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A classical field theory is proposed for the electric current and the electromagnetic field interpolating
between microscopic and macroscopic domains. It represents a generalization of the density functional for
the dynamics of the current and the electromagnetic field in the quantum side of the crossover and
reproduces standard classical electrodynamics on the other side. The effective action derived in the closed
time path formalism and the equations of motion follow from the variational principle. The polarization of
the Dirac-sea can be taken into account in the quadratic approximation of the action by the introduction of
the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears
naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is
generated from the quantum boundary conditions in time by decoherence at the quantum-classical
crossover and the Abraham-Lorentz force arises from the accelerating charge or from other charges in
the macroscopic or the microscopic side, respectively. The functional form of the quantum renormaliza-
tion group, the generalization of the renormalization group method for the density matrix, is proposed to
follow the scale dependence through the quantum-classical crossover in a systematical manner.
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I. INTRODUCTION

Classical systems traditionally serve as starting points
for quantization. But the opposite order, namely, the con-
struction of macroscopic physics from quantum principle,
is needed to understand the great division line in physics,
the quantum-classical crossover. One expects no surprise
from the traditional way of thinking because the usual
equations of motion are supposed to be recovered in the
narrow wave packet limits according to Ehrenfest theorem.
Thought formally correct, this theorem does not guarantee
that the original, naive scenario of classical particles or
bodies is recovered because the relativistic and many-body
aspects of quantum physics introduce correlations in the
narrow wave packet limit which render the picture of
classically localized particles and bodies more involved.
The goal of this paper is to derive classical dynamics,
namely, action and variational equations of motion for
excitations in QED.

The dynamics of expectation values can be obtained by
means of the closed time path (CTP) formalism proposed
by Schwinger a long time ago [1]. One expects that the
dynamics for the electric current and the electromagnetic
field will be governed by the action
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involving the world lines xi�s� of charge ei, mass Mi, and
the vector potential A��x� and SQ standing for the correc-
tions due to quantum fluctuations. But there is a negative

result conjecturing that no variational principle is available
for the derivation of the equations of motion [2] and in fact,
up to our knowledge no positive result had been commu-
nicated in this direction ever since. It will be shown below
that the action (1) together with its variational principle can
actually be derived. The term SQ in Eq. (1) represents the
systematical improvement of classical electrodynamics by
taking into account quantum effects arising from the po-
larization of the Dirac-sea without interaction, vacuum
polarizations due to electromagnetic interactions, and
boundary conditions in time.

Once the action governing the expectation values is
constructed a number of interesting questions open up.
The first set of questions concerns the form of the action.
How can we separate off the many-body aspects from a
particle propagating in the noninteracting Dirac-sea and
what corrections will be added to the free mechanical
action, the fist term on the right-hand side of Eq. (1)?
The dynamics of the expectation values of local operators
should give a better insight into the quantum-classical
transition regime because the space-time resolution of the
expectation value of a local operator is limited by the UV
cutoff only. How can we separate microscopic and macro-
scopic effects in the expectation values, or preferably in the
action? The effects of the polarization of the Dirac-sea are
included in the quantum corrections to the action. Does this
happen in the usual manner polarization is taken into
account in classical electrodynamics? Another set of ques-
tions arise about the radiational time arrow. The boundary
conditions in time are realized on the microscopic level in
QED and appear as infinitesimal imaginary contributions
in SQ. How does the experimentally well established re-
tarded Green function arise from the time reversal invariant
dynamics? Finally, such a calculation addresses the mea-
surement theory of quantum mechanics. In fact, in analyz-*Electronic address: polonyi@fresnel.u-strasbg.fr
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ing the measurement process one always ends up with the
study of the interactions between a small and a large
system. Are there some peculiarities in the dynamics
when the large parameter, the ratio of the number of
degrees of freedom of the large and the small system,
diverges, like spontaneous symmetry breaking occurring
in some models in the thermodynamical limit? We attempt
to give below at least some indications about the answers.

The CTP formalism has originally been introduced in
quantum field theory [1–12] for the description of the time
dependence of expectation values. A similar scheme was
developed independently in the framework of quantum
mechanics, too. The formal invariance of transition prob-
abilities under time inversion lead to the construction of
time symmetrical quantum mechanics [13,14]. The explicit
appearance of the density matrix in the formalism explains
the applications of this scheme in calculating the reduced
density matrix in quantum mechanics [15] with special
attention paid to dissipative processes [16–20].
Furthermore, the description of decoherence [21–24] in
the framework of consistent histories [25–27] can be
achieved in a natural manner [28–30] in the CTP formal-
ism. Finally, one should mention promising applications of
this scheme to cosmological problems [31–34], to kinetic
quantum field theory [35–38], and to the renormalization
group [39,40].

In these applications of the CTP formalism the degrees
of freedom are doubled, due to the systematic implemen-
tation of time evolution in the Heisenberg picture and/or to
the canonical description of dissipative processes. But this
doubling remains rather formal from the point of view of
classical physics. The present work is based on the obser-
vation that one can actually construct variational principle
and canonical dynamics for the expectation values of ob-
servables within the CTP formalism. The choice of the
microscopic degrees of freedom which become classical in
the macroscopic region is unique up to a parameter which
is allowed due to the unitarity of the time evolution for
closed systems. The other, independent combination of the
doubled degrees of freedom takes care of the coupling of
the system to its environment and becomes suppressed in
the macroscopic region. Such an explicit splitting of the
variables offers a new, more natural starting point for the
exploration of the quantum-classical crossover, presented
in this paper within the framework of QED. The scope of
this work is restricted to general, qualitative issues, such as
the current dynamics in the Dirac-sea, the polarizability of
the vacuum, the radiation time arrow, the decoherence of
nonrelativistic charges, and the renormalization group
scheme for the density matrix to describe the quantum-
classical crossover. The classical dynamics derived in these
contexts yields new results already at such a qualitative
level. We plan to present the detailed, quantitative studies
of these and related issues in subsequent publications.

The organization of this paper is the following. The
action for the expectation values and some partial answers

to these questions will be found within the CTP formalism,
introduced in Sec. II with special attention paid to the time
evolution of the averages of observables and the role of the
boundary conditions in time. The simplest system where
the role of the boundary conditions in time can be traced in
forming the time arrow is that of noninteracting particles.
Section III contains the derivation of the action for the
expectation value of the free photon field. The electric
current is a composite operator and its expectation value
is controlled by a substantially more complicated action.
Section IV is devoted to these complications and the pre-
sentation of the quadratic approximation to the action for
the current. The case of interacting electrons and photons is
considered in Sec. V. The use of classical expectation
values, obtained with resolutions belonging to the quantum
domain, in particular, decoherence, radiational time arrow,
and vacuum polarization are commented on briefly in
Sec. VI. The systematic study of the dependence of the
expectation values on the space-time resolution around the
quantum-classical crossover can be achieved by means of
the extension of the renormalization group strategy for the
density matrix. Some qualitative remarks about the renor-
malized trajectory of this scheme are presented in Sec. VII.
Finally, Sec. VIII is reserved for the summary of the
results. The technical parts of the calculation are collected
in appendices. The two-point function of a Hermitian local
operator of the CTP formalism is introduced in
Appendix A and some details of the calculation of the
two-point vertex function in the noninteracting Dirac-sea
are collected in Appendix B. In Appendix C the expres-
sions needed for the connected two-point functions for the
current and the photon field are presented. The calculation
of the effective action for the expectation values of these
operators is outlined in Appendix D. The evolution equa-
tion for the functional renormalization group in the CTP
formalism is derived in Appendix E.

II. EXPECTATION VALUES IN QUANTUM FIELD
THEORY

Our goal is to establish relations among the expectation
values of a set of local observables like h��t�jOa�x�j��t�iS
given in the Schrödinger representation. The problem is
interesting when the system is in an excited state. The only
technical restriction on the nature of the excitations is that
the initial state should be the result of an adiabatic time
evolution generated from the ground state by adding the
source term

P
aja�t; x�Oa�x� to the Hamiltonian density

where the summation is over the observables considered.
Closed systems will be considered below and the issue of
relaxation and equilibrium in the presence of a reservoir
will not be addressed. The state vector of the system
j��t�iS � U�t; ti�j�iiS is given in terms of the initial
condition j�iiS imposed at time ti and the time evolution
operator U�t; ti� � exp�i�t� ti�H involving the Hamil-
tonian H. Such expectation values are usually given in
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the Heisenberg representation, h�ijA�x�j�iiH, where x �
�t; x� and A�x� � U�ti; t�A�x�U�t; ti� and their perturbation
series is obtained in terms of Green functions which are
different from the usual ones occurring in the expressions
of scattering amplitudes. Although the trajectory j��t�iS is
fixed in the space of states by the initial condition j�iiS the
superposition principle allows us to project the system at
time tf on a given final state j�fiS and to define the scalar
product h�fj��t�iS � h�fjU�tf; ti�j��t�iS interpreted as
the transition amplitude between initial and final states. Its
perturbative series contains matrix elements like
h�fjU�tf; t�A�x�U�t; ti�j�iiS which are not interpretable
in terms of measurements according to standard rules of
quantum mechanics. Such matrix elements are reduced to
an expectation value for the trivial case j�fi � j�ii � j0i
only (by setting the ground state energy to zero).

Let us return to our problem, the calculation of the
expectation values in excited states and consider the gen-
eralization of the forward scattering amplitude for several
observables,

 

h�ijT�U�tf; ti�An�xn� � � �A1�x1��j�iiH

� h�ijT�U�tf; x0
n�An�xn�U�x0

n; ti� � � �U�ti; x
0
1�A1�x1�

	U�x0
1; ti��j�iiS (2)

which differs from the Green function defined as the
expectation value of the operator T�An�xn� � � �A1�x1��H,
[1],

 

h�ijT�An�xn� � � �A1�x1��j�iiH

� h�ijU�ti; tf�T�U�tf; x
0
n�An�xn�U�x

0
n; ti� � � �U�ti; x

0
1�

	 A1�x1�U�x
0
1; ti��j�iiS: (3)

The difference occurs in the way the scattering matrix
U�tf; ti� appears in these expressions. In Eq. (2) the time
evolution is constrained in such a manner that the system
arrives at the state j�ii at time tf, in contrast to Eq. (3)
where the time evolution is open ended, without any con-
straint on the evolution after the action of the observables.
The functions given by Eqs. (2) and (3) are identical for
j�ii � j0i because the vacuum is stable during the time
evolution. But the dynamics of expectation values in an
excited state, j�ii � j0i, requires the use of the expecta-
tion value (3) obtained in the closed time path (CTP)
formalism [2–12], rather than the contribution (2) to the
scattering amplitude. The careful reader may object that it
is sufficient to use the vacuum state because all physical
states can be obtained from the vacuum by applying local
excitations, i.e. j�iiH � Ai�xi�j0iH, where Ai�x� is a local
operator in space-time. Extend the time evolution in this
case in such a manner that the system starts at time t �
t0 < ti and ends at time t � t1 > tf with the vacuum state
and write Eq. (3) as

 

h0j �T�Ai�xi�U�t0; t1��T�U�t1; x
0
n�An�xn�U�x

0
n; ti� � � �U�ti; x

0
1�

	 A1�x1�U�x0
1; ti�Ai�xi�U�ti; t0��j0iS; (4)

where �T denotes antitime ordering. The comparison of this
expression with (2) shows that the basic difference between
the CTP formalism and the usual scattering amplitudes is
the presence of the antitime ordered piece in the former
case. The proper treatment of such matrix elements re-
quires the introduction of independent time variables for
the time ordered and the antitime ordered operators.

To compare the expectation values obtained by con-
strained and open ended time evolutions we slightly gen-
eralize the CTP formalism and allow the system to be
described by the density matrices �i and �f in the initial
and the final states, respectively. Furthermore, we intro-
duce two sets of external sources, j
a �x�, coupled linearly to
a number of local observables, Oa�x�, in the Hermitian
Hamiltonian which is extended to

 H
�t� � H �
X
a

Z
d3xj
a �t; x�Oa�x�: (5)

Finally, we define the generating functional for the con-
nected Green functions

 eiW�j
�;j�� � Tr �T�e

i
R
tf
ti
dtH��t�

��fT�e
�i
R
tf
ti
dt0H��t0�

��i (6)

given in the Schrödinger representation. The sources play a
double role made explicit by the parametrization j
 �
j=2
 �j. On the one hand, the variation of j is used to
generate the desired expectation values, and on the other, �j
drives the system adiabatically from the vacuum at time
t � t0 to the desired initial state j�ii at t � ti. This allows
us to set �i � j0ih0j at t0 � �1 with the price of having
nonvanishing physical external sources, �j, for some initial
times t < ti. The quantity (6) is the transition probability
between the states specified by the density matrices �i and
�f for physical external sources. Expressions like (6) have
already been used a number of times with Oa chosen to be
the projection operator, e.g. for the time-symmetric for-
mulation of quantum mechanics [13,14] and for the study
of histories [25–27].

It is natural to introduce the parametrization

 �
 � �

�adv

2
(7)

for the field variables. The measured expectation values of
the field at a given time t involve the diagonal part of the
functional h��j�i�t�j��i with �adv � 0. The canonical
momenta, represented by the operators �
 �
�i�=��
, use a slightly extended domain, �adv � 0, of
the density matrix.

There are two time axes in the CTP formalism and each
degree of freedom exists in two copies, realized first in the
case of thermal equilibrium, �i � Z�1 exp�H=T, [41–
45], but can also be clearly seen in the path integral
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representation
 

eiW�j
�;j�� �

Z
D����D����

	 e
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��tf���i��
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��ti�� (8)

given as a functional integration over the trajectories ��,
� � 
, with the density matrix elements h��j�j��i �
����; ��� in the integrand. The duplication is made ex-
plicit by defining two kinds of averages, one for each time
axis,
 

h �T�A�; T�B�ij;
�j

�f;�i � Tr �T�Ae
i
R
tf
ti
dtH��t�

�

	 �fT�Be
�i
R
tf
ti
dt0H��t0�

��i (9)

Notice that h1; T�B�i0;
�j

�f;�i is real according to the relation

 �h �T�A�; T�B�ij;
�j

�f;�i�

 � h �T�B�; T�A�i�j;

�j
�f;�i ; (10)

showing an inherent time inversion invariance i.e. the time
inversion leaves �i, �f, and �j invariant and flips the sign of
the bookkeeping variable j only. The time dependence of
the density matrices

 �i�t� � T�e
�i
R
t

ti
dt0H��t0�

��i �T�e
i
R
t

ti
dtH�t�

�;

�f�t� � �T�ei
R
tf
t
dtH�t���fT�e

�i
R
tf
t
dt0H��t0��

(11)

allows us to write

 eiW�j
�;j�� � Tr�f�t��i�t�; �ti � t � tf�: (12)

The right-hand side of this equation is the scalar product of
the initial and final Hermitian density matrices taken at an
arbitrary time indicating that the CTP formalism is based
on the transition probabilities rather than amplitudes and is
time reversal invariant. The duplication of the time varia-
bles represents the independence of the quantum fluctua-
tions in the bras and the kets of the density matrices. We
shall argue below that these fluctuations become correlated
and the usual single time axis formalism is recovered in the
macroscopic limit when decoherence [21,24] suppresses
the off-diagonal elements of the density matrix.

It will be instructive to follow the dynamics in the
presence of two different boundary conditions in time.
The fixed boundary condition (FBC) for pure initial and
final states, defined by �i � j�iih�ij, �f � j�fih�fj de-
couples the dynamics of the two time axes. The additivity
of transition probabilities yields

 h1;1i0;
�j

��1�f ��
�2�
f ;�i
� h1;1i0;

�j

��1�f ;�i
� h1;1i0;

�j

��2�f ;�i
(13)

for Tr��1�f �
�2�
f � 0. The open boundary condition (OBC)

defined by �i � j�iih�ij and �f �
P
nj�

�n�ih��n�j � 1,

fj��n�ig being a basis for the states corresponds to uncon-
strained time evolution and couples the dynamics of the
two time axes at t � tf. Note that the time tf at which the
final condition �f � 1 is imposed can be chosen arbitrarily
for unitary time evolution as long as it is later than the time
for which the latest observable is inserted. We call a
boundary condition reflecting if the time at which it is
imposed as an initial or final condition influences the
measurable expectation values. The open boundary condi-
tion is nonreflecting because �f � 1 commutes with all
observables.

The main virtue of the Heisenberg representation and the
CTP formalism, in particular, is to render the initial con-
dition problems of quantum mechanics simple. The hyper-
bolic Schrödinger equation allows us to solve the initial
condition problem in terms of state vectors but these are in
general complicated objects. We can deal more efficiently
with numbers, for instance matrix elements, and therefore
it is advantageous to convert operator equations into
c-number equations. But a matrix element contains a bra
and a ket, corresponding to the final and initial states,
respectively, as in Eq. (2) and it is not clear how to express
the solution of the initial condition problem of the
Schrödinger equation with open ended time evolution in
terms of such matrix elements. This is the problem which is
solved in the framework of the CTP formalism by extend-
ing �i and �f to positive semidefinite Hermitian operators
beyond the domain of density matrices.

The direction of the time is determined by the phase of
an eigenstate of the Hamiltonian as a function of the time,
and the time runs in opposite directions along the two time
axes. Because of the presence of both time directions there
is no explicit time arrow in the expectation values which
contain both retarded and advanced effects. But one can
separate these effects, as far as the external sources are
concerned, in the case of open boundary condition and we
shall see below that � and �adv of Eq. (7) are the dynami-
cal variables which are built up by retarded and advanced
effects of the external sources, respectively.

An important property of the open boundary condition
with unitary time evolution is that the generating functional
is vanishing for physical external sources, W�j;�j� � 0.
As a result we have to vary nonphysical sources j to
generate the measured expectation values hOa�x�i �
h1; Oa�x�i � hOa�x�;1i. This suggests the slight general-
ization of the parametrization of the sources, �j! �j� �j,
i.e.

 j
 �
j
2
�1
 �� 
 �j; (14)

giving
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 hOa�x�i �
�W�j; �j�
�ja�x� jj�0

�
1� �

2
h1; Oa�x�i �

1� �
2
hOa�x�;1i (15)

for arbitrary choice of �. The �-independence of the
expectation values reflects a one- dimensional symmetry
of the physical sector of the CTP formalism.

The parameter � appearing here mixes the nondiagonal
quantum fluctuations into the expectation value of the
observables. We need � � 0 i.e. both kinds of fluctuations,
to derive variational equations of motion for the measured
expectation values. This condition seems natural because
both canonical variables are needed in the dynamics but the
source j is coupled only to the diagonal quantum fluctua-
tions for � � 0 which are not sufficient to reconstruct the
expectation values of the canonical momenta �. The de-
tailed argument goes as follows. The action constructed for
the field variable� is obtained in terms of connected Green
functions. The n-point functions give rise to O��n�1�
terms in the equation of motion. The simplest linearized
equation of motion arises from some connected two-point
functions. These two-point functions must include field
variables at different times to generate time evolution for
the expectation values. Let us consider the combination

 G �
1

2�t
h�ij��t; x����t; y� ���t� �t; y��j�iiH (16)

of two-point functions with small �t as a typical term
which can also be written as

 G � �
i
2
h�ij��t; x����t; y�; H�j�iiH �O��t� (17)

according to Eq. (3). The kinetic energy �2�t; x�=2 in the
Hamiltonian density yields

 G � h�ij��t; x���t; y�j�iiH �O��t�; (18)

and shows that the appearance of the canonical momentum
operator is unavoidable in the Green functions involving
fields at different times. We have the option of keeping in
the formalism the expectation values of both canonical
variables, � and �, the resulting variational equations
being the quantum analogies of the Hamilton equations.
But once we have decided to retain the coordinate averages
only we need � � 0 to couple both diagonal and off-
diagonal fluctuations to the source j. The off-diagonal
fluctuations drop out from the field average (15) but the
O�j2� terms in the generating functional W�j; �j� and the
O��2� term of the action will retain them.

A simpler but more formal reasoning starts with the
identity W
�j�; j�� � �W��j�;�j�� obtained by com-
paring W�j�; j�� with its complex conjugate in Eq. (6).
This identity reads as W
�j; �j� � �W��j; �j� for � � 0,
indicating that the real part of W�j; �j� which will be im-
portant for the equation of motion is an odd functional of j

and has, in particular, an O�j2� part. As a result the equa-
tion of motion for � contains even powers of the field
variables. In order to have a linear part in the equation of
motion we have to allow � � 0.

As a simple demonstration that the measured expecta-
tion value results from the retarded effects of the classical
external sources we consider the linear response formulae.
A physical external source, ja��x� � �j

a
��x� � �ja�x�

drives the time evolution of the expectation value of the
operator O‘�x� in the perturbation expansion of the exter-
nal source according to

 h1; O‘�x�i
0; �j
1;�i
� �i

�
�j�‘ �x�

X1
n�;n��0

��1�n�

n�!n�!

	

�X
a

Z
dx0ja�x0�

�
�j�a �x0�

�
n�

	

�X
b

Z
dx00jb�x00�

	
�

�j�b �x
00�

�
n�
eiW�j

�;j��
jj���j�� �j: (19)

The linear response formula forO‘�t� is theO� �j� part of the
right-hand side,

 i
Z
dx0

X
a

�ja�x
0��hOa�x

0�; O‘�x�i
0;0
1;�i

� h1; T�Oa�x
0�O‘�x��i

0;0
1;�i
�; (20)

which can be written as

 i
Z
d3x0

Z tf

ti
dt0
X
a

�ja�t
0; x0���t0 � t��hOa�x

0�; O‘�x�i
0;0
1;�i

� h1; T�Oa�x
0�O‘�x��i

0;0
1;�i
�

� i
Z
d3x0

Z tf

ti
dt0
X
a

�ja�t
0; x0���t� t0�

	 �hOa�x
0�; O‘�x�i

0;0
1;�i
� h1; T�Oa�x

0�O‘�x��i
0;0
1;�i
�:

(21)

If the final time boundary condition is nonreflecting and
can be imposed at any time superior to twithout modifying
the expectation values then the relation

 ��t0 � t�hOa�x0�; O‘�x�i
0;0
1;�i
� ��t0 � t�

	 h1; T�Oa�x
0�O‘�x��i

0;0
1;�i

(22)

holds. In fact, one can reduce tf down to t0 followed by the
commutation of the perturbation Oa�x0� with �f and the
placing of it at the end of the antitime ordered part of the
expression. This identity shows the cancellation of the
advanced part of the causal propagator and explains that
the usual retarded response formulae are the result of the
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interference between the dynamics evolving along the two
different time paths. Whenever a final boundary condition
is used which cannot be displaced in time because it does
not commute with all operators in question then advanced
effects are left behind. Notice that this remains valid in any
order. In fact, the possibility of reducing tf until it reaches
the time of observation t, removes any influence of the
sources on the expectation value after the time of the
measurement. The condition of the cancellation was that
the nonvanishing sources are classical, j� � �j�. The
nonclassical part of the source, j, representing a coupling
among the degrees of freedom of a closed quantum system
may induce advanced effects. But this component is sup-
pressed in the macroscopic limit by decoherence.

III. PHOTONS

The simplest context in which the dynamics of the field
expectation values can be studied is the case of free pho-
tons. The expectation values are obtained in two steps. First
the generating functional for the connected Green func-
tions of the conserved current is calculated. This produces
the expectation values in terms of the external sources
which drive the system to the desired initial condition. In
the second step a number of different effective actions and
their variational equations of motion are constructed by
performing a Legendre transformation on the external
sources.

A. Photon propagator

The generating functional for the connected Green func-
tions is constructed by coupling an external current to the
photon field and using the pair of extended Hamiltonians
H ! H
�t� � H �

R
d3xj
��t; x�A��x� in Eq. (6). It is

advantageous to carry out the calculations in the path
integral formalism where the action for the photon field
is written as

 

SM�A� �
Z
x

�
�

1

4
�@�A�;x � @�A�;x�2 �

�
2
�@�A�;x�2

�

�
1

2
A �D�1

0 � A: (23)

Here D0 is the free photon propagator D�1
0 � D�1

T �D
�1
L

and the projection operators onto the transverse and longi-
tudinal components of the photon field T�� � g�� � L��

and L�� � @�@�=� are used to construct D�1
T � ���

i	�T and D�1
L � ���� i	�L.

A few words about the notations: The field configura-
tions ��x� are usually considered as vectors, �x, and
space-time integrals with occasional summation over re-
peated indices as scalar products, e.g.

R
dx��x�
�x� �R

x �x
x � � � 
 or
R
dxA��x�j

��x� � A � j. The space-
time coordinates are written as x � �t; x�, the space-time
indices are given by Greek letters, the Latin letters denote

combined indices like a � ��; x�. Repeated indices are
summed/integrated over.

The generating functional Wphot�j�; j�� is given in the
framework of the path integral representation as

 eiW
phot�ĵ� �

Z
D�Â�e�i=2�Â�D̂�1

0 �Â�iĵ�Â; (24)

where the two-component integral variables Â � �A�; A��
and external sources ĵ � �j�; j�� are introduced to sim-
plify the expressions. The current j
 will be parametrized
as in Eq. (14). Some complications arise due to the pres-
ence of the density matrices �i and �f in the functional
integral. Anticipating the perturbation expansion we use
Gaussian density matrices which generate quadratic ex-
pressions in the action of the path integral, i.e.
ln�i�A�;ti ;A�;ti� and ln�f�A�;tf ;A�;tf � should be at most
quadratic in the fields. The inverse block propagator is

 D̂�1
0 �

D�1
0 0
0 �D�1


0

� �
� D̂�1

BC; (25)

where the second term on the right-hand side stands for the
contributions of the density matrices and is nonvanishing
for t � ti or tf only. Notice the presence of an infinitesimal
imaginary part in the inverse propagator (25). The operator
expression (6) contains a Hermitian Hamiltonian because
the (anti)time ordering implies the time boundary condi-
tions instruction. In contrast, the time boundary conditions
involve the infinitesimal imaginary parts in the inverse
propagators in the path integral representation.

Most of the work reported below is based on OBC with
the vacuum as initial state. Although one can determine
D̂�1

0 directly in the path integral formalism for this bound-
ary condition it is simpler to construct the photon propa-
gator D̂0 within the operator formalism. The result is

 D̂ 0 �
Dnear

0 � i=D0 �1
2D

far
0 � i=D0

1
2D

far
0 � i=D0 �Dnear

0 � i=D0

 !
(26)

in the base (j�, j�) where Dnear and Dfar denote the near
and far field Green functions [46], respectively, and i=D0

stands for the imaginary part of the causal (Feynman)
Green function. The retarded and advanced Green func-
tions, Dret

0 � Dnear
0 � 1

2D
far
0 and Dadv

0 � Dnear
0 � 1

2D
far
0 , will

frequently be used, as well, cf. Appendix A.
The Gaussian integral can easily be carried out in

Eq. (24) yielding

 Wphot�ĵ� � �1
2ĵ � D̂0 � ĵ (27)

and a straightforward calculation gives

 Wphot
OBC�j; �j� � �

1

2

� �j;j�

�
0 Dadv

0

Dret
0 �Dnear

0 � i=D0

� �
�

�j
j

� �
(28)

for open boundary condition. In the case of fixed boundary
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condition the two time axes decouple yielding
 

Wphot
FBC�ĵ���

1

2
j� ��Dnear

0 � i=D0� �j
�

�
1

2
j� ��Dnear

0 � i=D0� �j
�

��
1

2

� �j;j�

�
2i=D0 Dnear

0 ��i=D0

Dnear
0 ��i=D0 �Dnear

0 � 1��2

2 i=D0

 !

�
�j

j

 !
: (29)

B. Effective action

The role of the effective action is to provide the func-
tional for the variational equations satisfied by the space-
time dependent expectation values and it is introduced by
performing a functional Legendre transformation on the
generating functional of connected Green functions.
Special attention must be paid to the fact that the
Legendre pair of the sources, the expectation values, are
complex in general. Accordingly we perform the Legendre
transformation separately for the real and imaginary part of
W�ĵ� � <W�ĵ� � i=W�ĵ�. The measured expectation
value of the photon field is always real and it will be
determined by <W�ĵ�. Therefore, we start with the effec-
tive action

 �phot�A; Aadv� � <Wphot�j; �j� � �j � Aadv � j � A; (30)

with independent variables consisting of the measured
expectation value of the photon field

 A �
�<Wphot�j; �j�

�j
; (31)

and an auxiliary field variable

 Aadv �
�<Wphot�j; �j�

� �j
: (32)

The inverse Legendre transform based on the relations (30)

 j � �
��phot�A; Aadv�

�A
; �j � �

��phot�A; Aadv�

�Aadv
(33)

serves as equations of motion for the expectation values.
Since the averages A and Aadv receive contributions from
the diagonal and nondiagonal fluctuations, respectively,
these equations of motion control the time dependence
for both the coordinates and the momenta.

The generating functional (28) yields

 �phot
OBC�A; A

adv� � �Aadv �Dret-1
0 � A�

�
2
Aadv �Dret-1

0

�Dnear
0 �Dadv-1

0 � Aadv; (34)

for open boundary condition. The corresponding equations
of motion for A and Aadv are

 Aadv � Dadv
0 j; (35)

and

 A � Dret
0

�j� �Dnear
0 j; (36)

respectively. They show that nondiagonal fluctuations con-
tribute to the advanced field Aadv generated by j and the
physical expectation value A is indeed the retarded field
created by the physical external current �j. The two fields, A
and Aadv, remain decoupled in the absence of interactions.
For fixed boundary conditions, Eq. (29), we have

 �phot
FBC�A;A

adv���Aadv �Dnear-1
0 �A�

�
2
Aadv �Dnear-1

0 �Aadv:

(37)

This expression can be obtained from Eq. (34) by the
replacements Dret

0 ! Dnear
0 and Dadv

0 ! Dnear
0 which repre-

sent the loss of the interference between the two time axes.
The effective actions introduced so far provide the equa-

tions of motion for the expectation values for both field
variables of the CTP formalism. But the field Aadv is not
physical and its presence is not necessary to extract the
time dependence of the photon field A. We simplify the
Legendre transformation by keeping �j as a fixed parameter.
The resulting effective action for the photon field alone is

 �phot�A� � <Wphot�j; �j� � j � A; (38)

where the dependence of �phot�A� on �j is not shown ex-
plicitly. The effective action for OBC turns out to be

 �phot
OBC�A� � �

1

2�
�A� �jDadv

0 � �D
near-1
0 � �A�Dret

0
�j�;

(39)

generating an equation of motion ��phot�A�=�A � �j
identical to Eq. (36).

So far the value of the parameter � entering by expres-
sion (14) is arbitrary. The choice � � 0 seems to be natural
and simple and the corresponding currents �j and j generate
retarded or advanced Liènard-Wiechert potentials, respec-
tively, according to the equations of motion. But the effec-
tive action (34) contains no O�Aa2� piece when � � 0 in
agreement with the general remark made in Sec. II stating
that the nonphysical field cannot be eliminated and no
classical action and variation principle can be found for
the measured expectation value of the photon field. This is
reflected in the appearance of the coefficient 1=� in the
effective action (38) because for � � 0 the generating
functional (28) has no O�j2� term in the real part and the
Legendre transformation is not defined for linear functions.

For OBC the Legendre transform of the imaginary part
is defined as

 �phot im
OBC �A

im� � =Wphot
OBC�j� � j � A

im; (40)

where
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 Aim �
�=Wphot

OBC�j�
�j

: (41)

The corresponding equation of motion is

 j � �
��phot im

OBC �A
im�

�Aim
: (42)

The generating functional (28) yields the explicit form

 �phot im
OBC �A

im� � �1
2A

im � =D�1
0 � A

im: (43)

For FBC the functional =W�ĵ� depends on both currents
and the Legendre transformation results in

 �phot im
FBC �Aim; Aadv im� � =Wphot

FBC�j; �j� � j � Aim � �j � Aadv im;

(44)

where

 Aim �
�<Wphot

FBC�j; �j�
�j

; Aadv im �
�<Wphot

FBC�j; �j�

� �j
:

(45)

The actual form,
 

�phot im
FBC �Aim; Aadv im� � �

1� �2

4
Aadv im=D�1

0 Aadv im

� Aim=D�1
0 Aim

� �Aim=D�1
0 Aadv im; (46)

follows from the functional (29).
These effective actions will be used in Sec. VI A.

IV. CURRENT DYNAMICS IN THE
NONINTERACTING DIRAC-SEA

For a noninteracting system the determination of the
expectation value of a local observable is trivial as long
as the observable is a one-body operator, as in the case of
the photon field discussed in the previous section. The
triviality comes from the fact that the generating functional
for the connected Green function of the elementary fields is
quadratic and can exactly be calculated. Higher order
Green functions, h0jT��x1

� � ��x2n
�j0i with n � 2, factor-

ize to a sum of n disconnected products of two-point
functions, according to Wick theorem. The physical origin
of this factorization is obvious; it comes from the absence
of interactions between the particles. Each particle created
by one of the operators must be destroyed by another
operator in order to find a nonvanishing contribution to
the vacuum expectation value. In other words, the largest
cluster with nonfactorizable structure contains two opera-
tors. But we meet serious difficulties as soon as the expec-
tation value of such an operator is sought which controls
more than one particle. The nonfactorization arises from
the possibility of creating particles by one operator which
are annihilated by different other operators. One has to

perform a ‘‘bosonization’’ in a fermionic system because
only bosonic operators can have nonvanishing expectation
values. The simplest and most important bosonic operator
is the electric current j considered in this section.

Let us first introduce the generating functional, Wel�â�,
for the connected Green functions of the electric current by
means of the functional

 eiW
el�â;�̂; �̂�� �

Z
D� ̂�D� �̂ �ei �̂ ��Ĝ�1

0 �â6 �� ̂�i �̂�� ̂�i �̂ ��̂�iSeCT�â�;

(47)

where the two-component fields  ̂ � � �;  �� â �
�a�; a�� were introduced together with the inverse elec-
tron propagator

 Ĝ�1
0 �

G�1
0

0 ��0G�1y
0 �0

 !
� Ĝ�1

BC; (48)

where G�1
0 � i6@�m. We shall need later the composite

operator counterterm

 SeCT�â� �
�Z3 � 


2
â �

D�1
T 0
0 �D�1


T

� �
� â (49)

with �Z3 being UV divergent and the finite part 
 being
fixed by a renormalization condition.

In the absence of charges in the initial and final states we
identify the generating functional asWel

0 �â� � Wel�â; 0; 0�.
When the system contains n� electrons and n� positrons
we take �i � j�iih�ij or �f � j�fih�fj,

 j�i �
Yn�
j�1

�Z
y

� t;y
�j;y

�Yn�
k�1

�Z
y

�
�k;y t;y

�
j0i; (50)

with t � ti or tf, respectively. The wave functions 
� and
�
� describe the one-particle e
 states. The generating
functional for the current is then written as
 

eiW
el�â� �

Y
��
1

Yn�
j�1

�Z
x

�
�j;x
�

� ���tf;x

Z
y

�j;y

�
���ti;y

�

	
Yn�
k�1

�Z
x

�k;x

�
���tf;x

Z
y

�
�k;y
�

� ���ti;y

�

	 eiW
el�â;�̂; �̂��

j�̂� �̂��0
: (51)

We want to generate the expectation value of the current

 j�x � 1
2�

� x�
� x � ��

� x�
tr � tr

x � (52)

which changes sign under charge conjugation. To this end
we use the �-matrices

 ���x �y;z �
1
2��y;x��e��z;x��e� � �y;x��e��z;x��e���

�;

(53)

where � � 0� in the Dirac Lagrangian and the minimal
coupling. In this notation the current is ja � � � �a �  .
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The mathematical source of the complications is that

 Wel�â� � �iTr lnĜ�1�â� � SCT�â�; (54)

where Ĝ�1�â� � Ĝ�1
0 � â6 is an involved functional even

for the vacuum, i.e. in the absence of initial or final charges.
It is easy to understand the origin of this complication in
the special case of �i � �f � j0ih0j and time-independent
source â. The generating functional Wel�â� is now the
difference of the energy of the Dirac-sea in the presence
of the vector potential a� and a�. A local modification of
the vector potentials creates a nonlocal polarization of the
Dirac-sea with all filled one-electron states contributing.
Therefore, the infinitely many negative energy states filled
up in the Dirac-sea renders the functional highly nontrivial.
It is not necessary that the states be filled. For scalar
particles the structure of the generating functional remains
the same except for the change of the overall sign. The
external potential coupled to the particles creates a polar-
ization of the ground state which involves an arbitrary
number of (noninteracting) particles. The expectation
value of bilinear operators measures the polarization cre-
ated by the given boundary condition in time and its space-
time dependence satisfies highly nontrivial equations re-
flecting the multiparticle dynamics of polarization in the
ground state.

Our strategy followed in the case of the noninteracting
Dirac-sea will be similar to that of Sec. III, i.e. we calculate
first the generating functional for the connected Green
functions of the current and then proceed with the con-
struction of the effective actions. For weak fields the func-
tionals can easily be calculated in the framework of the
perturbation expansion, which is the main task of this
section. The issue of strong fields is far more difficult
and will only be commented on briefly.

A. Connected Green functions

We start with the simpler case when there are no addi-
tional charges immersed in the Dirac-sea. For weak exter-
nal sources the functional (54) can be written as a
functional Taylor series,

 Wel�â� �
X1
n�1

1

n!
Wel

0 âa1
� � � âam ; (55)

where the superindex a � �
; x;�� identifies a time axis, a
space-time location, and a vector index, and the coeffi-
cients give the connected Green functions. The expansion
of the logarithmic function in Eq. (54) results in

 Wel�â� � �iTr lnĜ�1
0 � i

X1
n�1

��1�n

n
Tr�Ĝ0 � â6 �n� SCT�â�

(56)

and

 

Wel
a1;...;an �

i��1�n

n

X
P2Sn

Tr�Ĝ0 � �s~aP�1� � Ĝ0 � �̂s~aP�2� � � �

	 Ĝ0 � �̂
s
~aP�n�
� Ĝ0 � �̂

s
~a� � �n;2��Z3 � 
�D̂T;

(57)

where

 �̂ a
x �

�ax 0
0 �ax

� �
: (58)

The symmetrization with respect to the exchange of the
external legs is achieved by the summation over the per-
mutations of the vertices in (57). The odd orders are
vanishing according to Furry’s theorem. For the sake of
simplicity we truncate the generating functional at the
quadratic order and write

 Wel�â� � �1
2â �

~̂GR � â; (59)

where the renormalized current two-point function ~̂GR �
~̂G0 � 
D̂T is given by

 

~G��0a;b � �iTr�Ĝ��0 � �a � Ĝ
��
0 � �b� � �Z3T��� i	�;

~G��0a;b � �iTr�Ĝ��0 � �a � Ĝ
��
0 � �b�;

~G��0a;b � �iTr�Ĝ��0 � �a � Ĝ
��
0 � �b� � �Z3T��� i	�:

(60)

The notation ~G � ~G�� will be used in the rest of the paper.
Well-known results (e.g. Ref. [47]) include the renormal-
ized two-point function

 

~G��
0q �

Z
x
e�iqx ~G��

x;0 � T��
�

1

15�
q4

m2 �O
�
q6

m4

��
(61)

obtained in the framework of the gradient expansion where
= ~G � 0 since the creation of a mass-shell e�e� pair is
forbidden. We shall use the same parametrization of the
propagator

 

~̂G 0 �
~Gnear

0 � i= ~G0 �1
2

~Gfar
0 � i= ~G0

1
2

~Gfar
0 � i= ~G0 � ~Gnear

0 � i= ~G0

 !
(62)

as for photons and the retarded and advanced current Green
functions will be defined by ~Gret

0 �
~Gnear

0 � 1
2

~Gfar
0 and

~Gadv
0 � ~Gnear

0 � 1
2

~Gfar
0 , respectively.

An interesting feature of Eq. (57) is the need for renor-
malization. The Green functions Wel

0 are finite for n � 3
but the two-point function diverges. In fact, this two-point
function is identical to the one-loop photon self-energy
except for the missing factor e2. The electrons of the
Dirac-sea tend to approach each other too frequently and
make the two-point function divergent when the two legs
approach each other in space-time. This is a well-known
problem in QED and the cure is the introduction of the
counterterm SCT�â�. The UV finite part 
 of the counter-
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term is fixed by a renormalization condition to be imposed.
The lesson of this divergence, a relativistic effect, is that
the dynamics of the current j cannot be defined without an
additional scale, the cutoff, even in the absence of
interactions.

The need for a renormalization condition for noninter-
acting particles demonstrates a characteristic difference
between first and second quantized systems. In quantum
mechanics observables are defined by the operators. In
quantum field theory however the observables represented
by composite operators may need counterterms and their
proper definition must include the corresponding renor-
malization condition. Symmetry principles cannot fix the
counterterm to the current as long as it is transverse and we
find a one-parameter family of current with the two-point
function

 ih0T�j�x j�x0 �0ji � 
��x;x0T
��; (63)

as far as the many-body aspects are concerned. The finite
part of the counterterm influences the product of two
current operators at zero separation and this contact term
plays an important role even at finite energies. We shall see
later that the current coupled to the photon field is defined
by 
 � 0.

The generating functional is more complicated in the
presence of additional charges in the Dirac-sea. We then
have the additional term �̂� � Ĝ�â�0 � �̂ in W�â; �̂�; �̂� which
gives for instance

 Wel�â� � We
FBC�â� � i

X
��


ln�Ĝ�â����jf;xf�;�ji;xi�� (64)

for the charged fixed boundary condition with a single
electron. The initial (final) state is characterized by the
space-time point xi (xf) with bispinor index ji (jf) and a �
�x; j� denotes the combined index. As another example, the
open boundary condition for two electrons with an, n � 1,
2 in the initial state yields

 Wel�â� � We
OBC�â� � i ln�Ĝ�â���a1a1

Ĝ�â���a2a2

� Ĝ�â���a1a2
Ĝ�â���a2a1

�: (65)

Now the generating functional contains odd orders in â.
The different structure of the sea and valence contributions,
the first and the second terms on the right-hand side of
Eqs. (64) and (65), reflects the fact that the Dirac-sea is
made up of negative energy one-particle states while the
additional charges, introduced by the creation operators,
correspond to positive energy. As a result, the valence
charges move freely while the motion of the particles
making up the Dirac-sea is restricted by the Pauli blocking.

B. Effective actions

The equation of motion for the current expectation
values is derived from the effective action

 �el�J; Jadv� � <Wel�a; �a� � �a � Jadv � a � J (66)

involving the sources

 a
 � a
1
 �

2

 �a (67)

and independent variables

 J �
�<Wel�a; �a�

�a
; Jadv �

�<Wel�a; �a�
� �a

(68)

which are conserved currents.
The effective action for the physical field A only is

defined by

 �el�J� � <Wel�a; �a� � a � J: (69)

The actual expressions for the Dirac-sea can be obtained by
the replacements D0 ! ~G, A! J, and Aadv ! Jadv in
Eqs. (34), (37), and (39).

When charges are added to the Dirac-sea the valence
propagator contributes to the â-dependence inWel�â�. This

requires ĵ � 0 and a redefinition of ~̂G in Eq. (59) to be used
in the Legendre transformation.

C. Polarized charges

Let us consider now the dynamics of localized charges
polarized from the Dirac-sea and described by the effective
action truncated at the quadratic order,

 �el�J� �
1

2�
J � ��2�el � J: (70)

The current is supposed to be slowly varying over distances
‘ < 1=m rendering the leading order gradient expansion
(61)

 ��2�el � �
T

1
15�m2 ��� i	�2 � 
��� i	�

(71)

applicable. Feynman’s 	-prescription is displayed in the
expression explicitly for the calculation of the inverse of
the kernel. This expression obtained for OBC holds for
FBC, as well, as long as the total charge is vanishing and
J� consists of closed flux-tubes. The calculation indicated
briefly in Appendix B for the choice 
 � 0, justified for
the electric current in Sec. VA, gives

 ��2�el��
x;x0 � �

15m2

8
���x� x0�2�T��; (72)

i.e. the vertex function is step function, assuming the value
0 or �15m2=8 for spacelike or timelike separations,
respectively.

Let us now assume the form

 J�x � g�0
X
j

Nj��jx� xjj� (73)

for the current whereNj denotes the number of electrons of
a localized state and

R
x ��r� � 1. Notice that the charge is

polarized out from the negative energy one-particle states
for a weak external source and there is no reason for Nj to

JANOS POLONYI PHYSICAL REVIEW D 74, 065014 (2006)

065014-10



be an integer. The average distance between two world
tubes is given by

 rjk �
Z
y;z
��jy� xjj�jy� zj��jz� xkj�: (74)

To identify the total mechanical energy we need Etot �

��el
0OBC�J�=�tf � ti� in the limit tf � ti ! 1,

 Etot �
15m2

8

�
��tf � ti�N

2
tot �

X
j;k

NjNkrjk

�
; (75)

Ntot �
P
jNj being the total charge. The effective action

for 
 � 0 is IR finite for neutral systems only. This is a
trivial result, reflecting the impossibility of polarizing out a
net charge by a neutral external source.

It is interesting to note that the action of the current
defined by 
< 0 is that of a classical electrodynamical
action with charge g � 1=

��������
�

p

and electric susceptibility
O�g2k2=m2�, cf. Sec. VI C yielding

 Etot � �
g2

8�

X
j;k

NjNk
Z
x;y
��jx� xjj�

	
1� e�

�������
15�
p

jx�yjmg

jx� yj
��jy� xkj�: (76)

The screening effect of vacuum polarization detected by
the current defined with 
< 0 removes the IR divergence
and allows a net charge.

Though it is perplexing to find interactions between
localized charges in the noninteracting Dirac-sea there is
a simple explanation for it. In fact, let us consider the
normalized two-particle state

  �x1; x2� �
1�������
2N
p � 1�x1� 2�x2� �  1�x2� 2�x1�� (77)

in nonrelativistic quantum mechanics where  1�x� and
 1�x� are two not necessarily orthogonal wave functions.
The matrix element
 

h j�j i �
1

N
�h 1j�j 1ih 2j 2i � h 2j�j 2ih 1j 1i

� 2 Reh 1j�j 2ih 2j 1i� (78)

shows that the kinetic energy receives a contribution from
the entanglement of the two-particle states in the region
where the one-particle wave functions overlap and this
additional piece in the energy might be interpreted as an
interaction potential

 U�x1; x2� � �
Reh 1j�j 2ih 2j 1i

h 1j 1ih 2j 2i � jh 1j 2ij
2 : (79)

All this is the well-known Pauli blocking: the antisymmet-
rization excludes certain kinematical regions leading
thereby to an increase of the kinetic energy. This blocking
is restricted to small separations since the one-particle
states must overlap.

But this picture is static, ignoring the dynamics. The
modification of the density distribution can be viewed as a
result of polarizations due to particle-antiparticle pairs
whose propagation establishes nonlocal exchange correla-
tion effects during some time. The near-field vertex func-
tion obtained from the O���1� kernel of the nonphysical
current with 
< 0 restricts correlations onto the light
cone. This is what happens in QED, namely, the mixing
of the states of the photon and the electron-positron pair in
a gauge and Lorentz invariant dynamics keeps the polar-
ization of the Dirac-sea on the mass shell m2 � 0. But the
UV regime of theO���2� kernel of the true electric current
is suppressed and the singularity at the light cone, i.e. at
vanishing invariant length is reduced to a finite disconti-
nuity leaving no asymptotic particlelike states contributing
to the current two-point function. It is remarkable that the
vertex function is actually a step function and it establishes
a distance-independent force between static world tubes in
a sufficiently long time.

Notice furthermore that it is not necessary to have
relativistic fermions to find such a long-range exchange
correlation. Charged relativistic bosons display a similar
dynamics, the only difference compared to the fermion
case being an overall sign in the generating functional
W�â� apart from the modification of the current operator
the external field â is coupled to. But both the bosonic and
the fermionic currents are bilinears of the elementary fields
and, therefore, the vacuum polarization should be qualita-
tively similar. It is not the filled states of the Dirac-sea
which are important but rather the propagation of states
created by the current operator from the vacuum. These
excitations are always bosonic and thus subject to an
effective bosonic description. Nonrelativistic systems,
such as noninteracting fermions at finite density display
similar effect, too.

This distance-independent force would not be observ-
able even if one had sufficient space resolution in the
experimental device. The linear potential is a special fea-
ture of the noninteracting Dirac-sea only and becomes
screened by the electromagnetic interactions. In fact, sup-
pose we had a matter and an antimatter localized state and
we started to separate the two components. Increasing the
separation beyond the Compton wavelength of the electron
costs energy comparable with those needed to put a virtual
e�e� pair on the mass shell. Furthermore, the gradient
expansion is valid for separations larger than the Compton
wavelength. Therefore the charge of the real particles
which are created by the minimal coupling vertex tends
to screen the original charges and only localized states with
noninteger charge remain strongly correlated.

D. Localized states

The preceding discussion of the dynamics of the polar-
ized current is restricted to weak external sources. The
involved, nonpolynomial character of the generating func-
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tional Wel
0 �â� makes its appearance for strong external

sources. Though the correspondence â! Ĵ is unique, its
inverse is not and the effective actions are not uniquely
defined for strong external sources. By retaining the profile
of the current only one loses important information. For
instance, a given charge density has different dynamics
depending on the nature of the states which contribute to
the charge. This is reminiscent of the small and large
polaron problem in solid state physics where the same
polarization may induce different dynamical responses
depending on the way the polarization builds up.

For weak external sources the polarized charge is made
up by small contributions received from a number of
negative energy one-particle states. The resulting charge
density can be localized but extended states contribute
only. As a result, Pauli blocking renders the dynamics of
such localized states highly correlated. For a slightly
stronger localized external field a bound states are formed
in the mass gap. This case will be considered in a qualita-
tive manner below. For a stronger localized external field
the localized states may appear in the negative energy
continuum. Such bound states appear as a violation of
the convexity of the effective action; a rearrangement of
the vacuum takes place. One member of a virtual e�e� pair
created by the external field jumps into the potential well
and the resulting energy is sufficient to put the other charge
on mass shell. As a result, a new, well-defined Legendre
transform of We

0�â� is regained. In other words, the effec-
tive action, �el�Ĵ�, is multivalued and may have several
consistent ‘‘sheets’’ for a given current.

Let us return to the case of the medium strong, localized
external field which creates localized states in the mass
gap. The external fields �̂ and �̂� can be used to place
charges into the initial or final state which can be captured
by these potential centers. These charges have weak over-
lap with the filled extended states and are supposed to obey
the ‘‘free dynamics’’ anticipated from classical mechanics.
We start with charges of the same sign with a fixed bound-
ary condition where Wel�â� � W�â�e0 � i lnG�â�, G�â�
being the valence propagator with given initial and final
points. We are interested in the possible decoupling of the
trajectories. Therefore, the initial and final location and
spin of the charges are chosen to be the same. The external
potential is chosen to be static and of the form a� � g�0u
where the temporal component u is the sum of the potential
wells which are strong enough to create a localized state in
the mass gap and spread enough such that the characteristic
size of the bound state ‘ is large compared to the Compton
wavelength of electrons, m‘ > 1, in order to avoid pair
creation. We choose tf � ti � 1=m and shall apply the
nonrelativistic approximation for the valence propagator.
What is crucial is that W�â�e0 can then be ignored in Wel�â�
beside of the valence propagator. Once the vacuum polar-
ization is suppressed, the rest is a simple problem in non-
relativistic quantum mechanics. In fact, we have at this

point

 �el
CFBC�J� � ��tf � ti��m� E0�

�
Z tf

ti
dt
Z
d3xu�x�J0�t; x� (80)

for tf � ti ! 1, where E0 denotes the ground state energy
of electrons bound to the potential wells. When separating
the wells the charge density remains localized at the wells
and the contribution of the last term on the right-hand side
breaks off into a sum of the contributions of separate wells.
The correlation energy of Eq. (79) becomes small for well-
separated states and therefore the contributions of the
potential wells to E0 decouple.

Once the separation of localized charges is established
we can consider the issue of the dynamics of a single
localized state. Let us suppose that the current J is a narrow
flux tube with flux N and its center follows the worldline
x��s� in space-time. One interprets this as the motion of a
charge Ne along the worldline x��s�. If the value of the
effective action evaluated for this current, divided by the
invariant length of the worldline x��s� is independent of
the time of evolution then this ratio is the mechanical mass.
Let us consider a worldline without acceleration. Then
Lorentz invariance allows us to set xi � xf. We use the
same external potential as in the previous case except that
it has a single potential well only and we place a single
electron in the initial state. The generating functional for
this problem is (64) whose value can be written as in
Eq. (80). The ground state energy E0 is the sum of the
expectation values of the kinetic and the potential energies.
The latter cancels against the last term on the right-hand
side of Eq. (80) because J0�t; x� is the particle density, i.e.
the magnitude square of the ground state wave function
apart from some finite time at the beginning and at the end
of the motion which give negligible contribution in the
limit ti � tf ! 1. We are finally left with �el�J� �
��tf � ti��m� Ek� and the mechanical mass, the coeffi-
cient in front of the first term on the right-hand side of
Eq. (1), can be written as

 M � m��mk ��mpol � �m�; (81)

where �mk is the expectation value of the kinetic energy in
the bound state which is approximately 1=�‘2m�. The
second term represents the effects of the polarizations of
the Dirac-sea by the external potential coming fromW�â�e0.
Its order of magnitude, m‘u, is estimated as the product of
the polarized charge square, assumed to be proportional to
u=m, the ratio of the energy scale of the potential and the
mass, the length scale of the potential well ‘, and the string
tension � � m2 introduced in Sec. IV C. Finally, �m�

stands for the radiative corrections arising from the elec-
tromagnetic interaction and is e2=‘.

The mechanical mass depends on the details of the
elementary particles localized in their world tubes. Once
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the coupling to the photon field is introduced the pointlike
charges develop their vacuum-polarization cloud, ‘ �
1=m, and the correction to the mechanical mass becomes
nonperturbative, O�m�, but uniquely defined and can be
removed by renormalization of the mass.

V. INTERACTING ELECTRONS AND PHOTONS

After the separate discussion of the dynamics of the
expectation value of the photon field and the electron
current we embark the case of the interacting system.

A. The generating functional for the connected Green
functions

The generating functional for the connected Green func-
tions of the current and the photon field is
 

eiW�â;ĵ� �
Z
D� ̂�D� �̂ �D�Â�

	ei �̂ ��Ĝ�1
0 ��̂�â6 �e

^6A��� ̂��i=2�Â�D̂�1
0 �Â�iĵ�̂�Â�iSCT ; (82)

where the minimal coupling contains the matrix

 �̂ �
1 0
0 �1

� �
: (83)

The perturbative renormalization is carried out by using the
counterterms SCT � SQED

CT � Se�CT, where SQED
CT contains the

usual counterterm needed for the renormalization of the
electron and photon Green functions in a given order of the
loop expansion. The additional term is chosen to be

 Se�CT����Z3���eâ �D̂
�1
0 � Â�

1
2��Z3�
�â �D̂

�1
0 � â:

(84)

The origin of this expression becomes clear by considering
the photon part of the action, the sum of Se�CT, the bare
action, and the photon self-energy counterterm,
 

Se�CT �
e2

2e2
B

Â � D̂�1
0 � Â �

1

2
Â � D̂�1

0 � Â�
�Z3

2
�eÂ� â�

� D̂�1
0 � �eÂ� â� � �â � D̂

�1
0 � Â

�


2
â � D̂�1

0 � â; (85)

by using

 

1

e2
B
�

1

e2 ��Z3: (86)

The second term on the right -hand side with â � 0 is the
counterterm for the photon self-energy but its dynamical
origin is in the fermionic sector of the theory. Any vector
potential which couples to the electric current as the pho-
ton field must appear in this counterterm on equal footing
with A. This shows that the choice � � 
 � 0 of the finite
part of the counterterms is needed to identify the current
coupled to the source a with the electromagnetic current.

The electron field can be integrated out easily in
Eq. (82), leaving behind

 eiW�â;ĵ� �
Z
D�Â�eiW

el�â�e�̂ Â���i=2�Â�D̂�1
0 �Â�iĵ�Â�iSCT ; (87)

where Wa�â� stands for the generator functional of the
connected Green functions of the current in the noninter-
acting Dirac-sea as given in Eqs. (54) and (64), or (65) for
different boundary conditions. The integration over the
photon field can be carried out in the loop expansion, see
Appendix C for the details. We record here the results for
the quadratic part of the generating functional in the ab-
sence of charges in the initial state,

 W�â; ĵ� � �
1

2
�â; ĵ� �

~̂G e ~̂G � �̂D̂0

eD̂0�̂ � ~̂G D̂

 !
�
â
ĵ

� �
;

(88)

where

 

~̂G �
1

~̂G
�1
0 � �̂el

(89)

is the full current two-point function containing the current
self-energy �̂el and

 D̂ �
1

D̂�1
0 � �̂phot

(90)

stands for the photon propagator involving the photon self-
energy �̂phot. The formal expressions for the self-energies
up to two loops are

 �̂ el � e2�̂D̂0�̂� e2 ~̂G
�1
0 � Ŵ

el�4�
D � ~̂G

�1
0 (91)

and

 �̂ phot � e2�̂� ~̂G0 � e2Ŵel�4�
D ��̂; (92)

where the first and second terms on the right-hand sides
represent the one- and two-loop corrections with

 Wel�4�
Dab � Wel�4�

abcd��̂iD̂0�̂�cd (93)

being the one-loop self-energy and vertex correction to the
current two-point function.

The more useful parametrizations (14) and (67) yield the
form

 <W�a; �a; j; �j� �
1

2
�a; j; �a; �j� �

�
2 �K

tr � K� K
Ktr 0

� �
�

a
j
�a
�j

0
BBB@

1
CCCA;

(94)

with

 KOBC � �
~Gret e ~Gret �Dret

0

eDret
0 �

~Gret Dret

 !
; (95)
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and

 KFBC � �
~Gnear e� ~Gnear �Dnear

0 �= ~G � =D0�

e�Dnear
0 � ~Gnear �=D0 � = ~G� D0

 !
; (96)

in the absence of charges with positive energy, for open and
fixed boundary conditions, respectively. As pointed out
after Eq. (36) the real part of the noninteracting generating
functional for the fixed boundary condition can be obtained
from that of the open boundary condition by replacing the
retarded and advanced Green functions by the near-field
version. Such a change is not sufficient for an interacting
system where a higher loop may bring in the product of two
imaginary parts into <W. However by restricting our dis-
cussion to distance scales beyond the Compton wavelength
of the electron the creations of mass-shell e�e� pairs are
suppressed and= ~G � 0, cf. Eq. (61) obtained in the frame-
work of the gradient expansion. It is pointed out in
Appendix D 2 that this is the only violation of the simple
rule mentioned above and once the pair creation is ex-
cluded one can again obtain easily the fixed boundary
condition expressions from their open boundary
counterparts.

The comparison of Eqs. (C20) and (C21) reveals that the
imaginary part of the propagator undergoes more substan-
tial changes then the real part when the boundary condition
is modified.

B. Legendre transformation

We introduce a number of effective actions. The sim-
plest effective action arises from the Legendre transforma-
tion of the variables a
 and j
,

 ��Ĵ; Â� � W�â; ĵ� � â � Ĵ� ĵ � Â; (97)

where

 Ĵ �
�W
�â

(98)

and

 Â �
�W

�ĵ
: (99)

The inverse of the block matrix needed for the change of
variables in the generating functional (88) can be read off
from the result of Eq. (D3) yielding

 ��Ĵ; Â� � �mech�Ĵ� � 1
2Â � D̂

�1
0 � Â� eÂ �̂ �Ĵ; (100)

where the first term is responsible for the dynamics of
charges moving within the interacting Dirac-sea and is
given by

 �mech�Ĵ� � 1
2Ĵ � �

~̂G
�1
0 � ~̂G

�1
0 � Ŵ

el�4�
D � ~̂G

�1
0 � � Ĵ (101)

on the two-loop level. The equations of motion are

 

���Ĵ; Â�

�Ĵ
� �â (102)

and

 

���Ĵ; Â�

�Â
� �ĵ: (103)

What is remarkable in the expression (100) is that the
electromagnetic interactions are represented without loop
corrections, i.e. by the inverse of the free photon propa-
gator and the minimal coupling without a form factor. This
is because the introduction of separate variables for the
current and the photon field formally removes the one-loop
contributions from the action. In fact, the elimination of
one of the fields by its equation of motion reintroduces the
one-loop pieces in the form of an action at a distance. In
fact, eliminating Ĵ or Â by their equations of motion
generates the action at a distance effective actions

 ��Â� � 1
2Â � D̂

�1 � Â (104)

or

 ��Ĵ� � 1
2Ĵ �

~̂G
�1
� Ĵ (105)

for ĵ � â � 0, involving the full propagators.
Although the effective action (100) shows obvious sim-

ilarities with the action of classical electrodynamics it is
not satisfactory. In fact, though either fields of the type �
or � can be used to read off measured expectation values,
we have both of them in the effective action coupled to
each other. The physical expectation values are easier to
read off when the Legendre transformation is performed on
the variables introduced by Eqs. (14) and (67). For this end
we shall use the effective action
 

��J; Jadv; A; Aadv� � <W�a; �a; j; �j� � J � a� Jadv � �a

� A � j� Aadv � �j (106)

with the new variables

 J �
�<W�â; ĵ�

�a
; Jadv �

�<W�â; ĵ�
� �a

;

A �
�<W�â; ĵ�

�j
; Aadv �

�<W�â; ĵ�

� �j
:

(107)

The inverse Legendre transformation is based on the rela-
tions
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 a � �
���J; Jadv; A; Aadv�

�J
;

�a � �
���J; Jadv; A; Aadv�

�Jadv

(108)

and

 j � �
���J; Jadv; A; Aadv�

�A
;

�j � �
���J; Jadv; A; Aadv�

�Aadv
:

(109)

The block-matrix of Eq. (95) yields, after some straightfor-
ward calculation outlined in Appendix D 3, the effective
action

 

��J; Jadv; A; Aadv� � �
1

2
�J; A; Jadv; Aadv�

�
0 Ktr-1

K�1 � �
2 �K

tr-1 � K�1�

 !

�

J

A

Jadv

Aadv

0BBBBB@

1CCCCCA; (110)

where

 K�1 � �
~Gret-1

0 � e2 ~Gret-1
0 �Wel�4�ret

D � ~Gret-1
0 �e

�e Dret-1
0

 !
(111)

for the open boundary condition. The retarded part
Wel�4�ret
D � <Wel�4���

D �<Wel�4���
D is defined in the same

manner as for the free block propagator in Eq. (26),
cf. Appendix D 2. The equations of motion (D23) give
Jadv � Aadv � 0 for vanishing off-shell sources, a � j �
0, as expected, and we find the equations of motion

 J �
1

1� e2Wel�4�r
D � ~Gret�1

0

� ~Gret
0 � �eA� �a�;

A � Dret
0 � �eJ� �j�

(112)

for the physical fields. The one-loop contributions are
again absent and the two-loop term represents the electro-
magnetic interaction in the Dirac-sea in the first line of
Eqs. (112) as in the effective action (100). According to the
second line of Eqs. (112) both the external and the dynami-
cal currents, �j and J, induce retarded potentials.

In the case of the fixed boundary condition we replace
the retarded and advanced propagators by the near-field
version in the absence of the creation of mass-shell e�e�

pairs and use

 K�1 ��
~Gnear-1

0 � e2 ~Gnear-1
0 �Wel�4�near

D � ~Gnear-1
0 �e

�e Dnear-1
0

 !
(113)

in Eq. (110). The equations of motion become

 

~Gnear
0 �a � ��1� e2Wel�4�near

D � ~Gnear-1
0 � � J� e ~Gnear

0 � A;

Dnear
0

�j � eDnear
0 J� A: (114)

The simplest effective action includes physical fields
only and it is defined as

 ��J; A� � <W�a; �a; j; �j� � J � a� A � j (115)

with the new variables

 J �
�<W�â; ĵ�

�a
; A �

�<W�â; ĵ�
�j

; (116)

and the source �a and �j treated as passive parameters in the
Legendre transformation. Notice that we have to invert the
important block in the generating functional (94) to find the
equations of motion for the physical field, the upper left
one, is the same for both boundary conditions. The depen-
dence on the boundary condition appears through the linear
pieces of the effective action only. The simple steps shown
in Appendix D 4 lead to the effective action
 

���J; A� � �mech�J� � 1
2A �D

near-1
0 � A� eA � J

� A � Jext;

�mech�Ĵ� � 1
2J � �

~Gnear-1
0 � ~Gnear-1

0 �Wel�4�near
D � ~Gnear-1

0 � � J

� J � Aext; (117)

where the external sources

 Jext � Dnear-1
0 �Wj � eWa;

Aext � � ~Gnear-1
0 � ~Gnear-1

0 �Wel�4�near
D � ~Gnear-1

0 � �Wa � eWj

(118)

are given in terms of the boundary condition dependent
terms Wa, Wj shown in Eqs. (D25) and (D26). The corre-
sponding equation of motion for the field J is
 

J � � ~G
ret

near� �a� eD
ret

near
0 �

�j�

�
e

~Gnear-1
0 � ~Gnear-1

0 �W�4�nD � ~Gnear-1
0

	 �A�D
ret

near � �j� eD
ret

near
0 �

~G
ret

near � �a��; (119)

where the upper (lower) indices correspond to the open
(fixed) boundary condition. The equation of motion for the
electromagnetic field is
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A � eDnear
0 � J�Dret

0 �
�j�

e
2
Dfar

0 �
~Gret � � �a� eDret

0 �
�j�

� �e4Dret
0 �W

el�4�ret
D �Dret

0 � e
4Dret

0 �
~Gret

0 �D
ret
0

� ~Gret
0 �D

ret
0 � �

�j (120)

for the open boundary condition and
 

A � eDnear
0 � J� �Dnear

0 � e4Dnear
0 �Wel�4�near

D �Dnear
0

� e4Dnear
0 � ~Gnear

0 �Dnear
0 � ~Gnear

0 �Dnear
0 � � �j (121)

for the closed boundary condition.
Notice the difference between Eqs. (112), (119), and

(120), the equations of motion for the physical fields
derived from the actions ��J; Jadv; A; Aadv� and ��J; A�
with open boundary conditions. We shall come back to
this apparent paradox of having different equations for the
same quantity in Sec. VII.

VI. MICROSCOPICAL CLASSICAL FIELD
THEORY

It is important to distinguish two length scales when
constructing classical field theories from quantum theory.
The shorter one, a � 2���1, is the UV cutoff of the
underlying quantum field theory. The other is the
quantum-classical crossover length scale, �cr, which is a
rough order of magnitude estimate since the scale of the
actual crossover depends on the environment. Classical
field theories derived above for the expectation values of
local operators provide information about the dynamics
with a space-time resolution limited by a only. Structures
seen at scales a < ‘ < �cr characterize the microscopic
quantum dynamics. Our classical field theory can be
viewed as a time dependent generalization of the density
functional theory [48–57] for relevant observables such as
the electromagnetic current [58,59] and the electromag-
netic field. The current and electromagnetic field profiles,
given by the equations of motion, help us to perform a
partial resummation of the perturbation expansion. The
study of the expectation values at scales ‘ � �cr should
give us some new insight into the quantum-classical tran-
sition because on the one hand, the description includes a
large number of degrees of freedom needed to cope with
classical objects and on the other hand, it is based on
expectation values which are the relevant quantities at
both sides of the transition. Notice that this is not the
case when the usual, scattering amplitude based formalism
of quantum field theory is used because it is restricted to
pure states and the decoherence cannot even be formulated
properly. Finally, we see macroscopic physics for �cr < ‘.

Three aspects of microscopic classical theory will be
mentioned in this section. One is the decoherence and
another, induced by it, the transfer of the time arrow by
the environment. The third issue is the treatment of the
polarization effects of the Dirac-sea.

A. Decoherence of nonrelativistic particles

Let us consider, as a simple but nontrivial problem, a
system of N nonrelativistic charges interacting with the
photon field. The dynamics of charges is characterized by
the action Sc�x� and the coupling to the electromagnetic
field is realized via the current

 j�x��x �
XN
n�1

�x0;t�x;x�n��t��1; _x�n��t��; (122)

where x�n��t� denotes the trajectory of the nth charge. We
consider the functional integral

 Z �
Z
D�Â�D�x̂�e�i=2�Â�D̂�1

0 �Â�iS�x̂��ieĵ�x��̂�Â; (123)

where D�x̂� denotes the integral over the trajectories of
all charges, x̂ � �x�; x�� stands for the particle
trajectory, S�x̂� � S�x�� � S
�x��, and the current ĵ�x� �
�j�x��; j�x��� couples to the photon field.

The photons can be eliminated in the usual way and the
result is the action at a distance form of the electromagnetic
interactions

 Z �
Z
D�x̂�eiSeff �x̂�; (124)

with

 Seff�x̂� � S�x̂� �Wphot��ej�x��; ej�x���; (125)

where the last term on the right-hand side is the influence
functional [15]. The form (28) for the generating functional
Wphot

OBC�ĵ� gives
 

SOBC�x̂� � S�x̂� �
e2

2
j��x� �Dret

0 �
�j��x� �

e2

2
�j��x� �Dadv

0

� j��x� �
e2

2
j��x���Dnear

0 � i=D0�j
��x� (126)

for the open boundary condition where the parametrization
(14) of the current coupled by the matrix �̂ gives j� �
j� � j� and �j� � j��1� ��=2� j��1� ��=2. The rela-
tions (30) and (40) allow us to rewrite the exponent of the
integrand for the open boundary condition in terms of the
effective actions as

 SOBC�x̂� � S�x̂� � �phot
OBC�A; A

adv� � i�phot im
OBC �A

im�

� ej��x� � �A� iAim� � e �j��x� � Aadv; (127)

where the fields A, Aadv, and Aim are the solutions of the
classical equations of motion (33) and (42). The classical
field theory based on the effective actions �phot

OBC�A; A
adv�

and =�phot
OBC�A

im� allows us to obtain the Wilsonian effec-
tive action for the charges in terms of the expectation value
of the electromagnetic field A and other nonphysical ex-
pectation values, Aadv and Aim, induced by the trajectories
x̂.

JANOS POLONYI PHYSICAL REVIEW D 74, 065014 (2006)

065014-16



The imaginary part of the influence functional (126) is
due to the continuous spectrum. It results from the con-
struction of the reduced density matrix, the measurement
of the unit operator, and represents a suppression

 s � e�e
2=2��j�x���j�x����=D0��j�x���j�x��� (128)

of the off-diagonal fluctuations in the density matrix
��x�; x��. The imaginary part of the two current point
function receives contributions from mass-shell intermedi-
ate states, real photons, in this case. Nonaccelerating
charges do not emit photons; it is easy to check that s �
1 in this case.

Let us now consider a charge moving along a the tra-
jectory x�t� � r cos!t, the corresponding current being
j�t;x � e��x� x�t���1; _x�t��. We shall calculate the imagi-
nary part of the influence functional for j
t;x � jt;x
R=2, r �
jrj � jRj � R in Fourier space where
 

j�q �
�
eB�q0; !; qr�; r

ie!
2
�B�q0 �!;!; q � r�

� B�q0 �!;!; q � r��
�

(129)

with
 

B�q0; !; a� �
Z
t
e�iq

0t�ia cos!t

� ��q0� � ia��q0 �!�

� ia��q0 �!� �O�a2�; (130)

and the suppression factor can be written as

 s � e
�2�

R
q
��q2�jjqj2sin2�q�R=2�

: (131)

The diffraction integral in the exponent shows clearly the
origin of the decoherence, the interference between the
photons emitted by j� and j�. The power series on the
right-hand side of Eq. (130) corresponds to the multipole
expansion and we keep the dipole field only.
Straightforward calculation gives in the limit tf � ti ! 1

 sk � e4e2�tf�ti�r2���!2=R���2=R3�� sin!R��2!=R2� cos!R��!3=3��

(132)
when R and r are parallel. For R � r � 0 one finds

 s? � e4e2�tf�ti�r
2��1=R3� sin!r��!=R2� cos!r��!3=3��: (133)

The suppression factor interpolates smoothly between
sk � s? � 1 for R � 0 and

 sk � s? � e��4=3�e2�tf�ti�r2!3
(134)

for R � 1.

B. Radiation time arrow

The Lagrangian of QED is formally invariant with re-
spect to the inversion of the direction of time, nevertheless
our daily experience confirms that the currents generate
retarded electromagnetic fields and the time reversal in-
variance is lost [60]. This symmetry breaking must come

either from the environment, represented here as external
sources which couple to the current and the electromag-
netic field or from the way the dynamical problem is posed,
i.e. the boundary conditions in time.

The CTP formalism is well suited for the investigation of
this problem because of the duplication of the degrees of
freedom. In the decomposition (7) of the field variable �
picks up the diagonal quantum fluctuations in the density
matrix which appear in the expectation values of the ca-
nonical coordinates and �adv collects off-diagonal fluctua-
tions, displayed by the expectation value of the canonical
momentum variables.

But there is another way of looking at this separation:
from the point of view of the time arrow. Let us return to
the remark made in Sec. II that the time arrow is different
for the coordinates �
 appearing in the time ordered and
antitime ordered part in Eq. (3). Complications arise from
the fact that matrix elements of time dependent operators
include both advanced and retarded effects. For instance,
the Green function h0jT���x���y��j0i displays both ad-
vanced and retarded parts. The discussion of the linear
response formulae in Sec. II makes it clear that any reflect-
ing final boundary condition induces advanced fields. Can
one separate the retarded and advanced effects? The an-
swer is trivial and affirmative for noninteracting particles
and the decomposition (7) gives � and �adv as the combi-
nations of the canonical coordinates which receive retarded
or advanced effects of the external sources, respectively,
for the open boundary condition, according to Eqs. (35)
and (36). The retarded nature of the physical field, �, can
be understood by noting that the infield, observed at the
initial time, is vanishing due to the choice j�ii � j0i. The
separation of the advanced and retarded effects is trivial
because it can be achieved by inspecting the initial (in) or
final (out) field in the absence of vertices.

Interactions mix advanced and retarded effects because
the nonlinear pieces of the effective action in the fields are
time reversal invariant. Consider for instance the equations
of motion arising from the effective action ��J; A� of
Eq. (117). The time reversal invariance is broken by the
environmental variables �a and �j which appear only in the
terms linear in the fields, the part of the effective action
which depends on the boundary conditions in time. The
relation between the expectation values J and A, given by
the boundary condition independent quadratic part of the
effective action, involves the time reversal invariant near-
field propagator. The local expectation values appear to be
insensitive to the symmetry breaking effects of the bound-
ary condition. Our conjecture is that closed quantum sys-
tems maintain time reversal invariance for any boundary
condition in time.

Such a claim makes the coupling to the classical envi-
ronment responsible for the choice of the time arrow. But
the environment characterized by the external sources �a
and �j obeys quantum laws, as well, suggesting that it is the
classical limit for the environment which triggers the
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breakdown of the time reversal invariance. In fact, the
decoherence which is supposed to be the hallmark of the
quantum-classical crossover suppresses advanced fields
without influencing retarded combinations, according to
Eq. (126). Notice the double role the imaginary part of the
influence functional plays in Eqs. (126) and (127). It sets
not only the direction of time of the decoherence but
determines the proportion of retarded and advanced parts
in the charge propagator, too.

The equations of motion of the effective actions
��J; Jadv; A; Aadv� support the view that the retarded and
advanced propagators appear in the equations of motion
due to decoherence. On the first sight it is rather confusing
that the quadratic part of the effective action in the fields
involves the retarded and advanced Green functions when
the open boundary condition is used, in contrast to ��J; A�.
How can different equations of motion occur at all for the
same expectation values? The only difference between the
equations of motion for J and A, arising from the effective
actions ��J; Jadv; A; Aadv� and ��J; A� is that different quan-
tities are kept fixed during the variations. In fact, let us
construct a variation of A by varying the external sources a
and j for fixed �a and �j in such a manner that J remains
unchanged. Such a variation gives rise to the equation of
motion for A, Eq. (120), of the effective action ��J; A�. In
the case of the effective action ��J; Jadv; A; Aadv� all four
sources are varied by keeping all fields but A fixed. The
lesson is that the time arrow appeared in the equations of
motion relating measured expectation values because the
variations respected the condition Jadv � Aadv � 0, the
vanishing of the off-diagonal fluctuations. This is exactly
what decoherence is for.

Can the decoherence solve the arrow of time problem?
No, it makes one step only in reducing it to the environ-
ment. When the photons are eliminated in Sec. VI A then
their boundary condition in time fixes the sign of =D0 and
consequently the arrow of time for the charges. What is
remarkable is that this transfer of symmetry breaking
becomes enhanced as we enter the macroscopic domain
by decreasing the cutoff. This suggests that a better under-
standing of the arrow of time problem can be obtained by
the application of the renormalization group method to this
problem.

C. Vacuum polarization

In classical electrodynamics the polarizability of a me-
dium is taken into account in the well-known, simple
manner supposing the higher multipole moments are neg-
ligible. It is interesting to see what kind of approximation
corresponds to this procedure when the polarizability of the
Dirac-sea is considered.

The effective action for the electromagnetic field,
 

��A� � 1
2A � �D

near-1
0 � e2 ~Gnear-1

0 � e2 ~Gnear-1
0 �Wel�4�near

D

� ~Gnear-1
0 � � A� eA � Jext �O�A3� �O�e4�; (135)

obtained by eliminating the current J by its equation of
motion and reintroducing the elementary charge e in the
minimal coupling in Eq. (117). We ignore the gauge fixing
term because current conservation decouples the gauge
sector and write ��A� � ~��F�, F�� � @�A� � @�A� due
to gauge invariance. A conserved current is defined as

 j � �
1

e
���A�
�A jA�0

�
1

e

�
@�
�~��F�
�F��

� @�
�~��F�
�F��

�
jF�0

:

(136)

The minimal coupling is constructed by the introduction of
the tensor H�� � @�j� � @�j� for the current and by
writing the O�A� part of the effective action as

 � eA � j �
e
2
F�� ���1 �H��; (137)

where the conservation of the currents was used on the
right-hand side. The field strength tensor which includes
the vacuum polarization is defined as

 G � �2
�
�~��F�
�F

�
�~��F�
�F jF�0

�
: (138)

To find the linearized equation of motion for the photon
field it is sufficient to have the accuracyO�J� andO�A2� for
the effective action,

 ��A� � �1
4F �G� eA � j�O�A

3�: (139)

To find a more detailed expression for the field strength
tensorG return to the effective action ��A� and assume that
itsO�A2� part is translational invariant. This latter property
allows us to write
 

1

2
A � T � ��2� � T � A � �

1

8
F�� �

1

�
���2�; F����

�
1

8
F�� � L

�
� �

1

�
���2�; F����

�
1

8
F�� � L

�
� �

1

�
���2�; F���� ; (140)

where

 ���; F�
�
��
x �

Z
y
����x�yF��y 
 F

��
y ��

�
x�y� (141)

the integration over the space-time coordinate y being
shown explicitly. We write ��2� � �Dnear-1

0 ��,
cf. Eq. (135), � being the photon self-energy, and find
 

G � F� 1
2��;�

�1F�� �
1
2L � ��;�

�1F��

� 1
2�L � ��;�

�1F���tr; (142)

where the superscript tr denotes the exchange of the two
space-time indices in the last term and renders G an anti-
symmetric tensor.

It is instructive to obtain the field strength tensor in
three-dimensional notations when A� � ��;�A�, E �
�@0A�r�, B � r	A, and the parametrization

JANOS POLONYI PHYSICAL REVIEW D 74, 065014 (2006)

065014-18



 ��� �
�0 �
� �

� �
(143)

yield

 G�� � F�
1

2
��1 0 ��� �0�E��	 B

��0 ���E��	 B � �E�E ��� ��;	�B���

� �

�
1

2
��2 0 @�2@0� �E� @ � v� � @0�@0u� @w�

�@�2@0� �E� @ � v� � @0�@0u� @w� @0@kuj � @0@juk � @‘@kw‘j � @‘@jw‘k

� �
(144)

with
 

u � �����0�E��	 B;

v � �����0�E��	 B;

w � � �E�E ��� ��;	�B���;
(145)

	�B�jk � 	jk‘B‘ being the spacelike part of the bare field
strength tensor F.

The motion of the charges in the Dirac-sea mixes the
electric and the magnetic fields in the vacuum polarization
if translational invariance is assumed only. The rather
involved form of the polarization shown in Eq. (144) re-
sults from the Schwinger-Dyson resummation of the one-
loop photon self-energy parametrized as (143). It is inter-
esting to note that similar resummation has already been
used in classical electrodynamics in arriving at the
Clausius-Mossotti formule [61].

The polarization simplifies considerably when rotational
invariance, �jk � ��jk, � � 0 is imposed. Expression
(144) results in

 D � E���1��0 �
1
2�nr � �1���1�@2

0 � @ � @���E

(146)

and

 H � B���1

�
��0 ��nr�B�

1
2�nr�

�1@0@	E

�
;

(147)

respectively, where D and H are the electric and the
magnetic fields contained by the field strength tensor G,
and �nr � ���0.

Further simplification is achieved by imposing Lorentz
invariance, �nr � 0, because the electric and magnetic
sectors no longer mix. The dielectric tensor 	 and magnetic
permeability tensor � defined by the relations D � 	 �E
and B � � �H, respectively, are

 	 � ��1 � 1���1�0; (148)

reproducing the well-known one-loop result [62]. Notice
that the operator ��1 on the right-hand side is the result of
gauge invariance, the relation between the gauge field and
the field strength tensor.

The nth multipole moments of the vacuum polarization
are constructed by projecting the ‘ � n angular momen-
tum components out of the current n-point Green function.
The dipole contribution corresponds to the retaining of the
O�a2� part of the generating functional W�a; j�. The order
of the retained dependence on j gives the accuracy in terms
of the powers of e, according to Eq. (C3). The effective
action formalism where the Legendre transformation per-
forms the inversion of the quadratic part, the resummation
of the Schwinger-Dyson equation, yields the relation be-
tween the applied and the polarized fields. The total field
strength (144) is based on the dipole contribution to the
polarization taken into account in the same order in e as the
photon self-energy (143). Higher multipole moments in-
troduce higher order terms in the fields in the effective
action and lead to nonlinear polarization effects. Note that
the nth order multipole contributions do not appear before
the order n of the expansion in e.

We have traced the effects of vacuum polarization in the
real part of the influence functional for the photon field
which give the quantum corrections to the classical
Maxwell equations. The imaginary part of this functional
e.g. =	 in a relativistically invariant theory plays an im-
portant role, as well, by introducing decoherence and
setting the time arrow for the electromagnetic field.

VII. QUANTUM RENORMALIZATION GROUP

The problem of the quantum-classical transition can be
studied by adjusting the resolution of the space-time aver-
ages which is usually realized within the framework of the
renormalization group method. This method was devel-
oped in its full generalities first when the Kadanoff-
Wilson blocking was applied to the description of critical
phenomena in classical statistical physics [63]. The
application of blocking in quantum field theory followed
immediately and agreement with the already known multi-
plicative renormalization group scheme was established.

However, there is an essential difference between the
successive elimination of degrees of freedom in a classical
and a quantum system which was ignored. In classical
statistical physics the form of the partition function can
be maintained during the blocking but the vacuum-to-
vacuum transition amplitude of a quantum system is
changed in a fundamental manner when particle modes
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are eliminated. In fact, the transition amplitude between
two states corresponds to a process occurring for pure
states while in quantum mechanics the elimination of a
degree of freedom generates mixed states to be described
by a density matrix. This goes beyond the usual formalism
based on ‘‘in-out’’ type vacuum-to-vacuum transition
amplitudes.

Let us follow the blocking procedure on the path integral
(8) where some high energy particle modes, p >�, are
integrated over. As long as the initial and final states are
pure the density matrices factorize in the variables �
 and
the successive integration over particle modes of the fields
�
 preserves this factorization. Notice that such a block-
ing corresponds to the elimination of the particle modes
which possess given initial and final states coded by the
density matrices. Let us suppose, for example, that the
occupation numbers for the high energy modes to be
eliminated are fixed in the initial and final states. Then
the resulting path integral displays a dynamics for the low
energy particles which depends on these occupation
numbers.

This is not what is meant by elimination of degrees of
freedom in quantum mechanics. The measurement of the
identity operator, the calculation of the trace of the density
matrix in the factor space of the degrees of freedom to be
eliminated, destroys all information about the initial and
final states. The information about the final state is de-
stroyed by the trace operation, the dependence on the
initial state disappears due to the unitarity of the time
evolution.

It is this point, the realization of such a true elimination
of degrees of freedom without retaining information about
the initial and final states, where the CTP formalism be-
comes essential. We erase the final state information for the
high energy modes to be eliminated by installing the
identity operator as the density matrix in that sector of
the Fock space. The identity operator, the functional Dirac-
delta for the given modes of �� ��� couples the varia-
bles along the two time axes and this coupling is handed
over for the low energy modes. In other words, once we
perform a true trace operation on the high energy sector of
the Fock space the remaining low energy states become
mixed. This mixing requires the use of the CTP formalism
for the rest of the blocking procedure.

The difference between the blocking in the vacuum-to-
vacuum amplitude and in the CTP path integral is that in
the former case the trace operation is performed in the zero
particle number sector of the high energy modes only. This
represents a small error when the particle modes to be
eliminated are at very high energy compared with the
observational scale and perturbation expansion applies.
But in nonasymtotically free models where the high energy
dynamics is nonperturbative or in effective theories with
not too high cutoff � the weight of the particles at the
cutoff scale is non-negligible and the difference between

these two blockings becomes more important. It is the
quantum renormalization group procedure, based on the
CTP formalism, that should be followed in these cases.

There is no difficulty in extending the functional renor-
malization group scheme [64,65] to the CTP formalism
[39,40] but the doubling of the degrees of freedom renders
the resulting renormalized trajectory formal. A more natu-
ral formalism, based on the measurable expectation values
and the degrees of freedom controlling decoherence, is
outlined in Appendix E. But instead of embarking a de-
tailed study of this evolution equation we shall be satisfied
by a few qualitative remarks about the emergence of
classical physics. The renormalized trajectory of realistic
models passes at several fixed points and may experience
different scaling laws separated by crossover regimes [66].
One of the crossovers belongs to the quantum-classical
transition. The difference between the trajectories gener-
ated by the blocking in the traditional, scattering amplitude
based formalism and the CTP path integral should be less
important at the UV side of the quantum-classical cross-
over. The decoherence which requires the density matrix is
supposed to be the hallmark of the quantum-classical
crossover. Therefore one expects that this transition and
possibly others further down towards the infrared direction
are missed completely or reproduced with substantial er-
rors by the in-out formalism which cannot handle mixed
states. Note that we need a bosonized form of the theory
where the excitations are handled by bosonic fields in order
to embark the problem of the quantum-classical crossover
because the expectation values of fermionic operators are
trivially vanishing.

The decoherence suppresses the fluctuations of the field
�adv. But it is just the first moment, the expectation value
of this kind of fields which is suppressed by construction in
deriving the variational equations of motion of the effective
action ��J; Jadv; A; Aadv�. This suggests that these equations
which already assume decoherence change less at the
quantum-classical crossover than the variational equations
of the effective action ��J; A� which do involve nonvanish-
ing advanced fields.

It is worth mentioning that the O�A2� part of the action
��J; A�, given by Eq. (117), has already been suggested
many years ago [67–69]. By analogy of the steps leading
from Eqs. (100)–(105) we find for vanishing external
sources the well-known action at a distance

 ���J� � �
1

2
J � ~Gnear-1 � J � �mech�J� �

e2

2
J �Dnear

0 � J;

(149)

with the time reversal invariant current-current interaction
term. The earlier proposals were made on the basis of
classical electrodynamics where the charges follow world-
lines and the self-interaction was excluded in order to
avoid UV divergences. In Eq. (149) self-interaction is
included. Such theories have no radiation field, accelerat-
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ing charges induce near field only. The retarded and ad-
vanced fields appear with the same weight and therefore
the action-reaction balance is obviously satisfied. The well-
established retarded radiation field can be recovered by
taking into account the reaction of all charges to the
electromagnetic field in a completely absorbing universe
[70]. As mentioned above, the boundary conditions in time
influence the linear part of the action only. As a result, the
O�A2� part is the same for open ended time evolution and
for fixed boundary condition when the photons end up at
the vacuum state in a completely absorbing universe. In
other words, the classical argument of Ref. [70] applies to
the open boundary condition imposed on the quantum
level, as well. The time arrow and the Abraham-Lorentz
force [46,71–73] are generated by the presence of other
than the accelerating charge in the system. But this argu-
ment is valid in the microscopic domain only. As soon as
the cutoff is lowered and our action is given in the classical
domain, decoherence is implied automatically and the time
arrow is generated by the retarded Liènard-Wiechert po-
tential of the action ��J; Jadv; A; Aadv� and the Abraham-
Lorentz force is generated by the accelerating charge itself.

The renormalization group approach reveals a similarity
between spontaneous symmetry breaking and the arrow of
time problem. Spontaneous symmetry breaking appears in
the renormalized trajectories as a crossover to an infrared
scaling regime which contains relevant operators of lower
symmetry. The boundary condition in time imposed on
photons is passed over the charges when photons starts to
behave classically at the quantum-classical crossover. At
the final count, the arrow of time problem appears as a
spontaneous breakdown of the time inversion symmetry.
As such, it indicates that an extreme sensitivity develops in
the system among the infrared modes to choose a time
arrow from ‘‘outside.’’ The identity of thermodynamical
arrows formed in different domains and the importance of
the cosmological master arrow can be explained by such a
mechanism.

We close this section by pointing out an unexpected
difficulty arising at the quantum-classical crossover.
When reaching the crossover by decreasing the cutoff the
advanced coordinates become suppressed. The semiclassi-
cal limit corresponds to the dominance of the path integral
by the configurations �adv � 0. But there is still another
variable, �, to integrate over. Notice that there is a can-
cellation between the actions S���� and S
���� in the
exponent on the right-hand side of Eq. (8) when �adv � 0
causes the integrand of the path integral to become flat.
This appears in the renormalization group scheme as a
strong coupling regime for the configurations �. Thus,
decoherence induces strong coupling behavior and our
approximations obtained within the framework of the
loop expansion break down. Even the degrees of freedom
may change.

This scenario is in strong contrast to the semiclassical
limit discussed usually in the framework of the path inte-

gral formalism. The limit @! 0 of the single time axis
nonrelativistic path integral

 

Z
D���e�i=@�S��� (150)

is treated by the stationary phase approximation arguing
that the integral is dominated by the paths close to the
classical trajectory. This description applies to a closed
quantum system which is not realistic in the macroscopic
limit. When a density matrix is introduced to describe the
separation of the system from its environment, the time
axis is doubled and the CTP path integral

 

Z
D����D����e�i=@�S��

����i=@�S
������i=@�Sinfl���;���

(151)

is used where Sinfl���; ��� denotes the influence func-
tional of the environment. This expression is not dominated
anymore by the classical trajectory. Instead there is an
approximate cancellation between the two time axes
when decoherence sets in, Sinfl � M2��� ����2=2 with
large M2 and the physical field, �, is integrated over with
an approximately flat integrand. The classical limit is
supposed to be recovered on the level of the equations of
motion for the expectation values of observables only. The
approximation to the transition amplitude (150) in the
semiclassical limit is based on the rigidity of the dominant
trajectory, the excitations being suppressed by 1=@. In
contrast to this simple picture the semiclassical limit is
supposed to be reached when the energy level density
becomes high. This view takes into account the environ-
ment and is supported by the strong coupling, soft saddle
point scenario of the functional integral (151) of the CTP
formalism.

VIII. SUMMARY

The dynamics of the expectation value of local operators
in QED, the electric current and the electromagnetic field,
in particular, was studied in this work. The expectation
values were given in the framework of the CTP formalism
covering either fixed initial and final states or open, uncon-
strained time evolution.

It was shown that the equations of motion for the ex-
pectation values of local operators can be obtained as
variational equations of a suitably defined effective action
mixing the diagonal and off-diagonal quantum fluctuations
in field diagonal basis. The effective action plays a double
role. It is not only a classical action for a classical field
theory for the expectation values of local operators but it
appears also as a Wilsonian effective action for degrees of
freedom coupled to the system by our observables.

The effective actions for free photons and electrons are
calculated first. While the former is a trivial exercise the
latter proves to be a highly involved problem due to the
multiparticle aspects of the Dirac-sea. The dynamics of

QUANTUM-CLASSICAL CROSSOVER IN ELECTRODYNAMICS PHYSICAL REVIEW D 74, 065014 (2006)

065014-21



localized charged states depends on the states which con-
tribute to the current expectation value in a manner remi-
niscent of small and large polarons of solid state physics.
On the one hand, negative energy single-particle states
contributing to the polarization generated by weak external
field overlap strongly. As a result of the dynamics of two-
particle states generated by the current from the vacuum,
Pauli blocking generates a long-range correlation which
produces separation-independent forces preventing the
separation of localized charges by a weak external electro-
magnetic field in the noninteracting Dirac-sea. On the other
hand, the charges arising from localized states within the
mass gap decouple from the filled up negative energy states
and from each other. For such charges the standard rela-
tivistic action for localized particles was recovered. The
actual value of the mass parameter depends on the details
of the bound state and it gives rise a renormalization
condition on the classical field theory level.

The effective action for the interacting electron-photon
system was constructed up to quadratic parts in the fields
on the two-loop order. The elimination of either the current
or the electromagnetic field produces the one-loop action at
a distance theory. The quadratic part of the one-loop ef-
fective action for the current and the electromagnetic field
calculated in the leading order of the gradient expansion
agrees with the action of classical electrodynamics.
Quantum corrections to the action come from three direc-
tions. Vacuum polarizations due to electron-photon inter-
actions generate form factors and new, higher order
contributions in the fields which can be treated perturba-
tively having e2 as small parameter. Other e-independent
quantum corrections appear due to the indistinguishability
of electrons in the noninteracting Dirac-sea. The small
parameter to organize an expansion in the exchange effects
is the absolute magnitude of the ratio of the electron
Compton wavelength square and the invariant length
square of the separation in space-time. Finally, the third
class of contributions corresponds to the boundary condi-
tions in time which are built in at a microscopic level.

The Dirac-sea is the natural polarizable medium of QED
and its effects can be taken into account in the same
manner as in classical electrodynamics, by the introduction
of the deplacement fields and dispersive electric perme-
ability, when the action of the classical field theory is
truncated in the quadratic approximation.

Though the effective actions mentioned in this work
govern expectation values of a single measurement they
only give some qualitative information as far as multiple
nondemolishing measurements are concerned. The corre-
lation function of two successive nondemolishing mea-
surements of the current is the inverse of the O�J2�
kernel of the effective action. In general, the multiple
current measurement results are weakly correlated by
vacuum-polarization effects when they are carried out in
space-time locations separated by an invariant length

whose absolute magnitude exceeds the Compton
wavelength.

The CTP formalism is particularly well suited to trace
the way the quantum boundary conditions in time generate
the time arrow in classical physics. A conjecture was put
forward, namely, that closed quantum systems maintain
time reversal invariance for any boundary conditions in
time. When the system becomes open by coupling it to
external sources the response is given in terms of retarded
Green functions and a time arrow is generated for uncon-
strained, open ended time evolution. It was found that
advanced effects mix in at some order only if the system
is not allowed to follow an open ended time evolution and
is projected on some states at the final time. Advanced
effects represent an influence of the future on the present
and are possible in quantum mechanics due to the super-
position principle which allows us to specify both initial
and final states. The symmetrical treatment of two time
axes with opposite sense of time in the CTP highlights the
fact that such effects are as natural as the influence of the
initial condition on the course of the motion. Similar
phenomenon exists in classical physics, as well. By spec-
ifying the initial and final coordinates of a classical system
the change of the final coordinate modifies the whole time
evolution. But this is a triviality because the state of the
system became uniquely defined at the final point only, the
equations of motion being of second order. Notice that the
influence of the boundary conditions in time does not
decrease when the distance in time between an observation
and the boundary conditions is increased, in other words
there is no clusterization in time due to the unitarity of the
time evolution.

The CTP formalism duplicates each degree of freedom,
�! �
, for the treatment of the density matrix
����; ��� and the two copies are subject to opposite
time arrow. The sum �� ��� (difference �� ���)
remains invariant (changes sign) under the inversion of
the time and follows retarded (advanced) dynamics. The
observed averages are given by a certain linear combina-
tion of �� and �� and classical field theories constructed
for the measured fields only cannot identify the sense of
time. As a result, the dynamics of such theories is time
reversal invariant by mixing retarded and advanced effects
with equal weight. The retarded and advanced effects can
be separated by retaining both �� and �� in the classical
dynamics. The resulting dynamics reflects decoherence on
the average because h�j�� ���j�i � 0. The classical
field theory constructed for both �� and �� predicts in-
deed retarded dynamics for the measured combination.
Decoherence, the suppression of �� ���, generates a
macroscopical time arrow by suppressing degrees of free-
dom subject to advanced dynamics.

The effective action formalism offers classical dynamics
both for the microscopic and macroscopic regimes because
the space-time resolution of the expectation values is lim-
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ited by the UV cutoff �. For high enough � we see the
microscopic quantum structure of local operators and the
effective action is an extension of the density functional
theory. As the cutoff is lowered one recovers a hydrody-
namics description, classical field theory for the current,
and macroscopic physics. The issue of quantum-classical
crossover can be addressed in this generalization of the
renormalization group scheme for the density matrix. The
decoherence is especially clear in the CTP formalism
where it appears as a simple one-loop effect. It is conjec-
tured that the quantum-classical crossover which is char-
acterized by decoherence is actually a strong coupling
phenomenon for the physical fields.

The qualitative similarity between suppression of ad-
vanced combination of the degrees of freedom and deco-
herence suggests that the equations of motion of classical
field theories which trace both degrees of freedom of the
CTP formalism changes less at the quantum-classical
crossover than those of the classical theories containing
the measurable fields only. Thus the equations of motion
for the measurable field interpolate between the time sym-
metrical form of the classical theory for the physical fields
only and the retarded equations of the classical theory for
all fields as � is decreased and cuts through the quantum-
classical crossover. This reasoning shows the peculiarity of
the Abraham-Lorentz force of radiation damping. This
force originates from the consistent motion of all charges,
interacting by the near-field Liènard-Wiechert potentials
when the space-time resolution of the expectation values is
microscopic. But once the space-time resolution is chosen
to be macroscopic the Abraham-Lorentz force arises from
the accelerating ‘‘blocked’’ charge alone. Such a view of
radiation damping applies to dissipative forces in general
and explains the need for auxiliary variables when such
effects are incorporated into canonical dynamics. Another
remarkable fact is that the quadratic part of the action for
the physical fields is independent of the boundary condi-
tions in time. Consider two universes corresponding to the
same initial conditions but one is allowed to have an open,
unconstrained time evolution while the state of the other is
projected on the vacuum at a final time. The latter repre-
sents a completely absorbing universe and its linearized
equations of motion are identical with that of the universe
with open ended time evolution.

The application of quantum field theory to establish the
dynamics of the expectation values offers a comprehensive
framework for measurement theory. The basic difficulties
of the measurement theory is to identify well-established
and understood quantum effects in the interaction of a
small and a large system. The difficulty comes from the
presence of a dimensionless number, n=N, the ratio of the
number of degrees of freedom in the two systems taking
extremely small values and producing unexpected effects
in a manner analogous to statistical physics. The
n=N-dependence of the expectation values can be traced

by the study of the cutoff-dependence because the small
system can be imagined as residing in the elementary
volume element of the underlying field theory model.
The cutoff-dependence can systematically be obtained by
eliminating the degrees of freedom, by the application of
the renormalization group strategy based on a suitable
chosen blocking procedure. The quantum-classical cross-
over shows some formal similarity with spontaneous sym-
metry breaking, both representing new, less symmetrical
scaling laws in the infrared scaling regime. The radiational
time arrow is passed between subsystems by this mecha-
nism. In the case of QED the time reversal invariance for
the charges is broken by the boundary conditions in time
imposed for photons at the quantum-classical crossover.
This mechanism is realized by the imaginary part of the
photon propagator which is nonvanishing for continuous
spectrum, i.e. the infinite time limit only. Another, conjec-
tured feature of the quantum-classical crossover, the
strongly coupled dynamics, might be part of the problem
which prevents us from having a better insight into the
quantum-classical transition.
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APPENDIX A: THE TWO-POINT FUNCTION FOR
HERMITIAN SCALAR FIELD

In this appendix the generating functional is constructed
for a Hermitian scalar subject to boundary conditions �i �
j0ih0j and �f � 1. We start by collecting some formulae
for the propagators of any Hermitian, spinless, local op-
erator �. The retarded, advanced near and far-field Green
functions are introduced in the next step, followed by a
brief recall of the spectral representation. Finally, the
propagator of a free, neutral scalar particle is discussed
and the massless results are given in closed form.

1. Propagator as a block matrix

The connected Green functions are obtained by means
of the generating functional

 eiW�ĵ� � Tr �T�e
i
R
tf
ti
dt0j��t0����t0���T�e

i
R
tf
ti
dt0j��t0����t0��j0ih0j

(A1)

and the propagator is defined as a 2	 2 block matrix

 ���0
xy � �

�2W�ĵ�

�j�x �j�
0

y jĵ�0

: (A2)

When both legs of the propagator are on the positive-sense
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time axis one finds the usual causal propagator

 i���xy �
X
n

hnjT��x�y�j0ih0jjni � h0jT��x�yj0i: (A3)

The propagator along the negative-sense time axis is
 

i���xy �
X
n

hnjj0ih0j �T��x�y�jni � h0jT��y�x�j0i



� �i���yx �
: (A4)

Finally, the mixed propagator is given by

 i���xy �
X
n

h0j�yjnihnj�xj0i: (A5)

The choice �f � 1 allows us to decrease tf until it reaches
max�x0; y0� and places both field operators into the same
expectation value resulting in

 i���xy � h0j�y�xj0i: (A6)

Note that the identity T��x�y� � �T��x�y� � �x�y �

�y�x leads to the relation

 ��� ���� � ��� ����: (A7)

2. Retarded and advanced propagators

Introducing the notation � � ��� for the causal propa-
gator

 i�x;x0 � ��t� t0�h0j�x�x0 j0i ���t0 � t�h0j�x0�xj0i;

(A8)

its real and imaginary parts are
 

<�x;x0 � �
1
2��t� t

0�ih0j��x;�x0 �j0i �
1
2��t

0 � t�

	 ih0j��x0 ; �x�j0i

� �1
2	�t� t

0�ih0j��x;�x0 �j0i (A9)

with 	�t� � sign�t� and

 =�x;x0 � �
1
2��t� t

0�h0jf�x;�x0 gj0i �
1
2��t

0 � t�

	 h0jf�x0 ; �xgj0i

� �1
2h0jf�x;�x0 gj0i; (A10)

respectively. The retarded and advanced propagators are
defined as usual,

 i�
r
a

xx0 � 
��
�t� t0��h0j��x;�x0 �j0i: (A11)

It is easy to find the actual expressions in terms of �̂ by
noting

 

i�r � ��t� t0�h0j�x�x0 j0i ���t� t0�h0j�x0�xj0i

� i�xx0 ���t0 � t�h0j�x0�xj0i

���t� t0�h0j�x0�xj0i

� i�xx0 � i���xx0

� i�
xx0 � i�
��
xx0 ; (A12)

where the relation i��� � �i����
 and Eq. (A7) were
used in obtaining the last equation. The near and far-field
propagators, �n � <� and �f � 2<���, satisfy the
equation

 �r � �n � 1
2�

f: (A13)

Similar reasoning yields the equation

 �a � �n � 1
2�

f (A14)

for the advanced propagator. The complete propagator can
be parametrized by means of three real functions, for
instance

 �̂ �
�n � i=� �1

2�
f � i=�

1
2�

f � i=� ��n � i=�

 !
: (A15)

3. Spectral representation

A particularly useful parametrization of the propagator
is provided by the spectral representation. By following the
standard procedure we introduce the eigenvectors of the
energy-momenta, Pajni � panjn, to induce the space-time
dependence �x � eiPx�0e�iPx and write

 ih0j�x�yj0i �
X
n

ih0j�xjnihnj�x0 j0i

�
X
n

ijh0j�0jnij2e�ipn�x�x
0�

� i
Z
p
e�ip�x�y���p0���p2�; (A16)

where

 ��p0���p2� �
1

2�

X
n

�2��4��pn � p�jh0j�0jnij2; (A17)

is the spectral function. One can recast the last line of
Eq. (A16) in the form reminiscent of free propagators,
 

ih0j�x�yj0i � i
Z
p

Z 1
0
d�2e�ip�x�x

0���p0����2�

	 2���p2 ��2�

� i
Z

~k

Z 1
0
d�2e�i!k��

2��t�t0��ik�x�x0����2�;

(A18)

where !k��2� �
�����������������
�2 � k2

p
and
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Z
~k
�
Z dk

�2��32!�2;k
: (A19)

The propagator � is obtained by means of the Fourier
representation of the Heaviside function,
 

�xx0 � �
Z 1

0
d�2���2�

Z
~k;!

�
e�i�!k��

2��!��t�t0��ik�x�x0�

!� i	

�
ei�!k��

2��!��t�t0��ik�x�x0�

!� i	

�
(A20)

and performing the change of variable !! �! in the
second integral
 

�xx0 � �
Z 1

0
d�2���2�

Z
~k;!

�
e�i�!k��

2��!��t�t0��ik�x�x0�

!� i	

�
ei�!k��

2��!��t�t0��ik�x�x0�

�!� i	

�

�
Z 1

0
d�2���2��0xx0 ��2�; (A21)

where

 �0xx0 ��
2� � �

Z
k

e�ik�x�x
0�

k2 ��2 � i	
: (A22)

The steps above repeated for the block propagator yield

 �̂ �
Z 1

0
d�2���2��̂0��

2�: (A23)

4. Free neutral scalar particle

The path integral representation of the noninteracting
generating functional is
 

eiW0�ĵ� � Tr �T�e
i
R
tf
ti
dt0�H�t0��

R
x
j�
t0 ;x
��
t0 ;x
�
�

	 T�e
�i
R
tf
ti
dt0�H�t0��

R
x
j�
t0 ;x
��
t0 ;x
�
�j0ih0j

�
Z
D��̂�e�i=2��̂��̂�1

0 ��̂�iĵ��̂; (A24)

where �̂0 � �̂0�m2�. The path integral can be carried out
with the result

 W0�ĵ� � �
1
2ĵ � �̂0 � ĵ: (A25)

The detailed form of the propagators can be obtained by
means of the Fourier integral

 �x �
Z

~k
�e�i!kt�ikxak � ei!kt�ikxa

y
k �; (A26)

where!k � !k�m2�. The nonvanishing canonical commu-
tation relation is �ak; a

y
k0
� � �2��32!k�k;k0 . The repetition

of the steps (A20) and (A21) leads to the causal propagator
(A22).

5. Real space expressions for m � 0

First we calculate the expectation value

 h0j�x�x0 j0i �
Z

~k
e�ik�x�x

0�

�
1

8�2

Z 1
0
dkk

Z 1

�1
d cos�e�ikt�ikr cos�:

(A27)

The contributions to the k-integration are negligible at the
upper limit when working in a cutoff theory which can be
incorporated by calculating the integral for t! t� i	
yielding

 h0j�x�x0 j0i � �
1

4�2

1

�x� x0�2 � i	�x� x00�	
(A28)

and

 D0 xx0 �
1

4�
���x� x0�2� �

i

4�2 P
1

�x� x0�2
; (A29)

D0 � �0�0� being the free massless propagator. The re-
tarded and advanced propagators are

 D
r
a

0 xx0 �
1

2�
��
�x0 � x00 �����x� x0�2�: (A30)

APPENDIX B: TWO-POINT VERTEX FUNCTION
FOR NONINTERACTING DIRAC-SEA

In this appendix we present the calculation of the kernel
of the quadratic effective action for the current with 
 � 0
for the noninteracting Dirac-sea.

The Fourier representation of the quadratic form (71)

 ��2�el
�t1;x1�;�t2;x2�

� �
15�m2

�2��4
���t1 � t2� ���t2 � t1��

	
Z
k
e�ik�x1�x2�

Z
k0

eik0�t1�t2�

�k2
0 � k

2 � i	�2
(B1)

gives after straightforward integration over the frequency
and the polar angles
 

	�t���2�el�t; r� �
15m2

8r
�itf1�t� r� � itf1�t� r�

� f2�t� r� � f2�t� r�� (B2)

with t � t1 � t2, r � jx1 � x2j and

 fn�t� �
1

2�

Z
k

e�ikt

kn
: (B3)

The relation @nt fn�t� � ��i�n��t� yields f1�t� �
c1 � i��t� and f2�t� � �t��t� � tc2 � c3, ck being inte-
gration constants to be determined. The vertex function
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 ��2�el�t; r� �
	�t�15m2

8
�2c2 ���t� r� ���t� r��

(B4)

obtained by replacing the solution for f1�t� and f2�t� into
Eq. (B2) should be symmetric in t therefore c � 1=2 and
Eq. (72) follows.

APPENDIX C: LOOP EXPANSION FOR W�â; ĵ�

In this appendix some details of the calculation of the
generating functional for connected Green functions of the
current and the photon field in QED are presented.

1. Setting up the loop expansion

We start by Eq. (87) for the generating functional written
after the photon field is integrated out,

 eiW�â;ĵ� � eiW
el�â�ie�̂��=�ĵ���iSCT��ie��=�ĵ��e��i=2�ĵ�D̂0�ĵ: (C1)

The identity

 

�
�f

eF�f�1 � eF�f�
�
�
�f
�
�F�f�
�f

�
1 (C2)

yields
 

eiW�â;ĵ� � e��i=2�ĵ�D̂0�ĵ

	 eiW
el�â�ie�̂��=�ĵ��e�̂D̂0�ĵ��iSCT��ie��=�ĵ��eD̂0�ĵ��1

� e��i=2�ĵ�D̂0�ĵ
X1
m�0

im

m!

�X1
n�0

in

n!

�
e
�

�ĵ
�̂ �

�0

�â0

�
n

	Wel�â� â0�
�
m
1; (C3)

where

 â 0 � e�̂D̂0 � ĵ (C4)

and �0=�â0 acts only on the first factor of Wel. For sim-
plicity the counterterms are suppressed. The ĵ-dependence
comes from â0 therefore we have
 

eiW�â;ĵ� � e��i=2�ĵ�D̂0�ĵ
X1
m�0

im

m!

�X
n

1

n!

�
�
�â0
� ie2�̂D̂0�̂ �

�0

�â0

�
n

	We0 �â� â0�
�
m
1: (C5)

2. The two-loop order quadratic generating functional

We shall calculate W�â; ĵ� on the two-loop order up to
quadratic terms in the external sources. To this end we need
 

W � Wel�â� â0� �
�
�â0
� ie2�̂D̂0�̂ �

�0

�â0
Wel�â� â0�

�
1

2

�
�
�â0
� ie2�̂D̂0�̂ �

�0

�â0

�
2
Wel�â� â0� (C6)

and its square in Eq. (C5) up to two-loop terms. We start
with the expansion in â0,
 

Wel�â� â0� � Wel�â� �Wel�1�
a �â�â0a �

1

2
Wel�2�
ab �â�â

0
aâ
0
b

�
1

3!
Wel�3�
abc �â�â

0
aâ0bâ

0
c

�
1

4!
Wel�4�
abcd�â�â

0
aâ
0
bâ
0
câ
0
d (C7)

by retaining the O�â4� pieces only. Two functional deriva-
tions give
 

�
�â0a

Wel�â� â0� � Wel�1�
a �â� �Wel�2�

ab �â�â
0
b

�
1

2
Wel�3�
abc �â�â

0
bâ
0
c

�
1

3!
Wel�4�
abcd�â�â

0
bâ
0
câ
0
d;

�2

�â0a�â0b
Wel�â� â0� � Wel�2�

ab �â� �W
el�3�
abc �â�â

0
c

�
1

2
Wel�4�
abcd�â�â

0
câ0d; (C8)

where the coefficients are

 Wel�1��â� � ĵ�â� � Wel�2�â;

Wel�2�
ab �â� � Wel�2�

ab �
1
2W

el�4�
abcdâcâd;

Wel�3�
abc �â� � Wel�4�

abcdâd;

Wel�4�
abcd�â� � Wel�4�

abcd �
1
2W

el�6�
abcdefâeâf

(C9)

in the given order. The photon exchange appears in the
combinations

 Wel�2�
D �â� � Wel�2�

ab �â���̂iD̂0�̂�ab;

Wel�3�
D �â�a � Wel�3�

abc �â���̂iD̂0�̂�bc;

Wel�4�
D �â�ab � Wel�4�

abcd�â���̂iD̂0�̂�cd:

(C10)

The expressions
 

�
�â0
� i�̂D̂0�̂ �

�0

�â0
Wel�â� â0�

� Wel�2�
D �â� �Wel�3�

D � â0 �
1

2
â0 �Wel�4�

D �â� � â0

�

�
Wel�1�
a �â� �Wel�2�

ab �â�â
0
b �

1

2
Wel�3�
abc �â�â

0
bâ
0
c

�
1

e3!
W�4�abcd�â�â

0
bâ
0
câ0d

�
��̂iD̂0�̂�ae

�
�â0e

;

�
�
�â
� �̂i2D̂0�̂ �

�0

�â0

�
2
Wel�â� â0�

� �Wel�3�
Da �â� �W

el�4�
Dab �â�â

0
b���̂iD̂0�̂�ae

�
�â0e

(C11)
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give

 W � Wel�â� �Wel�1��â� � â0 �
1

2
â0 �Wel�2�

ab �â� � â
0

�
1

3!
Wel�3�
abc �â�â

0
aâ0bâ

0
c �

1

4!
Wel�4�
abcd�â�â

0
aâ0bâ

0
câ0d

� e2Wel�2�
D �â� � e2Wel�3�

D � â0 �
e2

2
â0 �Wel�4�

D �â� � â0

(C12)

in the given truncation. Its square
 

W2 �

�
Wel�â� �W�1�a �â�â0a �

1

2
W�2�ab �â�â

0
aâ0b

�
2

� e2�â� â0� �W�2��â� � �̂iD̂0�̂ �W
�2��â� � �â� â0�

(C13)

is obtained by taking into account unitarity, Wel�0� � 0.
We have now everything needed to reexponentiate the
necessary terms in Eq. (C5),
 

1� iW �
1

2
W2 � expi

�
Wel�â� �Wel�1��â� � â0

�
1

2
â �Wel�2��â� � â0 � e2Wel�2�

D �â�

� e2Wel�3�
D � â0 �

e2

2
â0 �Wel�4�

D �â� � â0

�
e2

2
�â� â0� �Wel�2��â�

� �̂D̂0�̂ �Wel�2��â� � �â� â0��
�

(C14)

yielding
 

W�â; ĵ� � �
1

2
ĵ � D̂0 � ĵ�

1

2
�â� â0� � ~̂G0 � �â� â0�

�
e2

2
Wel�4�
abcdâcâd��̂iD̂0�̂�ab

� e2Wel�4�
abcdâ

0
aâd��̂iD̂0�̂�bc

�
e2

2
Wel�4�
abcd��̂iD̂0�̂�cdâ

0
aâ
0
b

�
e2

2
�â� â0�a ~̂G0ab��̂D̂0�̂�be ~̂G0ef�â� â

0�f:

(C15)

The substitution of â0 given by Eq. (C4) results in

 

W�â; ĵ� � 1
2ĵ � ��D̂0 � e2D̂0�̂ � � ~̂G0 � e2W�4�D � � �̂D̂0

� e4D̂0�̂ � ~̂G0 � �̂D̂0�̂ � ~̂G0 � �̂D̂0� � ĵ

� 1
2â��

~̂G0 � e2W�4�D � e
2 ~̂G0 � �̂D̂0�̂ � ~̂G0�â

� eĵ��D̂0�̂ � � ~̂G0 � e2W�4�D �

� e2D̂0�̂ � ~̂G0 � �̂D̂0�̂ � ~̂G0�â (C16)

leading to expressions (88)–(92) for the generating func-
tional. The parametrization (14) and (67) give

 <W�a; �a; j; �j� �
1

2
�a; j; �a; �j� �

�
2 �K � K

tr� K
Ktr 0

� �
�

a
j
�a
�j

0
BBB@

1
CCCA

(C17)

with

 KOBC � �
~Gret e ~GretDret

0

eDret
0

~Gret Dret

 !
(C18)

for OBC shown in a detailed form in Eq. (95). For FBC the
sources belonging to different time axes decouple giving
Eq. (C17) with

 KFBC

��
~Gnear e� ~GnearDnear

0 �= ~G=D0�

e�Dnear
0

~Gnear�=D0= ~G� D0

 !
:

(C19)

For the sake of completeness we record the imaginary
part,

 =WOBC�a; j� � �
1

2
�a; j� �

= ~G e�= ~GDadv
0 � ~Gret=D0�

e�Dret
0 =

~G�=D0
~Ga� =D

 !
�
a
j

� �
; (C20)

and
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 =WFBC�a; �a;j; �j���
1

2
�a; �a;j; �j� �

= ~G
1��2

2 �
� 2

 !
e�= ~GDnear

0 � ~Gnear=D0�
1��2

2 �
� 2

 !

e�Dnear
0 = ~G�=D0

~Gnear�
1��2

2 �
� 2

 !
=D̂

1��2

2 �
� 2

 !
0BBBB@

1CCCCA �
a
�a
j
�j

0BBB@
1CCCA:
(C21)

APPENDIX D: LEGENDRE TRANSFORMATION

The calculation of the quadratic effective action is
sketched in this appendix. There is a useful relation be-
tween the second derivatives of a function and its Legendre
transform. Let us denote all sources and fields in the
problem by j and �. Then the effective action is defined
by ���� � W�j� � j �� with � � �W�j�=�j. One can
easily prove the identity

 

�2W�j�
�j�j

�
�2����
����

� �1 (D1)

which renders the calculation of the Legendre transform of
a quadratic expression to an inversion problem.

We start with a few useful relations for the inversion of
block matrices to be used later and rules for obtaining the
retarded and advanced components from a product of
propagators. This is followed by the calculation of the
effective action for four fields with open and fixed bound-
ary conditions.

1. Inversion of block propagators

We shall meet two kinds of inversion during the
Legendre transformation of different functionals. One of
them is the inversion of a 2	 2 block propagator

 K � �
~G eS1

eS2 D

 !
: (D2)

The inverse

 

� ~G �eS1

�eS2 �D

 !
�1��

~Gint-1 �e ~G�1S1D
int-1

�eDint-1S2
~G�1 Dint-1

� �
;

(D3)

where

 

~G int � ~G� e2S1D�1S2 (D4)

and

 Dint � D� e2S2
~G�1S1 (D5)

is obtained by solving the system of linear equations

 

a
b

� �
� K

x
y

� �
(D6)

by elimination.
Anther inversion problem one encounters involves the

block matrix

 

�
2 �K � K

tr� K
Ktr 0

� �
: (D7)

The same strategy as in the previous case i.e. the solution
of the corresponding set of linear equations gives

 

�
2 �K � K

tr� K

Ktr 0

 !
�1 �

0 Ktr-1

K�1 � �
2 �K

tr-1 � K�1�

 !
:

(D8)

2. Light cone as a null space

The real parts of massless particle propagators are non-
vanishing on the light cone only. This property simplifies
enormously the expressions of the perturbation expansion
frequently involving a chain of products of massless propa-
gators � � D̂1�̂ � D̂2�̂ � � � D̂n and its retarded and ad-
vanced parts.

We start with the demonstration of the useful relation

 Dfar �Dnear-1 � 0 (D9)

valid for massless propagators. The straightforward proof
of Eq. (D9) is by inserting the propagator

 D
ret
adv

xx0 � �
Z
k

e�ik�x�x
0�

�k0 
 i	�2 � k2 F�k
2�; (D10)

with F�0� � 1 resulting in

 �Dfar �Dnear-1�xx0 � �i	
Z
k
Pe�ik�x�x

0� 	�k
0�

k2 (D11)

which is indeed vanishing for 	! 0.
To understand better the regularization effects of 	 we

note that on the one hand D0 � �Dret �Dadv�=2 satisfies
the inhomogeneous equation of motion

 

1

F����
�� �D0 � 1: (D12)

Thus,Gnear ! 1 andGnear-1 ! 0 on the light cone for 	!
0. On the other hand,Dfar is nonvanishing on the light cone
only. Therefore, Eq. (D9) follows. A more explicit argu-
ment is based on the fact that Dfar is a homogeneous Green
function satisfying the equation

 

1

F����
�� �Dfar � 0 (D13)

which is just Eq. (D9) due to Eq. (D12).
The lesson is the identity Dnear-1 �Dret � Dnear-1 �Dadv,

i.e. the equation Dret � Dadv holds when the propagators
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appear in a product beside of a factor Dnear-1. This result
yields

 Dnear-1 �Dret � Dnear-1 �Dadv � 1: (D14)

Let us finally consider the product � where each propa-
gator is of the form

 Dj �
0 Dadv

j
Dret
j i=Dj

 !
(D15)

in the basis (j� � j�, j� � j�). It is easy to verify that �
is of this form, as well, and

 D̂ 1�̂ � � � D̂n �
0 Dadv

1 �Dadv
2 � � �D

adv
n

Dret
1 �D

ret
2 � � �D

ret
n 0

� �

�
0 0
0 =D1 �Dadv

2 � � �D
adv
n �Dret

2 � =D2 � � �Dadv
n � � � �Dret

1 �D
ret
2 � � � =D

� �
(D16)

giving

 �D̂1�̂ � � � D̂n�
r � Dret

1 � � �D
ret
n ;

�D̂1�̂ � � � D̂n�
a � Dadv

1 � � �D
adv
n :

(D17)

The property (D14) can be used to show

 

1
2 �D

ret
1 � � �D

ret
n �D

adv
1 � � �D

adv
n � � Dnear

1 � � �Dnear
n (D18)

giving

 �D̂1�̂ � � � D̂n�
near � Dnear

1 � � �Dnear
n : (D19)

The fact that the product D̂1�̂ � � � D̂n preserves the form
(D15) assures that Wel�4�

D which appears in the self-energy
is of this form, too.

Equations (D17) and (D19) can be used to show that
once the pair creation is excluded (= ~G � 0) the generating
functional WFBC�â; ĵ� is obtained from WOBC�â; ĵ� by the
simple rule found for noninteracting systems, namely, the
replacement of all retarded or advanced propagators by
their near-field version.

3. Effective actions for four fields

To obtain the effective action for the fields J, Jadv, A, and
Aadv we need the inverse of the block matrices of Eqs. (95)
and (96). We start with OBC when the two-loop expression
electron self-energy in Eq. (91) and the first equation in
(D17) give

 

~G ret � Gret
0 � e

2 ~Gret
0 �D

ret
0 �

~Gret
0 � e

2Wel�4�ret
D : (D20)

In a similar manner the photon self-energy of Eq. (92)
gives
 

Dret � D̂ret
0 � e

2Dret
0 � �

~Gret
0 � e

2Wel�4�ret
D � �Dret

0 � e
4Dret

0

� ~Gret
0 �D

ret
0 �

~Gret
0 �D

ret
0 (D21)

the inverse being

 Dret-1 � Dret-1
0 � e2� ~Gret

0 �W
el�4�ret
D �: (D22)

These expressions substituted in Eqs. (D4) and (D5) give
Dint � D̂ret

0 and ~Gint � Gret
0 � e

2Wel�4�ret
D . The inverse (D3)

gives the expression (111) when choosing S1 �
~Gret �Dret

0 � Str
2 . Finally, the effective action (110) follows

from Eqs. (D1) and (D8) and its equations of motion give

 

~Ga
0a � ��1� e

2Wel�4�a
D � ~Ga�1

0 � � Jadv � e ~Ga
0 � A

adv;

Dadv
0 j � eDadv

0 � Jadv � Aadv;

~Gret
0 �

�
�a�

�
2
a
�
� ��1� e2Wel�4�ret

D � ~Gret�1
0 � �

�
J�

�
2
Jadv

�
� e ~Gret

0 �

�
A�

�
2
Aadv

�
;

Dret
0 �

�
�j�

�
2
j
�
� eDret

0 �

�
J�

�
2
Jadv

�
� A�

�
2
Aadv:

(D23)

According to the remark made at the end of Appendix D
2 the effective action �FBC�J; Jadv; A; Aadv� is obtained from
�FBC�J; Jadv; A; Aadv� by the replacement of all retarded or
advanced propagators by their near-field version as long as
pair creation is neglected.

4. Effective actions for two fields

The effective action which involves physical fields re-
sults from the Legendre transformation in the variables a
and j only. The generating functional <W�a; �a; j; �j� based
on the two-point function (95) or (96) is
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<W�a; �a; j; �j� � �
�
2
�a; j�

�
~Gnear e ~Gnear �Dnear

0

e ~Gnear �Dnear
0 D0

 !
�

a

j

 !

� �a; j� �
Wa

Wj

 !
; (D24)

where the only boundary condition dependent pieces are
 

WOBC a � � ~Gret � � �a� eDret
0 �

�j�;

WOBCj � �D
ret � �j� eDret

0 �
~Gret � �a;

(D25)

or
 

WFBC a � � ~Gnear � � �a� eDnear
0 � �j�;

WFBCj � �D0 � �j� eDnear
0 � ~Gnear � �a:

(D26)

The application of the inverse (D3) produces the effective
action
 

�FBC�J; A� � �
1

2�
�J; A� � K�1 �

J

A

 !
�

1

�
�J; A� � K�1

�
Wa

Wj

 !
(D27)

with

 K�1 � �
1

�

	
~Gnear-1

0 � ~Gnear-1
0 �W�4�nD � ~Gnear-1

0 �e
�e Dnear-1

0

 !
:

(D28)

APPENDIX E: FUNCTIONAL
RENORMALIZATION GROUP IN THE CTP

FORMALISM

In the original version of the renormalization group
method one follows the evolution of coupling constants
one-by-one in the framework of the perturbation expansion
[63] and exact results might be achieved by resumming the
perturbation expansion. The functional realization of the
renormalization group [64,65] is based on the one-loop
evolution equation and the exact results should arise by
letting infinitely many term mixing in the action. In this
appendix we outline briefly the evolution equation for the
effective action in the latter formalism which can easily be
converted into a numerical, nonperturbative algorithm to
solve models.

Let us introduce a cutoff k in the theory for the field
variable � in the quadratic part of the action, S��� !
S��� � i� � Kk ��=2. The properties of the real operator
K are: (i) It should suppress all fluctuations for k! 1, i.e.
the eigenvalues of K1 should be 1. (ii) The physical

theory should be recovered for k � 0 which is guaranteed
by the condition K0 � 0. (iii) For finite, nonvanishing k Kk
should suppress the modes with momentum below k, i.e.
the eigenvalues of the translation invariant Kk should be
large for momenta p < k. The generating functional for the
connected Green functions of the field is

 eiW�j
�;j�� �

Z
D��̂�eiS��̂���1=2��̂�K̂��̂�iĵ��̂; (E1)

�̂ � ���; ���, and S��̂� � S���� � S
����. The gener-
ating functional is equipped with a UV regulator which is
omitted for simplicity. The quadratic term in the exponent
controls the fluctuations and

 K̂ �
K 0
0 K

� �
: (E2)

The evolution of the generating functional
 

_W �
1

2
Tr
��

�2W
�j��j�

�
�2W

�j��j�
� i

�W
�j�

�W
�j�

� i
�W
�j�

�W
�j�

�
� _K

�
(E3)

is obtained by bringing the derivation with respect to k,
denoted by a dot, into the functional integral. The parame-
trization (14) of the external sources gives
 

_W � Tr
��
�2W
�j�j

� �
�2W

�j� �j
�

1� �2

4

�2W

� �j� �j

�
i
2
����� ������

�
� _K

�
: (E4)

We need the evolution of the effective action

 ���;�im� � ���;�adv� � i=���im; �adv im�; (E5)

where we separate the real and imaginary parts
 

���;�adv� � <W�j; �j� � �j ��adv � j ��;

=���im; �adv im� � =W�j; �j� � �j ��adv im � j ��im
(E6)

and introduce the variables

 �� i�im �
�W�j; �j�
�j

; �adv � i�adv im �
�W�j; �j�

� �j
:

(E7)

The sources are real and therefore, two field variables are
independent only. We shall use �, �adv as independent
variables and introduce the functional �im��;�adv� �
=���im; �adv im� for the imaginary part. The derivation
of the evolution equation for the effective actions is
straightforward except that we have to keep track of the
evolution of the relations among the independent and the
dependent field variables. The expressions which follow
will appear simpler by the help of the notations �̂ �
��;�adv�, �̂im � ��im; �adv im� adopted in the rest of this
appendix.
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Equation (D1) allows us to rewrite the evolution
equation (E4) in terms of the effective action,

 

_� � Tr
���

�2�

��̂��̂

�
�1

��
� �

�
�2�

��̂��̂

�
�1

��adv
�

1� �2

4

	

�
�2�

��̂��̂

�
�1

�adv�adv
� i

�
�2=�

��̂im��̂im

�
�1

�im�im

� �i
�

�2=�

��̂im��̂im

�
�1

�im�adv im
� i

1� �2

4

	

�
�2=�

��̂��̂

�
�1

�adv im�adv im
�
i
2
����� ������

�
� _K

�
;

(E8)

where the subscript indicates block-matrix elements of the
second functional derivative. Furthermore the discon-
nected contributions to the two-point functions are
given in terms of �
 � �� i�im � ��� 1�	
��adv � i�adv im�=2.

The evolution Eq. (E8) is not yet closed because it
contains the dependent field variables, too. To relate �̂im

and �̂ locally in the field configuration space we introduce
the derivative matrix

 Ŝ ab��̂� �
��̂a

��̂im
b

: (E9)

The elimination of the variables �̂im is achieved by the
help of the derivation of the equations of motion

 � ĵ �
�=�

��̂im
�
��

��̂
(E10)

with respect to �̂im,

 

�2=�

��̂im��̂im
�

�2�

��̂��̂
� Ŝ: (E11)

The derivation of this equation with respect to � yields the
evolution equation for Ŝ,
 

_̂Sab �
�
�2�

��̂��̂

�
�1

ac

��
�2 _�

��̂��̂

�
cd
Ŝdb � Ŝdc

�
�2 _�im

��̂��̂

�
de
Ŝeb

�
� _�im

��̂d

�Ŝdc
��̂e

�
S�1

�
eb

�
: (E12)

After the solution of the problem posed by the dependent
variable we return to the evolution equation (E8) and we
separate the tree-level contribution by the parametrization

 � � ~�� i=~��
i
2
��� � K̂ ��� ��� � K̂ ���� (E13)

of the effective action. The real and imaginary parts of ~�
satisfy the evolution equations
 

_~� � Tr
���

�2<~�

��̂��̂
� A

�
�1

��
� �

�
�2<~�

��̂��̂
� A

�
�1

��adv

�
1� �2

4

�
�2<~�

��̂��̂
� A

�
�1

�adv�adv

�
� _K

�
;

_~�
im
� Tr

���
�2<�

��̂��̂
� Ŝ� B

�
�1

�im�im

� �
�
�2<�

��̂��̂
� Ŝ� B

�
�1

�im�adv im

�
1� �2

4

�
�2<�

��̂��̂
� Ŝ� B

�
�1

�adv im�adv im

�
� _K

�
;

(E14)

respectively, where
 

Aab �
1

2

�
K̂ac

��̂im
c

��̂b

�
��̂im

c

��̂a

K̂cb

�
� �̂cK̂cd

�2�̂im
d

��̂a��̂b

;

Bab � 2K̂ab � 2
��̂c

��̂im
a

K̂cd
��̂d

��̂im
b

� �̂cK̂cd
�2�̂d

��̂im
a ��̂

im
b

�
�2�̂c

��̂im
a ��̂

im
b

K̂cd�̂d: (E15)

The effective action of the physical system is obtained
by integrating the system of Eqs. (E12) and (E14) from k �
1 where a perturbative initial condition is imposed down
to k � 0. The renormalized trajectory displays the scale
dependence of the effective action. In the case of QED one
should start with a properly regulated theory e.g. the ef-
fective action should be calculated as in Eq. (82) after the
replacement D̂�1

0 ! D̂�1
0 � TK̂� in the action for the ini-

tial value of � but keeping the original, �-independent
counterterms. The projection T into the transverse photon
states in the suppression term renders the turning on of the
interactions of photons with the fermion loops according to
their momentum in a gauge invariant manner.
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