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We make a detailed study of the moduli space of winding number two (k � 2) axially symmetric
vortices (or equivalently, of coaxial composite of two fundamental vortices), occurring in U�2� gauge
theory with two flavors in the Higgs phase, recently discussed by Hashimoto and Tong and by Auzzi,
Shifman, and Yung. We find that it is a weighted projective space WCP2

�2;1;1� ’ CP2=Z2. This manifold
contains an A1-type (Z2) orbifold singularity even though the full moduli space including the relative
position moduli is smooth. The SU�2� transformation properties of such vortices are studied. Our results
are then generalized to U�N� gauge theory with N flavors, where the internal moduli space of k � 2
axially symmetric vortices is found to be a weighted Grassmannian manifold. It contains singularities
along a submanifold.
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I. INTRODUCTION

Vortices have played important roles in various areas of
fundamental physics since their discovery [1,2]. A particu-
larly interesting type of vortices are the ones possessing an
exact, continuous non-Abelian flux moduli (called non-
Abelian vortices below), found recently [3,4]. A motiva-
tion for studying such non-Abelian vortices is that a mono-
pole is confined in the Higgs phase by related vortices [5–
10], so that such systems provide a dual model of color
confinement of truly non-Abelian kind. Another motiva-
tion could come from the interest in the physics of cosmic
strings. Many papers on non-Abelian vortices appeared
lately [11–22], where the discussion often encompasses
the context of more general soliton physics, involving
domain walls, monopoles and vortices, or composite
thereof.

The moduli space of non-Abelian vortices was obtained
in certainD-brane configuration in string theory [3] as well
as in a field theory framework [15]. In particular, the
moduli subspace of k � 2 axially symmetric vortices was
studied by two groups: Hashimoto and Tong (HT) [14] and
Auzzi, Shifman, and Yung (ASY) [16]. The former con-
cluded that it is CP2 by using the brane construction [3]

whereas the latter found CP2=Z2 by using a field theoreti-
cal construction. This discrepancy is crucial when one
discusses the reconnection of vortices because the latter
contains an orbifold singularity. The study of non-Abelian
vortices of higher winding numbers (or equivalently, of
composite vortices) can be important in the understanding
of confinement mechanism, or in the detailed model study
of cosmic string interactions. Motivated by these consid-
erations, we study in this paper the moduli space of k � 2
axially symmetric non-Abelian vortices of U�N� gauge
theories, by using the method of moduli matrix [15], which
was originally introduced in the study of domain walls in
[21] (see [22] for a review).

This paper is organized as follows. In Sec. II we briefly
review the non-Abelian vortices and their moduli matrix
description in the context of most frequently discussed
models:U�N� gauge theory withN flavors of scalar quarks,
and discuss, in the case of U�2� model, the transformation
properties of the fundamental k � 1 vortices. The moduli
space and the transformation properties of k � 2 coaxial
vortices are studied in Sec. III, where we reproduce the
results by Hashimoto and Tong, and by Auzzi, Shifman and
Yung, and resolve the apparent discrepancy between their
results. We generalize our results on k � 2 coaxial vortices
to analogous vortices of U�N� theories in Sec. IV. In
Appendices A and B we present detailed comparison be-
tween our results and those by Hashimoto and Tong, and by
Auzzi, Shifman, and Yung. In Appendix C, we show the
relation between the Kähler quotient construction and the
moduli matrix approach. In Appendix D we give a simple
method to construct the moduli matrix for vortices of
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higher winding number as a product of those for funda-
mental vortices.

II. NON-ABELIAN VORTICES

A. Vortex equations

Our model is an U�N�G gauge theory coupled with N
Higgs fields in the fundamental representation, denoted by
an N by N complex (color-flavor) matrix H. The
Lagrangian is given by
 

L�Tr
�
�

1

2g2F��F
���D�HD�Hy���c1N�HHy�2

�
;

(2.1)

where F�� � @�W� � @�W� � i�W�;W�� and D�H �
�@� � iW��H. g is the U�N�G gauge coupling and � is a
scalar quartic coupling. In this article we shall restrict
ourselves to the critical case, � � g2

4 (BPS limit): in this
case the model can be regarded as the bosonic sector of a
supersymmetric gauge theory. In the supersymmetric con-
text the constant c is the Fayet-Iliopoulos parameter. In the
following we set c > 0 to ensure stable vortex configura-
tions. This model has an SU�N�F flavor symmetry acting
on H from the right while the U�N�G gauge symmetry acts
on H from the left. The vacuum of this model, determined
byHHy � c1N , is unique up to a gauge transformation and
is in the Higgs phase. The U�N�G gauge symmetry is
completely broken. This vacuum preserves a global un-
broken symmetry SU�N�G�F (the color-flavor locking
phase).

This system admits the Abrikosov-Nielsen-Olesen
(ANO) type of vortices [1,2] which saturate Bogomol’nyi
bound. The equations of motion reduce to the first order
non-Abelian vortex equations [3,4,15,22]:

 �D1 � iD2�H � 0; F12 �
g2

2
�c1N �HHy� � 0:

(2.2)

It turns out that the matter equation can be solved by

 H � S�1�z; �z�H0�z�; W1 � iW2 � �2iS�1�z; �z� �@zS�z; �z�:

(2.3)

where the elements of the N by N moduli matrix H0�z� are
holomorphic functions of the complex coordinate z �
x1 � ix2 [11,15,22], and S is an N by N matrix invertible
over the whole z-plane. For any given H0�z�, S is uniquely
determined up to a gauge transformation by the second
equation in Eq. (2.2). The physical fields H and W are
obtained by plugging the solution S back into Eq. (2.3).
Each element of the matrix H0�z� must be a polynomial of
z in order to satisfy the boundary condition, detH0�z� �
O�zk�, k being the vortex (winding) number.

A great advantage of the method lies in the fact that all
the integration constants of the BPS equations Eq. (2.2)—

moduli parameters—are encoded in the moduli matrix
H0�z� as various coefficients of the polynomials, justifying
its name [15,22]. The zeros fzig of

 detH0�z� /
Y
i

�z� zi�

can be interpreted as the positions of the component vor-
tices, when they are sufficiently far apart from each other;
vice versa, when they overlap significantly, zi’s have no
clear physical meaning as the center of each component
vortex: they are just part of the moduli parameters, char-
acterizing the shape and color-flavor orientation of the
vortex under consideration.

Notice that the rank of H gets reduced by one at vortex
positions zi when all the vortices are separated, zi � zj for
i � j. A constant vector defined by

 Hjz�zi
~�i � 0 (2.4)

is associated with each component vortex at z � zi. An
overall constant of ~�i cannot be determined from Eq. (2.4)
so we should introduce an equivalence relation ‘‘	,’’ given
by

 

~� i 	 � ~�i; with � 2 C
: (2.5)

Thus, each vector ~�i takes a value in the projective space
CPN�1 � SU�N�=�SU�N � 1� �U�1��. This space can be
understood as a space parameterized by Nambu-Goldstone
modes associated with the symmetry breaking,

 SU�N�G�F ! U�1� � SU�N � 1�; (2.6)

caused by the presence of a vortex [3,4,10,15,22]. We call
�i the orientational vector.

The solutions Eq. (2.3) are invariant under

 �H0; S� ! �V�z�H0; V�z�S� (2.7)

with V�z� 2 GL�N;C� being holomorphic with respect to
z. We call this V-transformation or V-equivalence relation.
The moduli space of the vortex equations Eq. (2.2) is
obtained as the quotient space Mtotal �
fH0�z�g=GL�N;C�. This space is infinite dimensional and
can be decomposed into topological sectors according to
the vortex number k. The k-th topological sector MN;k, the
moduli space of k vortices, is determined by the condition
that detH0�z� is of order zk:

 M N;k ’ fH0�z�j detH0�z� � O�zk�g=fV�z�g: (2.8)

B. Fundamental (k � 1) vortices

Let us first discuss a single non-Abelian vortex in U�2�
gauge theory. The condition on the moduli matrix H0 is
detH0 � O�z�. Modulo V-equivalence relation Eq. (2.7),
the moduli matrix can be brought to one of the following
two forms [10]:
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 H�1;0�0 �z� �
z� z0 0
�b0 1

� �
; H�0;1�0 �z� �

1 �b
0 z� z0

� �
(2.9)

with b, b0 and z0 complex parameters. Here z0 gives the
position moduli whereas b and b0 give the orientational
moduli as we see below. The two matrices in Eq. (2.9)
describe the same single vortex configuration but in two
different patches of the moduli space. Let us denote them
U�1;0� � fz0; b0g and U�0;1� � fz0; bg. The transition func-
tion between these patches is given, except for the point
b0 � 0 in the patch U�1;0� and b � 0 in U�0;1�, by the
V-transformation Eq. (2.7) of the form [10]

 V �
0 �1=b0

b0 z� z0

� �
2 GL�2;C�: (2.10)

This yields the transition function

 b �
1

b0
; �b; b0 � 0�: (2.11)

b0 and b are seen to be the two patches of a CP1, leading to
the conclusion that the moduli space of the single non-
Abelian vortex is

 M N�2;k�1 ’ C�CP1; (2.12)

where the first factor C corresponds to the position z0 of the
vortex.

The same conclusion can be reached from the orienta-
tion vector, defined by H0�z � z0� ~� � 0: ~� is given by

 

~�	
1
b0

� �
	

b
1

� �
: (2.13)

We see that the components of ~� are the homogeneous
coordinates of CP1; b; b0 are the inhomogeneous
coordinates.1

The individual vortex breaks the color-flavor diagonal
symmetry SU�2�G�F, so that it transforms nontrivially
under it. The transformation property of the vortex moduli
parameters can be conveniently studied by the SU�2�F
flavor transformations on the moduli matrix, as the color
transformations acting from the left can be regarded as a V
transformation. The flavor symmetry acts on H0 as H0 !
H0U with U 2 SU�2�F. A general SU�2� matrix

 U �
u v
�v
 u


� �
; (2.14)

with u; v 2 C satisfying juj2 � jvj2 � 1, acts for instance
on H�0;1�0 in Eq. (2.9) as

 H�0;1�0 �z� ! H�0;1�0 �z�U �
u� v
b �u
b� v
�v
�z� z0� u
�z� z0�

� �
:

(2.15)

The right hand side should be pulled back to the formH�0;1�0
in Eq. (2.9) by using an appropriate V-transformation
Eq. (2.7). This can be achieved by
 

VUH
�0;1�
0 �z�U �

1 � u
b�v
v
b�u

0 z� z0

 !
;

VU �
�u� v
b��1 0

v
�z� z0� u� v
b

 !
2 GL�2;C�:

(2.16)

The SU�2�G�F transformation law of b is then

 b!
u
b� v
v
b� u

; (2.17)

which is the standard SU�2� transformation law of the
inhomogeneous coordinate of CP1.2

In terms of the orientational vector ~� in Eq. (2.13), the
transformation law Eq. (2.17) can be derived more straight-
forwardly. According to the definition Eq. (2.4), ~� is trans-
formed in the fundamental representation of SU�2�F:

 

~�! Uy ~�; U 2 SU�2�F: (2.18)

III. k � 2 VORTICES IN U�2� GAUGE THEORY

A. Moduli space of k � 2 vortices

Configurations of k � 2 vortices at arbitrary positions
are given by the moduli matrix whose determinant has
degree two, detH0 � O�z2�. By using V-transformations
Eq. (2.7) the moduli matrix satisfying this condition can be
brought into one of the following three forms [15,22]

 H�2;0�0 �
z2 � �0z� �0 0
�a0z� b0 1

� �
;

H�1;1�0 �
z�� ��
�~� z� ~�

� �
;

H�0;2�0 �
1 �az� b
0 z2 � �z� �

� �
:

(3.1)

These define the three patches U�2;0� � fa0; b0; �0; �0g,
U�1;1� � f�; ~�;�; ~�g, U�0;2� � fa; b; �;�g of the moduli
space MN�2;k�2. The transition from U�1;1� to U�0;2� is
given via the V-transformation

 V �
0 �1=~�
~� z��

� �
:

1Similarly, in the case of U�N� gauge theory, the components
of ~� correspond to the homogeneous coordinates of CPN�1.

2The coordinate b is invariant (more precisely the orientational
vector receives a global phase) under the U�1� transformations
generated by n̂ � ~�=2, n̂ � 1

�1�jbj2�
�2<b; 2=b; jbj2 � 1�. This

implies the coset structure CP1 ’ SU�2�=U�1�.
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 a �
1

~�
; b � �

~�
~�
;

� � �� ~�; � � �~��� ~�:

(3.2)

Similarly the transition from U�2;0� to U�0;2� is given by

 V �
�a02

a02�0�a0b0�0�b02
�a0z�a0�0�b0

a02�0�a0b0�0�b02

a0z� b0 z2 � �0z� �0

 !
;

which yields

 a �
a0

a02�0 � a0b0�0 � b02
;

b � �
b0 � a0�0

a02�0 � a0b0�0 � b02
; � � �0; � � �0:

(3.3)

Finally those between U�1;1� and U�2;0� are given by the
composition of the transformations Eqs. (3.2) and (3.3). Let
us now discuss the moduli space of k � 2 vortices sepa-
rately for the cases where the two vortex centers are
(1) distinct (z1 � z2), and (2) coincident �z1 � z2�.

(1) At the vortex positions zi the orientational vectors are
determined by Eq. (2.4). The orientational vectors ~�i �i �
1; 2� are then obtained by
 

~�i 	
azi � b

1

 !
	

zi � ~�

~�

 !
	

�

zi ��

 !

	
1

a0zi � b
0

 !
: (3.4)

The two �i � 1; 2� parameters defined by bi � azi � b (or
b0i � a0zi � b0) parameterize the two different CP1’s sepa-
rately. Conversely if the two vortices are separated z1 � z2,
then moduli parameters a; b are described by b1; b2 with
positions of vortices z1; z2 as

 a �
b1 � b2

z1 � z2
; b �

b2z1 � b1z2

z1 � z2
;

� � z1 � z2; � � �z1z2

(3.5)

(and similar relations for the primed variables). Thus in the
case of separated vortices fb1; b2; z1; z2g (fb01; b

0
2; z1; z2g)

can be taken as appropriate coordinates of the moduli
space, instead of fa; b; �; �g (fa0; b0; �0; �0g). The transition
functions are also obtained by applying the equivalence
relation Eq. (2.5) to Eq. (3.4), for instance,

 bi �
1

b0i
�bi; b0i � 0�: (3.6)

It can be shown that these are equivalent to Eqs. (3.3) by
use of Eq. (3.5) and analogous relation for the primed
parameters. The coordinates in U�1;1� are also the orienta-
tional moduli. If we take fb1; b02; z1; z2g as a set of inde-
pendent moduli and substitute Eq. (3.5) and b2 � 1=b02 to

Eq. (3.2), then we obtain, for b1b
0
2 � 1

 � �
z2 � b1b02z1

1� b1b02
; � �

z1 � z2

1� b1b02
b1;

~� �
z1 � b1b

0
2z2

1� b1b02
; ~� � �

z1 � z2

1� b1b02
b02:

(3.7)

It can be seen that the representation Eq. (3.5) implies
that U�0;2� and U�2;0� are suitable for describing the situ-
ation when two orientational moduli are parallel or nearby.
On the other hand, Eq. (3.7) implies that U�1;1� is suitable
to describe the situation when orientational moduli are
orthogonal or close to such a situation, while not adequate
for describing a parallel set. Therefore, the moduli space
for two separated vortices are completely described by the
positions and the two orientational moduli b1; b2; �b

0
1; b

0
2�:

the moduli space for the composite vortices in this case is
given by [14,15]

 M separated
k�2;N�2 ’ �C�CP1�2=S2; (3.8)

where S2 permutes the centers and orientations of the two
vortices.

(2) We now focus on coincident (coaxial) vortices (z1 �
z2), with the moduli space denoted by

 

~M N�2;k�2 �MN�2;k�2jz1�z2
: (3.9)

As an overall translational moduli is trivial, we set z1 �
z2 � 0 without loss of generality. According to Eqs. (3.5)
and (3.7), all points in the moduli space tend to the origin of
U�1;1� in the limit of z2 ! z1, as long as b1 and b2 take
different values. A more careful treatment is needed in this
case. In terms of the moduli matrix, the condition of
coincidence is given by detH0�z� � z2. We have

 f� � 0; � � 0g;

f ~� � ��;� ~�� �~� � 0g; and f�0 � 0; �0 � 0g;

(3.10)

in U�2;0�, U�1;1�, and U�0;2�, respectively. ~MN�2;k�2 is
covered by the reduced patches ~U�2;0�, ~U�1;1�, and ~U�0;2�,
defined by the moduli matrices

 H�2;0�0 �
z2 0

�a0z� b0 1

� �
;

H�1;1�0 �
z�� ��
�~� z��

� �
;

H�0;2�0 �
1 �az� b
0 z2

� �
:

(3.11)

The following constraint exists among the coordinates in
~U�1;1�:

 �2 � �~� � 0: (3.12)

The transition functions between ~U�0;2� and ~U�1;1� are
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given by

 a �
1

~�
; b �

�
~�
� �

�
�
; (3.13)

and those between ~U�0;2� and ~U�2;0� by

 a � �
a0

b02
; b �

1

b0
: (3.14)

All the patches defined by Eq. (3.11) are parameterized
by two independent complex parameters. The reduced
patches ~U�2;0� and ~U�0;2� are locally isomorphic to C2

with a; b or a0; b0 being good coordinates. However,
~U�1;1� suffers from the constraint Eq. (3.12) which gives

the A1-type (Z2) orbifold singularity at the origin and
therefore ~U�1;1� ’ C2=Z2 locally (See Eq. (3.17), below).
Note that the moduli matrix H0�z� is proportional to the
unit matrix at the singularity: H0�z� � z12. This implies
that configurations of the physical fields (H and F12) are
also proportional to the unit matrix where the global sym-
metry SU�2�G�F is fully recovered at that singularity. The
full gauge symmetry is also recovered at the core of
coincident vortices.

Remark: A brief comment on the orientational vectors.
We could extract a part of moduli in the moduli matrix as
the orientational vector at z � 0, as in the case of separated
vortices discussed above:

 

~�	
1
b0

� �
	

�
��

� �
	

�
~�

� �
	

b
1

� �
: (3.15)

From the identification ~�	 � ~��� 2 C
� with the transi-
tion functions given in Eqs. (3.13) and (3.14), we find that
the orientational moduli again parameterizes CP1.
However, the orientational vectors in Eq. (3.15) are not
sufficient to pick up all the moduli parameters in the
moduli matrixH0. For instance a is lost in the ~U�0;2� patch.
It is even ill-defined at the singular point, as H�1;1�0 �z �
0� � 0.

To clarify the whole structure of the space ~MN�2;k�2, let
us define new coordinates, solving the constraint Eq. (3.12)

 XY � ��; X2 � �; Y2 � �~�: (3.16)

This clarifies the structure of the singularity at the origin.
The coordinates �X; Y� describe the patch ~U�1;1� correctly
modulo Z2 identification

 �X; Y� 	 ��X;�Y�: (3.17)

Using the transition functions Eq. (3.13) and (3.14), the
three local domains are patched together as in Table I. In
terms of the new coordinates �X; Y�, the orientational
vector defined at z � 0 is given by

 

~�	
1
b0

� �
	

X
Y

� �
	

b
1

� �
(3.18)

with ~�	 � ~��� 2 C
�. This equivalence relation recovers
the transition functions between b; b0 and �X; Y� in the
Table I. These are coordinates on the CP1 as was men-
tioned above. But this CP1 is only a subspace of the moduli
space ~MN�2;k�2.

The full space ~MN�2;k�2 can be made visible by attach-
ing the remaining parameters a; a0 to CP1. We arrange the
moduli parameters in the three patches ~U�2;0�, ~U�1;1� and
~U�0;2� as

 

a0

1
b0

0@ 1A	 1
X
Y

0@ 1A	 �a
b
1

0@ 1A; (3.19)

respectively, with the equivalence relation ‘‘	,’’ defined by

 

�0

�1

�2

0@ 1A	 �2�0

��1

��2

0B@
1CA with � 2 C
: (3.20)

All the transition functions in Table I are then nicely
reproduced. The equivalence relation Eq. (3.20) defines a
weighted complex projective space with the weights
�2; 1; 1�. We thus conclude that the moduli space for the
coincident (coaxial) k � 2 non-Abelian vortices is a
weighted projective space,

 

~M N�2;k�2 ’ WCP2
�2;1;1�: (3.21)

While the complex projective spaces with common
weights, CPn, are smooth, weighted projective spaces
have singularities. In fact, we have shown that ~U�1;1� ’
C2=Z2, and it has a conical singularity at the origin by
�1; X; Y� 	 �1;�X;�Y�, whose existence was first pointed
out by ASY [16]. The origin of the conical singularity can
be seen clearly from the equivalence relation Eq. (3.20). As
mentioned above the transition functions in Table I are
reproduced via the equivalence relation Eq. (3.20). In fact,
one finds that � � 1

X gives ��2; �X; �Y� � �a0; 1; b0� and
� � 1

Y gives ��2; �X; �Y� � ��a; b; 1�. Note that � in the
equivalence relation Eq. (3.20) is completely fixed in the
patches ~U�2;0� and ~U�0;2� given in Eq. (3.19). However, in
the middle patch �1; X; Y� we still have a freedom � � �1
which leaves the first component 1 untouched, but changes
�1; X; Y� ! �1;�X;�Y�.

The relation between our result and that in [16] becomes
clear by defining 	2 � �0 (	 � 


������
�0

p
). Now the parame-

ters �	;�1; �2� have a common weight �, so they can be
regarded as the homogeneous coordinates of CP2. But one
must identify 		�	 clearly, and this leads to the Z2

quotient �	;�1; �2� 	 �	;��1;��2�. Therefore our
moduli space can also be rewritten as

 

~M N�2;k�2 ’ CP2=Z2 (3.22)

reproducing the result of [16]. Such a Z2 equivalence,
however, does not change the homotopy of MN�2;k�2: it
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remains CP2 [14]. This is analogous to an �x; y� 	
��x;�y� equivalence relation (with real x; y) introduced
in one local coordinate system of CP1 (a sphere), which
leads to a sphere with two conic singularities (a rugby ball,
or a lemon) instead of the original smooth sphere.3 See
Appendices A and B for more details.

B. SU�2� transformation law of coaxial k � 2 vortices

The complex projective space CP2 ’ SU�3�
SU�2��U�1� with the

Fubini-Study metric has an SU�3� isometry. On the other
hand, the weighted projective spaceWCP2

�2;1;1� can have an
SU�2� isometry at most due to the difference of the weights
Eq. (3.20). This matches with the fact that we have only
SU�2�G�F symmetry acting on the moduli space. In this
subsection we investigate the SU�2�G�F transformation
laws of the moduli for the coaxial two vortices, as was
done for the fundamental vortex in Sec. II B.

Let us start with the patch ~U�0;2�, with the moduli matrix

 H�0;2�0 �
1 �az� b
0 z2

� �
: (3.23)

An SU�2� matrix U like Eq. (2.14) acts on the above H0

from the right,

 H�0;2�0 ! H�0;2�0 U

�
v
az� u� v
b �u
az� v� u
b

�v
z2 u
z2

� �
:

(3.24)

A V-transformation V � V1V2, where

 V1 �
� v
a
�u�v
b�2

0
0 1

 !
;

V2 �
z� u�v
b

v
a a
v
z2 v
az� u� v
b

 ! (3.25)

brings the result back to the upper-right triangle form,

 H�0;2�0 ! H�0;2�0 U	 VH�0;2�0 U

�
1 � a

�u�v
b�2 z�
v�u
b
u�v
b

0 z2

 !
: (3.26)

The SU�2� transformation laws of the parameters a; b are
then

 a!
a

�v
b� u�2
; b!

u
b� v
v
b� u

: (3.27)

As in the previous section, b can be regarded as an in-
homogeneous coordinate of CP1; in fact, b is invariant
under a U�1� subgroup (see footnote 2) and this means that
b parameterizes CP1 ’ SU�2�

U�1� . On the other hand, the trans-
formation law of the parameter a can be rewritten as

 a!
�
d
db

�
u
b� v
v
b� u

��
a; (3.28)

showing that the parameter a is a tangent vector on the base
space CP1 parameterized by b. This is very natural. First
recall the situation for separated vortices. The moduli
parameters are extracted from their positions and their
orientations, defined at the vortex centers. However, once
the vortices overlap exactly (zi ! zj), the positions and the
orientations only do not have enough information. When
l�� k� vortices are coincident, we need 1; 2; � � � ; l� 1
derivatives at the coincident point in order to extract all
the information. They define how vortices approach each
other �bi ! bj� [15].

Some SU�2� action sends the points in the patch ~U�0;2�

to where a better description is in the patch ~U�2;0�, and vice
versa. Compare Eq. (3.27) with u � 0, v � i, with
Eq. (3.14). This shows indeed that

 

~U �0;2� [ ~U�2;0� ’ TCP1: (3.29)

Next consider the patch ~U�1;1� with

 H�1;1�0 �
z�� ��
�~� z��

� �
; �2 � �~� � 0: (3.30)

It is convenient to rewrite this as

 H�1;1�0 � z12 � ~X � ~�; (3.31)

where ~� are the Pauli matrices and

 � � X3; � � X1 � iX2; ~� � X1 � iX2: (3.32)

X1; X2; X3 are then complex coordinates with a constraint
X2

1 � X
2
2 � X

2
3 � 0. To keep the form Eq. (3.31) under

SU�2�F transformation, we perform the V-transformation
Eq. (2.7) with V � Uy: H�1;1�0 ! UyH�1;1�0 U. Equivalently,
we study the transformation property of the vortex under

TABLE I. Transition functions between the three patches ~U�2;0�, ~U�1;1� and ~U�0;2�.

�a; b� �a0; b0� �X; Y�

�a; b� � . . . ��a0=b02; 1=b0� ��1=Y2; X=Y�
�a0; b0� � ��a=b2; 1=b� . . . �1=X2; Y=X�
�X; Y� � �
ib=

���
a
p
;
i1=

���
a
p
� �
1=

�����
a0
p

;
b0=
�����
a0
p
� . . .

3For instance, it is easily seen that MN�2;k�2 ’ CP2=Z2
remains simply connected. The higher homotopy groups cannot
change by a discrete fibration [23].
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SU�2�G�F. We find

 

~X � ~�! Uy� ~X � ~��U; (3.33)

that is, the vector ~X transforms as an adjoint (triplet)
representation, except at ~X � 0. This last point—singular
point of WCP2

�2;1;1�—or the origin of the patch ~U�1;1�, is a
fixed point of SU�2� (a singlet). Note also that the transi-
tion functions between the patches ~U�0;2� and ~U�1;1� are
given by

 X3 �
b
a
; X1 � iX2 � �

b2

a
; X1 � iX2 �

1

a
:

(3.34)

The patch U�1;1� does not cover points at ‘‘infinity,’’
namely, the subspace defined by a � 0 in the patch
U�0;2�. That submanifold is nothing but CP1 parameterized
by b which is an edge of WCP2

�2;1;1�. See Fig. 1. One can

verify that the transformation law for a; b in Eq. (3.27) and
that for �;�; ~� in Eq. (3.33) are consistent through the
transition function Eq. (3.34). These results confirm those
in [16].

IV. k � 2 VORTICES IN U�N� GAUGE THEORY

In this section the composition of two non-Abelian
vortices in a U�N� gauge theory is systematically inves-
tigated. Up to now we made use of the direct form of the
moduli matrix H0�z� for studying the moduli space struc-
ture. Another method for studying the latter will be devel-
oped and used to determine the moduli space below.

A. The case of U�N�

Let Z and � be k by k and N by k constant complex
matrices, respectively. We consider the GL�k;C� action
defined by

| 0|2

| 1|2

W CP 2
(2 ,1,1)

CP 2

(1, 1) patch

(2, 0) patch

(0, 2) patch

singularity

a

b

(X 1, X 2, X 3)

11/2

1

O

a

b

FIG. 1. Toric diagram of WCP2
�2;1;1� and their three patches ~U�2;0�, ~U�1;1� and ~U�0;2�. The diagram is drawn under a gauge fixing

condition (called the D term constraint)
P2
a�0 q

aj�aj
2 � 1 where U�1�C charges are qa � �2; 1; 1� for WCP2

�2;1;1� while qa � �1; 1; 1�
for the ordinary CP2. The triangle with the broken line and O (without singularity) denotes the ordinary CP2.
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 Z !VZV�1; �! �V�1; V 2 GL�k;C�:

(4.1)

It was shown in [22] that the moduli space MN;k of k
vortices can be written as the Kähler quotient [24] defined
by

 M N;k ’ fZ;�g==GL�k;C�; (4.2)

where GL�k;C� action is free on these matrices.4 The
moduli space MN;k given by the moduli matrix H0�z� in
Eq. (2.8) and hence by the complex Kähler quotient in
Eq. (4.2) is identical to that obtained by use of the D-brane
construction by Hanany-Tong [3]. The concrete correspon-
dence between them is obtained by fixing the imaginary
part ofGL�k;C� in Eq. (4.2) by the moment map �Zy;Z� �
�y�:

 M N;k ’ f�Z;��j�Zy;Z� ��y� / 1kg=U�k�; (4.4)

where Z and � are again in the adjoint and fundamental
representations of U�k� group, respectively.

We now use the Kähler quotient construction to general-
ize the discussion to general N. The authors in [14,16] used
the expression Eq. (4.4) but Eq. (4.2) is easier to deal with.
Let us discuss the moduli space of coaxial vortices in terms
of Eq. (4.2). A subspace of the moduli space MN;k for
coincident vortices at the origin of the x1-x2 plane is given
by putting the constraint det�z� Z� � zk, that is,

 Tr �Zn� � 0; for n � 1; 2; � � � k: (4.5)

To understand the subspace clearly we need to solve the
above constraint by taking appropriate coordinates with
k2 � k complex parameters.

In the case of k � 2, U�N� vortices, the constraints
Eq. (4.5) are equivalent to the constraint Eq. (3.12) for
the N � 2 case. Z can be solved in this case as

 Z � 
vvT; 
 �
0 1
�1 0

� �
; (4.6)

with v a column two-vector with complex components.
The fact that the above form of Z transforms as in the
adjoint representation under SL�2;C� � GL�2;C� means
that v is a fundamental representation of SL�2;C� since 2
and 2
 is equivalent in the k � 2 case. Let us define a
complex 2 by N � 1 matrix by

 M � ��T v �: (4.7)

The GL�2;C� � SL�2;C� �C
 action with elements S 2
SL�2;C� and � 2 C
 read

 M ! SM; ��T v � ! ���T v �: (4.8)

The quotient by GL�2;C� results in a kind of complex
Grassmannian manifold whose C
 action has weights
�1; � � � ; 1|����{z����}

N

; 0�. The moduli subspace of coincident two vor-

tices in U�N� gauge theory is therefore found to be a
weighted Grassmannian manifold,

 M N;k�2jcoincident ’ WGr
�1;���;1;0�
N�1;2 : (4.9)

We note again that the elements S � �12 and � � �1
acting as

 ��T v � ! ��T �v � (4.10)

is precisely the Z2 action which gives orbifold singular-
ities. Note that, although the ordinary complex
Grassmannian manifold GrN�1;2 ’

SU�N�1�
SU�N�1��SU�2��U�1�

naturally enjoys an SU�N � 1� isometry, the weighted
Grassmannian manifold WGr�1;���;1;0�N�1;2 can have an SU�N�
isometry at most, due to the difference of U�1�C charges.
This is consistent with the existence of the SU�N�G�F

symmetry acting on the moduli space in the U�N� case.
In cases of N > 2 the orbifold singularities are not isolated
points but form a submanifold given by v � 0, which is the
ordinary complex Grassmannian manifold GrN;2 �
WGr�1;���;1;0�N�1;2 reflecting the SU�N�G�F symmetry.

In Appendix C, beside giving the general procedure to
pass from the moduli matrix H0�z� to the Kähler quotient
construction, we directly show a one-to-one correspon-
dence among the patches of the moduli matrix for the
U�N�, k � 2 vortices and those of the weighted
Grassmannian manifold WGr�1;���;1;0�N�1;2 and verify that the
transition functions of the latter perfectly match the ones
obtained from H0�z�. We enforce this way the above result
based on general grounds (specifically the equivalence of
moduli matrix and Kähler quotient approach discovered in
[22]).

B. The case of U�2� revisited

As an illustration consider again the case ofU�2� theory.
2 by 2 matrices Z and � correspond to the moduli space of
k � 2 non-Abelian vortices in the U�2� gauge theory with
the equivalence relation Eq. (4.2). The double coaxial
vortices are described by det�z12 � Z� � z2. This can be
rewritten as TrZ � TrZ2 � 0. These conditions are easily
solved and we find that these vortices are described by the
following two 2 by 2 matrices Z and �:

 Z � 
vvT �
v1v2 v2

2

�v2
1 �v1v2

� �
; � �

 11  12

 21  22

� �
;

(4.11)

4The relation between the moduli matrix H0�z� and the two
matrices �Z;�� is given by the following ADHM-like equation

 ryL � 0; det�z� Z� � detH0�z�; (4.3)

where Ly � �H0�z�; J�z�� and ry � ���y; �z� Zy�. Here J�z�
is N by k matrix whose elements are holomorphic function of z.
�Z;�� and J�z� can be uniquely determined from a given H0�z�
[22].

MINORU ETO et al. PHYSICAL REVIEW D 74, 065021 (2006)

065021-8



where vT � �v1; v2� and

 
 �
0 1
�1 0

� �
:

These obey the equivalence relation GL�2;C� given in
Eq. (C14). At this stage the matter would become simple
if we consider v rather than Z. Since Z is in the adjoint
representation of GL�2;C�, v is in the fundamental repre-
sentation of SL�2;C�. Notice that v is not charged under
the overall U�1�C � GL�2;C�.

It is natural to define k�� 2� by N � 1�� 2� 1� matrix

 M � ��T; v� �
 11  21 v1

 12  22 v2

� �
: (4.12)

This matrix M transforms under GL�2;C� � U�1�C �
SL�2;C� as follows

 M � ��T; v� 	 �S��T;Sv�; (4.13)

where S 2 SL�2;C� and � 2 U�1�C. If the vector v had a
charge 1 under U�1�C (that is, v! �v), the above identi-
fication would correspond to the complex Grassmannian
Gr3;2 ’ M=GL�2;C� which is same as CP2. But since v is
not charged under U�1�C, the manifold is not a
Grassmannian. Equation (4.13) is an example of a
weighted Grassmannian manifold and we denote it by
WGr�1;1;0�3;2 . Here the numbers �1; 1; 0� denote the
U�1�C-charges (the weights) of columns of M.

We choose appropriate GL�2;C� matrices to obtain
various patches on the moduli space for the composite
vortices. Let us define the 2 by 2 minors M�ij� and their
determinants as

 M�ij� �
Mi1 Mj1

Mi2 Mj2

� �
; �ij � detM�ij�: (4.14)

There are 3 minors M�12�, M�23�, and M�13�. Using the
GL�2;C�, one of them can be brought to identity. So one
has 3 patches as follows.

(i) M�23� � 12 patch. First act

 S �
�23 0
0 1

� �
M�1
�23�

to the matrix M in Eq. (4.12), and after that by � �
��1

23 :

 M !
�13 �23 0
� �12

�23
0 1

 !
!

�13

�23
1 0

� �12

�2
23

0 1

 !
:

(4.15)

(ii) M�12� � 12 patch. First one acts S � ��12�
1=2M�1

�12�
to the matrix M in Eq. (4.12), and after that then by
� � ��12�

�1=2:

 M !

�������
�12
p

0 ��23�����
�12
p

0
�������
�12
p �13�����

�12
p

 !
!

1 0 ��23�����
�12
p

0 1 �13�����
�12
p

 !
:

(4.16)

Notice that the element S � �12 with � � �1,
has not been fixed, thus one has a Z2 symmetry in
this patch

 

� �23�����
�12
p

�13�����
�12
p

 !
	

�23�����
�12
p

� �13�����
�12
p

 !
: (4.17)

(iii) M�13� � 12 patch. Act first by

 S �
�13 0
0 1

� �
M�1
�13�

to the matrixM in Eq. (4.12), and then by � � ��1
13 :

 M !
�13 �23 0
0 �12

�13
1

 !
!

1 �23

�13
0

0 �12

�2
13

1

 !
: (4.18)

The corresponding matrices �
Z

� �
for the above three

patches are summarized as follows

 

�13

�23

��12

�2
23

1 0
0 1
0 0

0BBB@
1CCCA;

1 0
0 1

��23�13

�12

�2
13

�12

��2
23

�12

�23�13

�12

0BBBB@
1CCCCA;

1 0
�23

�13

�12

�2
13

0 1
0 0

0BBB@
1CCCA:

(4.19)

The leftmost one corresponds to the M�23� � 12 patch, the
middle to the M�12� � 12 and the rightmost one to the
M�13� � 12 patch. Clearly, these should be identified with
the matrices in Eq. (C18) which were obtained from the
moduli matrices H�2;0�0 �z�, H�1;1�0 �z� and H�0;2�0 �z� given in
Eq. (3.1) through the relation Eq. (C4). Therefore, M�23� �

12 patch and ~U�0;2� patch, M�12� � 12 patch and ~U�1;1�

patch, andM�13� � 12 patch and ~U�2;0� patch. The concrete
identification is

 

�12

�2
13
�23

�13

 !
�
�a
b

� �
;

�13�����
�12
p

�23�����
�12
p

 !
�

X
Y

� �
;

�12

�2
23
�13

�23

 !
�

a0

b0

� �
:

(4.20)

Now we are ready to understand a little mysterious
relation Eq. (3.20) which gave us the weighted complex
projective space WCP2

�2;1;1�. Ordinary complex
Grassmannian Gr3;2 is known to be equivalent to CP2

and the weighted cases are quite analogous. Because all
the parameters in Eq. (4.19) are functions of the determi-
nants of the minors M�12�, M�23� and M�13�, it would be
natural to consider that the manifold is naturally parame-
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terized by them. In particular the origin of the weighted
equivalence relation Eq. (3.20) becomes clear since �ij are
invariant under SL�2;C� while transforming under U�1�C

as

 

�0

�1

�2

0@ 1A � �12

�13

�23

0@ 1A	 �2�12

��13

��23

0B@
1CA: (4.21)

This is nothing but Eq. (3.20). The ~U�0;2� patch is obtained
by fixing with � � ��1=2

12 , the ~U�1;1� patch by � � ��1=2
23

and the ~U�2;0� patch by � � ��1=2
13 . Thus

 

~M N�2;k�2 ’ WCP2
�2;1;1� ’ WGr

�1;1;0�
3;2 : (4.22)

C. The case of U�3�

The moduli space of the coaxial k � 2 vortices in the
U�3� gauge theory is the weighted complex Grassmannian
~MN�3;k�2 ’ WGr

�1;1;1;0�
4;2 as shown already for general N.

The weighted Grassmannian is covered by 4C2 � 6
patches as the ordinary Grassmannian Gr4;2. The patches
are obtained as follows. Let us begin with 2 by 4 matrix M

 M � ��T; v� �
 11  21  31 v1

 12  22  32 v2

� �
(4.23)

with an GL�2;C� � SL�2;C� �U�1�C weighted equiva-
lence relation

 M � ��T; v� 	 �S��T;Sv� (4.24)

with S 2 SL�2;C� and � 2 U�1�C. The matrix M has 6
minor matrices M�ij� whose size are 2 by 2 as given in
Eq. (4.14). By using the GL�2;C�, we can bring one of the
6 minors to the unit matrix.

(i) M�a4� � 12 patches (a � 1, 2, 3): In order to obtain
M�a4� � 12 patch, one must perform

 S a �
�a4 0
1 0

� �
M�1
�a4� 2 SL�2;C�

and �a � ��1
a4 2 U�1�C. For example, M�14� � 12

patch is obtained as follows:

 M !
�14 �24 �34 0
0 �12

�14

�13

�14
1

 !
!

1 �24

�14

�34

�14
0

0 �12

�2
14

�13

�2
14

1

 !
:

(4.25)

Similarly one finds the remaining M�24� � 12 and
M�34� � 12 patches

 

�14

�24
1 �34

�24
0

� �12

�2
24

0 �23

�2
24

1

 !
;

�14

�34

�24

�34
1 0

� �13

�2
34
� �23

�2
34

0 1

 !
;

(4.26)

respectively.
(ii) M�ab� � 12 patches (a; b � 1; 2; 3; a < b): In order

to get a M�ab� � 12 patch, one must make a trans-

formation with Sab � ��ab�
1=2M�1

�ab� 2 SL�2;C�
and �ab � ��ab�

�1=2 2 U�1�C. For example,
M�12� � 12 patch is obtained as follows:

 M !

�������
�12
p

0 ��23�����
�12
p

��24�����
�12
p

0
�������
�12
p �13�����

�12
p

�14�����
�12
p

 !

!
1 0 ��23

�12

��24�����
�12
p

0 1 �13

�12

�14�����
�12
p

 !
: (4.27)

The patches M�13� � 12 and M�23� � 12 can be ob-
tained similarly

 

1 �23

�13
0 � �34�����

�13
p

0 �12

�13
1 �14�����

�13
p

 !
;

�13

�23
1 0 � �34�����

�23
p

� �12

�23
0 1 �24�����

�23
p

 !
:

(4.28)

Notice that S � �12; � � �1 have not used up, so
one has a Z2 symmetry in these patches.

�ab (a; b � 1; 2; 3; 4 with a < b) can be seen as natural
coordinates for the manifold WGr�1;1;1;0�4;2 . �S 2 GL�2;C�
equivalence relation is expressed on these coordinates as

 

�12

�23

�13

�14

�24

�34

0BBBBBBBB@

1CCCCCCCCA
	

�2�12

�2�23

�2�13

��14

��24

��34

0BBBBBBBB@

1CCCCCCCCA
: (4.29)

This weighted equivalence relation for 6 complex parame-
ters defines the weighted complex projective space
WCP5

�2;2;2;1;1;1� whose complex dimension is 5. The

WCP5
�2;2;2;1;1;1� is a bigger manifold than the WGr�1;1;1;0�4;2

whose complex dimension is 4. The embedding relation
WGr�1;1;1;0�4;2 � WCP5

�2;2;2;1;1;1� is the same as that for the
ordinary Grassmannian to the ordinary complex projective
space through the so-called Plücker relation

 �12�34 � �13�24 � �14�23 � 0: (4.30)

The Z2 symmetry on the WCP5
�2;2;2;1;1;1� is now realized as

the action of � � �1 which acts as

 

�12

�23

�13

�14

�24

�34

0BBBBBBBB@

1CCCCCCCCA
	

�12

�23

�13

��14

��24

��34

0BBBBBBBB@

1CCCCCCCCA
: (4.31)

The patchesM�a4� � 12 (a � 1; 2; 3) can be obtained fixing
the U�1�C ambiguity by choosing � � ��a4�

�1 while the
patchesM�ab� � 12 (a; b � 1; 2; 3 with a < b) are obtained
by choosing � � ��ab��

1
2. Note that one can easily confirm
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that the whole of the orbifold singularities of the Z2 action
form a submanifold CP2 ’ Gr3;2 � WGr�1;1;1;0�4;2 , since the
condition �14 � �24 � �34 � 0 for the singularity solves
the Plücker condition Eq. (4.30) and the unconstrained
parameters ��12; �23; �13� have the ordinary equivalence
relation as that of CP2 with �0 � �2 in Eq. (4.29).

For completeness we list the moduli matrices in the case
of k � 2 and N � 3. The six patches ~U�2;0;0�, ~U�0;2;0�,
~U�0;0;2�, ~U�1;1;0�, ~U�0;1;1� and ~U�1;0;1� of the k � 2 coaxial

vortices in the U�3� gauge theory are given by

 H�0;0;2�0 �z� �
1 0 �a1z� b1

0 1 �a2z� b2

0 0 z2

0@ 1A;

H�1;1;0�0 �z� �
z� XY �X2 0
Y2 z� XY 0
�� �
 1

0B@
1CA;

(4.32)

 H�0;2;0�0 �z� �
1 �a01z� b

0
1 0

0 z2 0
0 �a02z� b

0
2 1

0@ 1A;

H�1;0;1�0 �z� �
z� X0Y0 0 �X02

��0 1 �
0

Y02 0 z� X0Y0

0B@
1CA;

(4.33)

 H�2;0;0�0 �z� �
z2 0 0

�a001z� b
00
1 1 0

�a002z� b
00
2 0 1

0B@
1CA;

H�0;1;1�0 �z� �
1 ��00 �
00

0 z� X00Y00 �X002

0 Y002 z� X00Y00

0@ 1A;
(4.34)

with �X; Y� 	 ��X;�Y�; �X0; Y0� 	 ��X0;�Y0� and
�X00; Y00� 	 ��X00;�Y00�. These identifications lead to the
orbifold singularities along CP2, as we mentioned, which
is parameterized by three patches ��; 
�; ��0; 
0� and
��00; 
00�. The determinant of each of these matrices is
equal to z2 corresponding to the fact that these describe
double vortices one sitting on the other, at the origin of the
z plane. The transition functions and other details are given
in Appendix C.

V. CONCLUSION

In this paper we have studied and determined the struc-
ture of the moduli space of certain composite non-Abelian
vortices, appearing in U�N� gauge theories in the Higgs
phase. The moduli subspace of two coaxial vortices (or
equivalently, axially symmetric k � 2 vortices) in the
U�N� gauge theories with N flavors, is found to be a
weighted Grassmannian manifold, Eq. (4.9). In the case
of U�2� gauge theory, it reduces to a weighted projective
space WCP2

�2;1;1� ’ CP2=Z2�CP2 homotopically), in
agreement with the known results [14,16]. This space

contains a Z2 orbifold (conic) singularity at the origin of
the (1,1) patch. In the case of U�N� gauge theory, it con-
tains singularities along GrN;2.

The presence of this kind of orbifold singularities is a
general feature of weighted Grassmannian manifold. This
fact implies the necessity to reconsider the reconnection of
non-Abelian vortices. So far this issue has been studied
considering the moduli space of k � 2 coaxial vortices
smooth everywhere [14]. We claim that this is not the
case and that we need to analyze the metric on the k � 2
vortices moduli space to address the problem.

An interesting question is how our results are general-
ized in the case of semilocal non-Abelian vortices [20,22].
Extension of the results of this paper to the semilocal cases
will be discussed elsewhere.

It would be interesting also to extend our study to
vortices of different kind, such as those appearing in
SO�N� theories [17].

The implications of our results on the properties of non-
Abelian monopoles appearing in related systems, will be
discussed in a separate paper.
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APPENDIX A: RELATION TO ASY ANSATZ

The ansatz in [16] is formulated in terms of two inde-
pendent unit vectors, ~n1 and ~n2. Using a global color-flavor
rotation the two vectors can be rotated into the following
form:

 ~n 1 � �0; 0; 1�; ~n2 � �sin�; 0; cos��; (A1)

where � is the relative angle between ~n1 and ~n2. Now it is
straightforward to derive the moduli matrix H0 that corre-
sponds to this particular choice of parameters, as was done
in [16]:

 H0�z; �� �
� cos�2 z

2 sin�2 z
� sin�2 z � cos�2

 !
: (A2)

This matrix can be put into an upper-right triangular form
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 H0�z; �� �
z cot�2
0 z

� �
; (A3)

by a V transformation.
The ASY vortices with generic orientation vectors ~n1

and ~n2 can be found simply by an overall SO�3� rotation of
the above. To find the moduli matrix representation of the
general ASY ansatz, we must go to the system in which

 ~n 1 � �� sin�1 cos�1; sin�1 sin�1; cos�1�: (A4)

To obtain such a general ASY solution, parameterized with
four angular coordinates:

 H0�z; �; �;�1; �1�; (A5)

where ��1; �1� represent the orientation n1 while the an-

gles ��;�� stand for the orientation of the vector n2 relative
to n1, we rotate the moduli matrix Eq. (A3) with a global
rotation matrix:

 U � exp
�
i
2
�1�3

�
exp

�
i
2
�1�2

�
exp

�
i
2
�1�3

�

�
ei=2��1��1� cos�1

2 �e�i=2��1��1� sin�1

2

ei=2��1��1� sin�1

2 e�i=2��1��1� cos�1

2

 !
; (A6)

where ��1; �1; �1� are the Euler angles. After the rotation

 H0�z; �; �1; �1; �1� � H0�z; ��U��1; �1; �1�; (A7)

we put the result into the upper-right triangular form,
H0�z; �; �1; �1; �1� 	 VH0�z; �; �1; �1; �1�, to get

 H0�z; �; �1; �1; �1� �
1 �e�i�1 cot�1

2 � ze
�i��1��1�csc2 �1

2 tan�2
0 z2

 !
: (A8)

The V transformation needed is

 V �
e�i=2��1��1� csc�1

2 tan�2 �e�i=2��1�3�1� cot�1

2 csc�1

2 tan�2
�ze�i=2��1��1� sin�1

2 tan�2 zei=2�1 cos�1

2 � e
i=2��1��1� sin�1

2

 !
: (A9)

With an arbitrary choice for the origin of the � angle we
can identify � � �1. Thus the ASY ansatz has the moduli
matrix representation, with

 b � e�i�1 cot
�1

2
; a � e�i��1���csc2 �1

2
tan
�
2
:

(A10)

Note that a! 1 as �! � and we get the singlet point of
the moduli space; while a! 0 as �! 0 and we get a
‘‘doublet’’ transforming as a k � 1 vortex with the orien-
tation vector n1, in accord with ASY and with our results.

APPENDIX B: RELATION TO HT-ASY ANALYSIS

The Kähler quotient construction (D-brane construction
by Hanany-Tong) for the moduli space of k vortices in
U�N� gauge theory coupled with N Higgs fields is given by
the two matrices Z and  . Here Z is k by k matrix and  is
N by k matrix which satisfy the following constraint

 �Zy; Z� �  y � 12; (B1)

and are divided by the U�k� symmetry

 Z! ~VZ ~V
y
;  !  ~V

y
; (B2)

with ~V 2 U�k�. The eigenvalues of the matrix Z are
thought of as the positions of the vortices. After performing
an appropriate transformation U�k�, we can always bring
the matrix Z into a triangle matrix. As a concrete example,
let us consider composing two vortices at the origin in the
U�2� model. The matrices are of the form in that gauge:

 Z �
0 w
0 0

� �
;  � ~A ~B

� �
; (B3)

with w 2 C and two complex vectors ~AT � �A1; A2� and
~BT � �B1; B2�. Note that we have not fixed two U�1�
symmetries ei�1 2 U�1�1 and ei�2 2 U�1�2 which do not
change the triangle form of the matrix Z:

 

~V �
ei��1��2� 0

0 ei��1��2�

 !
: (B4)

The charges of ~A, ~B, and w under those U�1�’s are sum-
marized in the following Table II. We have to fix these
U�1�’s to realize the moduli space of the composing two
vortices. To this end, we first absorb the phase of w as w �
jwj by use of U�1�2. Then we have only U�1�1 as unfixed
gauge symmetry. Plugging Eq. (B3) into Eq. (B1), we
obtain three constraints

 j ~Aj2 � jwj2 � 1; j ~Bj2 � jwj2 � 1; ~Ay � ~B � 0:

(B5)

From the middle constraint of Eq. (B5), the vector ~B can be
written as the following form

TABLE II. The charges under U�1�1 and U�1�2.

U�1�1 U�1�2
~A �1 �1
~B �1 1
w 0 2
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~B �
������������������
1� jwj2

q
�e�i�2 sin	
e�i�1 cos	

� �
: (B6)

Then from the first and the last constraints in Eq. (B5), the
remaining vector ~A can be expressed as the following form

 

~A �
������������������
1� jwj2

q
ei�


~B


j ~Bj
�

������������������
1� jwj2

q
ei�

ei�1 cos	
ei�2 sin	

� �
(B7)

with the antisymmetric tensor 
 (
12 � 1). Let us fix the
remaining U�1�1 gauge symmetry by choosing �1 �

�
2 .

Finally, we get the following form

 Z �
0 jwj
0 0

� �
;

 �

������������������
1� jwj2

p
ei�1 cos	 �

������������������
1� jwj2

p
e�i�2 sin	������������������

1� jwj2
p

ei�2 sin	
������������������
1� jwj2

p
e�i�1 cos	

 !
;

(B8)

where �1 �
�
2 � �1 and �2 �

�
2 � �2. At this stage, we

have fixed bothU�1�1 and U�1�2. But we have to be careful
because U�1�2 has not been completely fixed yet. In fact,
Z2 transformation by �2 � � is unfixed since w has charge
2 under U�1�2 gauge symmetry (w � jwj ! �jwj).
Therefore we need to take Z2 identification into account

 Z 2:  ! � : (B9)

Now we have completely fixed the U�2� gauge symme-
try and have reached a patch of the Kähler quotient in
which Z2 symmetry is equipped. This patch should be
identified with our matrices Z�1;1� and ��1;1� in the ~U�1;1�

patch given in Eq. (C18) in which the Z2 symmetry also
exist. Our matrices fZ�1;1�;��1;1�g and matrices fZ;  g in
Eq. (B8) are transformed by GL�2;C� transformation

 V �  2 GL�2;C�: Z�1;1� �  Z �1;

��1;1� �   �1 � 12:
(B10)

More concretely, this can be written as

 

�XY X2

�Y2 XY

� �
�
jwj

�����������������
1�jwj2

p
�����������������
1�jwj2

p
�
�ei��1��2� sin	cos	 e2i�1cos2	
�e2i�1 sin2	 ei��1��2� sin	cos	

 !
:

(B11)

Thus we can find the relation

 

X
Y

� �
�

����������������������������
jwj

������������������
1� jwj2

p
������������������
1� jwj2

p
vuut ei�1 cos	

ei�2 sin	

� �
�

���������������������
jwj������������������

1� jwj4
p

vuut ~A:

(B12)

Thus we conclude that our Z2 symmetry �X; Y� ! ��X; Y�

and the other Z2 symmetry ( ~A! � ~A) in Eq. (B9) are
completely equivalent.

To close completely the gap, here are the explicit rela-
tions among the HT parameters (w; �1;2; 	) and those of
ASY construction (�, �, �1, �1) discussed in the
Appendix A:

 tan�1=2 �
2
�

����������������������������
jwj

������������������
1� jwj2

p
������������������
1� jwj2

p
vuut ; (B13)

 �1 �
�1 � �� �

2
; �2 � �

�1 � �� �
2

;

	 �
�1

2
:

(B14)

APPENDIX C: MATRIX REPRESENTATION

As was already emphasized, all the moduli parameters
are contained in the moduli matrix. The positions of k
vortices are given by the zeros fzig of the determinant
P�z� � detH0�z� of the moduli matrix: P�z � zi� � 0,
and the orientations f ~�ig are given by H0�z � zi� ~�i � ~0,
a null vector at the vortex positions in Eq. (2.4). This is a
nice feature of our approach, as long as all the vortices are
separated. However, it does not give us a good picture
when the vortex axes overlap, as we have seen already.

In this Appendix we will explain a systematic method to
extract moduli parameters from the moduli matrix. A
general introduction to this method was given in [22].

1. The case of U�2�

Let us first extend the orientational vector ~�i which is
the constant vector in Eq. (2.4) to a vector ~�i�z� whose
elements are not constants but holomorphic polynomials of
z of order O�zk�1�:

 H0�z� ~�i�z� � Ji�z�P�z� � 0; Mod�P�z��: (C1)

for some holomorphic Ji�z�. This extended definition of the
orientational vector reduces to Eq. (2.4) when we set z �
zi, since P�z � zi� � 0. The number of the linearly inde-
pendent vectors ~�i�z� is the same as the degree of the
polynomial P�z�, so that index i runs from 1 to 2 for the
k � 2 vortices.

Introduce an N by k�� 2� holomorphic matrix ��z�
from ~�i�z� as

 ��z� � � ~�1�z�; ~�2�z��: (C2)

Namely, ��z� satisfies the relation

 H0�z���z� � 0; Mod�P�z��; P�z� � detH0�z�:

(C3)

One can construct two constant matrices Z which is a k��
2� by k�� 2� matrix and � which is a N by k�� 2� matrix
from ��z� as follows.
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 z��z� � ��z�Z��P�z�: (C4)

For example, we can choose the following matrix sat-
isfying Eq. (C3) with the moduli matrix H�0;2�0 �z� in
Eq. (3.1)

 ��0;2��z� �
bz� b�� a� az� b

z� � 1

� �
: (C5)

Here, ~�2�z�
T � �az� b; 1� is a straightforward solution

for Eq. (C1) since�2�zi� �i � 1; 2� are just the two orienta-
tional vectors given by Eq. (3.4) and ~�1�z� is given by �z�
�� ~�2�z� with modulo P�z� � z2 � �z� �. According to
the prescription given in Eq. (C4), two matrices Z�0;2� and
��0;2� can be constructed as follows:

 

z��0;2��z��
bz2�b�z�a�z az2�bz

z2��z z

 !
�

b�z2�P�z���b�z�a�z a�z2�P�z���bz

�z2�P�z����z z

 !
�P�z�

b a

1 0

 !

�
��az�b� �a��b�z�a�

� z

 !
�P�z�

b a

1 0

 !
���0;2��z�

0 1

� �

 !
�P�z�

b a

1 0

 !
(C6)

Thus we obtain Z�0;2� and ��0;2� corresponding to H�0;2�0 �z�:

 Z �0;2� �
0 1
� �

� �
; ��0;2� �

b a
1 0

� �
: (C7)

Let us turn our attention to another patch H�1;1�0 �z�, Eq. (3.1). The corresponding orientational matrix ��1;1��z� is

 ��1;1��z� � z� ~� �
~� z��

 !
: (C8)

One can verify that H�1;1�0 �z���z� � 0 with modulo P�z� � �z����z� ~�� � �~�. Again two matrices Z and � satisfying
Eq. (C4) can be found:

 z��1;1��z� � z2 � ~�z �z
~�z z2 ��z

 !
�
�z2 � P�z�� � ~�z� P�z� �z

~�z �z2 � P�z�� ��z� P�z�

 !

�
�z�� ~�� �~� �z

~�z ~�z�� ~�� �~�

 !
� P�z�

1 0
0 1

� �
� ��1;1��z�

� �
~� ~�

� �
� P�z�

1 0
0 1

� �
(C9)

Z�1;1� and ��1;1�,

 Z �1;1� �
� �
~� ~�

� �
; ��1;1� �

1 0
0 1

� �
(C10)

have the same information as the moduli matrix H�1;1�0 �z�.
Finally, from the orientational matrix

 ��2;0��z� �
z� �0 1

b0z� b0�0 � a0�0 a0z� b0

� �
: (C11)

for the last patch H�2;0�0 �z� in Eq. (3.1), one gets

 Z �2;0� �
0 1
�0 �0

� �
; ��2;0� �

1 0
b0 a0

� �
: (C12)

Summarizing,

 

��N�k�
Z�k�k�

� �
�

b a
1 0
0 1
� �

0BBB@
1CCCA;

1 0
0 1
� �
~� ~�

0BBB@
1CCCA;

1 0
b0 a0

0 1
� �

0BBB@
1CCCA:

(C13)

As was shown before, the moduli matrix H�0;2�0 �z�, H�1;1�0 �z�

and H�2;0�0 �z� are connected by V-equivalence relation
(H0�z� 	 V�z�H0�z� with V�z� 2 GL�N � 2;C�). This
leads to the transition functions between moduli parame-
ters, see Eqs. (3.2) and (3.3). From the view point of the
matrices Z and �, the transition functions between them
are given by the GL�k � 2;C� equivalence relation

 Z 	VZV�1; �	�V�1; (C14)

with V 2 GL�k � 2;C�. This V -equivalence relation
comes from ambiguity in the definition of ��z� in
Eq. (C3). In fact, �0�z� � ��z�V satisfies the same rela-
tion as Eq. (C3), so that ��z� and ��z�V must be identi-
fied. Since the two matrices Z and � are obtained from
z��z� � ��z�Z� P�z��, we reach the V -equivalence
relation, Eq. (C14).

As an example, let us reproduce the transition function
from the U�1;1� patch to the U�0;2� patch, Eq. (3.2). The
transition matrix from ���1;1�;Z�1;1�� to ���0;2�;Z�0;2�� is

 V �1 �
b a
1 0

� �
:
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One can easily show that the transition function Eq. (3.2) is
the equivalent to Z�0;2� � VZ�1;1�V�1:

 

0 1
� �

� �
�

~�� b~� a~�
��b��b� ~��b~��

a �� b~�

 !
: (C15)

Z and � have a simple physical meaning. First note that
the relation

 det�z1� Z� � P�z� (C16)

with P�z� � detH0�z�. This means that zeros zi of P�z�,
namely, the position of the vortices, can be obtained as
eigenvalues of the matrix Z. As an example, let us diago-
nalize the matrix

 Z �0;2� !VZ�0;2�V�1 �
z1 0
0 z2

� �
by

 V �1 �
1 1
z1 z2

� �
with � � z1 � z2; � � �z1z2. At the same time the other
matrix ��0;2� is transformed as follows

 ��0;2� ! ��0;2�V�1 �
az1 � b az2 � b

1 1

� �
: (C17)

The column vectors

 

~� 1 �
az1 � b

1

� �
and

 

~� 2 �
az2 � b

1

� �
are nothing but the orientational vectors given in Eq. (3.4)
which are defined at the vortex positions. We conclude that
the eigenvalues of the matrix Z are the positions (of the
center) of the vortices while � is related to the ‘‘orienta-
tion’’ of the vortices defined there.

When the two vortex centers coincide, the matrices
reduce to the following form:

 

�
Z

� �
�

b a
1 0
0 1
0 0

0BBB@
1CCCA;

1 0
0 1
�XY X2

�Y2 XY

0BBB@
1CCCA;

1 0
b0 a0

0 1
0 0

0BBB@
1CCCA:

(C18)

2. The case of U�3�

Let us next check the correspondence between the result
obtained above in terms of the matrices Z and � and the
result from the viewpoint of the moduli matrix H0�z�, for
U�3�. There are six patches ~U�2;0;0�, ~U�0;2;0�, ~U�0;0;2�,
~U�1;1;0�, ~U�0;1;1� and ~U�1;0;1� for k � 2 coaxial vortices in

the U�3� gauge theory. These are given by

 H�0;0;2�0 �z� �
1 0 �a1z� b1

0 1 �a2z� b2

0 0 z2

0@ 1A;

H�1;1;0�0 �z� �
z� XY �X2 0
Y2 z� XY 0
�� �
 1

0B@
1CA;

(C19)

 H�0;2;0�0 �z� �
1 �a01z� b

0
1 0

0 z2 0
0 �a02z� b

0
2 1

0@ 1A;

H�1;0;1�0 �z� �
z� X0Y0 0 �X02

��0 1 �
0

Y02 0 z� X0Y0

0B@
1CA;

(C20)

 H�2;0;0�0 �z� �
z2 0 0

�a001z� b
00
1 1 0

�a002z� b
00
2 0 1

0B@
1CA;

H�0;1;1�0 �z� �
1 ��00 �
00

0 z� X00Y00 �X002

0 Y002 z� X00Y00

0@ 1A
(C21)

with identifications �X; Y� 	 ��X;�Y�, �X0; Y0� 	
��X0;�Y0� and �X00; Y00� 	 ��X00;�Y00�. The determinant
of these matrices is equal to z2, meaning that two vortices
are sitting on the origin of z plane.

The corresponding matrices Z which is 2�� k� by 2��
k� matrix and � which is 3�� N� by 2�� k� matrix for
these moduli matrices can be constructed through the
relation

 z��z� � ��z�Z� P�z�� (C22)

with P�z� � z2. Here ��z� is the orientational matrix de-
fined by

 H0�z���z� � 0 (C23)

with modulo P�z� � z2. We start with the patch H�1;1;0��z�.
The orientational matrix � can be chosen as follows

 ��1;1;0��z� �
z� XY X2

�Y2 z� XY
�z� Y��X � 
Y� 
z� X��X � 
Y�

0B@
1CA:

(C24)

It can be verified that this ��1;1;0��z� actually satisfies the
equation Eq. (C20). According to the equation Eq. (C19),
the matrices Z and � can be found as follows:

 z��1;1;0��z� � ��1;1;0��z�
�XY X2

�Y2 XY

� �
� z2

1 0
0 1
� 


0@ 1A
(C25)

so
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 Z �1;1;0� � �XY X2

�Y2 XY

� �
� 


�Y
X

� �
�Y X
	 


;

��1;1;0� �
1 0
0 1
� 


0@ 1A; (C26)

with

 
 �
0 1
�1 0

� �
:

Then the 2 by 4 matrix M given in Eq. (4.7) is of the form

 M�1;1;0� �
1 0 � �Y
0 1 
 X

� �
: (C27)

Similarly other matrices corresponding to H�1;0;1�0 �z� and
H�0;1;1�0 �z� can be found:

 M�1;0;1� �
1 �0 0 �Y0

0 
0 1 X0

� �
;

M�0;1;1� �
�00 1 0 �Y00


00 0 1 X00

� �
:

(C28)

Let us next move to the other patch H�0;0;2��z�. The corre-
sponding orientational matrix � is given by

 ��0;0;2��z� �
b1z a1z� b1

b2z a2z� b2

z 1

0@ 1A: (C29)

One can verify that this ��0;0;2��z� actually satisfies the
equation Eq. (C20). According to the equation Eq. (C19),
we find the matrices Z and � as follows

 z��0;0;2��z� � ��0;0;2��z�
0 1
0 0

� �
� z2

b1 a1

b2 a2

1 0

0@ 1A; (C30)

 

Z�0;0;2� �
0 1

0 0

 !
;

��0;0;2� �

b1 a1

b2 a2

1 0

0BB@
1CCA

) M�0;0;2� �
b1 b2 1 0

a1 a2 0 1

 !
: (C31)

Similarly,

 M�0;2;0� �
b01 1 b02 0
a01 0 a02 1

� �
;

M�2;0;0� �
1 b001 b002 0
0 a001 a002 1

� �
:

(C32)

These are summarized as follows

 

�12

�23

�13

�14

�24

�34

0BBBBBBBBBBB@

1CCCCCCCCCCCA
	

1

��




X

Y

�X � 
Y

0BBBBBBBBBBB@

1CCCCCCCCCCCA
	


0

�0

1

X0

�0X0 � 
0Y0

Y0

0BBBBBBBBBBB@

1CCCCCCCCCCCA

	

�
00

1

�00

�00X00 � 
00Y00

X00

Y00

0BBBBBBBBBBB@

1CCCCCCCCCCCA
	

b1a2 � b2a1

�a2

�a1

b1

b2

1

0BBBBBBBBBBB@

1CCCCCCCCCCCA

	

�a01
a02

b01a
0
2 � b

0
2a
0
1

b01
1

b02

0BBBBBBBBBBB@

1CCCCCCCCCCCA
	

a001
b001a

00
2 � b

00
2a
00
1

a002
1

b001
b002

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: (C33)

The transition functions between these can be easily found
via the weighted equivalence relation Eq. (4.29). For ex-
ample, the transition function from M�1;1;0� to M�1;0;1� is
given by � � 
�1=2:

 
0 �
1



; �0 � �

�


;

X0 �
X



1
2

; Y0 �
�X� 
Y



1
2

:
(C34)

Similarly, the transition function from M�1;1;0� to M�0;2;0� is
given by � � Y�1:

 a01 � �
1

Y2 ; a02 � �
�

Y2 ;

b01 �
X
Y
; b02 �

�X � 
Y
Y

:

(C35)

All other transition functions can be obtained in an analo-
gous way.

3. The case of U�N�

In the general U�N� case there are always two kind of
patches for the moduli matrix H0�z�: N patches with a z2

factor on the diagonal, which we denote ~U�i� (i indicates
the position of z2 on the diagonal) andN�N � 1�=2 patches
with 2 diagonal elements of the form z� c, which we
denote ~U�j;k�, j < k (j, k indicate the position of the non-
trivial diagonal elements). More explicitly
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 H�i�0 �z� �

1 0 � � � 0 �a�i�1 z� b
�i�
1 0 � � �

0 1 ..
.

..

. . .
.

�a�i�i�1z� b
�i�
i�1

..

.
z2

..

.
�a�i�i�1z� b

�i�
i�1

..

. ..
.

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; (C36)

 H�j;k�0 �z� �

1 0 � � � 0 ���jk�1 0 � � � 0 �
�jk�1 0 � � �

0 1 ..
. ..

.

..

. . .
.

���jk�j�1 �
�jk�j�1

..

.
z� X�jk�Y�jk� ��X�jk��2

..

.
���jk�j�1 �
�jk�j�1

..

. ..
. ..

.

..

.
���jk�k�1 �
�jk�k�1

..

.
�Y�jk��2 z� X�jk�Y�jk�

..

.
���jk�k�1 �
�jk�k�1

..

. ..
. ..

.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (C37)

It is possible to find the transition functions among the
moduli in the different patches using appropriate
V-transformations. It turns out that only a subset of tran-
sition functions is needed, then the others can be recovered
using composition and inversion of the known ones. In
particular we need

(i) ~U�i� ! ~U�j�

 a�j�k �
a�i�k b

�i�
j � a

�i�
j b
�i�
k

�b�i�j �
2

; k � i;

a�j�i � �
a�i�j

�b�i�j �
2
;

(C38)

 b�j�k �
b�i�k
b�i�j

; k � i; b�j�i �
1

b�i�j
: (C39)

(ii) ~U�i� ! ~U�k;i�

 X�ki� � 
i
b�i�k�������
a�i�k

q ; Y�ki� � 

1�������
a�i�k

q ; (C40)

 ��ki�l �
a�i�l
a�i�k

; 
�ki�l � b�i�l �
a�i�l b

�i�
k

a�i�k
: (C41)

(iii) ~U�i� ! ~U�j;k�, j; k � i

 X�jk� � 

b�i�j�������
d�i�jk

q ; Y�jk� � 

b�i�k�������
d�i�jk

q ; (C42)

 ��jk�l �
a�i�k b

�i�
l �a

�i�
l b
�i�
k�����������

�d�i�jk
q ; l� i; ��jk�i �

a�i�k�����������
�d�i�jk

q ;

(C43)

 
�jk�l �
a�i�j b

�i�
l � a

�i�
l b
�i�
j�������

d�i�jk
q ; l � i;


�jk�i �
a�i�j�������
d�i�jk

q ;

(C44)

with d�i�jk � �a
�i�
j b
�i�
k � a

�i�
k b
�i�
j .

On the other hand, given the general form of H0�z�,
Eq. (C36) and (C37), the moduli can always be collected
into the 2 by N � 1 matrix M � ��T; v� with the usual
procedure (Z � 
vvT). If we denote M�i�, M�jk� in the
patches ~U�i�; ~U�j;k� respectively we get

 M�i� �
b�i�1 � � � b�i�i�1 1 b�i�i�1 � � � b�i�N 0

a�i�1 � � � a�i�i�1 0 a�i�i�1 � � � a�i�N 1

 !
;

(C45)
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 M�jk� �
��jk�1 � � � ��jk�j�1 1 ��jk�j�1 � � � ��jk�k�1 0 ��jk�k�1 � � � ��jk�N �Y�jk�


�jk�1 � � � 
�jk�j�1 0 
�jk�j�1 � � � 
�jk�k�1 1 
�jk�k�1 � � � 
�jk�N X�jk�

0@ 1A: (C46)

The matrix M together with the weighted GL�2;C�,
Eq. (4.8), defines the weighted Grassmannian manifold
WGr�1;...;1;0�N�1;2 and the M�i�, M�jk� represent the standard
covering of this space. One can pass from one patch to
another by appropriate weighted GL�2;C� transformation
and so deduce the transition functions, which turn out to be
the same of the moduli matrix representation, as expected.
In particular it is possible to check that the transition
functions listed above, which generate all the others, per-
fectly match with the corresponding ones of the
WGr�1;...;1;0�N�1;2 .

We have thus explicitly pointed out that the moduli
space of k � 2 vortices given by the moduli matrix H0�z�
is indeed a weighted Grassmannian manifold WGr�1;...;1;0�N�1;2 .
This enforces the general considerations coming from the
established equivalence between the moduli matrix and the
Kähler quotient construction [22].

APPENDIX D: PRODUCT OF MODULI MATRICES

Within the moduli matrix formalism, it is easy to con-
struct vortices of higher winding number: the latter can be
constructed from the moduli matrices of lower winding
number as simple products. For instance, consider two
fundamental vortices, and

 H�1;0�0 �H�1;0�00 �
z� z0 0
�b0 1

� �
z� z00 0
�b00 1

� �

�
�z� z0��z� z00� 0
�b0z� b0z

0
0 � b

0
0 1

� �
: (D1)

Analogously for the product of two �0; 1� vortices

 H�0;1�0 �H�0;1�00 �
1 �a0

0 z� z0

� �
1 �a00
0 z� z00

� �

�
1 �a0z� a0z00 � a

0
0

0 �z� z0��z� z00�

� �
: (D2)

By comparing these with H�0;2�0 or H�2;0�0 in Eq. (3.1), one
finds

 a � a0; b � a0z
0
0 � a

0
0;

� � z0 � z00; � � �z0z00;
(D3)

 a0 � �b0; b0 � b0z
0
0 � b

0
0;

� � z0 � z00; � � �z0z00:
(D4)

Finally, for the product vortex of the type �0; 1� times �1; 0�;

 H�1;0�0 �H�0;1�00 �
z� z0 0
�b0 1

� �
1 �a00
0 z� z00

� �

�
z� z0 �a00�z� z0�

�b0 z� z00 � b0a00

� �
: (D5)

Bringing it to the standard form by a V�z� transformation

 V �
1 a00
0 1

� �
; (D6)

one has
 

H�1;1�0 	H�1;0�0 �H�0;1�00

’
z� z0 � b0a00 a00�z0 � z00� � a

02
0 b0

�b0 z� z00 � b0a00

 !
: (D7)

This has the same form as the middle form of Eq. (3.1), by
identification

 � � �a00�z0 � z
0
0� � a

02
0 b0; ~� � b0;

� � z0 � b0a
0
0; ~� � z00 � b0a

0
0:

(D8)

Note that

 �� ~� � z0 � z
0
0 � �; �~��� ~� � �z0z

0
0 � �:

(D9)

in accord with the relations Eq. (3.2).
In fact, the transition function Eq. (3.3) between the sets

�a; b; �; �� and ��; ~�;�; ~�� (patches (�0; 2� and �1; 1�) is
simply a consequence of the transition function for the
minimum vortex

 b0 �
1

a0
; (D10)

through the composition rule, Eqs. (D3) and (D8).
Analogously, to find the relation between the �2; 0� and

�1; 1� patches, we first write H�1;1�0 as

 H�1;0�0 �H�0;1�00 �
1 �a0

0 z� z0

� �
z� z00 0
�b00 1

� �

�
z�� ��
�~� z� ~�

� �
: (D11)

The relation

 a0 �
1

�
; b0 � �

�
�

;

� � �� ~�; � � �~��� ~�;

(D12)

follows then easily from the transition rule b0 � 1=a0

between �0; 1� and �1; 0� patches. Finally the relation
Eq. (3.3) follows by composing Eq. (3.2) and (D12).
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In the case of coaxis vortices, one gets, by eliminating
the center-of mass position and the relative position (by
setting z0 � z00 � 0),

 H�1;1�0 	
z�� ��
�~� z��

� �
; �2 � �~� � 0: (D13)

Note that in this construction (H�1;1�0 	H�0;1�0 �H�0;1�0 ), the
constraint �2 � �~� � 0 is automatically satisfied once we
set z0 � z00 � 0 due to the identification Eq. (D8).

These discussions simply show that the moduli matrices
have a natural property under the product. Thus

 H�m;n�0 	H�m1;n1�
0 �H�m2;n2�

0 ; m1 �m2 � m;

n1 � n2 � n:
(D14)

The product moduli is simply

 M 1 �M2; (D15)

as long as no constraints (such as the coincident axes) are
imposed. The transition functions between the ‘‘neighbor-
ing’’ patches (say �m� 1; n� and �m; n� 1�) can be always
reduced to the simple relation between H�1;0�0 and H�0;1�0 .
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Commun. Math. Phys. 108, 535 (1987).

NON-ABELIAN VORTICES OF HIGHER WINDING NUMBERS PHYSICAL REVIEW D 74, 065021 (2006)

065021-19


