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Bubbling supertubes and foaming black holes
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We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the
U�1� �U�1� invariant black ring. This singularity is resolved by a geometric transition that results in
geometries without any branes sources or singularities but with nontrivial topology. These geometries are
both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the
form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue
that, in general, such geometries give a very large number of smooth bound-state three-charge solutions,
parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-
Kähler geometry of a certain signature, and contains a ‘‘foam’’ of nontrivial two-spheres. We conjecture
that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that
Mathur’s conjecture might reduce to counting certain hyper-Kähler manifolds.
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I. INTRODUCTION

Mathur and collaborators have proposed a bold solution
to the black hole information paradox [1–3]. By fully
analyzing the implications of the AdS/CFT correspon-
dence to the physics of the D1-D5 system, they have
argued that each vacuum of the CFT is dual to a smooth
bulk solution that has neither a horizon nor a loss of
information. These geometries thus account for the rather
large entropy of the D1-D5 system. The success of this
endeavor for the D1-D5 system has led to the speculation
that one might similarly find solutions that account for the
entropy of the D1-D5-P system. If this were possible, then
the AdS/CFT correspondence would compel one to accept
that the D1-D5-P black hole should be thought of as an
‘‘ensemble’’ of geometries; this would open a new and
fascinating window into the understanding of black holes
in string theory.

Most of the progress in understanding whether the D1-
D5-P microstates are dual to bulk solutions has occurred on
two apparently distinct fronts, which this paper will unify.
The first has involved finding individual smooth solutions
carrying D1-D5-P charges, and analyzing them in the CFT
[4–8]. This has shown that indeed some CFT microstates
are dual to three-charge bulk geometries, and has high-
lighted interesting features of the bound-state geometries.

The second has involved understanding the D-brane
physics behind the existence of these solutions, and ana-
lyzing these configurations from a string theory perspec-
tive. In particular, in [9] it was argued that there exists a
very large class of brane configurations, with three charges
and three dipole charges, that can have arbitrary shape, and
generalize the two-charge supertubes of [10]. Since the
entropy of the D1-D5 system comes from the arbitrary
shapes of the two-charge supertubes, it is natural to expect
that the arbitrary shapes of three-charge supertubes ac-
count for a sizable part of the entropy of the D1-D5-P
black hole.
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Finding the supergravity solutions of these three-charge
supertubes of arbitrary shape is quite involved but in [11] it
was shown that one can solve the equations underlying
these solutions [11–13] in a linear fashion, and reduce the
whole problem of finding three-charge BPS solutions to
electromagnetism in four dimensions. A side effect of the
study of three-charge supertubes was the prediction [9,14]
and subsequent discovery [11,15–17] of BPS black rings,
which by themselves have opened up new windows into
black-hole physics [18–29].

For the purpose of finding three-charge geometries dual
to microstates of the D1-D5-P CFT, one is not so much
interested in black rings with a regular event horizon, but
rather in the zero-entropy limit of these rings, which for
simplicity we refer to as three-charge supertubes. The
general three-charge supertube solution is given by six
arbitrary functions: four determine the shape of the object,
three describe the charge density profiles, but there is one
functional constraint coming from setting the event hori-
zon area to zero [11,20]. The near-tube geometry is of the
form AdS3 � S

2 and, since the size of the S2 is finite, the
curvature is low everywhere. However, since the AdS3 is
periodic around the ring, these solutions have a null orbi-
fold singularity. In order to obtain smooth, physical ge-
ometries corresponding to supertubes given by six arbitrary
functions, one must learn how to resolve this singularity.

To do this, we use the fact that singularities coming from
wrapped branes are resolved in string theory via geometric
transitions [30–33], which result in a topology change.
The cycle wrapped by the branes shrinks to zero size while
the dual cycle becomes large. The branes thus disappear
from the space and the naive solution ‘‘transitions’’ to one
of a different topology in which the branes have been
replaced by a flux through a nontrivial dual cycle. After
the transition the number of branes is encoded in the
integral of the field strength over this new topologically
nontrivial cycle. In the limit when the number of branes
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FIG. 1 (color online). The geometric transition: This figure
shows a section through the transition geometry in which an
S2 is depicted as an S1, and the S1 of the supertube as a pair of
two blue points. The naive geometry is shown in (a), and the
resolved geometry is shown in (b). After the transition the green
S2 Gaussian surface around the supertube becomes noncontrac-
tible and a new two-cycle (depicted by the brown dotted S1)
appears. In (c) we display the transition for large dipole charges,
when the link with the naive D-brane solution (a) becomes much
less obvious.
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become small, the region where the topology change oc-
curs becomes small and the solution approaches the naive
supertube geometry with its null orbifold singularity.

Unfortunately there is, as yet, no systematic way to find
the geometries that result from a geometric transition of a
supertube of arbitrary shape. What we can do however is to
use the fact that we know the topology of the solution after
the transition to determine completely the solutions with
U�1� �U�1� invariance. Having done this, we can easily
extend our analysis to solutions that only have (triholo-
morphic) U�1� symmetry, and this leads to obvious con-
jectures as to the appropriate backgrounds when there is no
symmetry.

Consider the R4 base that contains the supertube/black
ring. This base can be written as a trivial Gibbons-Hawking
space with one center of unit Gibbons-Hawking (GH)
charge. The singularity of the supertube is resolved by
the nucleation of a pair of GH centers, with equal and
opposite charges, �Q and Q, near the location of the
supertube. Despite the fact that the signature of the new
base can change from ��;�;�;�� to ��;�;�;��, the
overall geometry is regular. One should also note that if
jQj � 1 then there will be ordinary, ZjQj, spatial orbifold
singularities at the corresponding GH centers. Such spatial
orbifolds are well understood in string theory and in the
underlying conformal field theory, and are therefore harm-
less. So when we say the solution is regular, we will mean
up to such spatial orbifolds at the GH centers. The new
solution has a nontrivial topology, with two two-cycles, but
no branes. A schematic of this transition is depicted in
Fig. 1. The three dipole charges of the naive solution are
now given by the integrals on the newly nucleated S2 of the
three twoform field strengths on the base.1 The size of this
two-sphere is determined by the balance between the fluxes
wrapping it, and the attraction of the �Q and Q GH
centers. When the fluxes are very small, or Q very large,
these GH centers become very close, and the solution
approaches the naive supertube solution.

The physics of the singularity resolution we propose
here is very similar to, and was inspired by, the one
observed in the recent paper of Lin, Lunin and
Maldacena [33], where the bubbling solutions reduce to
naive giant gravitons in the small dipole charge limit, and
have a topological transition in which branes are replaced
by fluxes. As in [33], when the dipole charges become
large the bubbling solution has no obvious brane
interpretation.

There are two very nontrivial confirmations that our
solutions are the correct resolving geometries. First, one
can put the bubbling supertube in Taub-NUT, and move it
into the four-dimensional region. The resulting four-
dimensional solution is in the same class as the solutions
1These twoform field strengths come from reducing the M-
theory fourform field strength on the three T2’s
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[22] that resolve the singularity of the zero-entropy four-
dimensional black hole. One can also take the limit of our
solutions in which the �Q GH center is moved onto the
center with a GH charge of �1 at the origin. In this limit,
our solutions reduce to the bound-state solutions con-
structed by Mathur and collaborators [5–7] by taking novel
extremal limits of the nonextremal rotating three-charge
black hole [34].

Our solutions suggest quite a few nontrivial features of
the three-charge geometries that are dual to microstates of
the three-charge black hole. We can argue that several
concentric rings are resolved by the nucleation of several
pairs of GH centers, one pair for each ring, and that such a
solution is a bound state. This indicates that the most
general bound-state solution with a GH base should have
a collection of GH centers of positive and negative charges
at arbitrary positions inside the R3 base of the GH space,
with the sum of the charges equal to one. The solutions
have nonvanishing fluxes through the nontrivial two-cycles
of the base, and have no localized brane charge.

One also expects the geometric transition we present
here to resolve the singularities of the three-charge super-
tubes of arbitrary shape. The resolved solutions should
have the same topology as the U�1� �U�1� solution.
However, their bases will no longer be multiple-center
GH spaces but more general four-dimensional hyper-
Kähler manifolds. Even if such base manifolds have chang-
ing signature, we expect the overall solutions to be regular,
just as for the U�1� �U�1� invariant solutions. A configu-
ration containing N supertubes of arbitrary shapes is de-
termined by 6N functions, and after the transition should
give 6N functions worth of smooth geometries. This is a
huge number of smooth solutions, which might as well be
large enough to account for a significant part of the entropy
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of the three-charge black hole. It is also possible that a
significant part of this entropy comes from degrees of
freedom along the three T2’s of the solution, which proba-
bly cannot be described by supergravity.

Our results indicate that proving or disproving the strong
form of Mathur’s conjecture—that black hole microstates
are dual to smooth supergravity solutions2 —reduces to a
well-defined mathematical problem: classifying and count-
ing asymptotically flat four-dimensional hyper-Kähler
manifolds that have regions of signature ��;�;�;��
and regions of signature ��;�;�;��. If the conjecture
is correct, it indicates that the black hole is an ensemble of
hyper-Kähler geometries involving foams of a very large
number of topologically nontrivial 2-spheres, threaded by
fluxes. More generally, our results have potentially inter-
esting consequences for the structure of the supersymmet-
ric vacuum states of string theory. We will discuss this
further in the last section of this paper.

The BPS black rings have two microscopic interpreta-
tions: one in terms of the D1-D5-P CFT [18] and another in
terms of a four-dimensional black hole CFT [18,19,27].
Hence, our solutions have two microscopic interpretations.
On one hand, they are dual to microstates of the black ring
CFT, and should be thought of as the ground states of the
BPS black ring, in the same way that the solutions of
[35,36] give the ground state of the five-dimensional
three-charge black hole, and the solutions of [22] give
the ground state of the four-dimensional four-charge black
hole. On the other hand, they are dual to vacua of the D1-
D5-P CFT. Our analysis does not establish to which CFT
vacua our solutions are dual, and we leave this very inter-
esting question to future work. However, based on the
microscopic description of supertubes [18,35,36] we ex-
pect the solutions that correspond to multiple supertubes to
be dual to CFT states with longer effective strings than the
solutions that come from only one supertube. Hence, the
solutions with the largest number of bubbles should corre-
spond to the CFT states with the longest effective strings,
which are the ones that give the D1-D5-P black hole
entropy.

In Sec. II we explain the features of the geometric
transition that resolves the singularity of the zero-entropy
black rings. These features are very similar to those ob-
served in [33] to give bubbling AdS geometries. In Sec. III
we investigate the general form of solutions with a
Gibbons-Hawking base with an arbitrary distribution of
centers. In Sec. IV we consider solutions in which there
are no point-charge sources and only topologically non-
trivial fluxes. We also discuss some simple examples. The
reader who is already familiar with the construction of
metrics with Gibbons-Hawking base and is primarily in-
2There also exists a weak form of Mathur conjecture—that
black-hole microstates are dual to string theory configurations
with unitary scattering that are not necessarily smooth in
supergravity.
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terested in the solution that resolves the singularity of the
zero-entropy black ring should skip to Sec. V. Indeed, in
Sec. V we explicitly construct the bubbling solutions that
come from the geometric transition of zero-entropy black
rings and then compare their features to those of the naive
supertube solutions. We also place the bubbling solutions
in Taub-NUT and relate them to the ground states of four-
dimensional black holes constructed in [22]. Section VI
contains some final remarks.

While working on this paper we became aware of an-
other group that is working on similar issues [37]. Our
paper and theirs will appear simultaneously on the archive.

II. SINGULARITY RESOLUTION AND
GEOMETRIC TRANSITIONS

As is well known, D-branes warp the geometry by
shrinking it along the longitudinal directions and expand-
ing it along the transverse directions. Hence, solutions
sourced by branes that wrap a closed curve generally
have a singularity because the tension in the brane causes
this curve to shrink to zero size. Perhaps the best known
example of such a singularity is Poincaré AdS space with a
periodic direction. For example, if one takes the standard
AdS5 � S

5 solution corresponding to D3-branes, then it is
regular but if one periodically identifies one of the spatial
directions of the D3-branes then those directions collapse
to zero size as one goes down the Ads throat.

An even more interesting example of such a singularity
comes from studying M2 branes polarized into M5 branes
by a transverse field [38]. The M5 branes are wrapped on a
topologically trivial S3 and are stabilized against collapse
by the transverse field. The half-BPS supergravity solution
describing this system [39,40] looks like AdS4 � S

7 far
away from the polarization shell, and like AdS7 � S4 near
the shell. However, because the M5 branes that source the
AdS7 � S4 solution are wrapped on a three-sphere, the
naive near-shell geometry has a singularity.

In [33] it was realized that this singularity is resolved by
a geometric transition. The S3 wrapped by the branes
shrinks to zero size at the position of the branes. The S4

that links this S3 is a ‘‘Gaussian surface’’ for the M5-brane
charge and necessarily becomes large. Moreover, since the
S3 also shrinks to zero size at the origin of the space, this
results in the creation of another topologically nontrivial
S4. The integral of the fourform flux on the second S4 is
equal to N2

N5
. Hence, before the transition the solution had a

shell of M2 branes polarized into M5 branes, and after the
transition the solution has a nontrivial topology, two S4’s
threaded by fluxesN5 and N2

N5
, and no branes. The M2 brane

charge measured at infinity comes from the nontrivial
fluxes through the two S4’s; these fluxes combine via the
supergravity Chern-Simons term to generate the electric
charge.

The three-charge supertubes that one obtains from the
zero-entropy limit of black rings also have a similar singu-
-3



TABLE I. Layout of the branes that give the supertubes and
black rings in an M-theory duality frame. Vertical bars j, in-
dicates the directions along which the branes are extended, and
horizontal lines, —, indicate the smearing directions. The func-
tions, x����, indicate that the brane wraps a simple closed curve
that gives the supertube profile. A ? indicates that a brane is
smeared along the supertube profile, and pointlike on the other
three directions.

1 2 3 4 5 6 7 8 9 10 11

M2 j j j — — — — ? ? ? ?
M2 j — — j j — — ? ? ? ?
M2 j — — — — j j ? ? ? ?

M5 j — — j j j j x����
M5 j j j — — j j x����
M5 j j j j j — — x����
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larity. The brane content of these supertubes is shown in
Table I. The tubes are ‘‘wrapped’’ on a topologically trivial
S1 that sits in the spatial R4 base. The integral of the field
strength F23ijdxi ^ dxj on the S2 that surrounds this S1

gives the number of M5 branes that wrap the 4567 direc-
tions and extend along the S1 of the tube. Similarly, the
integrals of F45ijdx

i ^ dxj and F67ijdx
i ^ dxj measure the

other two dipole charges of the solution. After the geomet-
ric transition, the S1 � R4 of the tube shrinks to zero size,
and the S2 around the supertube becomes fat. Moreover,
since this S1 also shrinks to zero size at the origin of R4,
this will give another topologically nontrivial S2. The
resulting four-geometry, M4, will therefore have two non-
contractible two-spheres, S2

A and S2
B, and no brane sources.

The product of the integrals of the fluxes over these non-
trivial two-spheres, S2

A and S2
B, will give the M2-brane

charges measured at infinity and induced through the su-
pergravity Chern-Simons term. For example, the M2 brane
charge along the 23 directions should be given by

 QM2
23 �

1

2

Z
M4�T2

45�T
2
67

F ^ F � I�1
AB

Z
S2
A

F45ij �
Z
S2
B

F67ij;

(2.1)

where IAB is the intersection matrix of the cycles A and B.
After the transition there are no more brane sources and so
the solution should be completely determined by the base
space and by the fluxes. Moreover, in order for the solution
to preserve the same supersymmetries as three sets of M2
branes, the base space must be hyper-Kähler [11–13]. For
the transition of supertubes of arbitrary shapes, this infor-
mation is not enough to fully determine the solution, how-
ever for the U�1� �U�1� invariant supertubes one can
completely characterize the resulting geometry.

First, the solution after the transition will still have the
U�1� �U�1� symmetry. One can now use a theorem3 that
3We thank Harvey Reall for mentioning this paper to us.
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states [41] that if a four-dimensional hyper-Kähler mani-
fold has a U�1� �U�1� symmetry then a linear combina-
tion of the two U�1�’s must be triholomorphic4 and hence
the metric must have Gibbons-Hawking form. After the
geometric transition, the solution has two independent
two-cycles and so the Gibbons-Hawking space must have
three centers. The base space before and after the transition
must be asymptotic to R4 and this means that the sum of
the GH charges at the three centers must be equal to one. In
order to avoid singularities at the GH centers, the GH
charges must be integers, and so one center must have a
negative charge. Moreover, in the limit when the dipole
charges are small the solution must approach the supertube
in a flat base; hence the center at the origin of the coor-
dinate system must have charge 1. The other two centers
have therefore charges Q and �Q. In this limit we expect
these centers to be located very close to each other, near the
position of the ring in the naive supertube geometry.
Furthermore, the three centers must also be collinear in
order to preserve the U�1� �U�1� symmetry.

Thus, by using just a few facts about geometric transi-
tions (which came by a trivial extension of the physics seen
in [33]) and the fact that four-dimensional hyper-Kähler
manifolds with U�1� �U�1� symmetry are Gibbons-
Hawking [41], we have reached the conclusion that the
singularity of the zero-entropy black ring is resolved by the
nucleation of a pair of oppositely charged Gibbons-
Hawking centers at the location of the ring.

One can now extend this argument to several concentric
rings, and observe that, if one ring is resolved by the
nucleation of one pair of centers, several rings should be
resolved by the nucleation of several pairs of such points. If
the rings are concentric then the GH centers should also be
collinear. One also expects that a solution with several GH
centers that are not collinear should be a simple deforma-
tion of a bubbling supertube, and so it should also be dual
to a CFT microstate. In this way one could expect the
solutions to contain pairs of equal but opposite GH
charges; however, it is also possible to deform such solu-
tions so as to separate or combine the GH centers. Thus, the
class of solutions that have a GH base and are physically
interesting should have any collection of GH centers of
positive and negative (integer) charges at arbitrary posi-
tions inside the R3 base of the Gibbons-Hawking space,
with the constraint that the GH charges sum to one. More
generally, if there is no symmetry one should expect a
general hyper-Kähler metric in which the metric can flip
from positive definite to negative definite.

We should also note that we expect these general multi-
center solutions to be bound states. One way to see this is to
consider an n-tube solution, which after the transition has
(2n� 1) GH centers, (n� 1) of which have positive
4Triholomorphic means that the U�1� preserves all three
complex structures of the hyper-Kähler base.
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charge. Having resolved the geometry, and perhaps sepa-
rated GH charges still further, there is no canonical way to
pair up GH points and decide which pair forms a particular
tube. Moreover, in the limit when all the positively charged
centers coincide and all the negatively charged centers
coincide, this reproduces the bound-state geometries of
[5–7]. Another way to see that the multicenter geometries
are bound states comes from the fact that one cannot
generically separate the centers into separated clusters
because of the fluxes wrapping the nontrivial S2’s of the
base.

In the next two sections we analyze this general solution.
In Sec. V we construct the solution outlined above for the
single bubbling supertube and then we put this solution in a
Taub-NUT background and show that the singularity reso-
lution mechanism derived in this section reproduces the
one found in the case of the zero-entropy four-dimensional
black hole [22].
III. THREE-CHARGE SOLUTIONS WITH A
GIBBONS-HAWKING BASE

A. The solutions in terms of harmonic functions

In the M-theory frame, a background that preserves the
same supersymmetries as three sets of M2-branes can be
written as [11,12]
 

ds2
11 � �

�
1

Z1Z2Z3

�
2=3
�dt� k�2

� �Z1Z2Z3�
1=3hmndxmdxn �

�
Z2Z3

Z2
1

�
1=3
�dx2

1 � dx
2
2�

�

�
Z1Z3

Z2
2

�
1=3
�dx2

3 � dx
2
4� �

�
Z1Z2

Z2
3

�
1=3
�dx2

5 � dx
2
6�;

(3.1)

 

A � A�1� ^ dx1 ^ dx2 � A
�2� ^ dx3 ^ dx4

� A�3� ^ dx5 ^ dx6; (3.2)

where A�I� and k are oneforms in the five-dimensional
space transverse to the T6. The metric, hmn, is four-
dimensional and hyper-Kähler.

When written in terms of the ‘‘dipole field strengths’’
�I,

 ��I� � dA�I� � d
�
dt� k
ZI

�
; (3.3)

the BPS equations simplify to [11,12]

 ��I� � ?4��I� r2ZI �
1
2CIJK ?4 ��

�J� ^��K��

dk� ?4dk � ZI�
�I�;

(3.4)

where ?4 is the Hodge dual taken with respect to the four-
dimensional metric hmn, and CIJK � j�IJKj. If the T6 is
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replaced by a more general Calabi-Yau manifold, the CIJK
change accordingly.

We will take the base to have a Gibbons-Hawking
metric:

 hmndx
mdxn � V�dx2 � dy2 � dz2� �

1

V
�d � ~A 	 d~y�2;

(3.5)

where we write ~y � �x; y; z� and where

 

~r� ~A � ~rV: (3.6)

The solutions of (3.4) with a Gibbons-Hawking base
have been derived before in [13,17]. Here we derive
them again using the linear algorithm outlined in [11]
because we need some of the intermediate results. We
consider a completely general base with an arbitrary har-
monic function, V. We will denote the oneform, ~A 	 d~y �
A. One should also recall that the coordinate  has the
range 0 
  
 4�.

This metric has a natural set of frames:

 ê 1 � V��1=2��d � A�; êa�1 � V1=2dya;

a � 1; 2; 3:
(3.7)

There are also two natural sets of twoforms:

 ��a�� � ê1 ^ êa�1 � 1
2�abcê

b�1 ^ êc�1; a � 1; 2; 3:

(3.8)

The ��a�� are anti-self-dual and harmonic, defining the
hyper-Kähler structure on the base. The forms, ��a�� , are
self-dual, and we can take the self-dual field strengths,
��I�, to be proportional to them:

 ��I� � �
X3

a�1

�@a�V�1KI����a�� : (3.9)

For ��I� to be closed, the functions KI have to be harmonic
in R3. Potentials satisfying ��I� � dBI are then

 BI � V�1KI�d � A� � ~�I 	 d~y; (3.10)

where

 

~r� ~�I � � ~rKI: (3.11)

Hence, ~�I are vector potentials for magnetic monopoles
located at the poles of KI.

The three self-dual Maxwell fields ��I� are thus deter-
mined by the three harmonic functions KI. Inserting this
result in the right-hand side of (3.4) we find

 ZI �
1
2CIJKV

�1KJKK � LI; (3.12)

where LI are three more independent harmonic functions.
We now write the oneform, k, as

 k � ��d � A� �!; (3.13)
-5
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and then the last equation in (3.4) becomes

 

~r� ~! � �V ~r��� ~rV� � V
X3

i�1

ZI ~r
�
KI

V

�
: (3.14)

Taking the divergence yields the following equation for �:

 r2� � 2V�1 ~r 	
�
V
X3

i�1

ZI ~r
KI

V

�
; (3.15)

which is solved by

 � �
1

6
CIJK

KIKJKK

V2 �
1

2V
KILI �M; (3.16)

where M is yet another harmonic function. Indeed, M
determines the anti-self-dual part of dk that cancels out
of the last equation in (3.4). Substituting this result for �
into (3.14) we find that ! satisfies

 

~r� ~! � V ~rM�M ~rV � 1
2�K

I ~rLI � LI ~rKI�: (3.17)

The solution is therefore characterized by the eight
harmonic functions KI, LI, V and M. Moreover, as ob-
served in [27], the solutions are invariant under the shifts:

 KI ! KI � cIV;

LI ! LI � CIJKc
JKK �

1

2
CIJKc

JcKV;

M ! M�
1

2
cILI �

1

12
CIJK�Vc

IcJcK � 3cIcJKK�;

(3.18)

where the cI are three arbitrary constants.
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The eight functions that give the solution may be iden-
tified with the eight independent parameters that make up
the E7�7� invariant as follows:

 x12 � L1; x34 � L2; x56 � L3; x78 � �V;

y12 � K1; y34 � K2; y56 � K3; y78 � 2M:

(3.19)

With these identifications, one can identify the right-hand
side of (3.17) in terms of the symplectic invariant of the 56
of E7�7�:

 

~r� ~! �
1

4

X
A;B

�yAB ~rxAB � xAB ~ryAB�: (3.20)

For future reference, we note that the quartic invariant of
the 56 of E7�7� is determined by
 

J4 � �
1
4�x12y12 � x34y34 � x56y56 � x78y78�2

� �x12x34x56x78 � y12y34y56y78� � x12x34y12y34

� x12x56y12y56 � x34x56y34y56 � x12x78y12y78

� x34x78y34y78 � x56x78y56y78: (3.21)
B. Dirac-Misner strings and closed timelike curves

To look for the presence of closed timelike curves in the
metric, one considers the space-space components of the
metric given by (3.1) and (3.5) in the direction of the base.
If we denote W � �Z1Z2Z3�

1=6, and use the expression for
k in (3.13) then we find
 ds2
4 � �W

�4���d � A� �!�2 �W2V�1�d � A�2 �W2V�dr2 � r2d�2 � r2sin2�d�2�

� W�4�W6V�1 ��2�

�
d � A�

�!

W6V�1 ��2

�
2
�

W2V�1

W6V�1 ��2
!2 �W2V�dr2 � r2d�2 � r2sin2�d�2�

�
Q

W4V2

�
d � A�

�V2

Q
!
�

2
�W2V

�
r2sin2�d�2 �

!2

Q

�
�W2V�dr2 � r2d�2�; (3.22)
where we have introduced the quantity

 Q � W6V ��2V2 � Z1Z2Z3V ��2V2: (3.23)

We have also chosen to write the metric on R3 in terms of a
generic set of spherical polar coordinates, �r; �; ��.

Upon evaluating Q as a function of the eight harmonic
functions that determine the solution, one obtains a beau-
tiful result:

 Q � �M2V2 � 1
3MCIJKK

IKJKk �MVKILI

� 1
4�K

ILI�
2 � 1

6VC
IJKLILJLK

� 1
4C

IJKCIMNLJLKKMKN (3.24)

with CIJK � CIJK. We see that Q is nothing other than the
E7�7� quartic invariant (3.21) where the x’s and y’s are
identified as in (3.19).

From (3.1) and (3.22) we see that to avoid closed time-
like curves (CTC’s), the following inequalities must be true
everywhere:

 Q � 0; W2V � 0;

�ZJZKZ�2
I �

1=3 � W2Z�1
I � 0; I � 1; 2; 3:

(3.25)

The last two conditions can be subsumed into

 VZI �
1
2CIJKK

JKK � LIV � 0; I � 1; 2; 3: (3.26)

The obvious danger arises when V is negative. We will
show in the next subsection that all these quantities remain
-6
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finite and positive in a neighborhood of V � 0, despite the
fact that W blows up. Nevertheless, these quantities could
possibly be negative away from the V � 0 surface. While
we will, by no means, make a complete analysis of the
positivity of these quantities, we will discuss it further in
Sec. IV, and show that (3.26) does not present a significant
problem in a simple example. One should also note that
Q � 0 requires

Q
I�VZI� � �2V4, and so generically the

constraint Q � 0 is stronger than the constraints (3.26).5

Having imposed these conditions there is evidently an-
other potentially dangerous term: r2sin2�d�2 � !2

Q . There
will be CTC’s if the first term does not always dominate
over the second. In particular, one will have CTC’s if !
remains finite as one moves onto the polar axis where � �
0, �. This happens precisely when there is a Dirac-Misner
string6 in the metric. Thus to avoid CTC’s we must make
sure that the solution has no Dirac-Misner strings
anywhere.

C. Ergospheres

As we have seen, the general solutions we will consider
have functions, V, that change sign on the R3 base of the
GH metric. Our purpose here is to show that such solutions
are completely regular, with positive definite metrics, in
the regions where V changes sign. As we will see the
surfaces V � 0 amount to a set of completely harmless
ergospheres.

The most obvious issue is that if V changes sign, then the
overall sign of the metric (3.5) changes and there might be
a large number of closed timelike curves when V < 0.
However, we remarked above that the warp factors, in
the form of W, prevent this from happening. Specifically,
the expanded form of the complete, eleven-dimensional
metric when projected onto the GH base yields (3.22). In
particular, one has

 W2V � �Z1Z2Z3V3�1=3  ��K1K2K3�
2�1=3 (3.27)

on the surface V � 0. Therefore, W2V is regular and
positive on this surface.

There is still the danger of singularities at V � 0 for the
other background fields. We first note that there is no
danger of such singularities being hidden implicitly in
the ~! terms. Even though (3.14) suggests that the source
of ~! is singular at V � 0, we see from (3.17) that the
source is regular at V � 0 and thus there is nothing hidden
5There might of course exist some solutions where two of the
VZI change sign on exactly the same codimension one surface,
but these are nongeneric.

6In terms of vector fields, Dirac strings and Dirac-Misner
strings are the same thing, but we use the former term for vector
potentials of Maxwell fields, and we use the latter when the
vector is part of the metric. The latter is a potentially dangerous
physical singularity, unless it can be unwound by a nontrivial
U�1� fibration.

066001
in ~!. We therefore need to focus on the explicit inverse
powers of V in the solution.

First, the factors of V cancel in the torus warp factors,
which are of the form �ZIZjZ�2

K �
1=3. The coefficient of

�dt� k�2 is W�4, which vanishes as V2. The singular
part of the cross term, dtk, is the �dt�d � A�, which,
from (3.16), diverges as V�2, and so the cross term remains
finite at V � 0. So the metric, and the spatial parts of the
inverse metric, are regular at V � 0. This surface is there-
fore not an event horizon. It is, however, a Killing horizon
or, more specifically, an ergosphere: The timelike Killing
vector defined by translations in t becomes null when V �
0.

At first sight, it does appear that the Maxwell fields are
singular on the surface V � 0. Certainly the ‘‘magnetic
components,’’ �I, in (3.9) are singular when V � 0.
However, one knows that the metric is nonsingular and
so one should expect the singularity in the �I to be
unphysical. This intuition is correct: One must remember
that the complete Maxwell fields are the A�I�, and these are
indeed nonsingular at V � 0. One finds that the singular-
ities in the ‘‘magnetic terms’’ of A�I� are canceled by
singularities in the ‘‘electric terms’’ of A�I�, and this is
possible at V � 0 precisely because it is an ergosphere
and the magnetic and electric terms can communicate.
Specifically, one has, from (3.3) and (3.10),

 dA�I� � d
�
B�I� �

�dt� k�
ZI

�
: (3.28)

Near V � 0 the singular parts of this behave as
 

dA�I�  d
�
KI

V
�
�
ZI

�
�d � A�

 d
�
KI

V
�

K1K2K3

1
2VCIJKK

JKK

�
�d � A�  0: (3.29)

The cancellations of the V�1 terms here occur for much the
same reason that they do in the metric (3.22).

Therefore, even if V vanishes and changes sign and the
base metric becomes negative definite, the complete 11-
dimensional solution is regular and well-behaved around
the V � 0 surfaces. It is this fact that gets us around the
uniqueness theorems for asymptotically Euclidean self-
dual (hyper-Kähler) metrics in four dimensions, and as
we will see, there are now a vast number of candidates
for the base metric.
IV. CONSTRUCTING EXPLICIT SOLUTIONS

A. The harmonic functions

We now specify the type of harmonic functions that will
underlie our solutions. In particular, we will consider
functions with a finite set of isolated sources. Let ~y�j� be
the positions of the source points in the R3 of the base, and
let rj � j ~y� ~y�j�j. We take
-7
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 V � "0 �
XN
j�1

qj
rj
; (4.1)

where "0 can be chosen to be 1 if the base is asymptotically
Taub-NUT and "0 � 0 for an asymptotically Euclidean
(AE) space. If qj 2 Z then the metric at rj � 0 has a
(spatial) Zjqjj orbifold singularity, but this is benign in
string theory, and so we will view such backgrounds as
regular. It is convenient to define

 q0 �
XN
j�1

qj; (4.2)

and note that the metric is asymptotic to R4 if and only if
jq0j � 1. By convention we will take q0 > 0. This means
that V is positive for large r. Moreover, the fact that qj 2 Z

means that the only nontrivial backgrounds will have some
negative qj’s, and thus the function V will be negative in
the vicinity of these GH centers. As we saw in Sec. III, the
surfaces V � 0 when V changes sign.

We can choose the harmonic functions KI, LI and M to
be localized anywhere on the base. These solutions have
localized brane sources, and include, for example, the
supertube and the black ring in Taub-NUT [22,25–27].
However, as explained in Sec. II, we are interested in the
solutions without localized branes, so we consider har-
monic functions KI, LI and M whose singularities are
localized at the GH centers:

 KI � kI0 �
XN
j�1

kIj
rj
; LI � ‘I0 �

XN
j�1

‘Ij
rj
;

M � m0 �
XN
j�1

mj

rj
:

(4.3)
B. Cycles and fluxes

The multiple-center GH base (4.1) has many noncon-
tractible two-cycles, �ij, that run between the GH centers.
These two-cycles can be defined by taking any curve, �ij,
between ~y�i� and ~y�j� and considering the U�1� fiber of (3.5)
along the curve. This fiber collapses to zero at the GH
centers, and so the curve and the fiber sweep out a 2-sphere
(up to Zjqjj orbifolds). There are (N � 1) linearly indepen-
dent homology two-spheres, and the set �i�i�1� represents a
basis. These spheres intersect one another at the points ~y�k�.

The fluxes that thread these two-cycles depend on the
behavior of the functions, KI at the GH centers. To deter-
mine the fluxes we need the explicit forms for the vector
potentials, BI, in (3.10), and to find these we first need the
vector fields, ~vi, that satisfy

 

~r� ~vi � ~r
�

1

ri

�
: (4.4)
066001
One then has

 

~A �
XN
j�1

qj ~vj; ~�I �
XN
j�1

kIj ~vj: (4.5)

If we choose coordinates so that ~y�i� � �0; 0; a�,
�y1; y2; y3� � �x; y; z� and let � denote the polar angle in
the �x; y�-plane, then

 ~v i 	 d~y �
�
�z� a�
ri

� ci

�
d�; (4.6)

where ci is a constant. The vector field, ~vi, is regular away
from the z-axis, but has a Dirac string along the z-axis. By
choosing ci we can cancel the string along the positive or
negative z-axis, and by moving the axis we can arrange
these strings to run in any direction we choose, but they
must start or finish at some ~y�i�, or run out to infinity.

Now consider what happens to BI in the neighborhood
of ~y�i�. Since the circles swept out by  and� are shrinking
to zero size, the string singularities near ~y�i� are of the form
 

BI 
kIi
qi

�
d � qi

�
�z� a�
ri

� ci

�
d�

�

� kIi

�
�z� a�
ri

� ci

�
d�

kIi
qi
d : (4.7)

This shows that the vector, ~�I, in (3.10) cancels the string
singularities in the R3 for each of the complete vector
fields, BI. The singular components of BI thus point along
the U�1� fiber of the GH metric.

If we choose any curve, �ij, between ~y�i� and ~y�j� then the
vector fields, BI, are regular over the whole �ij except at

the end points, ~y�i� and ~y�j�. Let �̂ij be the cycle �ij with the
poles excised. Since ��I� is regular at the poles, we have

 ��I�
ij �

1

4�

Z
�ij

��I� �
1

4�

Z
�̂ij

��I� �
1

4�

Z
@�̂ij

B�I�

�
1

4�

Z 4�

0
d �B�I�jy�j� � B

�I�jy�i�� �

�kIj
qj
�
kIi
qi

�
:

(4.8)

We have normalized these periods for later convenience,
and they give the Ith flux threading the cycle �ij. As we
will see, these fluxes are directly responsible for holding up
the cycle.

C. Solving for !

Since everything is determined by the eight harmonic
functions (4.3), all that remains is to solve for ! in
Eq. (3.17). The right-hand side of (3.17) has two kinds of
terms:

 

1

ri
~r

1

rj
�

1

rj
~r

1

ri
and ~r

1

ri
: (4.9)
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Hence!will be built from the vectors ~vi of (4.4) and some
new vectors, ~wij, defined by

 

~r� ~wij �
1

ri
~r

1

rj
�

1

rj
~r

1

ri
: (4.10)

To find a simple expression for ~wij it is convenient to use
the coordinates outlined above with the z-axis running
through ~y�i� and ~y�j�. Indeed, choose coordinates so that
~y�i� � �0; 0; a� and ~y�j� � �0; 0; b� and one may take a > b.
Then the explicit solutions may be written very simply:

 wij � �
�x2 � y2 � �z� a��z� b��

�a� b�rirj
d�: (4.11)

This is then easy to convert to a more general system of
coordinates. One can then add up all the contributions to!
from all the pairs of points.

There is, however, a more convenient basis of vector
fields that may be used instead of the wij. Define

 !ij � wij �
1

�a� b�
�vi � vj � d��

� �
�x2 � y2 � �z� a� ri��z� b� rj��

�a� b�rirj
d�:

(4.12)

These vector fields then satisfy

 

~r� ~!ij �
1

ri
~r

1

rj
�

1

rj
~r

1

ri
�

1

rij

�
~r

1

ri
� ~r

1

ri

�
; (4.13)

where

 rij � j ~y
�i� � ~y�j�j (4.14)

is the distance between the ith and jth center in the
Gibbons-Hawking metric.

We then see that the general solution for ~! may be
written as

 ~! �
XN
i;j

aij ~!ij �
XN
i

bi ~vi; (4.15)

for some constants aij, bi.
The important point about the !ij is that they have no

string singularities whatsoever, and thus they can be used
to solve (3.17) with the first set of source terms in (4.9),
without introducing Dirac-Misner strings, but at the cost of
adding new source terms of the form of the second term in
(4.9). If there are N source points, ~y�j�, then using the wij
suggests that there are 1

2N�N � 1� possible string singular-
ities associated with the axes between every pair of points
~y�i� and ~y�j�. However, using the !ij makes it far more
transparent that all the string singularities can be reduced
to those associated with the second set of terms in (4.9) and
so there are at most N possible string singularities and
066001
these can be arranged to run in any direction from each of
the points ~y�j�.

However, for nonsingular solutions and, as we have
seen, to avoid CTC’s, we must find solutions without
Dirac-Misner strings. The vector potentials, ~vi, necessarily
have such singularities, and therefore string singularities
will arise through the second term in (4.15). These strings
originate from each ~y�j�, and while they can be arranged to
coincide and cancel in some places, there will always be
regions that have nontrivial strings. We therefore have to
require that the solution for ! be constructed entirely out
of the !ij in (4.13). That is, we must require that bi � 0 in
(4.15). This yields a set of N constraints that relate the
charges and distances, rij. We will refer to these as the
‘‘bubble equations.’’

D. The nonsingular solutions

We have seen that the constants qj and kIi determine the
geometry and the fluxes in the solution. We now fix the
remaining constants, ‘Ii and mi, by requiring that the
solutions have no sources for the brane charge. With but
a few exceptions, nonzero sources for the brane charge will
lead to singularities or black hole horizons, and are better
avoided if one wants to construct microstate solutions.

As one approaches rj � 0 one finds

 ZI 
�
1

2
CIJK

kJjk
K
j

qj
� ‘Ij

�
1

rj
: (4.16)

We thus remove the brane sources by choosing

 ‘Ij � �
1

2
CIJK

kJjk
K
j

qj
; j � 1; . . . ; N: (4.17)

Since there are no brane sources, � cannot be allowed to
diverge at rj � 0, which determines

 mj �
1

12
CIJK

kIjk
J
jk
K
j

q2
j

�
1

2

k1
jk

2
jk

3
j

q2
j

: (4.18)

The constant terms in (4.3) determine the behavior of the
solution at infinity. If the asymptotic geometry is Taub-
NUT, all these term can be nonzero, and they correspond to
combinations of the moduli. (A more thorough investiga-
tion of these parameters can be found in the last section of
[27].) However, in order to obtain solutions that are asymp-
totic to five-dimensional Minkowski space, R4;1, one must
take "0 � 0 in (4.1), and kI0 � 0. Moreover, � must vanish
at infinity, and this fixes m0. For simplicity we also fix the
asymptotic values of the moduli that give the size of the
three T2’s, and take ZI ! 1 as r! 1. Hence, the solutions
that are asymptotic to five-dimensional Minkowski space
have
-9
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 "0 � 0; kI0 � 0; lI0 � 1;

m0 � �
1

2
q�1

0

XN
j�1

XN
I�3

kIj:
(4.19)

It is straightforward to generalize our results to solutions
with different asymptotics, and, in particular, to Taub-
NUT.

As we observed above, we must find a solution with no
Dirac-Misner strings, and thus ! must be made out of the
!ij in (4.13). To match the 1

ri
~r 1
rj

terms on the right-hand

side of (3.17) we must take
 

~! �
1

2

XN
i;j�1

��
1

2

X3

I�1

�kIi l
I
j � l

I
ik
I
j�

�
� �qimj �miqj�

�
~!ij

�
1

4

XN
i;j�1

qiqj

�Y3

I�1

�kIj
qj
�
kIi
qi

��
~!ij

�
1

4

XN
i;j�1

qiqj�
�1�
ij ��2�

ij ��3�
ij ~!ij: (4.20)

This then satisfies
 

~r� ~!�
�
V ~rM�M ~rV �

1

2
�KI ~rLI � LI ~rK

I�

�

�
XN
i�1

�
m0qi �

1

2

X3

I�1

kIi

�
~r
�

1

ri

�

�
1

4

XN
i;j�1

qiqj�
�1�
ij ��2�

ij ��3�
ij

1

rij

�
~r

1

ri
� ~r

1

rj

�
; (4.21)

and the absence of CTC’s means that the right-hand side of
this must vanish. Collecting terms in ~r�r�1

j � and requiring
that each of them vanish leads to a system of ‘‘bubble
equations,’’ relating rij to the fluxes:

 

XN
j�1
j�1

��1�
ij ��2�

ij ��3�
ij

qiqj
rij
� �2

�
m0qi �

1

2

X3

I�1

kIi

�
: (4.22)

The solution for! in (4.20), and the equations (4.22) can
be trivially extended to more complicated U�1�n super-
gravity theories by replacing ��1�

ij ��2�
ij ��3�

ij with
1
6CIJK��I�

ij ��J�
ij ��K�

ij , and replacing products of quantities
like

Q3
I�1 X

I by 1
6CIJKX

IXJXK.
Note that if one sums (4.22) over all values of i then the

skew symmetry of the left-hand side causes it to vanish.
The result is

 

XN
i�1

�
m0qi �

1

2

X3

I�1

kIi

�
� 0; (4.23)

which is the last equation in (4.19). Thus there are generi-
cally only (N � 1) independent ‘‘bubble equations’’ in
(4.22).
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We see from (4.22) that the rij are related directly to the
fluxes, but for N > 2, the rij are not fixed by a choice of
fluxes: There are moduli, and we will discuss this below.
Also note that if any one of the fluxes �I

ij, I � 1, 2, 3
vanishes, then the rij drops out of the equations
completely.

The other important constraint is (3.25). We are not
going to make a complete analysis of this, but we note
that the only obvious danger points are when rj � 0 for
some j. For the nonsingular solutions considered here we
have Zi going to a constant at rj � 0, and from (3.23) we
see that Q will become negative unless

 �� ~y � ~y�j�� � 0; j � 1; . . . ; N: (4.24)

It turns out that this set of constraints is exactly the same as
the set of Eqs. (4.22). We have checked this explicitly, but it
is also rather easy to see from (3.14). The string singular-
ities in ~! potentially arise from the ~r�r�1

j � terms on the
right-hand side of (3.14). We have already arranged that the
Zi and � go to finite limits at rj � 0, and the same is
automatically true ofKIV�1. This means that the only term
on the right-hand side of (3.14) that could, and indeed will,
source a string is the � ~rV term. Thus removing the string
singularities is equivalent to (4.24). Moreover, the fact that
the sum of the resulting equations reduces to (4.23) is
simply because the condition �! 0 as r! 1 means
that there is no Dirac-Misner string running out to infinity.

For the nonsingular solutions it is easy to check that

 VZI �
XN
i�1

qi
ri
�

1

4
CIJK

XN
i;j�1

�J
ij�

K
ij

qiqj
rirj

; (4.25)

and, as we noted in (3.26), this must be positive. While we
have not been able to show this is true in general, we
suspect that the positivity of these functions will follow
from the bubble equations, (4.22), triangle inequalities
between ri, rj and rij, and some simple constraints on
the charges. We will consider a very simple example below.

At this point it is very instructive to count parameters.
There are 3N charges, kIj, and the set of points, ~y�j�, have
3N parameters. The Euclidean R3 of the base has three
translational symmetries and three rotational symmetries,
which means that, for N � 3, the generic solution has
6�N � 1� parameters. The equations impose (N � 1) con-
straints, leaving 5�N � 1� free parameters. ForN � 2 there
is a residual axisymmetry which means that there are 5N �
4 � 6 parameters, which correspond to the choice of the
kIj. We should also remember that three combinations of
the kIj do not affect the final solution, because of the gauge
invariance (3.18).

Physically, it is natural to fix the charges and solve (4.22)
to determine some of the rij in terms of other rlm. Note that
doing this turns (4.22) into a linear system for the r�1

ij ,
which is elementary to invert. In finding the solutions, one
-10
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must remember to impose the triangle inequalities:

 rij � rjk � rik; 8 i; j; k: (4.26)

It is easy to see that there is always a physical solution
for some ranges of the rij. Indeed, if put all the points ~y�j�

on a single axis, which means the complete solution pre-
serves a U�1� �U�1� symmetry overall, then the only
geometric parameters are the (N � 1) separations of the
points on the axis. The triangle inequalities are all trivially
satisfied. Thus only (N � 1) of the rij are independent, and
they are uniquely fixed7 by (4.22) in terms of the choice of
flux parameters, kIj. One can then vary the rij about this
solution and one finds the complete family with all allowed
ranges of rij consistent with the triangle inequality.

It is rather easy to understand the physical picture of the
solution set. The fluxes, determined by kIj, are holding up
the blown up cycles, whose sizes are determined by the rij.
If one puts all the cycles in a straight line, then their sizes
are fixed uniquely by the magnitudes of the fluxes through
the cycles. One can think of these cycles as being charac-
terized by ‘‘rods’’ of length ri�i�1� along the axis. However,
the cycles can move around, and so the rods can pivot about
their end points while remaining connected to one another.
The rod lengths can vary, but they generically vary only a
small amount: Their length is set by the fluxes through the
cycles, and these are modified only when neighboring
cycles get close enough that they interfere with each others
fluxes. Rods can, however, combine and break when a
point ~y�‘� crosses the axis ~y�i� and ~y�j�. Put more mathe-
matically, by imposing axisymmetry one gets a preferred
homology basis with fixed scales. This basis will generi-
cally undergo Weyl reflections when the difference of two
cycles collapses.

E. Examples

Consider V with three charges:

 q1 � 1; q2 � 1; q3 � �1: (4.27)

Since we have q0 �
P
qj � 1, the base is asymptotic to

R4. The Eqs. (4.22) reduce to a system of the form

 

�
A12

r12
�
A13

r13
� �B2 � B3�;

A12

r12
�
A23

r23
� �B1 � B3�;

A13

r13
�
A23

r23
� �B1 � B2 � 2B3�; (4.28)

where
7If, in solving (4.22), one finds one of the independent rij to be
negative, one can render it positive by reordering the points.
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 A12 �
Y3

I�1

�kI1 � k
I
2�; A13 �

Y3

I�1

�kI1 � k
I
3�;

A23 �
Y3

I�1

�kI2 � k
I
3�; Bj �

X3

I�1

kIj; j � 1; 2; 3:

(4.29)

If we impose the condition that the Gibbons-Hawking
centers are collinear, for example r13 � r12 � r23, then
the forgoing equations reduce to a quadratic equation.
The ordinary, zero-entropy black ring emerges as r23 !
0, and so we know there is certainly a family of solutions in
this limit.

Now suppose we have a solution, and we want to find the
family to which it belongs. We only need use two of the
equations in (4.28), and so consider the first two equations.
Choose r12 to have the value for the known solution. The
first two equations in (4.28) tell us that the third charge
(j � 3) must be located at a determined distance from each
of the other two charges, i.e. r13 and r23 are fixed. This
determines the location of the third charge up to rotations
about the axis through the first two charges. Suppose we
now decrease r12 by a small amount. The first two equa-
tions in (4.28) tell us that if � A13

A12
> 0 then �r13 must

decrease and if � A23

A12
> 0 then �r23 must increase. Thus

the third charge must move around to compensate, and if
r13 and r23 change in opposite senses then the third charge
will move in an orbit around the first or second charge. If
r13 and r23 change in the same sense then the third charge
will move toward or away from the axis between the first
and second charges. For generic kIj, there will only be a
range of values for r12 for which a solution is possible. The
distances r13 and r23 can only compensate for limited
changes in r12 without violating triangle inequalities.

Perhaps the most instructive case to consider is when
every K-charge is equal: kIi � k, for all i, I, jqjj � 1 for all
j, and q0 � 1. Decompose the Gibbons-Hawking points,
qj into two sets:

 S � � fj : qj � �1g: (4.30)

Define the electrostatic potentials:

 V �� ~y� �
X
j2S�

8k2

3

1

j ~y� ~y�j�j
: (4.31)

Then the equations (4.22) reduce to

 V �� ~y�i�� � �N � 1�; 8 i 2 S�;

V�� ~y
�i�� � �N � 1�; 8i 2 S�:

(4.32)

These also have the redundancy arising from (4.23):

 

X
i2S�

V�� ~y
�i�� �

X
i2S�

V�� ~y
�i��: (4.33)

Thus we see that the positive Gibbons-Hawking points
-11



FIG. 2 (color online). This shows the equipotential, V� � 4.
The three positive charges can be located anywhere on the
equator, E.
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must be on a specific equipotential of V�, and do not care
where the other positive charges are. Similarly, the nega-
tive Gibbons-Hawking points must be on a specific equi-
potential of V�, and do not care where the other negative
charges are.

Suppose we haveN � 3 with labeling (4.27), then (4.32)
tells us that

 r13 � r23 �
4k2

3
; (4.34)

and that r12 is a free parameter. However, the triangle
inequality limits r12 to 0 
 r12 


8k2

3 .
For N � 5 things are a little more complicated. Let a be

the separation of the two negative charges. Having fixed a
there should be a five-parameter family of solutions to
(4.32): One must locate the positive charges on the equi-
potentials of V�, which leads to six parameters. There are
then apparently two constraints coming from the first
equation (4.32) but one of them is redundant via (4.33).

There are some obvious solutions that can be obtained
using symmetry. The potential, V�, has a symmetry axis,
A, through the two Gibbons-Hawking points and the
equipotentials come either as a single surface, B, of revo-
lution about A, or they consist of two disconnected de-
formed spheres about each point. If the two negative
charges are close enough together then the equipotentials
V� � �N � 1� � 4 is a single surface, B, which has a
well-defined equator, E, midway between the two negative
charges. (See Fig. 2.) One obvious three-parameter solu-
tion to (4.32) is to put all three positive charges anywhere
on E. The remaining two parameters come from moving
the charges off E: One can move two of them in any way
one wishes, and the third one’s position is fixed by the first
equation in (4.32). As for N � 3, there will be limits on the
range of motion of the three points.

Finally, we note that, for this example, (4.25) collapses
to yield the condition

 VZI �
3

8k2

�
V� �V� �

3

2
V�V�

�
� 0: (4.35)

For N � 3 this inequality is simply

 

1

r1
�

1

r2
�

1

r3
�

4k2

r3

�
1

r1
�

1

r2

�

�
1

r1
�
�r3 � r2 � r23�

r2r3
�

1

r3

�
4k2

r1
�
�4k2 � r23�

r2

�
� 0:

(4.36)

This is trivially satisfied because of the triangle inequality
r3 � r23 � r2 and because r23 �

4k2

3 .
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V. BUBBLING SUPERTUBES

A. The resolved solution

In this section we investigate the form of the solutions
that resolve the singularity of the three-charge black ring.
We are also going to require the resolved solution to have
the same U�1� �U�1� symmetry as the black ring. The
geometric resolution we describe here is depicted in Fig. 1.

As discussed in Sec. III, the metric on the base is given
by

 V �
1

r
�
Q
ra
�
Q
rb
; (5.1)

where ra and rb denote the distance to the points a and b. If
a, b and the origin are collinear then the solution has aU�1�
invariance from the R3 of the GH metric and another U�1�
invariance from the GH fiber.

We want the nonsingular solution outlined in Sec. IV.
We can choose the K-charges freely, but we only allow
them to be sourced at the GH centers:

 KI �
kI0
r
�
kIa
ra
�
kIb
rb
: (5.2)

Note that kI0 now denotes the charge at r � 0, and not the
additive constant in (4.3). As before, we want this solution
to be pure geometry with fluxes, with charges coming from
fluxes, and we require the harmonic functions Zi to have no
-12
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divergences at the points 0, a, b. Together with asymptotic
flatness, this completely determines the functions LI:

 LI � 1�
1

2
CIJK

�
�
kJ0k

K
0

r
�
kJakKa
Qra

�
kJbk

K
b

Qrb

�
; (5.3)

where, as before, CIJK � CIJK � j�IJKj. Similarly, requir-
ing � to be regular leads to

 M �
1

12
CIJK

�
kI0k

J
0k
K
0

r
�
kIakJakKa
Q2ra

�
kIbk

J
bk

K
b

Q2rb

�

�
1

2

X
I;j�0;a;b

kIj: (5.4)

To remove Dirac-Misner strings and CTC’s leads to three
more relations of the form (4.22) and only two of these
relations are independent. Since we are taking the centers
to be collinear, these equations determine a and b as a
function of the kIj. Thus the complete solution is fixed by
the choice of the kIj, which also fix the fluxes through the
two S2’s of the base. We will give these equations below
but, as we noted in Sec. IV, these equations are equivalent
to requiring that ~! can be written solely in terms of the ~!ij

of (4.12). Here we have8

 

~! �
1

2Q2

Y3

I�1

�kIa �Qk
I
0� ~!0a �

1

2Q

Y3

I�1

�kIa � k
I
b� ~!ab

�
1

2Q2

Y3

I�1

�kIb �Qk
I
0� ~!0b: (5.5)
B. Orthogonal cycles and diagonalization

As we have discussed in Sec. III, our solutions have a
gauge invariance (3.18), and therefore only two combina-
tions of the three parameters in KI appear in the solution.
This gauge invariance could be used to eliminate the kI0 for
example; however, in order to simplify the solution it is
better to introduce other variables that make the relation
between the bubbling solutions and the supertubes more
direct.

To avoid unnecessary normalization conventions be-
tween the charges in the supergravity solution and the
number of branes, we work in a convention where they
are equal; this happens when the three T2’s have equal size
and G5 �

�
4 [16,27]. The three M2-brane charges are then

 

NK � 2CKIJ

��
1�

1

Q

�
kIakJa � 2kIak

J
b �

�
1�

1

Q

�
kIbk

J
b

� 2kIak
J
0 � 2kIbk

J
0

�
: (5.6)
8The solution in a more complicated U�1�n supergravity
theory is obtained by simply replacing the products of the
form

Q3
I�1�k

I
a � k

I
b� with 1

6CIJK�k
I
a � k

I
b��k

J
a � k

J
b��k

K
a � k

K
b �.
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If we now introduce new, physical variables nI and fI,

 nI � 2�kIa � kIb�;

fI �
1

Q
�kIa�1�Q� � kIb�Q� 1� � 2QkI0�;

(5.7)

the charges become

 NK � CKIJnIfJ: (5.8)

As expected from (3.18), all the components of the solution
only depend on the f’s and n’s. The nI and fI are simple
combinations of fluxes through the nontrivial cycles.
Indeed, nI is proportional to the flux through the cycle
between a and b that resolves the supertube. The interpre-
tation of fI is a bit more obscure; however, when Q � 1,
then n � 2�ka � kb� and f � 2�ka � k0�, and so the cycles
that give n and f run between the point with a minus GH
charge and the two points with positive GH charge.

C. Solving the bubble equations

Since we are restricting the GH centers to lie on an axis
there are a priori several distinct cases determined by the
signs of a, b and b� a. However, for the bubbling super-
tube we will only need consider the regime with b > a > 0.
The bubble equations are
 

1

aQ2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�

�
1

bQ2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�
� 4

X3

I�1

nI � 0;

(5.9)
 

1

�b� a�Q

Y3

I�1

nI �
1

bQ2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�

� 4
X3

I�1

�
1

2
�Q� 1�nI �QfI

�
� 0: (5.10)

These equations are also trivially generalized to the case of
a more complicated U�1�n supergravity theory.

The general solutions of these equations are quite in-
volved, however they have some rather interesting features.
The simplest case to analyze is to take jQj � 1 and nI �
fI � 4k for all I as we did in the previous section. ForQ �
1 we learn from (4.34), or (5.9), that

 a �
4k2

3
; b �

8k2

3
; (5.11)

thus the negative GH charge is exactly in the middle of the
two positive charges. For Q � �1 we have

 a � 0; b �
4k2

3
; (5.12)

and so the two positive GH charges coincide at the origin.
Of more interest physically is the limit in which the

distance between a and b becomes very small compared
-13
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with the distance from the origin to the points a and b. As
we will see in the next subsection, the latter distance
asymptotes to the radius of the naive supertube, and the
solution resembles the naive supertube solution. The dis-
tance between a and b is given by the balance between the
attraction of the Q and �Q charges, and the tendency of
the fluxes wrapped on the two-cycle between a and b to
expand this cycle and make this distance larger. Therefore,
one expects to obtain a solution that matches the naive
supertube solution both in the small flux limit (small n) and
in the large Q limit.

When a and b are very close to each other it is relatively
easy to find an approximate solution to (5.9) and (5.10).
Equation (5.10) determines the separation between a and
b, and Eq. (5.9) gives the separation between these two
points and the origin. The leading part of (5.9) (obtained by
setting a � b) then gives

 a � b

�
2CIJK�fIfJnK � nInJfK� � �3�

1
Q2�

1
6C

IJKnInJnK

16
P3
I�1 nI

:

(5.13)

As we will see in the next subsection, this matches the
radius of the naive supertube solution both in the small n
and in the large Q limits. One can also estimate the size of
the bubble, a� b; we will give the complete formula for
this size when we discuss bubbling supertubes in Taub-
NUT in Sec. V E.

We have also numerically checked that Q> 0 and
r2sin2�d�2 � !2

Q � 0 in an example in which a and b are
large compared to a� b. Thus, the bubbling of the super-
tube does not generate CTC’s.

The angular momenta of the bubbling supertube are easy
to find. The complicated form of the solutions of the bubble
equations might have worried one that the angular mo-
menta, which depend explicitly on a and b, would be rather
horrible. However, a pleasant surprise awaits.

To read off the angular momenta we first do a change of
coordinates to write the asymptotic form of the GH base as
R4. If one chooses asymptotically ~A 	 d~y � �1� cos��d�
in (3.5), then the coordinate change,

 � � ~�2 � ~�1;  � 2 ~�1; r �
1

4
�2; (5.14)

makes the R4 form of the asymptotic solution explicit. The
two angular momenta are then determined from the asymp-
totic behavior of � and ! via

 ��1� cos�� �! �
J1sin2 �

2

4r
(5.15)
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 ��1� cos�� �! �
J2cos2 �

2

4r
: (5.16)

One combination of the angular momenta is independent
of a and b, and is given by
 

�J1 � J2� � �
�Q2 � 1�

4Q2

1

6
CIJKnInJnK

�
1

2
CIJK�nInJfK � fIfJnK�: (5.17)

Despite the very complicated form of the solution of
(5.9) and (5.10), the other combination of the angular
momenta is also very simple. The final results are

 J1 � �
�Q� 1�

2Q
1

6
CIJKnInJnK �

1

2
CIJKnInJfK; (5.18)

 J2 �
�Q� 1�2

4Q2

1

6
CIJKnInJnK �

1

2
CIJKfIfJnK: (5.19)

As we will see in the next subsection, these will again
match the naive supertube angular momenta, both in the
large Q limit and in the small nI limit.

D. Matching the naive supertube solution

We first write the naive solution describing the zero-
entropy black ring by rewriting the R4 base as a GH metric
with a single GH center of charge one. This single center
can be taken to be at r � 0, and then the supertube generi-
cally has sources for K, L and M at r � 0 and at ra � 0.
The radius, R, of the supertube is then the distance, r0a,
between the two source points. We can use the gauge
invariance, (3.18), to set the K-charge at r � 0 to zero,
and then the supertube solution is given by [27]

 V �
1

r
; KI �

nI
2ra

; LI � 1�
�NI

4ra
;

M � �
JT
16

�
1

R
�

1

ra

�
:

(5.20)

In this expression, nI and �NI are the (integer) numbers of
M5-branes and M2-branes that make up the supertube, and
JT is the angular momentum of the tube alone. The ‘‘tube’’
angular momentum, JT , is related to the radius by

 JT � 4RT�n1 � n2 � n3�: (5.21)

In the case of the zero-entropy black ring, this angular
momentum is completely determined in terms of the nI and
�NI:
 JT �
2n1n2

�N1
�N2 � 2n1n3

�N1
�N3 � 2n2n3

�N2
�N3 � n

2
1

�N2
1 � n

2
2

�N2
2 � n

2
3

�N2
3

4n1n2n3
; (5.22)
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where �N1 � N1 � n2n3, and similarly for �N2 and �N3. The
angular momenta of the naive supertube solution are

 J1 �
n1

�N1 � n2
�N2 � n3

�N3

2
� n1n2n3

J2 � JT �
n1

�N1 � n2
�N2 � n3

�N3

2
� n1n2n3:

(5.23)

As one can see both from the form of the KI when a and
b are very close, and from the integral of the fluxes on the
cycle that runs between a and b, the nI of the bubbling
solutions are identical to the M5 dipole charges ni. If one
then interprets (5.8) as a change of variables between the
NI and the fI, one can express the supertube angular
momenta and radius in terms of the nI and fI:

 JT �
1
2C

IJK�fIfJnK � nInJfK� �
1
8C

IJKnInJnK; (5.24)

 J1 �
1

2
CIJK�nInJfK� �

1

12
CIJKnInJnK;

J2 �
1

2
CIJK�fIfJnK� �

1

24
CIJKnInJnK;

(5.25)

which gives

 RT �
2CIJK�fIfJnK � nInJfK� �

1
2C

IJKnInJnK
16
P3
I�1 nI

: (5.26)

As we have advertised in the previous subsection, these
match exactly the bubbling supertube radius and angular
momenta both in the limit when the dipole charges nI are
small, and in the limit when Q is large.

We should also note that the nnf and nff combinations
that appear in the angular momentum formulas (5.18) and
(5.19) are not apparent at all from the form of the supertube
angular momenta, and only become apparent after express-
ing the NI using (5.8). When Q � 1 the angular momenta
are interchanged under the exchange of nI and fI. Hence, a
solution with Q � 1 has two interpretations: for small nI it
is a supertube of dipole charges nI in the ~�1 plane, and for
small fI it is a supertube of dipole charges fI in the ~�2

plane. This feature—the existence of one supergravity
solution with two different brane interpretations—is
present in all the other systems that contain branes wrapped
on topologically trivial cycles [33,42,43] and might be the
key to finding the microscopic description of our bubbling
supertube geometries.

When the size of one bubble is much smaller than the
size of the other, the harmonic functions that give the
bubbling solution (5.2), (5.3), and (5.4) become approxi-
mately equal to the supertube harmonic functions (5.20).

If we work in the gauge with kI0 � 0, one can easily see
that (5.2) combined with (5.7) reproduces the correct iden-
tification of the dipole charges with the flux integrals. From
(5.3) one finds
066001
 

�N I �
2

Q
CIJK�kJakKa � k

J
bk
K
b �: (5.27)

This again agrees with (5.7) and (5.8) in the gauge kI0 � 0
after using the fact that the total M2-brane charge of the
solution is
 

NI � �NI �
1

2
CIJKnJnK

�
2

Q
CIJK��k

J
ak

K
a � k

J
bk
K
b � �Q�k

J
a � k

J
b��k

K
a � k

K
b ��

�
2

Q
CIJK�k

J
a � k

J
b���Q� 1�kKa � �Q� 1�kKb �: (5.28)

Finally, the harmonic functionM in (5.4) reproduces that
of the naive supertube after identifying
 

JT �
4

3Q2 CIJK�k
I
ak

J
ak
K
a � k

I
bk

J
bk
K
b �

�
1

2
CIJK�fIfJnK � nInJfK�

�
1

24

�
3�

4

Q
�

1

Q2

�
CIJKnInJnK (5.29)

and remembering that the solutions agree in the large Q or
small n limit.

Hence, the bubbling solution is identical to the naive
solutions at distances much larger than the size of the
bubble. Moreover, in the limit when Q! 1 or in the limit
when nI ! 0 with fixed NI, the bubble that is nucleated to
resolve the singularity of the three-charge supertube be-
comes very small, and the resolved solution becomes
virtually indistinguishable from the naive solution. This
confirms the intuition coming from the discussion of geo-
metric transitions in Sec. II, and from the similar phenome-
non observed in [33].

The fact that for small dipole charges the singularity
resolution is local provides very strong support to the
expectation that there exist similar bubbling supertube
solutions that correspond to supertubes of arbitrary shape
and arbitrary charge densities.

E. Bubbling supertubes in Taub-NUT

In order to compare our singularity resolution mecha-
nism to that of the zero-entropy four-dimensional black
hole [22], we need to put the bubbling supertube in Taub-
NUT. This solution resolves the singularity of the zero-
entropy black ring in Taub-NUT [25–27].

The construction of bubbling supertubes in Taub-NUT is
almost identical to the construction in asymptotically
Euclidean space. To simplify the algebra we make use of
the gauge freedom (3.18) to set the three kI0 to zero. The
asymptotically Taub-NUT base is obtained by modifying
the harmonic function V to

 V � h�
1

r
�
Q
ra
�
Q
rb
; (5.30)
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where we do not fix h to one in order to make the inter-
polation between the asymptotically R4 and the asymptoti-
cally Taub-NUT solutions easier. The functions KI and LI
are the same as before [see (5.2) and (5.3)]. The coefficients
mj in M are given by the requirement that � be regular at
the three centers (4.18), and they are also not changed.
However, because of the changed asymptotics there is no
longer a requirement that � vanish at infinity, and so m0 is
a free parameter. Hence,

 M � m0 �
1

2
CIJK

�
kI0k

J
0k
K
0

r
�
kIakJakKa
Q2ra

�
kIbk

J
bk
K
b

Q2rb

�
: (5.31)

The requirement that � vanishes at the three centers
gives three equations, which are now independent:
 

1

aQ2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�

�
1

bQ2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�
� 16m0 � 0; (5.32)

 

1

�b� a�Q

Y3

I�1

nI �
�
h�

1

b

�
1

Q2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�

� 16m0 �
X3

I�1

�
1

2
�Q� 1�nI �QfI

�
� 0: (5.33)
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1

�b� a�Q

Y3

I�1

nI �
�
h�

1

a

�
1

Q2

Y3

I�1

�
1

2
�Q� 1�nI �QfI

�

� 16m0Q�
X3

I�1

�
1

2
�Q� 1�nI �QfI

�
� 0: (5.34)
The compatibility of these equations determines m0 to
be
 

m0 �
1

32
hCIJK�fIfJnK � nInJfK�

�
1

384

�
3�

1

Q2

�
hCIJKnInJnK �

1

4

X3

I�1

nI: (5.35)
When h � 0 the value of m0 becomes � 1
4

P3
I�1 nI, and

one recovers the solution of the previous subsection in the
gauge kI0 � 0.

One can solve these equations in the large Q or in the
small nI limit, in which the separation between a and b is
much smaller than their distance from the origin. Setting
a � b in Eq. (5.32), one obtains
 h�
1

a
� h0 �

16
P3
I�1 nI

2CIJK�fIfJnK � nInJfK� � �3�
1
Q2�

1
6C

IJKnInJnK
: (5.36)

In the large Q limit, this equation reproduces the correct radius of the zero-entropy black ring in Taub-NUT [27].
To reach the four-dimensional black hole limit, one needs to move the bubbling supertube away from the Taub-NUT

center, to very large a and b, keeping the fluxes nI and fI fixed.
To do this, one adjusts h until it reaches h0. In this limit one has m0 � 0, and (5.32) is trivially satisfied. The distance

between a and b is obtained from either of the remaining two equations:

 b� a �
Q
Q3
I�1 nI

h0
Q3
I�1�

1
2 �Q� 1�nI �QfI� �Q2 P3

I�1�
1
2 �Q� 1�nI �QfI�

; (5.37)
where h0 is defined in (5.36).
Thus, by putting the supertube in Taub-NUT we have

related the singularity resolution mechanism of the zero-
entropy black ring (the nucleation of two oppositely
charged GH centers) to the singularity resolution of the
zero-entropy four-dimensional black hole (the splitting of
the branes that form the black hole into two stacks at a
finite radius from each other [22]). Similar solutions have
also been analyzed from the point of view of four-
dimensional supergravity in [44–46].

We see therefore that the interpolation between Taub-
NUT and R4 is not only a good tool to obtain the micro-
scopic description of black rings and black holes [27,47],
but is also useful in understanding their singularity
resolution.

VI. CONCLUSIONS

We have constructed smooth geometries that resolve the
zero-entropy singularity of BPS black rings. The U�1� �
U�1� invariant geometries must have a Gibbons-Hawking
base space with several centers of positive and negative
charge. Despite the fact that the signature of the base
changes, the full geometries are regular.

These geometries stem naturally from implementing the
mechanism of geometric transitions to the supertube. The
physics is closely related to that of other systems contain-
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ing branes wrapped on topologically trivial cycles [33].
The fact that our solutions reproduce in one limit the
geometries found by Mathur and collaborators [5–7], and
in another limit they reduce to the ground states of the four-
dimensional black hole found in [22], is a nontrivial con-
firmation that these geometries are indeed the correct black
ring/supertube ground states.

The BPS black rings have two microscopic interpreta-
tions: one in terms of the D1-D5-P CFT [18], and another
in terms of a four-dimensional black hole CFT [18,19,27].
Hence, our solutions should similarly be thought of as both
microstates of the D1-D5-P system, and as microstates of
the four-dimensional black hole CFT that describes the
black ring [18,27]. To establish the four-dimensional black
hole microstates that are dual to our solutions, it is best
perhaps to put the bubbling supertubes in Taub-NUT, and
go to the limit when they become four-dimensional con-
figurations. However, to establish their interpretation in the
D1-D5-P CFT is somewhat nontrivial. One possibility is to
start from the D1-D5-P microscopic description of the BPS
black ring [18], and to explore the zero-entropy limit.
However, this might not be so straightforward, since the
naive supertube and resolved geometries only agree in the
very large Q limit. Another option is to use the fact that
when the two positively charged centers coincide these
solutions reproduce those of [5–7], which do have a D1-
D5-P microscopic interpretation.

Our analysis also indicates that the most generic bound
state with a GH base is determined by a gas of positive and
negative centers, with fluxes threading the many nontrivial
two-cycles of the base, and no localized brane charges.
This proposal has similar features to the foam described in
[48], but in [48] the foam was restricted to the compacti-
fication space, whereas here the foam naturally lives in the
macroscopic space-time and defines the interior structure
of a black hole. Another interesting exploration of a similar
type of space-time foam from the point of view of a dual
boundary theory has appeared in [49].

Our results suggest quite a number of very interesting
consequences and suggestions for future work. First, we
have only considered geometries with a Gibbons-Hawking
base, because such geometries are easy to find [13,17], and
appear in theU�1� �U�1� invariant background. However,
the most general smooth solution will have a base given by
an asymptotically R4 hyper-Kähler manifold whose signa-
ture can change from ��;�;�;�� to ��;�;�;��. We
expect these solutions to give regular geometries,9 pro-
vided that there are nonzero dipole fluxes.
9It is also worth stressing that it is the possibility of signature
change that enables us to avoid the extremely restrictive con-
ditions, familiar to relativists, on the existence of four-
dimensional, asymptotically Euclidean metrics. By allowing
the signature of the base to change we have found a large
number, and conjectured an even larger number of base spaces
that should give smooth three-charge geometries.
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The classification of the generalized hyper-Kähler mani-
folds that we use here is far from known. However, one
may not need the metrics to do interesting physics. We are
proposing that the black hole microstates are described by
a foam of nontrivial S2’s in a four-dimensional base. One
might be able to do some statistical analysis of such a
foam, perhaps using toric geometry, to see if one can
describe the macroscopic, bulk ‘‘state functions’’ of the
black hole. It is also interesting to investigate the transi-
tions between different geometries, nucleation of GH
points, instantons for such transitions, and probabilities
of transition. Presumably nucleation is easy for small
fluxes and small GH charges, but there should be some
kind of correspondence limit in which large, classical
bubbling supertubes, which involve only two GH points
with very large Q’s, should be relatively stable and not
decay into a foam.

It is interesting to note that ideas of space-time foam
have made regular appearances in the discussion of quan-
tum gravity, see, for example [50]. In a very general sense,
what we are proposing here is in a similar spirit to the ideas
of [50]: Space-time on small scales becomes a topological
foam. Here, however, we have managed to find it as a limit
of supersymmetric D-brane physics, and with this comes a
great deal more computational control of the problem. It is
also important to note that the same physical ideas that led
to the idea that space-time becomes foamy near the Planck
scale also come into play here. At the Planck scale, even in
empty space, there are virtual black holes, and we are
proposing that their microstates be described by foams of
two-spheres that will be hyper-Kähler only for BPS black
holes. Consistency would therefore suggest that these vir-
tual black holes should really be virtual fluctuations in
bubbling hyper-Kähler geometries. Therefore, even empty
space should be thought of in terms of some generalization
of the foamy geometries considered here. Obviously our
geometric description will break down at the Planck scale,
but the picture is still rather interesting, and it is certainly
supported by the fact that large bubbles are needed to
resolve singularities in macroscopic supertubes and black
rings.

There are evidently many things to be tested and lots of
interesting things that might be done, but we believe that
we have made important progress by resolving the super-
tube singularity and thereby giving a semiclassical descrip-
tion of black-hole microstates that may also give new
insight into the structure of space-time on very small
scales.
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