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We study first the Hamiltonian operator H corresponding to the Fock-Weyl extension of the Dirac
equation to gravitation. When searching for stationary solutions to this equation, in a static metric, we
show that just one invariant Hermitian product appears natural. In the case of a space-isotropic metric, H is
Hermitian for that product. Then we investigate the asymptotic post-Newtonian approximation of the
stationary Schrödinger equation associated with H, for a slow particle in a weak-field static metric. We
rewrite the expanded equations as one equation for a two-component spinor field. This equation contains
just the nonrelativistic Schrödinger equation in the gravity potential, plus correction terms. Those
‘‘correction’’ terms are of the same order in the small parameter as the main terms, but are numerically
negligible in the case of ultracold neutrons in the Earth’s gravity.
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I. INTRODUCTION

Quantum mechanics in a gravitational field is increas-
ingly becoming an experimentally relevant subject [1].
Because of the weakness of the gravity interaction, the
effects of gravity are more clearly seen in experiments
with neutral particles: neutrons, and also atoms or mole-
cules. The quantum-mechanical phase shift of neutrons
due to their interaction with the Earth’s gravitational field
has been measured since a long time, thanks to interfero-
metric experiments [2]. (Similar effects, due to a noniner-
tial (rotational) motion or to the Earth’s gravity
acceleration, have been observed in atom interferometry
[3,4].) More recently, the quantization of the energy levels
of ultracold neutrons in this same terrestrial gravity field
has been revealed by measuring their transmission through
a horizontal slit [5,6]. New, more precise experiments are
being foreseen in order to accurately determine the energy
levels [7]. Up to now, the theoretical analyses of these
experiments have been done in the framework of the non-
relativistic Schrödinger equation in the Newtonian gravity
potential [5,8–10]. This is justified by the smallness of the
velocity of the neutrons used in these experiments (5 m=s
to 10 m=s in the transmission measurements [5,6], ca. 3�
102 m=s in the interferometric experiment [2]), and by the
weakness of the gravitational field of the Earth.

However, gravity is currently described by relativistic
theories like general relativity (GR). In the framework of
GR and other theories based on Einstein’s equivalence
principle, the wave equations of relativistic quantum me-
chanics, i.e. essentially the Klein-Gordon equation and the
Dirac equation, are adapted to gravitation by rewriting
them in a generally-covariant way. For the Klein-Gordon
equation, this ‘‘covariantization’’ is ambiguous [11], due to

the fact that covariant derivatives do not commute. In the
case of the Dirac equation with the spinor transformation,
this procedure leads to the equation independently pro-
posed by Fock [12] and by Weyl [13], hereafter named
the Dirac-Fock-Weyl (DFW) equation. On the other hand,
an alternative gravitational Dirac equation has been re-
cently proposed (for the case of a static metric) [14]. It is
based on a direct derivation from the principles of wave
mechanics, instead of using the equivalence principle. The
new equation definitely violates the latter principle, for it
does not reduce to the flat-spacetime Dirac equation in a
local ‘‘freely falling’’ frame [14].

Since neutrons are particles with spin 1=2, one may hope
that, at least in the absence of an external electromagnetic
field, their behavior in the gravitational field should be
correctly described by one of these two gravitational
Dirac equations—and, of course, it would be interesting
to know which one of the two. The aim of this paper is to
derive, for the standard, DFWequation, a Schrödinger-type
equation which will allow to compute the stationary energy
levels. (The corresponding equation for the alternative
equation [14] will be derived in a forthcoming work.)
The equation to be derived exhibits the first correction
terms with respect to the nonrelativistic stationary
Schrödinger equation in the Newtonian gravity potential.
This does not appear to have been done before, although
some amount of work has been devoted to studying the
weak-field and/or nonrelativistic limit of the DFW equa-
tion (see, among others, Refs. [15–18]). These works did
result in proposals for an approximate Hamiltonian opera-
tor, hence one should be able to find easily the approximate
equation for the stationary energy levels by using those
works. However, the approximation scheme was not made
explicit in these works, so that, in the approximate equa-
tions, one cannot easily assign orders to the different terms,
with respect to a small parameter—as is necessary to
ensure that the first corrections with respect to the non-
relativistic Schrödinger equation are consistently eval-
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uated. In addition, these works were concerned with the
Hamiltonian for the four-dimensional complex wave func-
tion, whereas we will verify in Subsec. II E that (not
unexpectedly) the solutions of the stationary DFW equa-
tion have only two independent complex components.
Finally, each of the Hamiltonians which were used in
Refs. [15–18], had been obtained from the starting
Hamiltonian of the DFW equation by using a nonunitary
transformation [15–17]. In the absence of another inter-
pretation, this procedure might be seen as coordinate-
dependent [19].

The paper begins (Sec. II) with a discussion of the
Hamiltonian operator for the DFW equation. After noting
the invariance of this operator, we investigate the question
of the relevant scalar product, in the context of the search
for stationary energy levels in a static metric. The link with
the procedure adopted in Refs. [15–17] is made through
the recent interpretation of this procedure by Leclerc [20].
In Sec. III, the weak-field and nonrelativistic limit of the
stationary DFW equation in a static metric is being studied,
i.e., a slow Dirac particle is considered, in a static metric
that differs little from a flat metric. The application to
ultracold neutrons in the Earth’s gravity is discussed. Our
conclusion makes Sec. IV.

II. HERMITIAN HAMILTONIAN FOR THE DIRAC-
FOCK-WEYL EQUATION

A. Starting Hamiltonian for the DFW equation

The DFW equation may be written as [15,21,22]:

 �i��D��M� � 0; D�� @����; M�mc=@;

(1)

wherem is the rest mass of the quantum particle, and where
the ‘‘deformed’’ Dirac matrices �� satisfy the anticommu-
tation relation

 ���� � ���� � 2g��14; 14 � diag�1; 1; 1; 1�; (2)

with �g��� � �g����1, g � �g��� being the (curved)
spacetime metric, and where the �� matrices are given by

 �� �
1

4
g��b

�
�;�a��s

�� �
1

4
����s��; (3)

in which the ���� ’s are the first-kind Christoffel symbols,
s�� � 1

2 ��
��� � �����, and the matrices A � �a��� and

B � �b�� � (with a��b
�
� � ��� ) transform the natural basis

e� �
@
@x� into the local ‘‘tetrad’’ u� and conversely: u� �

a��e�, e� � b��u�, the tetrad being orthonormal1:

 g �u�; u�� � a��a
�
� g�� � ���;

� � diag�1;�1;�1;�1�:
(4)

The deformed Dirac matrices are related to the ‘‘flat’’ ones
~��, that satisfy Eq. (2) with g � �, by

 �� � a�� ~��: (5)

Multiplying (1) by �0 on the left and using (2), one gets
the DFW equation in Schrödinger form:

 i@
@ 
@t
� H ; (6)

with

 H �
mc2

g00 �
0 � i

@c

g00 �
0�jDj � i@c�0: (7)

(Spatial indices are denoted by Latin letters, spacetime
indices by Greek ones; and x0 � ct.) The Hamiltonian
operator (7) makes sense whether Eq. (1) is satisfied or
not, and may be rewritten as

 H � i@@t �
mc2

g00 �
0 � i

@c

g00 �
0��D�: (8)

The DFW Eq. (1) is covariant under a general coordinate
change: x0� � 	���x���, under which the spinor  is left
invariant [15,21], while the �� matrices transform like a
vector, i.e., �0� � ��@x0�=@x� [21]. (This is because the
tetrad is left unchanged in a coordinate change.) Hence,
��D� should also be invariant. It is in fact so: a tedious
calculation allows one indeed to check that �� [Eq. (3)],
hence alsoD� , transforms like a covector. It follows then
from (8) that the modified spinor field after applying the
Hamiltonian operator: H , remains also invariant under
purely spatial coordinate changes, x0j � 	j��xk��, x00 �
x0, or x0 � F�x�, t0 � t. That is,

 �H0 0��t;x0� � �H ��t;x�; �x0 � F�x�	; (9)

with in fact  0�t;x0� �  �t;x�.
When the metric is diagonal: g � diag�a��, one may

define the tetrad from the matrix [22]

 A � diag�1=
���������
ja�j

q
�: (10)

Using this and (5), we find that the first sum in Eq. (3)
vanishes, and that

 �� � �
1

4

a�;���������������
ja�a�j

q ~s�� �no sum on ��;

~s�� �
1

2
�~�� ~�� � ~�� ~���:

(11)

Let us specialize the Hamiltonian (7) to the particular
diagonal metric assumed by Obukhov [17]:

1One may go from the �1;�1;�1;�1� signature, used here
and in Refs. [15–18], to the ��1; 1; 1; 1� signature, used in
Refs. [21,22], by setting: �0 � ��, g0 � �g, and �0� �
�i��. The bases and the matrices A, B stay unchanged, as
well as Eqs. (2)–(4) (of course with primes), while Eq. (1) takes
the form assumed in Refs. [21,22].
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 a0 � �V�x�	2; aj � ��W�x�	2;

x � �xj� �j � 1; 2; 3�:
(12)

This is a static metric, i.e., it verifies

 g�� � g���x� and g0j � 0; (13)

whence g00 � g�1
00 , thus g00 � V�2 for the metric (12). We

find from (11):

 �0 � �
V;j
2W

�j; �j � ~�0 ~�j; (14)

 �j �
W;k

2W
~sjk � �i"jkl

W;k

2W
�l; �l �


l 0
0 
l

� �
;

(15)

where 
l�l � 1; 2; 3� are the Pauli matrices. (Beginning
with (15), we shall use the standard set [17,23] of the
matrices ~��.) Putting (14) and (15) in the Hamiltonian
(7), and using again the diagonal tetrad (10) with (12) in
the definition (5) of the deformed Dirac matrices, we get
 

H � mc2�V � i@c�j
�V;j
2W
�
V
W
@j � i

V

2W2 "jklW;k�
l
�
;

� � ~�0: (16)

Using then the standard definitions of �j and �l, one
checks easily that Obukhov’s starting Hamiltonian ([17],
Eq. (12)) is recovered:

 H � mc2�V � i@c�j
�V;j
2W
�

V

W2 W;j

�
� i@c�j

V
W
@j:

(17)

B. Stationary energy levels in a static metric

For a static metric, the time coordinate t in which we
have (13) is unique (up to a scale factor) [24]. Thus, if we
postulate a stationary wave:

  �t;x� � 	�t�a�x�; (18)

this decomposition (18) must use that ‘‘static time’’ t. {For
a time-independent but nonstatic metric, in contrast, the
decomposition (18) would not be well-defined, since it
might use any of the different time coordinates compatible
with the time-independence [25], say t or t0 � t� f�x�.g
Moreover, for any time-independent metric, the
Hamiltonian operator (7) does not contain time derivatives,
and its coefficients do not depend on time. Hence, as is
well-known, substituting the stationary wave (18) into the
Schrödinger-type Eq. (6), leads to

 	�t� � C exp��iEt=@�; (19)

while the amplitude function a {which may well have
several components, as is the case here, provided that the
time-dependence 	�t� is a scalar [26]} is a solution of the

eigenvalue problem

 Ha � Ea � @!a: (20)

Eqs. (18)–(20) define the stationary energy levels associ-
ated with the Hamiltonian H—provided, of course, that the
‘‘energy levels’’ themselves, i.e., the eigenvalues E of
problem (20), are real: if that is not the case, the time-
dependence (19) contains a (real) exponential term, hence
the solutions (18) can in no way be qualified stationary.
Hermitian operators make the only well-known class of
operators for which we can a priori state (thus before
calculating the spectrum) that the eigenvalues are real.2

C. Scalar product

The Hermitian conjugate of an operator depends, of
course, on the (Hermitian) scalar product which is used
on the domain of this operator. Thus arises the question of
the scalar product �a; b� with respect to which H may, or
may not, be a Hermitian operator. That scalar product
should not involve derivatives. Otherwise, when calculat-
ing �Ha; b�, higher-order derivatives would arise. Hence, it
has necessarily the following general form:

 �a; b� �
Z

M
�a�x�:b�x��dV�x�; (21)

where (y:z) is a Hermitian product defined for arrays y and
z of four complex numbers, and where V is some volume
measure defined on the ‘‘space’’ manifold M, i.e., on the
preferred spatial section defined by the static metric. The
scalar product (y:z) used in the integration (21) might a
priori depend on the integration variable, thus on the point
x 2 M, say �y:z�x. However, in the case of the DFW
equation, the value  �t;x� of the spinor is invariant under
general coordinate changes (hence the amplitude a�x� �
a�x� of a stationary  (18) is invariant under spatial coor-
dinate changes). As is usually phrased, this means that it
belongs to some ‘‘internal space’’ independent of x—say,
simply to C4. Hence, in the present case, the product (y:z)
should not depend on x. The only natural product is then
the canonical scalar product on C4,

 �y:z� � y�
z� � yyz: (22)

In contrast, if  were a 4-vector under coordinate trans-
forms, as is in fact the case for the alternative gravitational
Dirac equation [14], the use of (22) would be incompatible
with the coordinate-independence of the product (21). The
coordinate-independence of (21) demands also that the
volume measure V be invariant under the allowed coordi-
nate changes, i.e., under the purely spatial coordinate

2But, of course, there are plenty of non-Hermitian operators
with all real eigenvalues—although, within the important class
of ‘‘normal’’ operators (i.e., those which commute with their
adjoint), an operator is Hermitian if and only if its spectrum is
real [27].
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changes (which are those compatible with the static char-
acter of the metric). But, for a general static metric, there is
only one such invariant volume measure, whose expression
in a given coordinate system is

 dV�x� �
����������
h�x�

p
d3x; h � det�hjk�; (23)

where (hjk) is the component matrix of the metric h on M
associated with the static spacetime metric g (with compo-
nents g��), i.e., hjk � �gjk in static-compatible coordi-
nates. Thus, we find that there is only one coordinate-
independent scalar product that appears naturally when
investigating the Hermitian character of the Hamiltonian
associated with the DFW equation for a static metric—
namely, the product (21), specified by the definitions (22)
and (23).3

D. Link with the literature

In Refs. [15–17,28], a product with the same form (21),
and with (implicitly) the same definition (22) for the
‘‘local’’ product, is being used. Each of these works con-
siders a particular coordinate system, in which the space-
time metric is assumed to have a special form—e.g., the
form (12) in Ref. [17]. Each in their specific coordinate
system, these authors use the coordinate volume measure
d3x, instead of the invariant volume measure (23). Thus,
they use the scalar product

 �a j b� �
Z
R3
�a�x�:b�x��d3x: (24)

If one interprets this as the basic, starting, scalar product
used by these authors, he notes that it is coordinate-
dependent, and that the Hamiltonian (7) is, in general,
not Hermitian for this product—e.g., the Hamiltonian
(17) is not Hermitian for the product (24), if the metric
has the form (12). Then, the nonunitary transform used by
these authors:

 

� � T ; �H � THT�1; (25)

with

 T �
�
�g
g00

�
1=4
; g � det�g��� (26)

(and, in particular,

 T � W3=2 (27)

for the metric (12)), is interpreted as a modification of the
Hamiltonian with the aim of getting a Hermitian
Hamiltonian [19]. This interpretation leads to a problem:
the modified Hamiltonian �H defined by Eq. (25) is, in
general, not Hermitian any more if one transports it to
another coordinate system and uses the scalar product

defined by the same Eq. (24) taken in the new coordinates
[19].

However, a more relevant interpretation of the works
[15–17,28] has been suggested recently by Leclerc [20]
(Sec. 3 in that reference). He notes that the transformation
(25) and (26) gets the scalar product

 �a k b� �
Z
R3

�������
�g
p

a�x�y ~�0�0b�x�d3x (28)

to the scalar product (24), in an isometric way, i.e.

 � �a j �b� � �a k b�: (29)

This is indeed easy to check in the case of a diagonal tetrad
(10) (implying a diagonal metric), for we get then from (2)
and (26):

 

�������
�g
p

~�0�0 � T214: (30)

Because of (25) and (29), we have also

 � �H �a j �b� � �Ha k b�: (31)

Thus, if the operator H is Hermitian for the product (28),
then so is also �H for the product (24) [20], and conversely;
in addition, the two operators have the same spectrum. As
noted by Leclerc [20], ‘‘the hermiticity properties of the
operators can be directly read off’’ with the flat product
(24): for example, see Eq. (14) in Ref. [17]. The scalar
product (28) arises from the conservation law associated
with the standard DFW current, and it may be rewritten in a
coordinate-independent way [20] (for a given hypersur-
face, defined in the starting coordinate system by x0 �
Const). Here, we show that the product (28) coincides, in
the case of a diagonal tetrad (10), with the coordinate-
independent product (21)–(23) that we introduced. We
have in the most general case [25]:

 T4 �
�g
g00
� h: (32)

For a diagonal tetrad, we have Eq. (30), whence indeed
from (23):

 �a k b� � �a; b�: (33)

We conclude that, in the case of a static metric which can
be reduced to the diagonal form (which is the case consid-
ered here and in Refs. [16,17]), the invariant scalar product
(21)–(23) can be rewritten in the form (28). Then, the
nonunitary transform (25) is indeed ‘‘a purely mathemati-
cal operation which does not affect the physics,’’ and
which transforms that product to the flat product (24), in
terms of which the hermiticity of the Hamiltonian operator
is easily checked [20]. In particular, in the case of the
metric (12), this transformation brings the Hamiltonian
(17) to an explicitly-Hermitian form [17], hence we
know that the starting Hamiltonian (17) is Hermitian for
the invariant product (21)–(23). Nevertheless, it is inter-

3Tho ensure that (21) is well-defined, one must assume square-
integrable functions: a and b 2 L2�M;V�.
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esting to show that the adjoint of the Hamiltonian (17) for
that product can be determined directly.4

E. Adjoint of the Hamiltonian (direct method)

Thus, let us compute the adjoint Hy of the operator H,
for the scalar product (21)–(23). To do that, we need to
know the adjoint operator of the partial derivative @j (or,
equivalently, that of the momentum operator pj � �i@@j).
Of course, the operator @j is coordinate-dependent, and so
will be its adjoint. But, since the Hamiltonian (7) verifies
Eq. (9), its application to a merely space-dependent spinor
a�x� verifies

 H 0a0�x0� � Ha�x�: (34)

The scalar product (21)–(23) being invariant too, the re-
sulting adjoint operator Hy is also invariant. I.e., if one
makes an admissible (thus purely spatial) coordinate
change, x0 � F�x�, t0 � t, then the adjoint operators will
correspond by Eq. (34) (with Hy in the place of H). We
determine first the adjoint @zj of the operator @j, considered
as acting on scalar functions, thus with respect to the
invariant scalar product that corresponds to (21) for scalar
functions,

 �a; b� �
Z

M
a
bdV: (35)

If the scalar function f cancels outside a bounded domain,
or more generally if (in the coordinates �xj�), f�x�

����������
h�x�

p
�

o�1=r2� as r � jxj ! 1,5 then one has

 

Z
M

1���
h
p �f

���
h
p
�;jdV �

Z
R3

@
@xj
�f�x�

����������
h�x�

p
	d3x � 0: (36)

(This is got by applying the divergence theorem to the
vector field f�x�

����������
h�x�

p
ej with the ball B�0; r� in the

Euclidean space R3.) By using this result with f � a
b,
we obtain

 

Z
M
�a
;jb� a


b;j�dV�
Z

M
a
b

h;j
2h

dV � 0: (37)

As we know, the adjoint of an operator A (here one acting
on scalar functions, thus with the scalar product (35)) is

defined to be the operator Az such that

 �8a��8b� �a;Ab� � �Aza; b�: (38)

Hence, it follows from Eq. (37) that6

 @zj � �@j �
h;j
2h
; (39)

with, for the metric (12),

 

h;j
2h
� 3

W;j

W
: (40)

It is easy to check that, when an operator A is extended
from scalar functions to ‘‘vector’’ ones by A:�a�� �
�Aa��, its adjoint Ay for the product (21)–(23) is obtained
by extending in the same way the adjoint Az for the
product (35). Also as expected, the adjoint, for the product
(21)–(23), of the operator defined by a complex matrix M,
is the operator defined by the adjoint matrix, My � �M
�T.
Thus, in Eq. (17), the first operator is Hermitian, the second
one is anti-Hermitian, and the adjoint of the third one is
[Eqs. (39) and (40)]7:

 �F�j��i@j�	
y �

�
�i@j � 3i

W;j

W

�
�jF

� �j
�
�i�F@j � F;j� � 3i

W;j

W
F
�
: (41)

We find then easily that

 H y � mc2�V � i@c�j
�
F@j � F;j � 2

W;j

W
F�

V;j
2W

�

(42)

 � mc2�V � i@c�j
�VW;j

W2 �
V;j
2W
�
V
W
@j

�
� H: (43)

Thus, we checked directly that the Hamiltonian operator
(17) is Hermitian for the invariant scalar product (21)–
(23). Therefore, to compute the stationary energy levels of
the Dirac particle, we may consider the eigenvalue prob-
lem (20) with this starting Hamiltonian (17). Using the
standard set [17,23] of the matrices �j and �, and writing
the 4-component amplitude function a�x� as a couple of 2-
component functions,

 a�x� � �’�x�; ��x��; (44)

we may write explicitly (20) (after division by @c) as

4When investigating the hermiticity of the Dirac(-Fock-Weyl)
Hamiltonian, or, more exactly, when checking whether �H k
 � � � k H �, Leclerc [20] assumes that  verifies the wave
equation. However, this identity (and in fact the more general
identity �H k ’� � � k H’�) has to be verified by general
functions  (and ’) in the domain of H, not merely by ones
satisfying the wave equation. Moreover, in the context of the
search for stationary solutions (18), the relevant hermiticity
applies to spatial wave functions a. The associated time-
dependent wave function (18) obeys the wave equation iff a is
an eigenfunction of H, hence checking the hermiticity for such
wave functions is not enough.

5Thus, we assume that the space M is diffeomorphic to R3, and
that the chart x � x � �xj� covers M.

6Without going into detailed considerations on the domains of
the operators, it is clear that the functions to which (37) applies
will be dense in the relevant domain.

7The usual convention is followed for product operators: thus,
the product operator @jF transforms a to @j�Fa� �
�F@j � F;j�a, with F;j the mere multiplication by the function
@F=@xj.
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 � i
V
W

j�;j � i

�V;j
2W
�
VW;j

W2

�

j� �

�
!
c
�MV

�
’;

(45)

 � i
V
W

j’;j � i

�V;j
2W
�
VW;j

W2

�

j’ �

�
!
c
�MV

�
�:

(46)

Thus, � is expressed as a function of ’ by Eq. (46), and is
eliminated by reporting this in (45). In this sense, the
stationary DFW equation also has only two independent
complex degrees of freedom, as is well-known for the flat-
spacetime Dirac equation.

III. POST-NEWTONIAN APPROXIMATION (PNA)
FOR STATIONARY ENERGY LEVELS

A. Framework: asymptotic PNA

A PNA was already considered in the quantum domain
by Kiefer & Singh [29], who expanded in powers of c�2

the phase function in the ‘‘minimally-coupled’’ gravita-
tional Klein-Gordon equation, in a nonstationary situation.
This approach was further developed by Lämmerzahl [30],
who applied it to explore the modification of the coupling
of matter to the electromagnetic field, which is induced by
the presence of a (weak) gravitational field. Here, we are
using the so-called ‘‘asymptotic’’ PNA [31–33], i.e., we
consider a (conceptual) family (S�) of systems. The aim of
this approach is to give a mathematically clearer meaning
to the postulated expansions, interpreting them indeed as
asymptotic expansions. In the present case, each system S�
is constituted by a massive body producing the static
metric, and by a Dirac particle which is in a stationary
state in this metric. Since we are studying a ‘‘test quantum-
particle’’, assumed to not affect the metric, we need to
know only the metric produced by the body: let g��� be the
metric in system S�. We do not need to specify which
theory of gravitation is assumed. We suppose that there is a
coordinate system t, x, such that, for any �, the metric g���

has the form (12) with the following (post-Newtonian)
asymptotic expansion as �! 0:

 V����x� � �g���00 	
1=2 � 1� �

U�x�
c2 �O��

2�; (47)

 W����x� � ��g���jj 	
1=2 � 1� �

U�x�
c2 �O��

2�

�no sum on j�:
(48)

This will indeed be the case if a post-Newtonian family of
static bodies is envisaged either in the framework of GR in
the harmonic gauge [31,32,34,35], or in the framework of a
recent scalar theory [33]. In both cases, U is formally
identical to the Newtonian potential: it is defined in the
coordinates t, x by

 U�x� � G
Z
��y�d3y=jx� yj; (49)

where � arises as the first coefficient in the expansion of
the energy density T00��� in the coordinates t, x, with T���

the energy-momentum tensor in system S�:

 T00��� � ���1�O���	: (50)

Note that, therefore, the first approximation of the energy
density in system S� (the ‘‘Newtonian density’’) is ����N �
��. Hence, the real equivalent of the Newtonian potential
is not U (which does not depend on �), but is instead, in
system S�:

 U���N �x� � �U�x� � G
Z
����N �y�d

3y=jx� yj: (51)

The system of interest, S, e.g. the Earth (assumed iso-
lated), is supposed to correspond to a small finite value
�0 � 1 of the parameter: S � S�0

, so that it makes sense to
use the asymptotic expansions for that system. This means
that the gravitational field in system S is indeed a weak
field in the physical sense.8 Moreover, the classical veloc-
ity of the test particle is assumed to be of the same order in
the small parameter as that of a test particle orbiting in the
weak gravitational field considered, namely [31–35]

 u ����t� � ord�
����
�
p
� � u0�t�

����
�
p
�O��3=2�: (52)

This means physically (in system S) that the initial velocity
of the particle (e.g., the initial velocity of the neutron flux)
is at most of the order of orbital velocities (as is certainly
the case in the experiments [2,5,6]), so that it makes sense
to use the PNA—then, u (and also _u) will remain of PN
magnitude as the time goes. It follows that the classical
energy of the particle in the gravitational field [25] admits
the expansion

 E���classical � fg
���
00 �m

2c4 � �p����2c2	g1=2 � mc2 �O���:

(53)

B. Application to the stationary energy levels

The stationary energy levels of the particle, considered
as a Dirac (quantum) particle, must have the same order of
magnitude as the particle’s classical energy. Hence, any

8This is not automatical if one considers an a priori given,
abstract family (S�), as is done in Ref. [31], because asymptotic
expansions like (47) and (48) remain true if one changes � to
�0 � ��, with � a constant: in that case, the fact that � is small
for some particular system S � S�0

has no objective meaning.
But in physical practice, one defines �0 in the very system of
interest S, e.g. �0 � supx2R3 �1� V�x�� for the metric (12). One
must check that it is indeed negligible w.r.t. the unity: this means
really that the gravitational field in system S is a weak field in the
physical sense. Then, the family (S�) is deduced from the data of
S [32,33]. (This is done by deducing a family of initial data from
the initial data corresponding to S.)
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solution E��� of the eigenvalue problem �20�� (i.e., for
system S�), should have an expansion

 E��� � mc2 �O��� (54)

(assuming that one may thus follow as a function of � each
of the different eigenvalues). This asymptotic expansion of
an energy level implies that it is positive (as soon as � is
small enough). More precisely than (54), we shall assume a
first-order expansion for E���, or rather equivalently for
!��� � E���=@:

 

!���

c
� M�!1��O��

2�; (55)

as well as for the amplitude function a��� � �’���; �����:

 ’��� � ’0 � ’1��O��2�;

���� � �0 � �1��O��2�:
(56)

Inserting (55) and (56) into the explicit eigenvalue
Eqs. (45) and (46), using the expansions (47) and (48) of
V and W, and identifying powers of �, yields, at the order
zero,

 � i
j�0;j � 0; (57)

 � i
j’0;j � 2M�0; (58)

and at the order one (with ~U � U=c2):

 � i
j��1;j � 2 ~U�0;j� �
i
2

j ~U;j�0 � �!1 �M ~U�’0;

(59)

 � i
j�’1;j � 2 ~U’0;j� �
i
2

j ~U;j’0

� 2M�1 � �!1 �M ~U��0: (60)

Using the well-known property of the Pauli matrices:

 
j
k �
�
i"jkl
l if j � k
12 if j � k;

(61)

we note first that (57) and (58) imply

 �’0 � 0: (62)

Then we eliminate �0 and �1 from (59) by using (58) and
(60), and we get with the help of (57), (61), and (62):
 

1

2M

�
��’1 �

3i
2
"jkl ~U;j
l:’0;k �

1

2
~U;j’0;j �

1

2
’0� ~U

�

� �!1 �M ~U�’0: (63)

In Eqs. (62) and (63), we have four independent scalar
equations for the four scalar unknowns contained in the
zero-order and first-order coefficients ’0 and ’1 of the
expansion of the 2-component field ’. This makes the 1PN
eigenvalue problem determinate. However, we may use

Eq. (62) so as to rewrite (63) as a single approximate
equation for the 1PN field (which is the order-one approxi-
mation of ’���)

 ’���
�1� � ’0 � �’1: (64)

Owing to (62) and (64), we have indeed in Eq. (63):

 �’1 �
1

�
�’���

�1� : (65)

In the same way, it follows from (55) and (64) that

 !1’0 �
1

�

�
!���

c
�M

�
’���
�1� �O���: (66)

Thus, multiplying (63) by �@c, we get (omitting the
superscript��� and the subscript�1�, i.e., defining ’ � ’���

�1� ,

and also UN � U���N � �U, Eq. (51)):
 

�
@

2

2m
�’�mUN’�

@
2

2mc2

�
3

2
i"jklUN;j
l’;k

�
1

2
UN;j’;j �

1

2
’�UN

�
� �E�mc2�’�O��2�: (67)

This equation shows explicitly the additional terms with
respect to the stationary nonrelativistic Schrödinger equa-
tion in the Newtonian gravity field,

 �
@

2

2m
�’�mUN’ � Enr’: (68)

(The subscript ‘‘nr’’ stands for ‘‘nonrelativistic.’’) It is
interesting to note that, in Eq. (67), all terms are of the
same order in the small parameter �. (This is a priori
obvious since (67) is a mere rewriting of the exact
Eq. (63), the latter involving only expansion coefficients
like’0,’1 andU, which are, of course, of order zero in the
small parameter.) Namely, all terms are order �.9 This
result means that, from the point of view of the asymptotic
PN scheme, the corrections to the nonrelativistic
Schrödinger Eq. (68)—e.g., the corrections to the energy
levels—do not need to be small with respect to the corre-
sponding quantities as they are found using Eq. (68).
However, an asymptotic estimate is not a numerical one:
we must now numerically investigate the differences in the
energy spectrum.

C. Estimates for ultracold neutrons in the earth’s
gravity

The mass of the neutron is m ’ 1
6� 10�26 kg (mc2 ’

939:57 MeV ’ 1:50� 10�10 J). The Earth’s Newtonian
potential is, on Earth, UN ’

GM�
r�
’ 6:67�10�11�6�1024

6:37�106 ’

6:3� 107 m2=s2, whence mUN ’ 10�19 J. We have

9On the r.h.s. of (67), we consider �E�mc2�’ as one term: it
is of order one in �, but it is the difference between two terms of
order zero in �.
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jrUNj � g ’ 9:81 m:s�2. Assuming perturbatively for ’
the functions found from the nonrelativistic Schrödinger
equation for the first energy levels of ultracold neutrons in
the Earth’s gravity [6], we have jr’j ’ 105 m�1. Now the
relativistic corrections involve the minute coefficient

  �
@

2

2mc2 ’
�1:054� 10�34�2 � 3� 1026

9� 1016

’ 3:7� 10�59 kg:m2: (69)

Therefore, the two first correction terms in the square
bracket in Eq. (67), which are of the order of gjr’j ’
3� 10�53 J, are utterly negligible with respect tomUN’ ’
10�19 J. It is even more so for the third, last correction term
in (67), � 

2’�UN with ��UN � 4�G�N ’ 8�
10�7 s�2 (with �N ’ 103 kg=m3).

However, one should account for the fact that the energy
levels are defined only up to a constant: in Eq. (67), one
may change simultaneously UN to U0N � UN � C and E to
E0 � E�mC. (The same is true in Eq. (68).) It follows
that, in the experiments with neutrons passing through a
horizontal slit [6], which are very localized as compared
with the Earth’s radius, we may approximate the
Newtonian potential as

 UN ’ �gz; (70)

with z the vertical coordinate, counted upwards from the
lower side of the slit, and taking values up to a few 10�5 m.
This gives now�mUN ’ 10�30 J. That has the same mag-
nitude as the nonrelativistic energies Enr ’ E�mc2 [6]. It
still exceeds the relativistic corrections by some 23 orders
of magnitude.

IV. CONCLUSION

In this work, we derived the post-Newtonian equation
for the stationary energy levels of a slow Dirac(-Fock-
Weyl) (DFW) particle in a weak static gravitational field,
Eq. (67). To our knowledge, this equation was not derived
before, although weak-field expressions for the DFW
Hamiltonian have been proposed [15–18]. In a first step,
we showed that there is just one natural coordinate-
independent scalar product relevant to stationary wave
functions in a static metric, given by Eqs. (21)–(23). In
the case of a diagonal tetrad, this scalar product coincides
with the scalar product (28) considered by Leclerc [20],
and which arises from the conservation law of the DFW
current. We checked directly that, at least in the case where
the metric can be set in the ‘‘space-isotropic’’ form (12)
assumed by Obukhov [17], the Hamiltonian (7) of the
DFW equation turns out to be Hermitian for that scalar
product. Instead, de Oliveira & Tiomno [15], Varjú &
Ryder [16] and Obukhov [17] used the nonunitary trans-
formation (25). That transformation gets the scalar product
(28) to the ‘‘flat product’’ (24), with which the hermiticity

of the modified Hamiltonian, equivalent to that of the
starting Hamiltonian for the product (28), is easily
checkable.

In a second step, we used the asymptotic scheme of post-
Newtonian approximation (PNA) [31–33] to determine the
approximate equation that governs the stationary energy
levels, in order to be able to compare that equation with the
nonrelativistic Schrödinger equation in the gravity poten-
tial. To use that scheme, we assumed that the gravitational
field is weak and that the classical velocity of the Dirac
particle is small, both in an asymptotic sense, i.e., for
�! 0—considering a family (S�) of systems. It makes
sense to apply the results to the system of interest (e.g., a
flux of ultracold neutrons in a laboratory on the Earth),
insofar as the relevant value �0 of the parameter for that
system is small (as is indeed the case in the example
mentioned). In our final Eq. (67), the new terms, as com-
pared with the nonrelativistic Schrödinger Eq. (68), are of
the same order in the small parameter as the terms which
are already there in Eq. (68)—namely, they are order one.
This is a surprising result if one compares it with the
situation for classical particles, in which situation the first
relativistic corrections are one order higher in the small
parameter than the Newtonian terms. However, this result
does not mean that the corrections have the same numerical
magnitude as the ‘‘main’’ terms. And indeed, we found
that, for ultracold neutrons in the Earth’s gravity field, the
corrections of the DFW equation to the energy levels are
hopelessly negligible with respect to the energy levels as
found with the nonrelativistic Schrödinger equation.

We note that, in their works on the nonrelativistic limit
of the DFW equation, de Oliveira & Tiomno [15], Varjú &
Ryder [16], Obukhov [17], as well as Silenko & Teryaev
[18], used Foldy-Wouthuysen [23,36] transformations, or
at least (according to the discussion in Ref. [18]), trans-
formations of the Foldy-Wouthuysen type. In contrast with
these authors, we consider explicitly the stationary energy
levels, and this in the post-Newtonian approximation.
These two points, taken together, allow us to state
Eq. (54) and to use it, thus automatically selecting the
positive-energy solutions. For this reason, we did not
need to have recourse to a Foldy-Wouthuysen
transformation.
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