�Sd�1����� d� 1�
�2 cos����d: (17)

It is useful to express this in terms of the invariant distance
(3). In global coordinates the regulated distance from the
origin of AdS to a point on the boundary is
lim�!�=2� cos� � cos�. In terms of this regulated dis-
tance the smearing function for a bulk point at the origin is

 K �
���� d

2� 1���1� d
2�

�vol�Sd�1����� d� 1�
lim

�!�=2
�2� cos����d: (18)

To extend this to an arbitrary bulk point P we can first
use an AdS isometry to move P to the origin, then apply the
smearing function (18) to the transformed boundary data.
Alternatively we can use the original boundary data but
transform the smearing function. This is straightforward
because (18) is AdS-covariant. Thus for an arbitrary bulk
point we have

 ��P� �
Z 1
�1

d�
Z
d�

�������
g�
p

K��;�jP��global
0 ��;�� (19)

where
 

K��;�jP� � cd� lim
�!�=2

���xjP� cos����d	�spacelike�

cd� �
��1��d�1�=22��D���� d

2� 1�

�d=2���� d� 1�
: (20)
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In appendix A we reproduce this result by constructing a
Greens function for the bulk wave equation.

C. Odd AdS: Mode sum approach

We now assume that D is odd. As in the previous
subsection we first work at the origin of AdS (meaning � �
� � 0), where only the s-wave contributes, and later ex-
tend our results to arbitrary bulk points.

The result (13) holds in any number of dimensions, so in
terms of z � ei2� we have the positive-frequency part of
the global smearing function for a bulk point at the origin
of AdS

 K� �
1

�vol�Sd�1�
z�=2F

�
1;
d
2
;��

d
2
� 1;�z

�
:

At this point it is useful to make a z! 1=z transformation
of the hypergeometric function. Noting that d2 is an integer,
the relevant formula can be found in [16], p. 109 equa-
tion (7). Again it is important to note that the smearing
functions are not unique, since we could replace

 K� ! K� � z
�=2

X1
n�1

cnz
�n (21)

for any cn since the extra terms drop out when integrated
against �global

0� . Making the z! 1=z transformation and
dropping terms that do not contribute we are left with
 

K� � �
z���d�=2 logz

�vol�Sd�1���d=2���d=2���

�
X1
n�0

1

n!
��n� d�����z��n: (22)

With some transformations of the gamma function, the
binomial series can be rewritten as

 �1� x�� � �
1

�
sin�������� 1�

X1
n�0

1

n!
��n� ����x�n:

(23)

So in fact

 K� �
��1��d�2�=2���� d

2� 1�

2�1��d=2����� d� 1�
lim

�!�=2
�2� cos����d logz

(24)

where we introduced the invariant distance (3) from the
origin of AdS to a point on the boundary via

 lim
�!�=2

2� cos� �
���
z
p
�

1���
z
p : (25)

Using (24) in (11), we can express the value of the field at
the origin of AdS as

 

�jorigin � A
Z �=2

��=2
d�

Z
d�

�������
g�
p

lim
�!�=2

�2��xjx0� cos����d

� logz��global
0� ��;�� ��global

0� ��;��� (26)

where A � ��1��d�2�=2����d
2�1�

2�1��d=2�����d�1�
. This is progress, but we

would like to express � in terms of the local combination
�global

0 � �global
0� ��global

0� . To do this it is useful to note
that for even d

 lim
�!�=2

�2� cos����d � z�=2z�d=2

�
1�

1

z

�
��d

(27)

has an expansion in inverse powers of z,

 lim
�!�=2

�2� cos����d � z�=2
X1
n�1

cnz
�n: (28)

A function of this form vanishes when integrated against
�global

0� . Likewise, by expanding in positive powers of z, it
vanishes when integrated against �global

0� . So we have the
identity [17]

 Z �=2

��=2
d�

Z
d�

�������
g�
p

lim
�!�=2

�� cos����d��global
0� ��;��

��global
0� ��;��� � 0: (29)

Differentiating this identity with respect to �, including the
factors of z
�=2 hidden in the mode expansion of �global

0� ,
we obtain [18]

 Z �=2

��=2
d�
Z
d�

�������
g�
p

lim
�!�=2

��cos����d logz��global
0� ��global

0� �

�2
Z �=2

��=2
d�
Z
d�

�������
g�
p

lim
�!�=2

��cos����d

� log��cos���global
0 : (30)

This lets us express the value of the field at the origin of
AdS in terms of an integral over points on the boundary
that are spacelike separated from the origin:

 

�jorigin � 2A
Z �=2

��=2
d�

Z
d�

�������
g�
p

lim
�!�=2

�2� cos����d

� log�� cos���global
0 : (31)

Finally we would like to extend these results to an
arbitrary bulk point. We claim that

 ��x0� �
Z 1
�1

d�
Z
d�

�������
g�
p

K��;�jx0��global
0 ��;�� (32)

where
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K��;�jx0� � ad� lim
�!�=2

���xjx0� cos����d log���xjx0�

� cos��	�spacelike�

ad� �
��1��d�2�=22��d���� d

2� 1�

�1��d=2����� d� 1�
: (33)

The argument is as follows. To compute the field at x0 one
can first use an AdS isometry to move x0 to the origin, then
use the smearing function (31) to compute � at the origin
in terms of the transformed boundary data. Equivalently,
one can use the original boundary data but transform the
smearing function. This is easy to do because, as we show
in appendix B, (32) is secretly AdS covariant.

III. POINCARÉ SMEARING

In Poincaré coordinates the AdS metric is

 ds2 �
R2

Z2 ��dT
2 � jd ~Xj2 � dZ2�

where R is the AdS radius and 0< Z<1. These coordi-
nates cover a wedge-shaped region of global AdS. In
Sec. III A we work in even-dimensional AdS and construct
a spacelike smearing function with support in the Poincaré
patch, starting from our global result (20). In Sec. III B we
follow the same procedure in odd-dimensional AdS, and
find that for generic � it leads to a smearing function with

support on the entire Poincaré boundary. In appendix C we
present an alternate form of the smearing function for
AdS3, based on mode sums in the Poincaré patch.

A. Even AdS

In even AdS we can construct a spacelike smearing
function with support in a Poincaré patch, starting from
the global spacelike smearing function (20).

In global coordinates the antipodal map acts via [19]

 A: �! �
 �; � invariant; �! �A

where �A is the antipodal point on the sphere. The
positive-frequency part of a bulk field transforms by

 ���Ax� � e�i�����x�

under the antipodal map.
Given a bulk point P contained inside some Poincaré

patch, the global smearing function consists of three re-
gions on the boundary. Region I is located to the past of the
Poincaré patch, region II is contained within the Poincaré
patch, and region III is to the future of the Poincaré patch.
By applying a �! �� � antipodal map to region I, and a
�! �� � antipodal map to region III, everything gets
mapped inside the Poincare patch. Thus we can rewrite the
global smearing function as

 

��P� �
Z
d�d�Kglobal��;�jP���

global
0� ��global

0� �

�
Z

Poincare
patch

d�d�cd�j� cos�j��d

8>><>>:
ei���global

0� in image of region I

�global
0� in region II

e�i���global
0� in image of region III

9>>=>>;� c:c:

where cd� is the constant given in (20). We have used the
fact that the integration measure is invariant under the
antipodal map while ��xjx0� � ���Axjx0�. By regarding
the phases as part of the smearing function rather than as
part of the boundary field we have

 ��P� �
Z

Poincare
patch

d�d�cd�

8><>:
ei��

1
e�i��

9>=>;j� cos�j��d�global
0�

� c:c:

Putting in the Jacobians to convert from global to Poincaré
coordinates, namely

 

d�d�

cosd�
�
dTdd�1X

Zd

and

 cos ���global
0 � Z��Poincare

0 ;

this becomes

 ��P� �
Z
dTdd�1Xcd�

8><>:
ei��

1
e�i��

9>=>;j�Zj��d�Poincare
0� � c:c:

(34)

Now consider the function

 f�T; XjP� � lim
Z!0
���T; Z; XjP�Z���d

defined with the prescription T ! T � i�. That is,

 f�T� �
�

1

2Z0
�Z02 � jX� X0j2 � �T � T0 � i��2�

�
��d

�

��ei��j�Zj��d in image of region I
j�Zj��d in region II
�e�i��j�Zj��d in image of region III

where we have used the fact that d is odd. Since f is
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analytic in the lower half complex T plane its Fourier
transform f�!� �

R
dTei!Tf�T� vanishes for !< 0, and

hence
R
dTf�T��Poincare

0� � 0. We are therefore free to
modify the Poincaré smearing function by replacing K� !
K� � cd�f in (34). This exactly cancels the smearing
function at timelike separation, while giving a factor of 2
at spacelike separation, resulting in smearing function
which is real. Thus in the end we obtain the Poincaré
smearing function
 

��P� �
Z
dTdd�1XKPoincare�T; XjP��

Poincare
0 �T; X�

KPoincare � 2cd�lim
Z!0
���T; Z; XjP�Z���d	�spacelike�:

(35)

Note that this smearing function grows at large spacelike
separation. However a boundary field which is globally
well-defined must fall off at large spacelike separation,
�Poincare

0 � ��� as X ! 1. So the convolution
R
K�0 is

well-defined.

B. Odd AdS

We now construct a Poincaré smearing function in odd-
dimensional AdS, following the same procedure as in the
last section: we start with the global result (33) and use the
antipodal map to transform it into a Poincaré patch.

Applying the same logic as in the last section, we have

 

��P� �
Z
d�d�Kglobal��;�jP���

global
0� ��global

0� �

�
Z

Poincare
patch

d�d�ad�j� cos�j��d logj� cos�j

8>>><>>>:
ei���global

0� in image of region I

�global
0� in region II

e�i���global
0� in image of region III

9>>>=>>>;� c:c:

where ad� is the constant given in (33). Again, regarding
the phases as part of the smearing function rather than as
part of the boundary field and transforming to Poincaré
coordinates, we have
 

��P��
Z
dTdd�1Xad�

8><
>:
ei��

1

e�i��

9>=
>;j�Zj��d logj�Zj�Poincare

0�

�c:c: (36)

This relies on the fact that, as shown in appendix B, we can
replace logj� cos�jwith logj�Zj in the smearing function.

The phases in the smearing function can be absorbed
into an i� prescription. That is, we have

 ��P� �
Z
dTdd�1XK��

Poincare
0� � c:c: (37)

where

 K� � ad���Z���djT!T�i� logj�Zj: (38)

A function analytic in the lower half T plane gives vanish-
ing result when integrated against�Poincare

0� . So we can even
take K� to be given by the rather peculiar i� prescription

 K� �
1
2ad���Z�

��djT!T�i� log��Z�jT!T�i�: (39)

Note thatK� is not real in general, so we cannot takeK� �
K� � K. Rather one must first decompose�Poincare

0 into its
positive and negative frequency components before using
these results. Also note that the smearing function is not
restricted to spacelike separation. It is, however, AdS
covariant.

It is not clear to us whether these peculiar features are
fundamental to Poincaré smearing in odd dimensions, or
can be overcome in some manner. However we would like
to point out one exceptional case: if � is an integer thenK�
can be taken to be real and we have

 ��P� �
Z
dTdd�1Xad���Z���d logj�Zj�Poincare

0 : (40)

In appendix C we reproduce this result for d � 2, starting
from a Poincaré mode sum.

IV. RINDLER SMEARING IN ADS3

We will work in AdS3 in Rindler coordinates, with
metric

 ds2 � �
r2 � r2

�

R2 dt2 �
R2

r2 � r2
�

dr2 � r2d�2:

Here �1< t, �<1 and r� < r<1. R is the AdS
radius and r� is the radial position of the Rindler horizon.
With the ansatz ��t; r; �� � e�i!teik�f!k�r� a normaliz-
able solution to the scalar wave equation is [20–22]
 

f!k�r� � r��

�
r2 � r2

�

r2

�
�i!̂=2

� F
�
�� i!̂� ik̂

2
;
�� i!̂� ik̂

2
;�;

r2
�

r2

�
Here we define !̂ � !R2=r� and k̂ � kR=r�. Perhaps
despite appearances, the mode functions f!k are real and
satisfy

 f!;k � f!;�k � f�!;k � f�!;�k:
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Note that �1<!, k <1 so, unlike global and Poincaré,
the Rindler modes involve a complete set of functions on
the boundary [23]. This means we will have no freedom in
choosing the Rindler smearing function. We therefore ex-
pect to find boundary operators which are as well-localized
as possible.

The field has an expansion in Rindler modes

 ��t; r; �� �
Z 1
�1

d!
Z 1
�1

dka!ke�i!teik�f!k�r�:

The Rindler boundary field is given by

 �0�t; �� � lim
r!1

r���t; r; ��

�
Z 1
�1

d!
Z 1
�1

dka!ke�i!teik�

so we can express

 a!k �
1

4�2

Z
dtd�ei!te�ik��0�t; ��:

We can therefore represent the bulk field in terms of the
boundary field as
 

��t; r; �� �
1

4�2

Z
d!dk

�Z
dt0d�0e�i!�t�t

0�

� eik����
0��0�t0; �0�

�
f!k�r�: (41)

If we were justified in changing the order of integration and
doing the integrals over ! and k first, we would have an
expression for the Rindler smearing function which is just
the Fourier transform of the mode functions.

 K�t0; �0jt; r; ���
? 1

4�2

Z
d!dke�i!�t�t

0�eik����
0�f!k�r�

(42)

However the mode functions f!k diverge at large k, which
means we cannot simply change the order of integration;
we need to proceed in a more careful way. We will find that
a smearing function can be constructed by analytically
continuing to imaginary values of the � coordinate.

A. Massless field in Rindler coordinates

In this subsection we specialize to a massless field (� �
2), and derive the smearing function in Rindler coordinates
directly from (41) by a process of analytic continuation. It
will be convenient to define the rescaled variables t̂ �
r�t=R2, �̂ � r��=R and !̂ � wR2=r�, k̂ � kR=r�. We
will also use light-front coordinates

 !̂
 � 1
2�!̂
 k̂�; x̂
 � t̂
 �̂:

Let us start by rewriting (41) in the form

 

��t; r;�� �
1

4�2

Z
d!dk

�
1

cosh��!̂�=2�cosh��!̂�=2�
f!k�r�

�

�
cosh��!̂�=2�cosh��!̂�=2�

�
Z
dt0d�0e�i!�t�t

0�eik����
0��0�t

0;�0�
�
: (43)

The point of breaking things up in this way is that it will
lead to a well-defined kernel, since f!k & e�k=2 as k! 1.
We will denote this modified kernel by ~K below.

The hypergeometric function has an integral representa-
tion ([16], p. 78))

 

F�a; b; c; z� �
��c�

��a���c� a�
��c�

��b���c� b�

Z 1

0
ds

�
Z 1

0
dtsa�1�1� s�c�a�1tb�1

� �1� t�c�b�1�1� stz��c:

Specializing to a massless field (� � 2) this becomes

 F�1� i!̂�; 1� i!̂�; 2; r2
�=r

2�

�
sinh�!̂�

�!̂�
sinh�!̂�

�!̂�
Z 1

0
ds
Z 1

0
dt
�

s
1� s

�
�i!̂�

�

�
t

1� t

�
�i!̂�

�1� str2
�=r

2��2

Using this to represent the mode functions in (43), the bulk
field can be expressed as a convolution

 ��x̂�; x̂�; r� �
1

r�

Z
dŷ�dŷ� ~K�x̂� � ŷ�; x̂�

� ŷ�; r� ~�0�ŷ�; ŷ�� (44)

where

 

~K �
Z 1

0
ds
Z 1

0
dt�1� str2

�=r
2��2

Z d!̂�

2�
d!̂�

2�

�
sinh��!̂�=2�

�!̂�=2

sinh��!̂�=2�

�!̂�=2
exp

�
�i!̂�

�

�
x̂� � ŷ� �

1

2
log�1� r2

�=r
2� � log

1� s
s

��

� exp
�
�i!̂�

�
x̂� � ŷ� �

1

2
log�1� r2

�=r
2�

� log
1� t
t

��
(45)

and where
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~�0�ŷ�; ŷ�� �
Z d!̂�

2�
d!̂�

2�
cosh��!̂�=2� cosh��!̂�=2�

�

�Z
dŷ0�dŷ0�e�i!̂

��ŷ��ŷ0��

� e�i!̂
��ŷ��ŷ0���0�ŷ0�; ŷ0��

�
: (46)

The modified boundary field ~�0 can be defined by analytic
continuation, as we have
 

~�0�ŷ�; ŷ�� � cosh
�
i�
2

@
@ŷ�

�
cosh

�
i�
2

@
@ŷ�

�
�0�ŷ�; ŷ��

�
1

4

�
�0

�
ŷ� �

i�
2
� i�; ŷ� �

i�
2
� i�

�

��0

�
ŷ� �

i�
2
� i�; ŷ� �

i�
2
� i�

�

��0

�
ŷ� �

i�
2
� i�; ŷ� �

i�
2
� i�

�

��0

�
ŷ� �

i�
2
� i�; ŷ� �

i�
2
� i�

��
:

This assumes the boundary field is analytic in the strip
��=2< Imŷ�, Imŷ� <�=2, which is true for boundary
fields constructed from finite superpositions of the global
boundary mode functions (5).

To compute the modified kernel ~K it is convenient to first
act with @�@� to kill the 1=!̂�!̂� factor, and to define the
sinh��!̂�=2� sinh��!̂�=2� factor by analytic continu-
ation. The !̂� and !̂� integrals then produce

-functions which can be used to do the integrals over s
and t. Finally, upon integrating with respect to x̂� and x̂�

we find
 

~K�x̂�; x̂���
4

�2

r2

r2
�

sinh
�
i�
2

@
@x̂�

�
sinh

�
i�
2

@
@x̂�

�
log

��
1

�

��������������
1�

r2
�

r2

s
ex̂
�

��
1�

��������������
1�

r2
�

r2

s
ex̂
�

�
�
r2
�

r2

�

�
r2

�2r2
�

log
�1�r2

�=r
2�sinh2 t̂�cosh2�̂

�1�r2
�=r

2�cosh2t̂�sinh2�̂

Now let us go back to our expression for the bulk field
(44). We will break it up into two pieces, � �

R
~K ~�0 �

A� B. The first piece A includes the terms in which the
arguments of �0 are shifted by t̂! t̂
 i�=2. That is
 

A �
1

2�2r2
�

Z
dt̂0d�̂0 log

�
�1� r2

�=r
2�sinh2�t̂� t̂0� � cosh2��̂� �̂0�

�1� r2
�=r

2�cosh2�t̂� t̂0� � sinh2��̂� �̂0�

� ��0�t̂0 � i�=2� i�; �̂0�

��0�t̂0 � i�=2� i�; �̂0��

The logarithm has branch cuts indicated in Fig. 2. By
shifting the t̂0 contour of integration up or down by i�=2
one can make the arguments of �0 real. The imaginary
parts of the logarithm just above and below the cuts cancel,
while the real parts of the logarithm add to give
 

A �
1

�2r2
�

Z 1
�1

dt̂0
Z 1
�1

d�̂0 log

�

����������1� r
2
�=r

2�cosh2�t̂� t̂0� � cosh2��̂� �̂0�

��1� r2
�=r

2�sinh2�t̂� t̂0� � sinh2��̂� �̂0�

��������
��0�t̂

0; �̂0� (47)

Now consider the contribution B coming from terms
where �̂! �̂
 i�=2, namely
 

B �
1

2�2r2
�

Z
dt̂0d�̂0

� log
�1� r2

�=r
2�sinh2�t̂� t̂0� � cosh2��̂� �̂0�

�1� r2
�=r

2�cosh2�t̂� t̂0� � sinh2��̂� �̂0�

� ��0�t̂
0; �̂0 � i�=2� i��

��0�t̂0; �̂
0 � i�=2� i���

The branch cuts of the logarithm are shown in Fig. 3. One
can push the �̂0 contour of integration up or down by i�=2,

however if cosh�t̂� t̂0�< 1=
����������������������
1� r2

�=r
2

q
the contour will

get wrapped around the vertical part of the cut. In fact, after
shifting �̂0, the contribution from horizontal part of the �̂0

contour is
 

Bhorizontal�
1

�2r2
�

Z 1
�1
dt̂0
Z 1
�1
d�̂0 log

�

����������1�r
2
�=r

2�sinh2�t̂� t̂0��sinh2��̂��̂0�

��1�r2
�=r

2�cosh2�t̂� t̂0��cosh2��̂��̂0�

��������
��0�t̂0;�̂

0�: (48)

But this exactly cancels the contribution (47) from shifting

t̂

iπ
2

− iπ
2

FIG. 2. Branch cuts in the t̂0 plane are located at Imt̂0 � 
�=2.
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t̂0! So the bulk field arises just from the vertical part of the
contour, that is from the discontinuity of the logarithm
across the cut. Setting t̂0 � t̂� x, �̂0 � �̂� iy this leads
to
 

��t̂; r; �̂� �
1

2�2r2
�

Z x0

�x0

dx
�Z �y0

��=2
dy2��0�t̂� x; �̂

� iy� i�=2�

�
Z �=2

y0

dy2��0�t̂� x; �̂� iy� i�=2�
�

where coshx0 � 1=
����������������������
1� r2

�=r
2

q
and siny0 �����������������������

1� r2
�=r

2
q

coshx. Finally one can shift y! y
 �=2 to
obtain

 ��t̂; r; �̂� �
1

�r2
�

Z
R
dxdy�0�t̂� x; �̂� iy� (49)

where the region R is defined by

 coshx < 1=
����������������������
1� r2

�=r
2

q
cosy >

����������������������
1� r2

�=r
2

q
coshx:

(50)

It is worth emphasizing that we have been forced to
work on the complexified boundary. Had there been a well-
defined Rindler smearing function, with support on the
Rindler boundary at real values of the boundary coordi-
nates, it would have been given by (42). Since that integral
is divergent, no such smearing function can exist.

B. Wick rotating to de Sitter space

In this subsection we derive the Rindler smearing func-
tion for general conformal dimension. Having seen that we
need to analytically continue the � coordinate we begin by
Wick rotating � to ~� � i�. This gives a de Sitter geome-
try,

 ds2 � �
r2 � r2

�

R2 dt2 �
R2

r2 � r2
�

dr2 � r2d ~�2:

Note that�r plays the role of the time coordinate. To avoid
a conical singularity at r � 0 we must periodically identify
~�� ~�� 2�R=r�. The de Sitter invariant distance func-
tion is

 � �
rr0

r2
�

�
cos

�
r�� ~�� ~�0�

R

�

�

���������������
1�

r2
�

r2

s ���������������
1�

r2
�

r02

s
cosh

�
r��t� t0�

R2

��
:

We consider a scalar field of massm in de Sitter space. For
now we take m2R2 > 1, however later we will analytically
continue m2 ! �m2. The analytically continued mass can
be identified with the mass of a field in AdS (note that the
Wick rotation flips the signature of the metric).

The field at some bulk point can be written in terms of
the retarded Greens function. De Sitter space has numerous
inequivalent vacuum states, known as the alpha-vacua,
which give rise to de Sitter invariant correlators. The
retarded Greens function is independent of this choice of
vacuum state. It coincides with the imaginary part of the
commutator inside the past light-cone of the future point
and vanishes outside this region. The field at some bulk
point is therefore
 

��r; ~�; t� �
Z
d ~�0dt0

r0�r02 � r2
��

R2

�Gret�r0; ~�0; t0; r; ~�; t�@r0
$
��r0; ~�0; t0� (51)

where the region of integration is over a spacelike surface
of fixed r0 inside the past light-cone of the bulk point. In the
r0 ! 1 limit this becomes the region R introduced in (50),
namely
 ���������������

1�
r2
�

r2

s
cosh

r��t� t
0�

R2 < 1;

cos
r�� ~�� ~�0�

R
>

���������������
1�

r2
�

r2

s
cosh

r��t� t0�

R2 :

(52)

As r0 ! 1 (with other coordinates held fixed) the retarded
Greens function takes the form [24]
 

Gret � i�c���� i��
�1�i

�������������
m2R2�1
p

� c	���� i���1�i
�������������
m2R2�1
p

� c:c:�

where we take branch cuts along the positive real � axis
and where

 c �
��2i

���������������������
m2R2 � 1
p

���1� i
���������������������
m2R2 � 1
p

�

22�i
�������������
m2R2�1
p

R��12� i
���������������������
m2R2 � 1
p

�
:

The boundary field is defined as usual

iπ
2

− iπ
2

φ̂ φ̂

iπ
2

− iπ
2

FIG. 3. For cosh�t̂� t̂0�> 1=
����������������������
1� r2

�=r
2

q
the branch cuts in

the �̂0 plane are at Im�̂0 � 
�=2 (left panel). When cosh�t̂�

t̂0� � 1=
����������������������
1� r2

�=r
2

q
four of the branch points touch, and for

cosh�t̂� t̂0�< 1=
����������������������
1� r2

�=r
2

q
the branch cuts are cross-shaped

(right panel).
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 �0� ~�; t� � lim
r!1

r���r; ~�; t�: (53)

Choosing normalizable modes from the AdS viewpoint
corresponds to taking only positive frequencies in the �r

direction, which have a r�1�i
�������������
m2R2�1
p

r-dependence.
Evaluating (51) as r0 ! 1 we obtain the Rindler smear-

ing function [25]
 

��r;�; t� �
��� 1�2��2

�r2
�

Z
R
dxdy lim

r0!1

�
�
r0

�
��2

��0

�
�� i

Ry
r�
; t�

R2x
r�

�

�
��� 1�2��2

�r�
�

Z
R
dxdy

�
r
r�

�
cosy

�

��������������
1�

r2
�

r2

s
coshx

��
��2

�0

�
�� i

Ry
r�
; t�

R2x
r�

�
(54)

In these expressions � � 1� i
���������������������
m2R2 � 1
p

. However by
analytically continuing m2 ! �m2 we can take � to co-
incide with the conformal dimension in AdS. Since �> 1
in the domain of integration this analytic continuation is
straightforward.

As a check on this result, note that for � � 2 we
reproduce (49). As a further check we can examine the
limit r! 1where we should recover (53). In this limit the
region of integration becomes very small so we can Taylor
expand the smearing function, finding
 

��r; �; t� �
��� 1�2��2

�r�
�

�0��; t�

�
Z
R
dxdy

r��2

r��2
�

�
r2
�

2r2 �
1

2
x2 �

1

2
y2

�
��2

�
1

r�
�0��; t� (55)

as expected.
In this section we have used the fact that �0 is analytic

on a strip in the complex � plane centered on the real axis,
which will be true for fields built out of any superposition
of a finite number of global modes. The final result (54) is
manifestly AdS covariant. We have checked that it is
correct by setting �0 equal to a plane wave e�i!teik� and
numerically evaluating the integrals over x and y, finding
values that agree with the corresponding bulk field
e�i!teik�f!k�r�.

V. PHYSICAL CONSEQUENCES

A. Bulk locality and UV/IR

We have seen that one can define operators in the
boundary theory that in the large N limit describe a free
local bulk field. This is not surprising, since this is the limit

lPlanck ! 0 where classical supergravity is valid. The con-
struction of these operators in terms of a mode sum makes
it clear that by construction the two-point function of these
CFT operators will reproduce the bulk two-point function.
The two-point function is singular when bulk points are
coincident or are lightlike separated. Since the smearing
functions are finite and have compact support, it is easy to
see that this singularity can only arise from UV singular-
ities in the boundary theory [26]. This means that regions
inside the bulk are not related to a boundary theory with a
conventional UV cutoff, so there is no UV/IR relationship
in the sense of relating bulk IR and boundary UV cutoffs.

What about scale-radius duality? In global and Poincaré
coordinates this duality is not manifest. As can be seen in
Fig. 1 there may be a minimum smearing in the time
direction which is related to radial position in the bulk,
however the CFT operators are always completely smeared
over the spatial directions of the boundary. In Rindler
coordinates, on the other hand, we were able to reduce
the smearing integral to a compact region of the complexi-
fied geometry, whose size shrinks to zero as the bulk point
approaches the boundary. This makes scale-radius duality
manifest. For example, a bulk point at radius r gets
smeared over a range of time 
t on the boundary given by

 cosh
r�
t

2R2 � 1=
����������������������
1� r2

�=r
2

q
: (56)

This is just the elapsed time between the point on the
boundary which is lightlike to the future of the bulk point
at the same value of �, and the point on the boundary
which is lightlike to the past at the same�. The smearing is
also over some finite region in imaginary �, as per (52).

B. Finite N and the holographic bound

We begin with a few remarks on the boundary commu-
tator in the complexified geometry of Sec. IV B. The
boundary Wightman two-point function is

 h�0�t;���0��
0;t0�i�

�
cosh

r�
�
R
�cosh

�
r�
t

R2 � i�
��
��
:

(57)

In the largeN limit, with free bulk fields, the commutator is
a c-number which vanishes whenever the i� term can be
neglected. We are interested in real t and complex �. So at
large N the commutator is nonzero in only two situations:

(1) 
� real and 
t > R
� (the usual case of timelike
separation),

(2) 
� purely imaginary and 
t arbitrary,
while for generic complex 
� the commutator vanishes.
What happens at finite N? Since the vacuum two-point
function is determined by conformal invariance, (57) is
true even at finite N. However the commutator is an
operator rather than a c-number, so we cannot conclude
that the commutator (rather than its vacuum expectation
value) vanishes. Still, it seems reasonable to assume that up
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to 1=N corrections to the size of the regions, the commu-
tator will be nonzero only if condition 1 or 2 is satisfied.

At infinite N the smeared operators we have constructed
commute when the bulk points are spacelike separated.
This works, even when the smeared operators overlap on
the boundary, because the commutator of the boundary
operators is a c-number rather than an operator. At finite
N this picture must change in an interesting way if a
holographic description is to be maintained.
Commutators of boundary operators become operators
rather than c-numbers, which destroys the delicate balance
that enabled two operators smeared over regions timelike
to each other to commute. While the generalization of bulk
field operators to finite N is very difficult [6], we never-
theless get tight constraints from the N ! 1 limit.

We argue that the only generic way for two smeared
operators to commute at finite N is by smearing over
disjoint ‘‘spacelike’’ (commuting) regions on the bound-
ary. This motivates representing local bulk operators using
a form of the smearing function with minimal spread on the
boundary, in the hope that such boundary operators provide
the ‘‘most local’’ definition of bulk operators at finite N.
We proceeded to this goal in a series of steps, first reducing
from smearing operators over the entire boundary, to only
smearing over points spacelike separated from the bulk
point, and finally to smearing over a compact region of the
complexified geometry [27]. This prepares us to count the
number of independent commuting bulk operators inside a
given volume.

Consider two local bulk operators at the same values of r
and t but different �. Up to 1=N corrections to the actual
size of the region, these will correspond to boundary
operators smeared in the t and imaginary � directions
according to (52). It therefore is reasonable to assume
that even at finite N these operators will commute if the
� separation is sufficiently large that the boundary com-
mutator always vanishes. This requires

 cosh
r�
�

2R
> 1=

����������������������
1� r2

�=r
2

q
: (58)

Let us work at large r. Then we expect bulk operators
separated by 
� � 2R=r to commute at finite N. Consider
the set of such operators at fixed r and t. Operators at
smaller values of r and the same t will be smeared over a
larger time interval on the boundary, so will not trivially
commute with this set. Then the number of trivially com-
muting operators that can be localized to a radius � r, per
radian along the boundary, per independent CFT degree of
freedom is r=2R. Heuristically the number of CFT degrees
of freedom is given by the central charge, so the maximum
number of commuting operators per radian is of order

 cr=2R: (59)

This result is consistent with expectations from hologra-
phy, and gives a nice picture of how the number of com-

muting degrees of freedom is drastically reduced. This also
makes it clear where canonical quantization of gravity
fails: the degrees of freedom on a Cauchy hypersurface
do not commute. Note that if � is periodically identified to
give a BTZ black hole, ���� 2�, then this counting
breaks down when 2R=r � 2� and the operator is smeared
over the entire boundary. Such a breakdown is expected,
since a Hawking-Page transition occurs for a black hole of
radius r� R [28].
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APPENDIX A: EVEN ADS: GLOBAL GREENS
FUNCTION

In this section we show how to reproduce our global
smearing function in even-dimensional AdS starting from a
spacelike Greens function. To construct such a Greens
function we first find the general (singular) AdS-invariant
solution to the homogeneous wave equation in Euclidean
space. The solution involves two arbitrary constants. We
fix one constant by requiring that the solution is in fact a
Greens function with a properly-normalized delta-function
source at the origin. We fix the other constant by requiring
that, upon analytically continuing to Lorentzian AdS, the
Greens function is nonzero only at spacelike separation.

The AdS-invariant distance (3) is defined for Lorentzian
AdS. However by Wick rotating � � �i�E one can also
use � as an invariant distance function on Euclidean AdS;
continuing back to Lorentzian signature corresponds to the
prescription �! �� i�. For AdS-invariant fields [29] the
wave equation ���m2�� � 0 reduces to

 ��2 � 1��00 � �d� 1���0 � ���� d�� � 0: (A1)

The general solution is

 ���� � c1��
2 � 1���=2P�� ��� � c2��

2 � 1���=2Q�
� ���

(A2)

where P�� ,Q�
� are associated Legendre functions with� �

D�2
2 , � � �� D

2 . In even AdS note that � is a non-
negative integer, in which case as �! 1 the Legendre
functions have the asymptotic behavior [16]

 P�� ��� �
2��=2������ 1���� 1��=2

�!������ 1�
;

Q�
� ��� � 2�=2�1����ei����� 1���=2:

(A3)

A Euclidean Greens function should have the short-
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distance behavior

 GE�r� � �
1

�D� 2�vol�Sd�rD�2
as r! 0 (A4)

where r is a Euclidean radial coordinate and vol�Sd� �
2�D=2=��D=2�. At short distances � � 1� r2=2R2. So
���� will be a Euclidean Greens function with a properly
normalized (unit-strength) delta-function source at the ori-
gin provided

 c1 � arbitrary; c2 �
��1���1

2��1�D� 2�vol�Sd�����RD�2
:

(A5)

Wick rotating back to Lorentzian AdS we set GM��� �
i���� i�� so that

 ���m2�GM �
1�������
�g
p 
D�x�: (A6)

GM has the same short-distance behavior as the standard
Feynman Greens function, although we have not yet fixed
its large-distance behavior (which depends on c1).

We choose c1 to make the Greens function vanish at
timelike separation. With a �! �� i� prescription the
analytic continuation into the so-called ‘‘cut’’ region�1<
�< 1 is [16]
 

GM��� � ic1��1���1� �2���=2P̂�� ��� � ic2��1��

� �1� �2���=2

�
Q̂�
� ��� �

i�
2
P̂�� ���

�
(A7)

where P̂, Q̂ are variants of the associated Legendre func-
tions (denoted with upright P’s and Q’s in [16]) which are
real for�1<�< 1. Since (A6) is a real equation we only
need to keep the real part of GM. On the interval �1<
�< 1 this is given by

 ReGM��� �
�
Re�ic1� �

�c2

2

�
��1���1� �2���=2P̂�� ���:

(A8)

Note that ReGM vanishes for �1<�< 1 provided c1 �
i�c2=2. With this choice we can construct a new Greens
function G which is nonzero only at spacelike separation
[30]:

 G�xjx0� 

�

ReGM�xjx0� at spacelike separation
0 otherwise

� �
�c2

2
��2 � 1���=2P�� ���	�spacelike�: (A9)

We can plug this into Green’s identity

 ��x0� �
Z
d�d�

�������
g�
p RD�2

cosD�2�
��@�G�G@���j�!�=2

(A10)

to obtain the corresponding smearing function. Noting the

asymptotic behavior

 P�� ��� �
2����� 1=2�������
�
p

������ 1�
as �! 1 (A11)

we have

 ��x0� �
Z
d�d�

�������
g�
p

K�xjx0��0�x� (A12)

where the smearing function is
 

K�xjx0� �
��1��D�2�=22��D���� d

2� 1�

�d=2���� d� 1�
lim

�!�=2
���xjx0�

� cos����d	�spacelike�: (A13)

This agrees with the result (20) obtained from a global
mode sum in even AdS.

APPENDIX B: ADS COVARIANCE IN ODD
DIMENSIONS

To show that the smearing function is AdS covariant in
odd dimensions we must show that

 

Z
d�d� lim

�0!�=2
�� cos�0�

��d lnJ�global
0 � 0 (B1)

where J is the Jacobian on the boundary induced by an AdS
transformation of the bulk. Consider an AdS isometry
which takes a point in the bulk to � � 0. To compute the
corresponding Jacobian introduce the embedding coordi-
nates

 Y0 � R sec� cos� �
1

2Z
�R2 � r2 � Z2 � T2� (B2)

 Y1 � R sec� sin� � R
T
Z

(B3)

 X0 � R tan�w0 �
1

2Z
�R2 � r2 � Z2 � T2� (B4)

 

~X � R tan� ~w � R
~X
Z

(B5)

where w0, ~w are coordinates on a �D� 2�-sphere. AdS
transformations are given by rotations and boosts in these
coordinates. The center of AdS, at � � 0, is given in the
embedding coordinates by X0 � ~X � 0. Given an arbitrary
point in the bulk we can set ~X � Y1 � 0 by performing
angular rotations and � translations in global coordinates,
for which the Jacobian is unity. We then boost in the X0 �
Y0 plane, resulting in a change of coordinates

 X00 � � sinh�Y0 � cosh�X0

Y00 � cosh�Y0 � sinh�X0:

Since we want X00 � 0, this determines the parameter
tanh� � X0=Y0. Now, turning our attention to the bound-
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ary, the Jacobian of the transformation is

 J � lim
�0!�=2

cos�0= cos�00 ) J2 �
Y020 � Y

02
1

Y2
0 � Y

2
1

�
�cosh�Y0 � sinh�X0�

2 � Y2
1

Y2
0 � Y

2
1

: (B6)

The strategy is to show that the integrand of (B1) is
analytic in the lower half complex plane, making the
contour integral vanish. We find it convenient to perform
the calculation in a variation on light front Poincaré coor-
dinates, given by X
 � T 
 r with r � j ~Xj. However we
have to be careful regarding the domain of integration of
X
, since the spatial distance r � 0. If we restrict the
domain of the angular coordinates on the boundary to
cover only half the d� 2 sphere, and instead allow�1<
r <1, then X
 has the full range of integration. One note,
however. The integration measure in these new coordinates
is proportional to jrjd�2. In odd dimensional AdS, where d
is even, the measure factor is analytic. This would not be
true in even dimensional AdS.

As in section III B we project all boundary points into
one Poincaré patch. Referring to (B2)–(B5) we want to
evaluate the integral

 

I�
Z
ddx��Z0�

��djT!T�i� ln
�
cos�00
cos�0

�
�Poincare

0� � c:c:

�
1

2

Z
ddx��Z0�

��djT!T�i�fln��R2� r2�T2�2�4R2T2�

� ln��cosh��R2� r2�T2�� sinh��R2�r2�T2��2

�4R2T2�g�Poincare
0� �c:c:

�
1

2

Z
ddx��Z0�

��djT!T�i�fln�R
2��X��2�

� ln�R2��X��2�� ln�e�R2�e���X��2�

� ln�e�R2�e���X��2�g�Poincare
0� � c:c:

We now show that the integrand is analytic in the lower
half plane of one of the light front coordinates. With our
T ! T � i� prescription the branch points of ��Z0�

��d

are in the upper half complex plane of both X
. Each log
term is independent of either X� or X�, and so is trivially
analytic in that coordinate. Finally the boundary field con-
tains terms like e�i�!

�X��!�X�� where !
 � !

jkj cos	, 	 being the angle between ~X and the momentum
~k. Note that !
 � 0, due to the fact that ! � jkj, so the
boundary field is analytic in the lower half complex plane
of both X
. This shows that the contour integral over one
of the light front coordinates is zero, so I vanishes and the
smearing function is AdS covariant.

The same procedure can be used when converting the
smearing function from global coordinates to Poincaré,
showing that

 

Z
ddx��Z0�

��d ln
�
Z0

cos�0

�
�Poincare

0 � 0:

APPENDIX C: ODD ADS: POINCARÉ MODE SUM

In Poincaré coordinates it is possible to construct a
smearing function by directly evaluating the Poincaré
mode sum. Bena did this in AdS5 [10]; here we will do
the analogous calculation in AdS3.

In Poincaré coordinates the mode expansion of a real
scalar field is
 

��T; X; Z� �
Z
!>jkj

d!dka!ke
�i!TeikXZJ��

�����������������
!2 � k2

p
Z�

� c:c: (C1)

where J� is a Bessel function of order � � �� 1. The
Poincaré boundary field is
 

�0�T; X� � lim
Z!0

1

Z�
��T; X; Z�

�
1

2��1����

Z
!>jkj

d!dka!k

� �!2 � k2����1�=2e�i!TeikX:

Thus we can express the bulk field in terms of the boundary
field,

 ��T; X; Z� �
Z
dT0dX0K�T0; X0jT; X; Z��0�T

0; X0� (C2)

where the smearing function is
 

K�T0; X0jT; X; Z� �
2��3����Z

�2

Z
!>jkj

d!dke�i!�T�T
0�

� eik�X�X
0� 1

�!2 � k2����1�=2

� J��
�����������������
!2 � k2

p
Z� � c:c:

To keep the integral convergent we should give T0 a
positive imaginary part.

It is straightforward to evaluate the positive-frequency
part of the smearing function. It suffices to set T � X �
X0 � 0 and consider
 

K��T
0; 0j0; 0; Z� �

2��3����Z

�2

Z
!>jkj

d!dkei!T
0

�
1

�!2 � k2����1�=2

� J��
�����������������
!2 � k2

p
Z� (C3)

Setting

 !� �
1

2
�!� k� � re
 !� �

1

2
�!� k� � re�


(C4)

HOLOGRAPHIC REPRESENTATION OF LOCAL BULK . . . PHYSICAL REVIEW D 74, 066009 (2006)

066009-13



we have

 K� �
2��1����Z

�2

�
Z 1

0
rdr

Z 1
�1

d
ei2rT
0 cosh
 1

�2r��
J��2rZ�

�
2��2����Z

�2

Z 1
0
dr

1

r��1 K0��irT0�J��rZ�

� �
Z�

2�2T02
F�1; 1;�; Z2=T02�:

The Lorentz-invariant generalization is

 K��T
0; X0j0; 0; Z� � �

1

2�2

�
Z�

T02 � X02
F
�

1; 1; �;
Z2

T02 � X02

�
(C5)

where again the singularities are to be handled with a T0 !
T0 � i� prescription. Since K� is constructed from
positive-frequency modes its complex conjugate K� only
involves negative frequency modes. Then

R
K��0� van-

ishes, and we can take the full smearing function to be
given by K � K� � K�.

Note that the smearing function we have constructed has
support on the entire boundary of the Poincaré patch. Also
it can be applied directly to the boundary field �0; unlike
the smearing function constructed in Sec. III B one does
not have to decompose �0 into its positive and negative
frequency components. It does have one drawback, how-
ever: the smearing function we have constructed is not
AdS-covariant.

One might ask how the Poincaré mode sum is related to
the covariant results obtained in section III B. This is
easiest to understand when � is an integer, in which case
one has

 
F�1; 1;�; 
� � ���� 1�
�
1�

1




�
��2

log�1� 
�

� �polynomial of degree �� 3 in 1=
�

(C6)

Applying this to (C5) gives

 

K� �
�� 1

2�2

�
�T02 � X02 � Z2

Z

�
��2

log
T02 � X02 � Z2

T02 � X02

�

�
polynomial in

T02 � X02

Z2

�
(C7)

We can drop the polynomial, since it vanishes when inte-
grated against �0� (close the contour in the lower half T0

plane). Also we can write

 

K� �
�� 1

2�2

�
�T02 � X02 � Z2

Z

�
��2

log
T02 � X02 � Z2

2Z

� �polynomial� � log
�T0 � X0��T0 � X0�

2Z
(C8)

The second line vanishes when integrated against �0�. To
see this recall that the Poincaré mode expansion (C1) only
involves modes with !> jkj, and close the integration
contour in the lower half of the T0 � X0 or T0 � X0 plane
as appropriate. Then we are left with

 K� �
�� 1

2�2

�
�T02 � X02 � Z2

Z

�
��2

log
T02 � X02 � Z2

2Z
(C9)

 �
��� 1�2��2

2�2 lim
Z0!0
��Z0���2 log��Z0�: (C10)

We can replace K� ! K� � c:c:, since the complex con-
jugate drops out when integrated against �0�. This leaves

 K � K� � K� �
��� 1�2��2

�2 lim
Z0!0
��Z0���2 logj�Z0j

(C11)

in agreement with (40) for d � 2.
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