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We consider the leading one-chain term in a skeleton expansion for QCD observables and show that for
energies Q2 >�2, where Q2 � �2 is the Landau pole of the coupling, the skeleton expansion result is
equivalent to the standard Borel integral representation, with ambiguities related to infrared (IR)
renormalons. For Q2 <�2 the skeleton expansion result is equivalent to a previously proposed modified
Borel representation where the ambiguities are connected with ultraviolet (UV) renormalons. We
investigate the Q2-dependence of the perturbative corrections to the Adler-D function, the GLS sum
rule and the polarized and unpolarized Bjorken sum rules. In all these cases the one-chain result changes
sign in the vicinity of Q2 � �2, and then exhibits freezing behavior, vanishing at Q2 � 0. Finiteness at
Q2 � �2 implies specific relations between the residues of IR and UV renormalon singularities in the
Borel plane. These relations, only one of which has previously been noted (though it remained
unexplained), are shown to follow from the continuity of the characteristic function in the skeleton
expansion. By considering the compensation of nonperturbative and perturbative ambiguities we are led to
a result for the Q2-dependence of these observables at all Q2, in which there is a single undetermined
nonperturbative parameter, and which involves the skeleton expansion characteristic function. The
observables freeze to zero in the infrared. We briefly consider the freezing behavior of the
Minkowskian Re�e� ratio.
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I. INTRODUCTION

Thanks to asymptotic freedom, fixed-order QCD pertur-
bation theory can potentially provide accurate approxima-
tions to physical observables at suitably large energy
scales, Q2. Such a perturbative description necessarily
breaks down below the Landau singularity at Q2 � �2,
and the infrared behavior unavoidably involves nonpertur-
bative effects. In fact nonperturbative information is
needed even to make sense of perturbation theory, since
higher perturbative coefficients exhibit factorial growth,
and the perturbation series is not convergent. Using a
Borel integral to represent the resummed perturbation
series, the Borel integral is ambiguous due to singularities
on the integration contour along the positive real semiaxis
in the Borel plane, so-called infrared (IR) renormalons.
These ambiguities are structurally the same as terms in the
operator product expansion (OPE) in powers of �2=Q2.
OPE ambiguities and Borel representation ambiguities can
compensate each other, allowing the perturbative Borel and
nonperturbative OPE components to be separately well-
defined once a regulation of the Borel integral, such as
principal value (PV), has been chosen [1]. For Q2 <�2,
however, the Borel representation which is correlated with
terms in the OPE breaks down. In a recent paper Ref. [2],
which focussed on the infrared freezing of the
Minkowskian Re�e� ratio, it was suggested that below
Q2 � �2 one should use a modified Borel representation
whose ambiguities come from singularities lying on the
integration contour along the negative real semiaxis, so-

called ultraviolet (UV) renormalons. This Borel represen-
tation has ambiguities which are structurally the same as a
modified expansion in powers of Q2=�2, and once regu-
lated both components can remain defined in the infrared.
This change of Borel representation has been claimed not
to be physically motivated in Ref. [3], where different
conclusions about infrared behavior are reached. In this
paper we shall show that if we postulate a QCD skeleton
expansion [4,5], then the leading one-chain term reprodu-
ces the standard Borel representation for Q2 >�2, and the
proposed modified Borel representation for Q2 <�2.

We consider the infrared behavior of the one-chain result
for some Euclidean QCD observables. We shall concen-
trate on the Adler-D function, the GLS sum rule and the
polarized and unpolarized Bjorken sum rules [6,7]. The
skeleton expansion result automatically freezes to zero as
Q2 ! 0. For the observables we consider, the freezing to
zero occurs after the Borel resummed perturbative correc-
tions to the parton model result change sign in the vicinity
of Q2 � �2. Individual renormalon contributions to the
Borel integral diverge at Q2 � �2, but we find that when
all of the renormalons are summed over, one obtains a
finite result. This finiteness requires relations between the
residues of infrared and ultraviolet renormalons. Only one
of these relations has previously been noted [8], and we
show that they arise from the continuity of the character-
istic function in the skeleton expansion. Considering the
compensation of perturbative and OPE ambiguities alluded
to above, we are led to an expression for the
Q2-dependence of the observable written in terms of the
characteristic function, and containing a single undeter-
mined nonperturbative parameter. This result freezes to
zero in the infrared. Existing discussions of infrared freez-

*Electronic address: p.m.brooks@durham.ac.uk
†Electronic address: c.j.maxwell@durham.ac.uk

PHYSICAL REVIEW D 74, 065012 (2006)

1550-7998=2006=74(6)=065012(15) 065012-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.065012


ing behavior have largely focused on the Analytic
Perturbation Theory (APT) approach [9]. In this formalism
one expands observables in a basis of functions which have
smooth infrared behavior. For Euclidean observables the
unphysical Landau singularity in the coupling is cancelled
by a powerlike correction. In contrast in our discussion
finiteness and continuity emerge thanks to a subtle inter-
play between UV and IR renormalons.

The plan of the paper is as follows. In Sec. II we shall
introduce the QCD skeleton expansion, and show that the
one-chain leading term is equivalent to the standard Borel
representation for Q2 >�2, and to the modified represen-
tation for Q2 <�2. We discuss what can be learnt about
the infrared freezing of observables. In Sec. III we describe
the Borel plane renormalon structure for our chosen
Euclidean observables, and we show that finiteness at
Q2 � �2 only holds if there are cancellations between
the residues of IR and UV renormalons, the cancellations
rely on a previously unknown relation between the IR and
UV residues. We write down a result for the Q2 depen-
dence of the resummed observables in terms of
Exponential Integral (Ei) functions, and plot the infrared
freezing behavior to zero noted above. In Sec. IV we
consider the skeleton expansion for the Adler D function,
and give an expression for the characteristic function of the
leading one-chain term. Making a power series expansion,
and changing variables, we explicitly obtain the Borel
representations, and relate the IR and UV renormalon
residues to the power series coefficients of the character-
istic function. Continuity of the characteristic function is
shown to underwrite the relations between UV and IR
renormalon residues noted above. In Sec. V we derive
the result for Q2-dependence including nonperturbative
effects mentioned above. In Sec. VI we briefly consider
Minkowskian observables, specifically Re�e� , and modify
some of the conclusions of Ref. [2] in the light of the
criticisms of Ref. [3]. Section VII contains a discussion
and our conclusions.

II. QCD SKELETON EXPANSION AND BOREL
REPRESENTATIONS

Consider a generic Euclidean QCD observable D�Q2�
having the perturbative expansion

 D PT�Q2� � a�Q2� �
X
n>0

dnan�1�Q2�: (1)

Here a�Q2� � �s�Q
2�=� is the renormalized coupling.

Throughout this paper we will use the one-loop approxi-
mation for the coupling,

 a�Q2� �
2

b ln�Q2=�2�
; (2)

where b � �33� 2Nf�=6 is the leading beta-function co-
efficient in SU(3) QCD with Nf active quark flavours.
Q2 � �q2 > 0 is the single spacelike energy scale. As

Q2 ! 1 asymptotic freedom ensures that D�Q2� ! 0.
Our interest is in the infrared limit Q2 ! 0, and the infra-
red behavior of D�Q2�. Specifically, is it possible that
freezing to a finite infrared limit D�0� occurs? This is an
intrinsically nonperturbative question which cannot be
answered by perturbation theory alone. One has in addition
the nonperturbative contribution arising from the operator
product expansion (OPE),

 D NP�Q
2� �

X
n

Cn

�
�2

Q2

�
n
: (3)

The freezing limit, if any, of D�Q2� �DPT�Q
2� �

DNP�Q2�, depends on the behavior of both components
as Q2 ! 0. Perturbative freezing will not arise from fixed-
order perturbation theory, one needs an all-orders resum-
mation of Eq. (1). Unfortunately our exact information
about the higher-order coefficients is limited, at best, to
calculations of d1 and d2, higher-orders are unknown. All-
orders information is only available in the large-Nf limit
where one expands each dn as

 dn � d�n�n Nn
f � d

�n�1�
n Nn�1

f � . . .� d�0�n : (4)

The leading large-Nf coefficient d�n�n can be computed
exactly to all-orders since it arises from a restricted set of
Feynman diagrams in which a chain of n fermion bubbles
(shown in Fig. 1) is inserted in a basic skeleton diagram
[10,11]. In principle one can consider more than one chain
and construct a QED skeleton expansion [12]. In QCD one
can replace Nf by �33=2� 3b�, and obtain an expansion in
powers of b,

 dn � d�n�n bn � d
�n�1�
n bn�1 � . . .� d�0�n : (5)

The leading-b term d�L�n � d�n�n bn can then be used to
approximate dn [8,13,14] and an all-orders resummation
of these terms performed to obtain D�L�

PT�Q
2�. Use of the

one-loop form of the coupling in Eq. (2) ensures that this
resummed result is RS-independent.

The leading term of the skeleton expansion arises from
integrating over the momentum k flowing through the
chain of bubbles [4,5,15].

 D �L�
PT�Q

2� �
Z 1

0
dt!�t�a�eCtQ2�: (6)

Here t � k2=Q2, and !�t� is the so-called characteristic
function of the observable. The constant C depends on the
subtraction procedure used to renormalize the bubble.
Standard MS subtraction corresponds to C � �5=3.

n321

k k

FIG. 1. A chain of fermion bubbles with momentum k running
through them.
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From now on we shall assume C � 0 which corresponds to
the so-called V-scheme, MS subtraction with renormaliza-
tion scale �2 � e�5=3Q2. � in Eq. (2) will refer to that in
the V-scheme. The characteristic function satisfies the
normalization condition

 

Z 1
0
dt!�t� � 1; (7)

which ensures the leading a�Q2� coefficient of unity as-
sumed in Eq. (1). The form of !�t� changes at t � 1, and
the range of integration splits into an IR and a UV part

 D �L�
PT�Q

2� �
Z 1

0
dt!IR�t�a�tQ2� �

Z 1
1
dt!UV�t�a�tQ2�;

(8)

the IR part corresponding to k2 <Q2, and the UV part to
k2 >Q2. By making a change of variable one can trans-
form the leading skeleton term into a Borel representation.
ForQ2 >�2 one has the standard Borel representation (we
shall explicitly write down the required changes of variable
in Sec. IV),

 D �L�
PT�Q

2� �
Z 1

0
dze�z=a�Q

2�B�D�L�
PT��z�: (9)

Here B�D��z� is the Borel transform, defined by,

 B�D�L�
PT��z� �

X1
n�0

znd�L�n
n!

: (10)

B�D�L�
PT��z� contains singularities along the real z-axis. In

the large-b approximation these are single and double
poles at positions z � zn and z � �zn, with zn � 2n=b,
n � 1, 2, 3 . . .. The singularities on the positive real semi-
axis are referred to as infrared renormalons, IRn, and those
on the negative real semiaxis as ultraviolet renormalons,
UVn. The IRn renormalons cause the Borel representation
to be ambiguous since they lie on the integration contour
along the positive real z-axis. The difference between
routing the contour above or below the singularity yields
an ambiguity

 �D�L�
PT 	

�
�2

Q2

�
n
; (11)

which has the same form as a term in the OPE in Eq. (3), so
that OPE ambiguities associated with the ��2=Q2�n OPE
term in DNP�Q2� can potentially cancel against the IRn
renormalon ambiguity allowing each component sepa-
rately to be well defined [1]. In practice we shall choose
to take a Principal Value (PV) definition of the integral.
The IR part of the t integration in Eq. (8) produces the IR
renormalon part of the Borel representation, and needs to
be PV regulated. The second UV component produces the
UV renormalons and does not require regulation. As we
shall see in the next section the standard Borel representa-
tion of Eq. (9) for Euclidean quantities diverges like

lna�Q2� at Q2 � �2 for each individual IRn or UVn re-
normalon contribution. When the full set is resummed,
however, the lna divergence is cancelled and a finite result
is found. We shall explore this further in Secs. III and IV.

For Q2 <�2, a�Q2�< 0, and the representation of
Eq. (9) is invalid. The key point is that the change of
variable from t to z is proportional to a�Q2�, and so if
a�Q2� changes sign the limits of integration in z change
sign, yielding the modified Borel representation

 D �L�
PT�Q

2� �
Z �1

0
dze�z=a�Q

2�B�D�L�
PT ��z�: (12)

This is the modified Borel representation proposed in
Ref. [2] where it was motivated as a standard Borel repre-
sentation corresponding to an expansion in ja�Q2�j �
�a�Q2�, since by changing variables one can write
Eq. (12) as

 D �L�
PT�Q

2� � �
Z 1

0
dze�z=ja�Q

2�jB�D�L�
PT���z�: (13)

So we see that the one-chain skeleton contribution of
Eq. (6) is equivalent to the standard Borel representation
of Eq. (9) for Q2 >�2, and to the modified representation
of Eq. (12) for Q2 <�2. Note that when we substitute
Eq. (10) into the Borel representation of Eq. (13), then it
reproduces the correct form of the perturbative expansion
in Eq. (1), for negative a. The modified Borel representa-
tion now has a contour of integration along the negative
real semiaxis, and so it is rendered ambiguous by the
ultraviolet UVn renormalon singularities.
Correspondingly the IR component of Eq. (8) is now
well-defined and it is now the UV component which re-
quires regulation. The ambiguity from routing the contour
is now

 �D�L�
PT�Q

2� 	

�
Q2

�2

�
n
: (14)

It was suggested in Ref. [2] that the usual OPE of Eq. (3)
breaks down for Q2 <�2, as does the associated PT Borel
representation of Eq. (9), and should be recast and replaced
by a modified expansion in powers of Q2=�2,

 D NP�Q2� �
X
n

~Cn

�
Q2

�2

�
n
: (15)

The nth term in this expansion has then structurally the
same form as the ambiguity associated with the UVn
renormalon contribution. It was further suggested in
Ref. [2] that a ~C0 term independent of Q2 could arise
from rearrangement of the standard OPE. This was moti-
vated by a simple toy example. In fact in the one-chain
approximation no such term arises and both PT and NP
components freeze to zero. The terms in Eq. (15) are then
in one-to-one correspondence with the UVn renormalon
ambiguities. From its definition, the QCD skeleton expan-
sion implies DPT�0� � 0 in the Q2 ! 0 limit. For the one-
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chain term in Eq. (6) this simply follows because as Q2 !
0 the integrand vanishes everywhere in the range of inte-
gration, since a�tQ2� ! 0 for any given t. Higher multiple
chain terms will contain products of the form
a�t1Q2�a�t2Q2� . . . in the integrand and will similarly van-
ish. This then implies that in the infrared limit DNP�Q2�
behaves as

 D NP�Q2� 
 k
�
Q2

�2

�
n0

; (16)

whereUVn0
is the UV renormalon singularity nearest to the

origin in the Borel plane. We should note that the modified
Borel representation, its infrared behavior and its connec-
tion with UV renormalons, has also been discussed in
Ref. [16]. In Appendix B of that paper the infrared freezing
of the Adler function D�Q2� was discussed and it was
concluded that from general arguments of nonperturbative
spontaneous chiral symmetry breaking in the limit of a
large number of colors, Nc, one expected that as Q2 ! 0,
D�Q2� ! 0 like

 D�Q2� 	
Q2

M2 ; (17)

where M is the mass of a one-meson state, these states
remaining massive in the chiral limit. A similar result is
obtained in Ref. [17]. Since UV1 is the singularity nearest
the origin for the Adler function, n0 � 1, and the freezing
expectation is indeed consistent with Eq. (16). Notice that
strictly the leading behavior as Q2 ! 0 is the logarithmic
freezing to zero of a�Q2� contributed by the PT component.
It is the nonperturbative effects which reflect the UV
renormalon structure.

III. Q2-DEPENDENCE OF THE EUCLIDEAN
OBSERVABLES

We begin by defining the three Euclidean observables
we shall consider. The QCD vacuum polarization function,
��Q2�, is the correlator of two vector currents in the
Euclidean region,

 

�q�q� � g��q
2���Q2� � 16�2i

Z
d4xeiq:x

� h0jT�j��x�j��0��j0i; (18)

The leading-Nf component of ��Q2� can be calculated
from the diagrams in Fig. 2. The Adler function, D�Q2�, is
then defined via the logarithmic derivative of ��Q2�

 D�Q2� � �
3

4
Q2 d

dQ2 ��Q2�: (19)

This can be split into the parton model result and QCD
corrections, D�Q2�,

 D�Q2� � Nc
X
f

Q2
f

�
1�

3

4
CFD�Q

2�

�
; (20)

where Nc is the number of colors, CF �
�N2

c�1�
2Nc

, and Qf is
the charge of quark flavour f. Here D�Q2� �DPT�Q

2� �
DNP�Q

2�, with the two components defined as in Eqs. (1)
and (3). The polarized Bjorken (pBj) [18] and GLS [19]
sum rules are defined as

 KpBj �
Z 1

0
gep�en1 �x;Q2�dx

�
1

3

��������gAgV
��������
�
1�

3

4
CFK�Q2�

�
; (21)

 KGLS �
1

6

Z 1

0
F ��p��p

3 �x;Q2�dx �
�

1�
3

4
CFK�Q

2�

�
:

(22)

K�Q2� being the QCD corrections to the parton model
result, again split into PT and NP components as for
D�Q2�. We have neglected contributions due to ‘‘light-
by-light’’ diagrams—which when omitted render the per-
turbative corrections to KGLS and KpBj identical. Finally,
the unpolarized Bjorken sum rule (uBj) [20] is defined as

 UuBj �
Z 1

0
F ��p��p

1 �x;Q2�dx �
�

1�
1

2
CFU�Q2�

�
: (23)

The QCD corrections to the parton model result are again
split into PT and NP components. The leading-Nf contri-
butions to these three sum rules can be calculated from the

n21 n21
q q

k

n21 n21

q q
k

2

1

n

qq k

FIG. 2. Leading large-Nf contributions to the vacuum polarization function at nth order in perturbation theory.
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diagrams in Fig. 3. These large-Nf results can be used to
compute leading-b all-orders resummations for these ob-
servables, D�L�

PT�Q
2�, K�L�

PT�Q
2� and U�L�

PT�Q
2�, as described

in Sec. II. The Borel transform of D�L�
PT�Q

2� is well-known
and can be found in Ref. [8],

 B�D�L�
PT��z� �

X1
n�1

A0�n� � A1�n�zn
�1� z

zn
�2

�
A1�n�zn
�1� z

zn
�

�
X1
n�1

B0�n� � B1�n�zn
�1� z

zn
�2

�
B1�n�zn
�1� z

zn
�
: (24)

Here

 A0�n� �
8

3

��1�n�1�3n2 � 6n� 2�

n2�n� 1�2�n� 2�2
;

A1�n� �
8

3

b��1�n�1�n� 3
2�

n2�n� 1�2�n� 2�2

B0�1� � 0; B0�2� � 1;

B0�n� � �A0��n� n � 3

B1�1� � 0; B1�2� � �
b
4
;

B1�n� � �A1��n� n � 3

(25)

These definitions coincide with Ref. [8], except for
B1�2� � �

b
4 . The purpose of the slight change of defini-

tion is to make more explicit the single and double pole
structure. The Borel transforms of K�L�

PT�Q
2� and U�L�

PT�Q
2�

can be found in Refs. [6,7], respectively. They have a much
simpler structure than that of the Adler-D function since
they arise from insertion of the chain of bubbles into a tree-
level diagram, rather than into a quark loop, as shown in
Fig. 3. There are only a finite number of single poles and no
double poles. Consequently we can write out their Borel
transforms explicitly

 B�K�L�
PT ��z� �

4=9

�1� z
z1
�
�

1=18

�1� z
z2
�
�

8=9

�1� z
z1
�
�

5=18

�1� z
z2
�
:

(26)

and

 B�U�L�
PT��z� �

1=6

�1� z
z2
�
�

4=3

�1� z
z1
�
�

1=2

�1� z
z2
�
: (27)

As noted in Refs. [7,8] the leading-b approximations for
the NLO and NNLO coefficients for these observables are
in reasonable agreement with the known exact coefficients.

We can now evaluate the Borel integral of Eq. (9) to
obtain D�L�

PT�Q
2�, K�L�

PT�Q
2� and U�L�

PT�Q
2�. Using the inte-

grals

 

Z 1
0
dz

e�z=a

�1� z=zn�
� �znezn=aEi��zn=a�; (28)

 

Z 1
0
dz

e�z=a

�1� z=zn�2
� zn

�
1�

zn
a
ezn=aEi��zn=a�

�
(29)

the following resummed expressions are obtained,

 D �L�
PT�Q

2� �
X1
n�1

zn

�
ezn=a�Q

2�Ei
�
�

zn
a�Q2�

��
zn

a�Q2�
�A0�n� � zlA1�n�� � znA1�n�

�
� �A0�n� � znA1�n��

�

�
X1
n�1

zn

�
e�zn=a�Q

2�Ei
�
zn

a�Q2�

��
zn

a�Q2�
�B0�n� � zlB1�n�� � znB1�n�

�
� �B0�n� � znB1�n��

�
; (30)

 K �L�
PT�Q

2� �
1

9b

�
�8ez1=a�Q2�Ei

�
�

z1

a�Q2�

�
� 2ez2=a�Q2�Ei

�
�

z2

a�Q2�

�
� 16e�z1=a�Q2�Ei

�
z1

a�Q2�

�

� 10e�z2=a�Q2�Ei
�
z2

a�Q2�

��
; (31)

 U �L�
PT�Q

2� �
1

3b

�
8e�z1=a�Q2�Ei

�
z1

a�Q2�

�
� 6e�z2=a�Q2�Ei

�
z2

a�Q2�

�
� 2ez2=a�Q2�Ei

�
�

z2

a�Q2�

��
: (32)

n

1
2

1 2 n

2
n

1

FIG. 3. Leading large-Nf contributions to the DIS sum rules of Eqs. (21)–(23) at nth order in perturbation theory.
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Where Ei�x� is the exponential integral function defined
(for x < 0) as

 Ei �x� � �
Z 1
�x
dt
e�t

t
; (33)

and for x > 0 by taking the PV of the integral. It has the
expansion

 Ei �x� � lnjxj � �E �O�x�; (34)

for small x, where �E � 0:57721 . . . is the Euler constant.
A crucial point is that the above expressions for the

Q2-dependence apply at all values of Q2. For Q2 <�2

the modified Borel representation, written as an ordinary
Borel representation for an expansion in powers of jaj, as
in Eq. (13), corresponds to changing a�Q2� ! �a�Q2�,
zn ! �zn, and adding an overall minus sign in
Eqs. (30)–(32). One can easily see that these equations
are invariant under these changes. In Eq. (30) one needs to
change A1 ! �A1 and B1 ! �B1, since they contain a
hidden zn factor in their definitions, also in Eqs. (31) and
(32), the prefactor proportional to 1=b also needs to change
sign since it has been factorized from z1, z2. The
Ei�zn=a�Q2�� functions exhibit a logarithmic divergence
as their argument goes to zero, and so it would appear that
one does not obtain a finite result at Q2 � �2. Using
Eq. (34), one has,
 

Ei
�

2n

ba�Q2�

�
� Ei�n log�Q2=�2�� ’ Ei

�
n
�
Q2

�2 � 1
��

’ �E � ln
�
n
�
Q2

�2 � 1
��
; (35)

for �2 
 Q2. Note that the only terms in Eqs. (30)–(32)
which could possibly contribute to the divergence are
e
zn=aEi��zn=a� terms and, as can be seen from
Eqs. (28) and (29), these are generated exclusively by the
single pole terms in the Borel transform. The double pole
terms only generate finite contributions at Q2 � �2.

Using Eq. (35) we obtain theQ2 ! �2 limit ofD�L�
PT �Q

2�
 

D�L�
PT�Q

2� � �
X1
n�1

z2
n�A1�n� � B1�n�� ln

�
n
�
Q2

�2 � 1
��

�
X1
n�1

�z2
n�1� �E���A1�n� � B1�n��

� zn�A0�n� � B0�n��� �O

�
Q2

�2 � 1
�
: (36)

So the coefficient of the divergent log term in D�L�
PT�Q

2� is,

 �
X1
n�1

z2
n�A1�n� � B1�n��; (37)

and for K�L�
PT�Q

2� and U�L�
PT�Q

2� the equivalent coefficients
are ��8� 2� 16� 10 � 0� and �8� 6� 2 � 0�, respec-
tively. Cancellation clearly occurs in the cases of K�L�

PT�Q
2�

and U�L�
PT�Q

2� and in the case of D�L�
PT�Q

2� the previously
unnoticed relation

 z2
n�3B1�n� 3� � �z2

nA1�n�; (38)

ensures that D�L�
PT��

2� is finite,

 

X1
n�1

z2
n�A1�n� � B1�n�� � 0: (39)

A similar relation

 A0�n� � �B0�n� 2�; (40)

was noted in [8]. We shall show in the next section that the
relations of Eqs. (38) and (40) are underwritten by the
continuity of the skeleton expansion characteristic function
!��t� and its first derivative at t � 1. The form of the
perturbative corrections, D�L�

PT�Q
2�, K�L�

PT�Q
2� and

U�L�
PT�Q

2�, are shown in Fig. 4.
Although we have shown that when summed to infinity

Eq. (30) is finite at Q2 � �2, we obviously can only plot
the expression including a finite number of terms in the n
sum. The expression can remain finite, however, if we sum
the UV renormalons to finite n � N and the IR renorma-
lons to n � N � 3. In this case the relation of Eq. (38) will
ensure that the divergent terms cancel. We took N � 50
and assumed Nf � 0 quark flavours, avoiding the need to
match at quark flavour thresholds, since we are only inter-
ested here in the form of the freezing behavior, not in a
phenomenological analysis.

The plots in Fig. 4 demonstrate two important points
about the Euclidean quantities we are considering. Firstly
the finite behavior atQ2 � �2, and secondly that the Borel
resummed perturbative corrections to the parton model
result change sign just below or above this point. For D
these corrections become negative but crucially the full
observable D�Q2� remains positive at all values of Q2.
They then freeze to zero as noted in Sec. II.

The relation of Eq. (38) simplifies the expression for the
finite part of Eq. (36), it becomes
 

D�L�
PT�Q

2 � �2� �
X1
n�1

zn�A0�n� � B0�n��

�
X1
n�1

z2
n�A1�n� � B1�n�� lnn



0:679938

b
: (41)

The values K�L�
PT�Q

2 � �2� and U�L�
PT�Q

2 � �2� are given
by a formula identical to Eq. (41), but using values of
A0;1�n� and B0;1�n� appropriate to K and U. Although
we have not given these values explicitly, they are of a
much simpler form than in the case of D, and they can
easily be deduced by comparing Eqs. (26) and (27) with
Eq. (24). From this we obtain,
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 K �L�
PT�Q

2 � �2� � �
8

9b
ln2;

U�L�
PT�Q

2 � �2� � �
8

3b
ln2:

(42)

IV. SKELETON EXPANSION AND BOREL
REPRESENTATIONS FOR THE ADLER FUNCTION

We begin with the one-chain skeleton expansion result
for the vacuum polarization function ��Q2� defined in
Eq. (18),

 ��Q2� �
Z 1

0
dt!��t�a�tQ

2�; (43)

where the characteristic function !��t� is given by

 !��t� � �
4

3

8<
:
t��t� t � 1$ IR
1
t �

�
1
t

�
t � 1$ UV

(44)

It can be obtained from the classic QED work of Ref. [21]
by simply including appropriate color factors.1 In this
language it is related to the Bethe-Salpeter kernel for the

scattering of light-by-light, and is the first term in a well-
defined QED skeleton expansion [12]. The diagrams rele-
vant to the kernel are shown in Fig. 5. It is easy to see how,
by connecting the ends of the fermion bubble chain in
Fig. 1 to the momentum k external propagators in Fig. 5,
one can reproduce the topology of the diagrams in Fig. 2.
The existence of the QCD skeleton expansion is more
problematic [15]. ��t� is given by [21]

 

��t� �
4

3t

�
1� lnt�

�
5

2
�

3

2
lnt
�
t

�
�1� t�2

t
�L2��t� � lnt ln�1� t��

�
; (45)

where L2�x� is the dilogarithmic function.

 L2�x� � �
Z x

0
dy

ln�1� y�
y

: (46)

Though we define !��t� separately in the IR and UV
domains, the two regions are related by the conformal
symmetry t$ 1

t .
The Adler-D function, related to ��Q2� through

Eq. (19), will have the one-chain skeleton expansion
term with characteristic function !D�t�,

1 2 3 4 5

0.1

0

0.1

0.2
( L

)
P

T
(Q

2
)

Q2/ 2
2 4 6 8 10

-0.3

-0.2

-0.1

0

0.1

0.2

( L
)

P
T

( Q
2
)

Q2/ 2

2 4 6 8 10

-0.2

-0.1

0

0.1

0.2

(L
)

P
T

( Q
2
)

Q2/ 2

FIG. 4. Q2-dependence of the perturbative corrections to the observables in Eqs. (21)–(23), resummed to all orders in the leading-b
approximation.

1The origin of the minus sign in Eq. (18) is the difference
between the definitions of � given in Eq. (18) and Ref. [21].
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 D �L�
PT�Q

2� �
Z 1

0
dt!D�t�a�tQ2�: (47)

!D�t� is obtained from !��t� by performing the differen-
tiation of Eq. (19) on Eq. (43) and then performing inte-
gration by parts on the resulting expression.

 D �L�
PT�Q

2� � �
3

4
Q2 d

dQ2

Z 1
0
dt!��t�t

�
a�tQ2�

t

�

� �
3

2b
Q2 d

dQ2

Z 1
0
dt
d
dt
�!��t�t� ln�a�tQ

2��

� �
3

4

Z 1
0
dt
�
!��t� � t

d
dt
!��t�

�
a�tQ2�:

(48)

The transformation from � to D therefore induces a trans-
formation in !��t� of

 ��Q2� ! Q2 d

dQ2 ��Q2� � �
4

3
D�Q2� ) !��t�

! !��t� � t
d
dt
!��t� � �

4

3
!D�t�: (49)

This transformation spoils the conformal symmetry
present in !��t�. Indeed the expressions for !D�t� in the
UV and IR regions are slightly more complicated.

 !IR
D �t� �

8

3

��
7

4
� lnt

�
t� �1� t��L2��t� � lnt ln�1� t��

�

(50)

 

!UV
D �t� �

8

3

�
1� lnt�

�
3

4
�

1

2
lnt
�

1

t
� �1� t��L2��t

�1�

� lnt ln�1� t�1��

�
(51)

However, a partial symmetry remains in !D�t� and this
will be elucidated upon in the following discussion. We
shall now convert the skeleton expansion form into the
Borel representations of Eqs. (9) and (12) by making a

change of variables. To achieve this it is necessary to write
!��t� as an expansion in powers of t. This yields expres-
sions in both the IR and UV regions comprising an expan-
sion plus an expansion times a logarithm.

 !IR
� �t� � �

4

3

�X1
n�1

�ntn � lnt
X1
n�2

�̂ntn
�
: (52)

The conformal symmetry expressed in Eq. (44) means that
the UV part can also be written in terms of the coefficients
�n and �̂n

 !UV
� �t� � �

4

3

�X1
n�1

�nt�n � lnt
X1
n�2

�̂nt�n
�
: (53)

From Eq. (45), �n and �̂n are found to be

 �n>1 �
4

3

�2� 6n2���1�n

�n� 1�2n2�n� 1�2
;

�̂n>1 �
4

3

2��1�n

�n� 1�n�n� 1�

�1 � 1 �̂1 � 0

(54)

Performing the transformation in Eq. (49) allows us to
write !D�t� as a similar expansion

 !IR
D �t� �

X1
n�1

��n�1� n� � �̂n�tn � lnt
X1
n�2

�̂n�n� 1�tn

(55)

 !UV
D �t� �

X1
n�1

��n�1� n� � �̂n�t
�n � lnt

X1
n�2

�̂n�n� 1�t�n

(56)

Using the expansions of Eqs. (55) and (56) we can now
represent D�L�

PT�Q
2� in terms of a Borel integral. We take

D�L�
PT�Q

2� expressed in terms of !D�t� and then split the
integral into IR and UV regions

kq

kq

q k

kq

kq

q k

FIG. 5. Light-by-light scattering diagrams, used to calculate !��t�.
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D�L�
PT�Q

2� �
Z 1

0
dt!D�t�a�tQ

2� �
P
1
k�0 a�Q

2�
R

1
0 dt!

IR
D �t�

�
� ba�Q2�

2 lnt
�
k
�
P
1
k�0 a�Q

2�
R
1
1 dt!

UV
D �t�

�
� ba�Q2�

2 lnt
�
k

� a�Q2�
X1
k�0

�
�
ba�Q2�

2

�
k
�Z 1

0
dt
�X1
n�1

��n�1� n� � �̂n��t�
n � lnt

X1
n�2

�̂n�n� 1��t�n
�
�lnt�k

�
Z 1

1
dt
�X1
n�1

��n�1� n� � �̂n��t�
�n � lnt

X1
n�2

�̂n�n� 1��t��n
�
�lnt�k

�
(57)

Where we have used

 a�xy� � a�y�
X1
k�0

�
�
ba�y�

2
lnx

�
k
: (58)

We note that ��n�1� n� � �̂n� � 0 for n � 1, which
allows us to omit this term from the above sum. This

expression may be transformed into a Borel integral of
the form of Eq. (9) by changes of variables and integration
by parts. We use the change of variables z � �a�Q2��
�n� 1� lnt and z � a�Q2��n� 1� lnt for IR and UV parts,
respectively. Integration by parts is necessary for the in-
tegrals with an extra lnt term. For Q2 >�2, a�Q2�> 0, we
then obtain the standard Borel representation, of Eq. (9)

 D �L�
PT�Q

2� �
Z 1

0
dze�z=a�Q

2�

�X1
n�1

��n�1� n� � �̂n�
n� 1

1

1� bz
2�n�1�

�
X1
n�2

�̂n�n� 1�

�n� 1�2
1

�1� bz
2�n�1��

2

�

�
Z 1

0
dze�z=a�Q

2�

�X1
n�2

��n�1� n� � �̂n�
n� 1

1

1� bz
2�n�1�

�
X1
n�2

�̂n�n� 1�

�n� 1�2
1

�1� bz
2�n�1��

2

�
; (59)

and for Q2 <�2, a�Q2�< 0, we obtain the modified Borel
representation of Eq. (12), in which the upper limit in z is
�1. Having obtained the Borel transform we can now
make contact with Eq. (24) and this allows us to make the
identifications

 

�n�1� n� � �̂n
n� 1

� �B1�n� 1�zn�1 n � 1 (60)

 

�n�1� n� � �̂n
n� 1

� A1�n� 1�zn�1 n � 2 (61)

for the single pole residues and

 �
�̂n�n� 1�

�n� 1�2
� B0�n� 1� � B1�n� 1�zn�1 n � 2

(62)

 

�̂n�n� 1�

�n� 1�2
� A0�n� 1� � A1�n� 1�zn�1 n � 2

(63)

for the double pole residues. Substituting the form of �n
and �̂n given by Eq. (54), and comparison with Eq. (25),
verifies the above equations.

Equations. (60)–(63) can be used to rewrite the !IR
D �t�

and !UV
D expansions of Eqs. (55) and (56) in terms of the

A0�n�, A1�n�, and B0�n�, B1�n� renormalon residues. One
finds

 

!IR
D �t� �

b
2

X1
n�1

�z2
n�1B1�n� 1�tn � lnt

X1
n�2

�n� 1�2

� �B0�n� 1� � zn�1B1�n� 1��tn (64)

 

!UV
D �t� �

b
2

X1
n�1

z2
n�1A1�n� 1�t�n � lnt

X1
n�2

�n� 1�2

� �A0�n� 1� � zn�1A1�n� 1��t�n: (65)

The discontinuity at t � 1 is then found to be

 !UV
D �1� �!

IR
D �1� �

b
2

X1
n�1

z2
n�A1�n� � B1�n��; (66)

which vanishes using Eq. (39). In the language of �n and
�̂n coefficients, Eq. (66) is equivalent to

 � 2
X1
n�1

�n�n � �̂n� � 0: (67)

So the relation between UV and IR renormalon residues of
Eq. (38), which guarantees finiteness at Q2 � �2, ensures
that the characteristic function !D�t� is continuous at t �
1.

For the first derivative at t � 1 one finds the disconti-
nuity
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d!D

IR
dt
��������t�1

�
d!D

UV
dt
��������t�1

� b
X1
n�1

z2
n�A1�n� � B1�n��

�
b2

4

X1
n�1

z2
n�A0�n�

� B0�n�� �
b2

2

�
X1
n�1

z3
n�A1�n� � B1�n��;

(68)

Equation. (39), which ensures that D�L�
PT��

2� is finite,
means that the first line of this expression vanishes. The
sum of the remaining terms also vanishes, ensuring con-
tinuity of the first derivative of !D�t�. This also ensures
that the D�L�0

PT ��
2� is finite (the prime denoting the first

derivative d=d lnQ). Indeed, the required relation corre-
sponding to the vanishing of the coefficient of the poten-
tially divergent lna term in D�L�0

PT ��
2� is,

 

X1
n�1

�2z3
n�A1�n� � B1�n�� � z2

n�A0�n� � B0�n�� � 0: (69)

So finiteness of the first derivative of D�L���� at Q � �,
corresponds to continuity of the first derivative of !�t� at
t � 1. Furthermore, Eq. (69) written in terms of �n and �̂n
is simply Eq. (67), with an extra factor of �2.
Consequently, the continuity of !D�t� and its first deriva-
tive stem for a single relation, Eq. (67). The second and
third derivatives are also continuous at t � 1, and their
discontinuities involve additional new structures built from
combinations of the A0;1 and B0;1. To ensure finiteness of
D�L�00

PT �Q
2� at Q2 � �2, one requires the relation

 

X1
n�1

�3z4
n�A1�n� � B1�n�� � 2z3

n�A0�n� � B0�n��� � 0:

(70)

For finiteness of D�L�000 �Q2� at Q2 � �2 one requires the
relation

 

X1
n�1

�4z5
n�A1�n� � B1�n�� � 3z4

n�A0�n� � B0�n��� � 0:

(71)

Equations (70) and (71) are also required in order for the
second and third derivatives of !D�t� to be continuous at
t � 1, furthermore, they can both be derived from the
following relation

 

X1
n�1

�n3�n � 3n2�̂n� � 0: (72)

The fourth and higher derivatives of !D�t� are discontinu-
ous at t � 1 as noted in [4].

V. SKELETON EXPANSION AND THE NP
COMPONENT

In this section we wish to consider more carefully the
compensation of ambiguities between renormalons and the
OPE. The regular OPE is a sum over the contributions of
condensates with different mass dimensions. In the case of
the Adler function the dimension four gluon condensate is
the leading contribution,

 G0�a�Q2�� �
1

Q4 h0jGGj0iCGG�a�Q
2��; (73)

where CGG�a�Q2�� is the Wilson coefficient. In general the
nth term in the OPE expansion of Eq. (3) will have the
coefficient

 C n�a�Q2�� � Cn�a�Q2���n�1�O�a��: (74)

The exponent �n corresponding to the anomalous dimen-
sion of the condensate operator concerned. Nonlogarithmic
UV divergences [22] lead to an ambiguous imaginary part
in the coefficient so that Cn � C�R�n 
 iC

�I�
n . If one consid-

ers an IRn renormalon singularity in the Borel plane to be
of the form Kn=�1� z=zn��n then one finds an ambiguous
imaginary part arising of the form

 Im �DPT� � 
Kn
�z�nn
���n�

e�zn=a�Q
2�a1��n�1�O�a��:

(75)

Here the 
 ambiguity comes from routing the contour
above or below the real z-axis in the Borel plane. This is
structurally the same as the ambiguous OPE term in
Eq. (74), and if C�I�n � Kn�z

�n
n =���n� and �n � 1� �n,

then the PT Borel and NP OPE ambiguities can cancel
against each other [23]. Taking a PV of the Borel integral
corresponds to averaging over the 
 possibilities. For
Q2 <�2 the modified expansion of Eq. (15) will have an
nth coefficient of the form

 

~C n�a�Q2�� � ~Cn�a�Q2��
~�n�1�O�a��: (76)

Now the exponent ~�n is related to the anomalous dimen-
sion of dimension 6, four-fermion operators associated
with UV renormalons [24], IR divergences associated
with these render the imaginary part ambiguous, and ~Cn �
~C�R�n 
 i ~C�I�n . The modified Borel representation of Eq. (12)
has ambiguities arising from UV renormalons. Assuming
that the UVn singularity is of the form ~Kn=�1� z=zn�

~� one
finds

 Im �DPT� � 
 ~Kn
�z~�

n

��~�n�
ezn=a�Q

2�a1�~�n�1�O�a��: (77)

This is structurally the same as the ambiguity in the modi-
fied NP expansion coefficient in Eq. (76), and if ~C�I�n �
~Kn�z

~�n
n =��~�n� and ~�n � 1� ~�n, the ambiguities can be

cancelled.
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In the one-chain (leading-b) approximation the renor-
malons are single or double poles corresponding to � � 1
or � � 2, and correspondingly the ambiguous imaginary
parts in Eqs. (75) and (77) contain factors of a1�� which
are 1 or 1=a, respectively. For the Adler function Im�D�L�

PT�
is obtained by making the change Ei! Ei
 i� in the first
line of Eq. (30) for Q2 >�2, and in the second line for
Q2 <�2. For continuity of the Im part at Q2 � �2 one
needs to choose the sign of i� oppositely in the two
regions. One then finds for Q2 >�2

 

Im�D�L�
PT�Q

2�� � 
i�
�X1
n�1

B1�n� 1�z2
n�1

�
�2

Q2

�
�n�1�

�
1

a�Q2�

X1
n�2

z2
n�1�B0�n� 1�

� zn�1B1�n� 1��
�
�2

Q2

�
n�1

�
: (78)

Correspondingly, for Q2 <�2 one finds

 Im �D�L�
PT�Q

2�� � �i�
�X1
n�2

A1�n� 1�z2
n�1

�
Q2

�2

�
n�1

�
1

a�Q2�

X1
n�2

z2
n�1�A0�n� 1�

� zn�1A1�n� 1��
�
Q2

�2

�
n�1

�
: (79)

Comparing these expressions with Eqs. (64) and (65) one
then finds that the imaginary part may be written directly in
terms of the characteristic function !D�t�,

 Im �D�L�
PT�Q

2�� � 

2�
b

�2

Q2 !
IR
D

�
�2

Q2

�
�Q2 >�2�

Im�D�L�
PT�Q

2�� � 

2�
b

�2

Q2 !
UV
D

�
�2

Q2

�
�Q2 <�2�

(80)

Continuity at Q2 � �2 then follows from continuity of
!�t� at t � 1. The C�R�n , and ~C�R�n coefficients of the OPE
and the modified NP expansion are in principle indepen-
dent of the imaginary part, but continuity at Q2 � �2 is
dependent upon relations between the A0;1 and B0;1 resi-
dues, such as Eqs. (38) and (40), and the more complicated
structures of Eqs. (69)–(71), needed for finiteness of theQ2
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0.4

(L
) (Q

2
)

Q2/ 2

2 4 6 8 10 12 14

-0.4

-0.2

0

0.2

0.4

(L
) (Q

2
)

Q2/ 2

FIG. 6. The bold curves corresponding to � � 0 are the perturbative corrections to the observables in Eqs. (21)–(23), as in Fig. 4.
The upper and lower curves correspond to the overall result including NP contributions with the choice � � 1 and � � �1,
respectively.
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derivatives. Although not strictly necessary for continuity,
this continuity follows naturally if we write

 D �L�
NP�Q

2��

�
�


2�i
b

�Z �2=Q2

0
dt
�
!D�t�� t

d!D�t�
dt

�
:

(81)
Here � is an undetermined overall real, nonperturbative
factor. The t integration here reproduces the expressions of
Eq. (80) in the two Q2 regions. If the PT component is PV
regulated one averages over the 
 possibilities, and com-
bining Eq. (81) with Eq. (47) for D�L�

PT�Q
2� one can write

down a result for D�L��Q2� for all values of Q2,
 

D�L��Q2� �
Z 1

0
dt
�
!D�t�a�tQ2� � �

�
!D�t� � t

d!D�t�
dt

�

� 	��2 � tQ2�

�
: (82)

The Q2 evolution is fixed by the nonperturbative constant
�, and by �. The infrared limit is D�L��0� � 0, we have
already noted that D�L�

PT�0� � 0, the NP component also
freezes to zero since on integrating the second term one
finds an IR limit of !IR

D �1� �!
UV
D �1� � 0, from continuity

of the characteristic function at t � 1. The same expression
holds for the other Euclidean observables K�L�

PT�Q
2� and

U�L�
PT�Q

2� on replacing !D�t� by !K�t� and !U�t�, re-
spectively. We plot in Fig. 6 the overall result for D�L��Q2�,
K�L��Q2� and U�L��Q2� for the choices � � 0, � � 1 and
� � �1. For the DIS sum rules !K�t�, !U�t� and their
first derivatives are continuous at t � 1. In the case of
U�L�

NP�Q
2� there are a total of three nonperturbative terms,

and hence the continuity of the characteristic function and
its first derivative fixes the form of the function up to an
overall constant factor. Thus Eq. (82) does indeed hold for
U�L��Q2� without conjecturing the form of Eq. (81).

VI. INFRARED FREEZING BEHAVIOR OF Re�e�

We turn in this section to a consideration of freezing
behavior of the Minkowskian quantity Re�e� which was
discussed in Ref. [2]. This treatment was criticized in
Ref. [3], which argued that in fact there is an unphysical
divergence in the infrared limit. We wish to address these
criticisms. Re�e��s� will be defined by Eq. (20) with the
perturbative corrections D�Q2� replaced by R�s�,

���
s
p

here
is the e�e� c.m. energy. R�s� is related to D��s� by
analytical continuation from Euclidean to Minkowskian.
One may write the dispersion relation

 R �s� �
1

2�i

Z �s�i

�s�i


dt
D�t�
t
: (83)

If D�t� is represented by a Borel representation as in
Eq. (9) one arrives at

 R �L�
PT�s� �

Z 1
0
dze�z=a�s�

sin��bz=2�

�bz=2
B�D�L�

PT��z�: (84)

There is now an extra oscillatory factor of
sin��bz=2�=��bz=2� arising from the analytical continu-
ation. In consequence each individual IR or UV renorma-
lon contribution at Q2 � �2 will be finite, and the
cancellation of Eq. (39) is not required. One can also
analytically continue the one-chain skeleton expansion
result for D�L�

PT�Q
2� to obtain

 R �L�
PT �s� �

2

�b

Z 1
0
dt!D�t� arctan

�
�ba�ts�

2

�
: (85)

Here the principal branch of arctan is assumed so it lies in
the interval ���=2;��=2�, and arctan�0� � 0. This form
is equivalent to the Borel representation of Eq. (84) for s >
�2, and to the modified Borel representation for s <�2.
Notice that the choice of principal branch is crucial if the
PV Borel sum is to be continuous at s � �2. The result
freezes to the IR limit R�L�

PT�0� � 0, since arctan�0� � 0 on
the principal branch. This freezing limit differs from that
found in the APT approach [9], where a freezing to an IR
limit of 2=b occurs. This freezing limit was also errone-
ously claimed in Ref. [2], but then the PV Borel sum is
discontinuous. In Ref. [3] unphysical singularities in the
region ��2 < s< 0 lead to extra terms and they find
 

R�L�
PT�s� �

2

�b

Z 1
0
dt!D�t� arctan

�
�ba�ts�

2

�

�
2

b

Z �2=s

0
dt!D�t� �

2

b

Z 0

��2=s
dt!IR

D �t�: (86)

These extra terms may be treated as contributions to
R�L�

NP�Q
2�. The final term leads to an infrared divergence

as s! 0, and has an expansion of the same form as the
OPE. Notice, however, that the Minkowskian OPE for
R�Q2� is pathological and contains delta-functions ��s�
and their derivatives [25]. It is only when a smearing
procedure inQ2 is used [26] that it makes sense. In contrast
for Euclidean quantities the regular OPE is potentially
well-defined, and no smearing is required.

We will now consider the evaluation of the PV Borel
integral for R�L�

PT , and correct the erroneous statements
made in Ref. [2] noted above. This can be expressed in
terms of generalized exponential integral functions
Ei�n; w�, defined for Rew> 0 by

 Ei �n;w� �
Z 1

1
dt
e�wt

tn
: (87)

One also needs the integral

 

Z 1
0
dze�z=a

sin��bz=2�

z
� arctan

�
�ba

2

�
: (88)

Here the principal branch of the arctan is again assumed.
Care needs to be taken when Rew< 0. With the standard
continuation one arrives at a function analytic everywhere
in the cut complex w-plane, except at w � 0, and with a
branch cut running along the negative real semiaxis.
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Explicitly [27]

 Ei �n; w� �
��w�n�1

�n� 1�!

�
� lnw� �E �

Xn�1

m�1

1

m

�

�
X
m�0

m�n�1

��w�m

�m� n� 1�m!
: (89)

The lnw contributes the branch cut along the negative real
semiaxis. To obtain the PV of the Borel integral one needs
to compensate for the discontinuity across the branch cut
and make the replacement Ei�n; w� ! Ei�n; w� �
i�sign�Imw�. One then finds that the IR renormalon con-
tributions to R�L�

PT�s� can be written in terms of the func-
tions

 ���p; q� � e�zq=a�s���1�q Im�Ei�p;�zq=a�s�

� i�bzq=2��

�
e�zq=a�s���1�qzp�1

q

�p� 1�!
�Re���zq=a�s��

� i�b=2�p�1�	�s��2�: (90)

The UV renormalon contributions can be written in terms
of the functions
 

���p; q� � ezq=a�s���1�q Im�Ei�p; zq=a�s� � i�bzq=2��

�
ezq=a�s���1�qzp�1

q

�p� 1�!
�Re����zq=a�s��

� i�b=2�p�1�	��2 � s�: (91)

The PV regulated R�L�
PT�s� is then given for all values of s

by
 

R�L�
PT�s� �R�L�

PT�s�jUV �R�L�
PT �s�jIR

�
2

�b
arctan

�
�ba�s�

2

�
�

2

�b

X1
j�1

�A0�j����1; j�

� �A0�j� � A1�j�zj����2; j��

�
2B0�2�

�b
���1; 2� �

2

�b

X1
j�3

�B0�j����1; j�

� �B0�j� � B1�j�zj����2; j��: (92)

Note that the presence of the 	-functions is crucial in
Eqs. (90) and (91). The terms they multiply are the extra
contributions necessary to obtain the PV when Rew< 0.
For s >�2 the second contribution is required for the IR
renormalon contribution, but for s <�2 it must be
switched off, otherwise the Borel integral will not be
correctly evaluated. With a�s�< 0 for s <�2, Rew< 0
occurs for the UV renormalon contributions and the extra
term must be switched on to obtain a PV regulation of the
UV component. Leaving out the 	-function in Eq. (90)
would cause an unphysical divergence in the infrared, and
leaving it out in Eq. (91) would cause asymptotic freedom
to fail in the ultraviolet. If the PV is correctly evaluated
with arctan remaining on the principal branch for s2 <�2

then one obtains R�L�
PT�0� � �2=�b� arctan�0� � 0. Notice

that at first sight the PV result appears to be discontinuous
at s � �2, as the 	-function contributions switch over.
However the discontinuity is given by the �
�1; j� terms,
and one finds, upon summing them, a discontinuity

 

2

b

X1
j�1

�B0�j���1�j � A0�j���1�j� �
2

b
B0�2� �

2

b
: (93)

Here the relation of Eq. (40) ensures pairwise cancellations
of terms, and B0�2� � 1 is left over. If we remain on the
principal branch, however, the arctan term has an equal
discontinuity of opposite sign, since �2=�b� arctan��1� �
1=b, whereas �2=�b� arctan��1� � �1=b, and overall
there is continuity at s � �2. In Ref. [2] it was wrongly
claimed that the PV result is discontinuous at s � �2, and
instead it was suggested to use a regulation where one
throws away the second terms in Eqs. (90) and (91).
These terms are of the form ��2=s�q, and �s=�2�q, respec-
tively, and so they can simply be absorbed into the regular
OPE and its modified form.

We finally discuss the ambiguous Im�R�L�
PT�s��. This may

be straightforwardly evaluated as
 

Im�R�L�
PT�s�� � 
i�

X1
n�1

�B0�n� � B1�n�zn�

� zn��1�n
�
�2

s

�
n
�s >�2�

Im�R�l�
PT�s�� � �i�

X1
n�1

�A0�n� � A1�n�zn�

� zn��1�n
�
�2

s

�
n
�s <�2�: (94)

If one defines !D�t� � !�1�D �t� � lnt!�2�D �t�, the split being
into the single and double pole renormalon contributions,
then comparing with Eqs. (64) and (65) one finds
 

Im�R�L�
PT�s�� � 


2�
b

�2

s
!�2�IRD

�
��2

s

�
�s >�2�

Im�R�L�
PT�s�� � 


2�
b

�2

s
!�2�UVD

�
��2

s

�
�s <�2�: (95)

Notice that only the double poles contribute since the
sin��bz=2�=��bz=2� analytical continuation term in
Eq. (83) contains zeros at z � 
zn which nullify the single
pole contributions. Whilst the characteristic function
!D�t� is continuous at t � 1, the !�2�D �t� function is dis-
continuous at t � �1. The discontinuity is 
2=b and
arises from the same sum in Eq. (93) which gives an
apparent discontinuity in the PV R�L�

PT �s� component,
although in the PT case this is cancelled by the arctan

term. Thus defined in this way Im�R�L�
PT�s�� is discontinu-

ous at s � �2. It would seem that the proper way to
proceed is rather to use the dispersion relation of
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Eq. (83) to analytically continue into the Minkowskian
region the expression for D�L�Q2 arrived at in Eq. (82).
Unfortunately the one-chain skeleton expansion form for
D�Q2� is hard to consistently analytically continue, which
was a key motivation for the alternative inverse Mellin
representation introduced in Ref. [28]. We shall defer
further discussion of the more subtle issue of
Minkowskian freezing until a later work.

VII. DISCUSSION AND CONCLUSIONS

We have shown in this paper that in the approximation of
the one-chain QCD skeleton expansion (leading-b approxi-
mation), the perturbative corrections to the parton model
result for Euclidean observables undergo a smooth freezing
to an infrared limit of zero. We explicitly studied the Adler
function, GLS sum rule and polarized and unpolarized
Bjorken DIS sum rules as explicit examples, and found
that they changed sign in the vicinity ofQ2 � �2, and then
froze to zero at Q2 � 0. Continuity and finiteness at Q2 �
�2 follow from continuity of the characteristic function
!�t�, and its derivatives at t � 1. The one-chain term is
equivalent to the standard Borel representation of Eq. (9)
for Q2 >�2, and to the modified Borel representation of
Eq. (12), previously proposed in Ref. [2], forQ2 <�2. For
the Adler function we established a dictionary between the
residues of the IR and UV renormalon singularities, and the
series expansion coefficients of !�t�. Continuity of !D�t�
and its first three derivatives at t � 1 implies relations
between the residues of IR and UV renormalon singular-
ities: Eqs. (38), (40), and (69)–(71). IR renormalons for
Q2 >�2 lie on the contour of integration in the Borel
representation, and similarly UV renormalons lie on the
contour of integration in the modified Borel representation
for Q2 <�2. In both cases these singularities lead to an
ambiguous imaginary part in D�L�

PT�Q
2�, which can be

cancelled against an ambiguous imaginary part in the
coefficients of the nonperturbative terms, in the two Q2

regions. The ambiguous imaginary part may be written
directly in terms of the characteristic function, as in
Eq. (80), and is continuous at Q2 � �2. If the real parts
of the condensates are to result in a D�L�

NP�Q
2� which is

continuous at Q2 � �2 this suggests that one should write
these in terms of the characteristic function as well, which
led us to conjecture Eq. (81) in which there is a real overall
nonperturbative factor � which is undetermined and
observable-dependent. All of these properties and results
hold in general for Euclidean observables for which a one-
chain result of the form of Eq. (6) can be written down. As
pointed out in Ref. [4] this is not possible for Minkowskian
observables such as Re�e� , and in this case the question of
freezing is more delicate. There is no characteristic func-
tion!R�t� to underwrite the smooth transition through s �
�2 from UV to IR. Indeed the Minkowskian gluon con-
densate OPE contribution is proportional to �0�s� [25], so

without a smearing procedure it will give an apparent
infrared divergence as s! 0. We corrected some errone-
ous statements about the continuity of R�L�

PT �s� at s � �2

made in [2]. The issue of Minkowskian freezing is inter-
esting and requires further investigation.

An interesting feature of the skeleton expansion repre-
sentation of Eq. (6) concerns the definition of a�Q2� for
Q2 <�2. In this region the result of Eq. (2) is not in fact
the solution of the RG equation, but is an analytical con-
tinuation of the Q2 >�2 result. However notice that in
evaluating D�L�

PT�Q
2� for Q2 >�2 one is integrating over

the region t <�2=Q2 where the analytically continued
a�Q2� is required. Also notice that QED skeleton expan-
sion results can be obtained simply by interchanging UV
and IR renormalons, and the limits Q2 ! 1 and Q2 ! 0.
The implication is that QCD in the IR energy region is
QED-like, and conversely that QED in the UV energy
region beyond the Landau ghost is QCD-like. Our result
of Eq. (82) is closely related to successful models for
power corrections based on isolating the IR renormalon
ambiguity, such as [29], and to the power correction model
of [30,31]. The latter postulates an infrared finite running
coupling, and uses a dispersive approach. The infrared
limit of the coupling ��0 is a universal parameter in this
picture, whereas � in our approach is expected to be
observable-dependent. A more sophisticated discussion
of power corrections to DIS sum rules has recently ap-
peared in [32]. Notice that continuity atQ2 � �2 is the key
constraint leading us to suggest Eq. (81), which is arguably
not a model for power corrections but the actual form of the
NP component in the one-chain (leading-b) approxima-
tion. In future work we intend to report on fits of � and � to
experimental data on the Adler function (e.g., the analysis
of [33]), and DIS sum rules. It would also be interesting to
compare our results for theQ2-dependence of the polarized
and unpolarized Bjorken sum rules in the light of the
relations between them noted in Ref. [34]. Whilst the
freezing is straightforward to analyze in the leading-b,
one-chain approximation, it is much harder to analyze at
the two-chain level, where the anomalous dimensions for
the operators will enter. The IR$ UV conformal relations
between renormalon residues and condensate coefficients
would appear to be the key ingredient in the freezing
picture, and there is hope that they can continue to hold
at higher orders in the QCD skeleton expansion, if indeed
such an expansion can be consistently formulated [15].
There is clearly much still to investigate.
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