
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

Stefano Bellucci,1 Armen Nersessian,2,3 and Armen Yeranyan2

1INFN-Laboratori Nazionali di Frascati, P.O. Box 13, I-00044, Italy
2Yerevan State University, Alex Manoogian St., 1, Yerevan, 375025, Armenia

3Artsakh State University, Stepanakert & Yerevan Physics Institute, Yerevan, Armenia
(Received 19 June 2006; published 26 September 2006)

We apply the technique of Hamiltonian reduction for the construction of three-dimensional N � 4
supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the
conventional N � 4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and
perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the
canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and
supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the
presence of a spin-orbit coupling term. A comparision with previous work is also carried out.

DOI: 10.1103/PhysRevD.74.065022 PACS numbers: 11.30.Pb, 03.65.�w

I. INTRODUCTION

The Hamiltonian reduction appears as an effective pro-
cedure for studying the qualitative properties of classical
systems. Also, it is one of the most powerful methods for
the construction of nontrivial integrable systems in classi-
cal mechanics. In fact, all known integrable models of
classical mechanics, including multiparticle ones, could
be obtaned by an appropriate Hamiltonian reduction from
higher-dimensional trivial integrable mechanical systems
(free-particle and oscillator) [1]. A specific, particular case
of the Hamiltonian reduction is the reduction of four-
dimensional mechanical systems by the Hamiltonian ac-
tion of the U�1� group, which yields the three- dimensional
mechanical systems specified by the presence of Dirac
monopole. The best known application of this procedure
is the construction of the so-called MIC-Kepler system
(which is the generalization of the three-dimensional
Coulomb problem specified by the presence of Dirac
monopole [2]) from the four-dimensional oscillator [3].
In a similar way the generalization of the MIC-Kepler
system on the three-dimensional hyperboloid has been
constructed from the oscillator on the four-dimensional
sphere and hyperboloid (this system has been suggested
in [4]) [5] and from the oscillator on two-dimensional
complex projective space CP2 and Lobachevsky space
L2 [6]. Notice that the appearence in the reduced system
of the Dirac monopole is the result of this specific reduc-
tion procedure, and it has no any direct relation with the
structure of the initial Hamiltonian. Particularly, one can
apply this reduction procedure to the supersymmetric
Hamiltonian systems, and, reducing the number of its
bosonic variables, to obtain the three-dimensional super-
symmetric Hamiltonian system with Dirac monopole.
Such an approach to the construction of three-dimensional
supersymmetric mechanics looks quite attractive. This is
because standard (and powerful) approaches to the con-
struction of the systems with extended supersymmetries
are based on the superfield technique. The latter is related

with the complex structures, and, as a consequence, the
configuration spaces of the corresponding supersymmetric
mechanics are Kähler or quaternionic spaces. For example,
the N � 4 supersymmetric mechanics constructed by the
use of chiral superfields, has �nj2n�C-dimensional config-
urational superspace, underlied by the the Kähler manifold
(see, e.g. [7]), and the N � 8 supersymmetric mechanics
constructed by the use of chiral superfields, has
��nj4n�C-dimensional configurational superspace, under-
lied by the special Kähler manifold [8]. The N � 4 super-
symmetric mechanics constructed by the use of the so-
called ‘‘root’’ supermultiplets [9] possesses a �2n:2n�C -
dimensional configuration space, which is conformally-flat
for n � 1 [10]. There exists the model of N � 8 super-
symmetric mechanics with �2n:4n�C-dimensional configu-
ration space, which is also conformally-flat for n � 1 [11]
(the n > 1 case has been suggested in [12]). Also, one can
increase the number of supersymmetries, passing from
Kähler spaces to hyper-Kähler ones, without expanding
the number of fermionic degrees of freedom [13,14].
Although supersymmetric mechanics with a Dirac mono-
pole is known in the literature (see, e.g. [15–17] and
references therein), they where found, in some sense, occa-
sionally. While the regular superfield approach to super-
symmetric mechanics does not give the way to incorporate
in the system the interaction with external gauge fields
without breaking supersymmetry. Probably, the only ex-
ceptions are the three-dimensional N � 4 superconfor-
mal mechanics [18] and the two-dimensional N � 4, 8
supersymmetric mechanics constructed within the ‘‘non-
linear chiral superfield’’ approach [19]. However, it is
unclear how to construct nontrivial higher-dimensional
analogs of these systems. The Hamiltonian reduction could
be useful also in this subject, i.e. in the construction of the
even-dimensional supersymmetric mechanics interacting
with gauge fields.

The idea to construct supersymmetric mechanics by the
Hamiltonian reduction is, in some sense, part of the physics
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folklore. Explicitly it was written down, e.g., in [20], and
exemplified there by the concrete example of one-
dimensional N � 4 supersymmetric mechanics, con-
structed by the reduction of the two-dimensional one based
on a chiral superfield (this reduction was performed for the
first time in [21]). Naturally, there is no interaction with
nontrivial gauge fields in this system. Another example is
the five-dimensional supersymmetric mechanics con-
structed in [22]. Let us also mention the old paper [23],
where the complex projective superspaces were con-
structed as reduced phase spaces of super-Hamiltonian
systems. The Hamiltonian reduction seems to be a natural
procedure for the construction of supersymmetric mechan-
ics including the interaction with external gauge fields
from higher-dimensional supersymmetric systems (with-
out external gauge fields) constructed within the superfield
approach.

In the present paper we demonstrate this fact on the
simple case of the reduction of the �2j2�C-dimensional
N � 4 supersymmetric mechanics with conformally-flat
configuration space to the three-dimensional system. In
some sense, the content of the presented paper can be
considered the Hamiltonian counterpart of an earlier
work [10]. There it was considered the Lagrangian reduc-
tion of the four-dimensional N � 4 supersymmetric me-
chanics mechanics constructed by the use of the root
supermultiplet to the three- and two-dimensional systems.
It was also observed there that the resulting two-
dimensional system coincides with that constructed by
the use of the nonlinear chiral multiplet. The appearance
of the Dirac monopole field has been detected in the three-
dimensional system, and that of the constant magnetic field
was seen in the two-dimensional one.

However, the present paper contains some new features.
Our resulting system is formulated purely in three-
dimensional terms and canonical Poisson brackets, so
that passing to supersymmetric quantum mechanics is
straightforward here. This formulation allows us to clarify
the nature of the resulting system. Particularly, we indicate
the appearance of the spin-orbit coupling term there. Even
when the configuration space of the reduced system is the
Euclidean space, and in the absence of a magnetic mono-
pole field, the Hamiltonian of the system contains nonzero
fermionic terms. Also, in contrast with [10], we get the the
supercharges of the reduced system as well, and find that
they possess a quite unusual structure, which seems not to
be predictable from current intuition. Finally, in our con-
sideration the odd coordinates of the reduced system are
singular in the coordinate origin only, in contrast with [10],
where they are singular in the ‘‘Dirac string’’, i.e. on a
semiaxis. As a consequence, in the previous consideration,
the reduced supercharges and the Poisson brackets are also
singular on the Dirac string, whereas in the present picture
all the ingredients have singularities on the coordinate
origin only.

Before going into details, let us briefly present our
procedure of Hamiltonian reduction. Let the initial phase
superspace be parameterized by the local complex coor-
dinates �z�;��;���, �, � � 1, 2. For the Hamiltonian
reduction by the action of the constant of motion J0, we
should find another set of coordinates �xi; u;pi;���, where

 fJ0; pig � fJ0; xig � fJ0; ��g � 0; i; j; k � 1; 2; 3:

(1)

The latter coordinate u, necessarily has a nonzero Poisson
bracket with J (because the Poisson brackets are non-
degenerate) fu; J0g � 0. Then, we immediately get that in
these coordinates the Hamiltonian is independent of u

 fJ0;H g �
@H
@u
� fu; J0g � 0;)H �H �J0; xi; pi; �

��:

(2)

From the Jacobi identity we get that all Poisson brackets
for the phase superspace coordinates �xi; pi; ��� are also
independent on u. Since J0 is a constant of motion, we can
fix its value J0 � c, and describe the system in terms of the
local coordinates �xi; pi; ��� only. In this way we shall
reduce the initial super-Hamiltonian system with a
�8j8�R-dimensional phase superspace to the system with
a �6j8�-dimensional one. Geometrically, this Hamiltonian
reduction means that we fix, in the phase superspace, the
�7j8�R- dimensional level surface M� by the J0 � c, and
then factorize it by the action of a vector field fJ0; g, which
is tangential to M�. The resulting space Mr �M�=fJ0; g
is a phase superspace of the reduced system.

II. FLAT CASE

Firstly, we consider the simplest case of a N � 4
supersymmetric free particle with four fermionic degrees
of freedom, moving on R4 � C2 equipped with a
Euclidean metrics ds2 � dz�d�z�.

This system can be conveniently described in terms of a
�4j2�C-dimensional phase superspace equipped with the
canonical Poisson bracket. The latter is defined by the
following nonzero relations (and their complex-
conjugates):

 f��; z�g � ���; f ���; ��g � � ���: (3)

In order to construct the system with N � 4 superalgebra

 fQ�; �Q�g � 2�� ��H ; fQ�;Q�g � 0; (4)

we choose the following supercharges:

 Q1 � �1�1 � ��2 ��2; Q2 � �2�1 � ��1 ��2; (5)

which obey the second equation in (4). Then, ‘‘squaring’’
these supercharges (with respect to the Poisson bracket) we
get the N � 4 supersymmetric Hamiltonian

 H � �����=2: (6)
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Let us notice that the supercharges look quite simple in the
quaternionic notation

 Q � Q1 � jQ2 � ��; � � �1 � j�2;

� � �1 � �2j:
(7)

Clearly, the free-particle Hamiltonian and the supercharges
are invariant under U�1� rotations

 �z� � {z�; ��� � {��; ��� � �{��; (8)

given by the generator

 J0 � {�z�� �z ��� � {� ��:

fJ0; Q�g � fJ0; �Q�g � fJ0;H g � 0:
(9)

Hence, performing the Hamiltonian reduction by the action
of J0, we shall get three-dimensional N � 4 supersym-
metric mechanics.

Also, we can define the generators of SU�2� rotations
acting separately on bosonic and fermionic variables,
which also commute with the generator J0

 J i �
{�z�̂i�� ���̂i �z�

2
: fJ0;J ig � 0;

fJ i;J jg � �"ijkJ k;
(10)

 �iz� �
{
2
�z�̂i��; �i�� ��

{
2
��̂i���; �i�� � 0;

(11)

and
 

Ri �
{
2
��i ��: fJ0; Rig � 0; fRi; Rjg � �"ijkRk;

�iz� � �i�� � 0; �i�� �
{
2
���̂i��; (12)

where �̂i denote Pauli matrices. Notice that these SU�2�
generators commute with the Hamiltonian

 fJ i;H g � 0; fRi;H g � 0 (13)

but do not commute with the supercharges
 

fJ i;Q�g � �
{
2
��̂iQ��; fR1� {R2;Q�g � �{"�� �Q�;

fR1� {R2;Q�g � 0; fR3;Q�g �
{
2
Q�: (14)

Hence, performing their reduction by the Hamiltonian
action of J0, we shall get the three-dimensional generators
of SU�2� rotations of N � 4 supersymmetric mechanics
which form, with the supercharges, a nontrivial
superalgebra.

Now, let us perform the Hamiltonian reduction. For this
purpose we should fix the �7j4�R-dimensional level surface
of the J0 generator

 J0 � 2s; (15)

and then factorize it by the U�1�-group action given by the

tangent vector field fJ0; g. The resulting
�6j4�R-dimensional phase superspace could be parameter-
ized by the following functions:

 pi �
z�̂i�� ���̂i �z

2z�z
; xi � z�i �z; (16)

and

 �1 �
z1 ��1 � �z2�2

jzj
; �2 �

z2 ��1 � �z1�2

jzj
; (17)

which are clearly U�1�-invariant

 fJ0; pig � fJ0; xig � fJ0; ��g � 0: (18)

The reduced bosonic coordinates (16) are exactly the same,
which appear in the Kustaanheimo-Stiefel transformation
of the four-dimensional bosonic systems. These coordi-
nates could be supplemented with various choices of odd
coordinates. Perhaps, the present choice of odd coordinates
looks more clear in quaternionic terms

 � � �1 � �2j �
��z
jzj
; z � z1 � z2j: (19)

Calculating the Poisson brackets among these functions
and restricting them on the level surface (15), we shall get
the Poisson brackets on the reduced phase space

 fpi; xjg � �ij; fpi; pjg � "ijk

�
s�

{
2r
�x̂ ��

�
xk
r3 ;

fpi; �
�g � �

{

2r2 "ijkxj���̂k�
�; f��; ���g � �� ��:

(20)

The reduced Hamiltonian and supercharges look as fol-
lows:

 H red � r
�
p2
i

2
�
s2

2r2 � s
�{�x̂ ���

2r3 �
�{� ���2

8r2

�
;

Q� �
���
r
p
�
pr ��� � {

�Ĵ ����
r

�
;

(21)

while the reduced constants of motion (10) and (12) take
the form

 J i � "ijkxjpk �
�
s�

{
2r
�x̂ ��

�
xi
r
;

R� � R1 � iR2 � �{ ��1
��2; R3 � �

{� ��
2
:

(22)

Here and further below we use, for any Ai, the notation
Â � Ai�̂i and Ar � Aixi=r. The Poisson brackets of these
generators with the coordinates of the reduced phase space
look as follows:

 fJ i; pjg � �"ijkpk; fJ i; xjg � �"ijkxk;

fJ i; �
�g �

i
2
���̂i�

�;
(23)
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fRi; xjg � fRi; pjg � 0; fR�; �
�g � �i"�� ���;

fR�; �
�g � 0; fR3; �

�g � �
{
2
��: (24)

In the given form the Hamiltonian has a canonical structure
(in the sense that it is quadratic on momenta), but the
Poisson brackets are noncanonical. For a better under-
standing of the structure of the system it is convenient,
by a redefinition of momenta, to transform the Poisson
bracket to the canonical (in the absence of Dirac mono-
pole) one

 Pi � pi �
{

2r2 "ijkxj���̂k
���: (25)

 fPi; xjg � �ij; fPi; Pjg � s"ijk
xk
r3 ;

fPi; �
�g � 0; f��; ���g � �� ��:

(26)

In these terms, the so�3� generators J i take the form

 J i � Ji �
{
2
���̂i ���; Ji � "ijkxjPk � s

xi
r
; (27)

and the Hamiltonian looks as follows:

 H red � r
�
P2
i

2
�
s2

2r2 �
�{�Ĵ ���

2r2 �
�{� ���2

8r2

�
: (28)

The supercharges read

 Q� �
���
r
p
�
Pr ��� � {

�Ĵ ����
r

�

�
���
r
p
��
Pr �

3{�{� ���
2r

�
��� � {

�Ĵ ����
r

�
: (29)

Thus, we got the three-dimensional N � 4 supersymmet-
ric mechanics, specified by the presence of Dirac mono-
pole. Its Hamiltonian, in contrast with the supercharges,
looks quite simple. But, actually, this model is quite spe-
cific, since its configuration space is nonconstant, namely,
it is equipped with the metric ds2 � �dr�2=r. Actually, it is
not only a nonconstant space, but it has a conic singularity
at the origin of the coordinates. However, on can construct,
in a similar manner, the N � 4 supersymmetric mechan-
ics on a three-dimensional euclidean space, as well as on
the generic three-dimensional conformally-flat spaces. For
this purpose we should choose, as the initial system, the
four-dimensional supersymmetric mechanics on
conformally-flat spaces.

III. CONFORMALLY-FLAT CASE

Let us consider the reduction of the N � 4 supersym-
metric mechanics which lives on a four-dimensional space
equipped with the conformally-flat metric

 ds2 � G�z; �z�dz�d�z�: (30)

The N � 4 supersymmetric mechanics is defined by
the following Hamiltonian and supercharges:

 Q1 �
1����
G
p ��1�1 � ��2 ��2�;

Q2 �
1����
G
p ��2�

1 � ��1 ��2�;

(31)

 H �
��� � � �� �@ logG� ����� ��� � ��@ logG����

2G

�
@� �@�G

4G
�{� ���2: (32)

Here

 �� � �� � {
@� logG

2
�{� ���:

In order to have the possibility to perform the Hamiltonian
reduction by the generator J0 (9), the metric (30) should be
invariant under the transformation (8). This means that the
conformal factor g�z; �z� has to depend solely on U�1�
invariant functions xi, which are given by the expression
(16): G � G�xi�.

Repeating the Hamiltonian reduction procedure per-
formed in the previous Section, we shall get the three-
dimensional supersymmetric mechanics whose configura-
tion space is equipped with the metric

 ds2 � gdxidxi; g �
G
r
: (33)

The connection components and scalar curvature of this
metric look as follows:

 �ijk � �j�ik � �k�ij � �i�;k;

R � �
4@i�i � 2�i�i

g
; �i �

@ig
2g

:
(34)

The reduced supercharges are given by the following ex-
pressions:

 Q��
1���
g
p

�
�Pr� {

�
�r�

2

r

�
�0�

� ~r� ~�� � ~�
r

�
���� {

�Ĵ ����
r

�
:

(35)

Here and in the following we use the notation and identities
 

�0 � �{� ���; �i � �{��̂i ���: �i�j � ��ij�
2
0;

�i��̂j ���� � ���ij�0 � {"ijk�k� ��
�: (36)

The reduced Hamiltonian looks as follows:
 

H �
~P2

2g
�

s2

2gr2 �
~� � ~V
g
�

�
div ~�� ~�2

�
2�r
r
�

2

r2

�

�
�2

0

2g
(37)
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where

 

~V � ~P; ~r; s� �
~J

r2 �
2� ~J � ~��~r

r
� ~�� ~P�

s
r
~� (38)

For the so�3� invariant metric, g � g�r�, the Hamiltonian
takes a quite simple form

 H �
~P2

2g
�

s2

2gr2�

�
��

1

r

� ~J � ~�
2rg
�

�
�0 ��2�

4�

r
�

2

r2

�
�2

0

2g

(39)

where � � �r � d logg�r�=�2dr�, �0 � d�=dr.
The above-obtained, explicit expressions for the super-

charges (35) and the Hamiltonian (37) are the main results
of our paper. Since the system is formulated in canonical
coordinates, it could be immediately considered at the
quantum mechanical level. For this purpose we should
replace the Grassman coordinates �� by the four-
dimensional Euclidean gamma-matrices �̂� � ��̂� �
{�̂��2�=

���
2
p

, and the momenta variables Pi by the momenta
operators P̂i � �{@i � sAi�x� (where Ai is the potential of
the Dirac monopole).

Let us draw the reader’s attention to the presence of the
spin-orbit coupling term ~J � ~� and the vanishing of the
explicit dependence of the Hamiltonian from the monopole
number s in the so�3� symmetric case. Even in the
Euclidean space (g � 1, � � 0), and in the absence of a
magnetic monopole field (s � 0), the Hamiltonian has
nonzero fermionic terms. Hence, these terms could be
interpreted as an interaction energy of the neutral particle
spin with the external field. Notice also, that the angular
part of the constructed system is the two-dimensional
mechanics obtained by the Lagrangian reduction of the
initial system in [10].

IV. COMPARISON WITH PREVIOUS WORK

As we mentioned in the Introduction, the construction
presented in this work is the Hamiltonian counterpart of the
reduction performed in [10], but with a different choice of
odd coordinates. Let us show which Poisson brackets arise
in the original construction. Namely, let us choose, instead
of (17), the following odd coordinates:

 �� �
�z1

jz1j
�� (40)

as it was suggested in [24].
In these terms the reduced Poisson brackets are defined

by the relations
 

fpi; xjg � �ij; fpi; pjg � s"ijk
xk
r3 � {Rij� ���

� ���;

fpi; ��g � ��i��
�; f ���; ��g � � ���: (41)

Here

 ��i��
{
2
Ai��� Rij� ���

1

2
Fij�� ��; Ai��

"ij3xj
r�r�x3�

;

(42)

i.e. Fij and Ai are, respectively, the strength and the vector
potential of the magnetic field of the Dirac monopole.

In contrast with (17), the functions (40) are singular in
the line z1 � 0, and, in terms of the reduced space, on the
semiaxis x3 � �r, i.e. on the ‘‘Dirac string’’. Thus, in
order to cover the whole space, we should introduce an-
other set of odd coordinates, ~�� � �z2

jz2j
��, which are regu-

lar on the line z1 � 0, but singular on z2 � 0. These two
sets of local coordinates are related as follows: ~�� �
exp�{����, where exp�{�� � z1jz2j

z2jz1j
, �2	0;4��. Upon this

choice of odd coordinates, the vector potential Ai appear-
ing in the Poisson brackets looks as follows: Ai �

"ij3xj
r�r�x3�

.
We could get the (twisted) canonical Poisson brackets

(26) by the following redefinition of momenta:

 Pi � pi �
1

2
Ai�x��0: (43)

In these terms the Hamiltonian is again given by the
expression (21), i.e. it is free from singularities on the
Dirac string. However, the supercharges remain singular.
Moreover, on the intersection of the (super)charts the (two
sets of) reduced supercharges are not equal to each other,
but differ in the phase factor, which has no impact on the
Hamiltonian. In other words, the supercharges are not
scalar functions in this picture.

An important remark is that even for s � 0, i.e. in the
absence of Dirac monopole, this singularity appears in the
reduced Poisson bracket. Nevertheless, this choice of co-
ordinates is appropriate if we reduce ourselves to the two-
dimensional system, as it was done in [10]. Indeed, this
reduction assumes the choice of the bosonic coordinate
w � z1=z2; hence, the resulting system has the topology of
sphere S2 � CP1 and, consequently, it is covered by two
charts. Also, the odd coordinates (40) are quite convenient,
when we reduce to three dimensions the N � 4 super-
symmetric mechanics on Kähler spaces. We are planning
to present these systems elsewhere.

V. CONCLUSION

In this paper we performed the Hamiltonian reduction of
the simplest, �2j2�C-dimensional N � 4 supersymmetric
mechanics with flat and conformally-flat configuration
spaces to the �3j4�R dimensional ones with flat and
conformally-flat phase configuration spaces. We formu-
lated the system in canonical coordinates, so that it could
be immediately considered at the quantum mechanical
level. Let us mention the appearance, in the reduced sys-
tem, of the Dirac monopole magnetic field, and of a
specific spin-orbit interaction term mixing the momenta
and Grassmann variables. Further reduction of this system
to three dimensions should yield a system where the spin-
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orbit coupling term still appears, but the Dirac monopole
field is transformed into some nonsingular magnetic field
(including, as a particular case, the constant magnetic
field). Hence, the constructed system could have an appli-
cation in condenced matter physics. For example, one can
hope that it will be useful in the study of the spin-Hall
effect, which was observed experimentally very recently
[25]. This phenomenon has been proposed to occur, as a
result of the spin-orbit coupling term of the electron in the
initial Hamiltonian. We recall that the classical Hall effect
arises physically from a velocity dependent force, such as
the Lorentz force, whereas another velocity dependent
force in condensed matter systems is the SO coupling force
[26,27]. Thus, in finite-size electron systems the presence
of some kind of spin-Hall effect can be due to the interplay
between the spin-orbit coupling (generating a kind of
Lorentz force) and the edge of the device [28–32], analo-
gously to what happens in the Hall effect.

We have found that the constructed system has a quite
unusual structure of supercharges, and it is free of singu-
larities (except for the one in the coordinate origin). It
seems that the constructed system is the generalization of
the the quantum mechanics suggested in [16] to curved
spaces. We have restricted ourselves to the reduction of
N � 4 supersymmetric mechanics, though, in a com-
pletely similar way, one can construct the three-
dimensional N � 8 supersymmetric mechanics, reducing
the four-dimensional system suggested in [11]. Also, one
can apply the same technique to the N � 4, 8 four-
dimensional supersymmetric mechanics on Kähler spaces.
In particular, in this way one can construct the N � 4
supersymmetric (repulsive) MIC-Kepler system, perform-
ing the Hamiltonian reduction of the N � 4 supersym-
metric particle on the Taub-NUT space with negative mass.

The connection between the corresponding bosonic sys-
tems has been established in [33].

It also appears that the procedure of Hamiltonian reduc-
tion could explain the freedom in the fermion-boson cou-
pling observed in two-dimensional systems with nonlinear
chiral multiplet [34]. These works are currently in progress
and will be published elsewhere.

Another perspective development is in the construction
of the five- dimensional supersymmetric mechanics speci-
fied by the presence of a SU�2� Yang monopole (instanton)
from the eight- dimensional supersymmetric systems
(without monopoles). For this purpose one should perform
the Hamiltonian reduction by the SU�2� group action,
related with the second Hopf map. The bosonic counterpart
of this procedure is widely known in classical and quantum
mechanics. For example, by means of such a reduction
procedure the five-dimensional Coulomb problem with
SU�2� Yang monopole has been constructed from the
eight-dimensional oscillator in [35]. Extending this proce-
dure to the supersymmetric system on the eight-
dimensional conformally-flat case, one can construct the
expected five-dimensional supersymmetric system.
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