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We describe how the inclusion of the gluonic Polyakov loop incorporates large gauge invariance and
drastically modifies finite temperature calculations in chiral quark models after color neutral states are
singled out. This generates an effective theory of quarks and Polyakov loops as basic degrees of freedom.
We find a strong suppression of finite temperature effects in hadronic observables triggered by approxi-
mate triality conservation (Polyakov cooling), so that while the center symmetry breaking is exponentially
small with the constituent quark mass, chiral symmetry restoration is exponentially small with the pion
mass. To illustrate the point we compute some low-energy observables at finite temperature and show that
the finite temperature corrections to the low energy coefficients are Nc suppressed due to color average of
the Polyakov loop. Our analysis also shows how the phenomenology of chiral quark models at finite
temperature can be made compatible with the expectations of chiral perturbation theory. The implications
for the simultaneous center symmetry breaking/chiral symmetry restoration phase transition are discussed
also.
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I. INTRODUCTION

The general belief that QCD undergoes a phase transi-
tion to a quark-gluon plasma phase at high temperature has
triggered a lot of activity both on the theoretical and on the
experimental side. The original argument put forward by
Casher [1] suggesting that confinement implies dynamical
chiral symmetry breaking and hence that the chiral and
deconfinement phase transitions take place simultaneously
at least at zero chemical potential has been pursued and
so far confirmed in theoretical studies on the lattice [2].
This also agrees with the phenomenological determina-
tions of the vacuum energy density in the bag model,
with an energy density difference between the Wigner
and Goldstone realizations of chiral symmetry. It has also
been shown that in the large Nc limit with the temperature
T kept fixed, if a chiral phase transition takes place it
should be first order [3].

The coupling of QCD distinctive order parameters at
finite temperature to hadronic properties has been the sub-
ject of much attention over the recent past [4–9] mainly in
connection with theoretical expectations on the formation
of quark-gluon plasma and the onset of deconfinement.
Indeed, even if such a state of matter is produced in
existing (Relativistic Heavy Ion Collider, Super Proton
Synchrotron [10,11]) and future (Large Hadron Collider)
facilities, the states which are detected are hadrons created
in a hot environment. Thus, it makes sense to study the
properties of hadrons in a medium which can undergo a
confinement-deconfinement phase transition. For heavy
masses, quarks become static sources and there is a general
consensus that the order parameter can be taken to be the

Polyakov loop or thermal Wilson line [12] where the
breaking of the center symmetry signals the onset of de-
confinement. Dynamical light quarks, however, break ex-
plicitly the center symmetry and no criterion for
deconfinement has been established yet [13,14]. In QCD,
there has been increasing interest in developing effective
actions for the Polyakov loop as a confinement-
deconfinement order parameter because of their relevance
in describing the phase transition from above the critical
temperature [15–18].

On the other hand, in a hot medium, one also expects
that the spontaneously broken chiral symmetry is restored
at some critical temperature. For this chiral phase transition
the quark condensate is commonly adopted as the relevant
order parameter. The melting of the chiral quark conden-
sate has been observed on the lattice [2], is suggested by
chiral perturbation theory extrapolations [19,20], and is
numerically reproduced in chiral quark models before
[21,22] and after inclusion of pion corrections [23] (for a
review see e.g. Ref. [24]).

Where theory has most problems is precisely in the
interesting intermediate temperature regime around the
phase transition, because both the lightest Goldstone par-
ticles and the Polyakov loop degrees of freedom should
play a role, if they coexist. Up to now it is uncertain how
the corresponding states couple to each other from a fun-
damental QCD viewpoint, hence some modeling is re-
quired. Based on previous works [6,8,25], and to comply
with chiral symmetry, it seems natural to couple chiral
quark models and the Polyakov loop in a minimal way as
an effective space-dependent color chemical potential. The
work in Ref. [8] accounts for a crossover between the
restoration of chiral symmetry and the spontaneous break-
ing of the center symmetry, reproducing qualitatively the
features observed on the lattice simulations [26] and which
find a natural explanation in terms of dimension two con-
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densates [27]. In this regard we want to argue below that
the special role played by the gauge symmetry at finite
temperature actually requires this coupling and elaborate
on the consequences of it when the quantum gluon effects
are considered.

The organization of the paper is as follows. We review
some facts on large gauge symmetry at finite temperature
in Sec. II which are put into the context of chiral quark
models. Next, we address the problem suffered by chiral
quark models at finite temperature in Sec. III where we
argue that the origin of the difficulty is related to a defec-
tive treatment of the large gauge symmetry at finite tem-
perature. Thus, to comply with gauge invariance at finite
temperature one should at least couple the quarks to the A0

gluon field. We do this in Sec. IV. This is equivalent to
making the replacement

 @0 ! @0 � iA0; (1.1)

which corresponds to an ~x-dependent chemical potential
coupling in the color fundamental representation.
Obviously, this coupling introduces a color source into
the problem for a fixed A0 field. In order to project onto
the color neutral states, we integrate over the A0 field, in a
gauge invariant manner. In Sec. V we describe the con-
sequences of such a coupling and projection in chiral quark
models for a variety of observables at the one quark loop
approximation. Actually, as we will show, there is an
accidental Z�Nc� symmetry in the model which generates
a triality (super)selection rule at this level of approxima-
tion, from which a strong thermal suppression O�e�NcM=T�
follows in the quenched approximation. This puts some
doubts on whether chiral quark models do predict a chiral
phase transition at realistic temperatures as we advanced in
previous communications [28,29]. Corrections beyond one
quark loop are discussed in Sec. VI where we see that
the suppression at low temperatures actually becomes
O�e�m�=T�, very much along the expectations of chiral
perturbation theory (ChPT) [19]. Gluonic corrections and
local corrections in the Polyakov loop are analyzed also in
this section. In view of our discussions we illustrate in
Sec. VII the situation with schematic dynamical calcula-
tions involving quantum and local Polyakov loops in the
unquenched theory as compared to lattice studies. In
Sec. VIII we extend these calculations to the region around
the phase transition. Finally, in Sec. IX, we summarize our
points and draw our main conclusions.

II. GAUGE INVARIANCE OF CHIRAL QUARK
MODELS AT FINITE TEMPERATURE AND THE

POLYAKOV LOOP

In this section we review some relevant and naı̈vely very
disparate concepts of gauge symmetry at finite tempera-
ture, Sec. II A, and the center symmetry in gluodynamics,
Sec. II B, as well as the standard chiral quark models,
Sec. II C, in order to fix our notation for the rest of the

paper. Both subjects are well known on their own, although
rarely discussed simultaneously, and the reader familiar
with any of them may skip the corresponding subsections.
Advancing the result of subsequent discussions made in
latter sections, the basic Polyakov chiral quark model is
first introduced in Sec. II D. The conflict between both
large gauge symmetry and chiral quark models is discussed
in Sec. III. The solution to the problem is elaborated in
Sec. IV where the coupling of the Polyakov loop to chiral
quark models is motivated.

A. Large gauge symmetry

One of the most striking features of a gauge theory like
QCD at finite temperatures is the nonperturbative manifes-
tation of the non-Abelian gauge symmetry. Indeed, in the
Matsubara formalism of quantum field theory at finite
temperature, the space-time becomes a topological cylin-
der: one introduces a compactified Euclidean imaginary
time [30] and evaluates the path integral subjecting the
fields to periodic or antiperiodic boundary conditions for
bosons and fermions, respectively, in the imaginary time
interval � � 1=T, where T is the temperature. We use the
Euclidean notation x4 � ix0 and A4� ~x; x4� � iA0� ~x; x0�.
Thus, only periodic gauge transformations, g� ~x; x4� �
g� ~x; x4 � ��, are acceptable since the quark and gluon
fields are stable under these transformations. In the
Polyakov gauge @4A4 � 0, with A4 a diagonal traceless
Nc � Nc matrix, one has for the gauge SU�Nc� group
element

 g�x4� � diag�ei2�x4njT� (2.1)

�
PNc
j�1 nj � 0� the following gauge transformation on the

A4 component of the gluon field

 A4 ! A4 � 2�Tdiag�nj�: (2.2)

Thus, in this particular gauge, gauge invariance manifests
as the periodicity in the A4 gluon field. This property is
crucial and prevents from the very beginning from the use
of a perturbative expansion in the gluon field, A4, at finite
temperature. This large gauge symmetry1 can be accounted
for properly by considering the Polyakov loop or untraced
Wilson line as an independent degree of freedom,

 ��x� � T exp i
Z x4�1=T

x4

dx04A4� ~x; x04�; (2.3)

where T indicates the Euclidean temporal ordering opera-
tor and A4 the gluon field. Under a general periodic gauge

1Technically speaking the transformations (2.1) may not be
large in the topological sense (i.e., homotopically nontrivial).
This depends on the topology of the spatial manifold as well as
on the gauge group [31]. They are topologically large within the
Polyakov gauge.
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transformation one gets

 ��x� ! g�x���x�gy�x�: (2.4)

In the Polyakov gauge, which we assume from now on, �
becomes

 �� ~x� � eiA4� ~x�=T; (2.5)

and so it is invariant under the set of transformations (2.1).
The failure of perturbation theory at finite temperature in a
gauge theory has generated a lot of discussion in the past—
mainly in connection with topological aspects, Chern-
Simons terms, anomalies, etc. In the case of the topological
Chern-Simons term radiatively induced by fermions in 2�
1 dimensions [32] it was puzzling to find, in the perturba-
tive treatment, that the Chern-Simons quantization condi-
tion [33] was violated at finite temperature [34,35]. It was
subsequently shown that, within a nonperturbative treat-
ment, no contradiction arises [36]. In [37,38] it was shown
that a derivative expansion approach, suitably defined at
finite temperature, was appropriate to deal with this prob-
lem. We will use this approach in the present work.

B. Center symmetry in gluodynamics

In pure gluodynamics at finite temperature one can use
the center of the gauge group to extend the periodic trans-
formations to aperiodic ones [39],

 g
�
~x;

1

T

�
� zg� ~x; 0�; zNc � 1; (2.6)

so that z is an element of Z�Nc�. An example of such a
transformation (with z � ei2�=Nc) in the Polyakov gauge is
given by

 g�x4� � diag�ei2�x4njT=Nc�; n1 � 1� Nc;

nj�2 � 1;
(2.7)

and the gauge transformation on the A4 component of the
gluon field is

 A4 ! A4 �
2�T
Nc

diag�nj�: (2.8)

Under these transformations both gluonic action, measure
and boundary conditions are invariant. The Polyakov loop,
however, transforms as the fundamental representation of
the Z�Nc� group, i.e. �! z�, yielding h�i � zh�i and
hence h�i � 0. More generally, in the center symmetric or
confining phase

 h�ni � 0 for n � kNc; k 2 Z: (2.9)

Actually, this center symmetry is spontaneously broken

above a critical temperature, TD � 270 MeV for Nc � 3
[40]. The antiperiodic quark field boundary conditions are
not preserved under nontrivial center transformations since
q� ~x; 1=T� ! g� ~x; 1=T�q� ~x; 1=T� � �zg� ~x; 0�q� ~x; 0� in-
stead of �g� ~x; 0�q� ~x; 0�. A direct consequence of such
property is the vanishing of contributions to the quark
bilinear of the form2

 h �q�n=T�q�0�i � 0 for n � kNc; k 2 Z (2.10)

(in the confining phase) since under the large aperiodic
transformations given by Eq. (2.6) �q�n=T�q�0� !
z�n �q�n=T�q�0�. This generates an exact selection rule in
quenched QCD. The center symmetry is explicitly broken
by the presence of dynamical quarks and the choice of an
order parameter for confinement is not obvious [41]. As a
consequence the selection rule implied by Eq. (2.10) is no
longer fulfilled. Nevertheless, such selection rule becomes
relevant to chiral quark models in the large Nc limit and
departures from it are found to be suppressed within chiral
quark models in the large Nc limit at low temperatures, due
to the spontaneous breaking of chiral symmetry which
generates heavier constituent quarks from light current
quarks.3 This issue will be analyzed along this paper.

C. Chiral quark models at finite temperature

Chiral quark models have been used in the past to
provide some semiquantitative understanding of hadronic
features in the low energy domain. At zero temperature
chiral quark models are invariant under global SU�Nc�
transformations. There has always been the question of
how the corresponding constituent quark fields transform
under local color transformations or whether a physical
gauge invariant definition can be attached to those fields
[42]. If we assume that they transform in the same way as
bare quarks, it seems unavoidable to couple gluons to the
model in the standard way to maintain gauge invariance as
done in previous works (see e.g. Refs. [43,44]). These
gluon effects are treated within perturbation theory at T �
0. This approximation induces some subleading correc-
tions in the calculation of color singlet states where the
effects of confinement can be almost completely ignored
for the low lying states [45]. This perturbative gluon dress-
ing also complies with the interpretation that the whole
quark model is defined at a low renormalization scale, from
which QCD perturbative evolution to high energies pro-
cesses can be successfully applied [46]. When going to

2In this formula h �q�n=T�q�0�i denotes contributions to the
quark propagator including only paths which wind n times
around the thermal cylinder. The average is for the quenched
theory.

3We emphasize that our use of the approximate rule is in
contrast to the so-called canonical ensemble description of QCD
where, upon projection, triality is assumed to be exact even in
the presence of dynamical quarks. See e.g. the discussion in [41].
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finite temperature, chiral quark models predict already at
the one-loop level a chiral phase transition [21,22] at
realistic temperatures. However, even at low temperatures,
single quark states are excited what is obviously not very
realistic for it means that the hot environment is in fact a
hot plasma of quarks. On the other hand, since the con-
stituent quark mass is about a factor of 2 larger than the
pion mass, pion loops dominate at low temperatures [23]
(for a review see e.g. Ref. [24]), as expected from chiral
perturbation theory [19,20]. In the present work we will
deal with two chiral quark models, the Nambu-Jona-
Lasinio (NJL) model [47–49], where quarks are charac-
terized by a constant constituent mass in the propagator
due to the spontaneous breaking of chiral symmetry, and
the recently proposed spectral quark model (SQM) [50–
53], where the notion of analytic confinement is explicitly
verified. For completeness we review briefly the corre-
sponding effective action below. One common and attrac-
tive feature of chiral quark models is that there is a one-to-
one relation to the large Nc expansion and the saddle point
approximation of a given path integral both at zero and at
finite temperature.

1. The NJL model

The NJL Lagrangian as will be used in this paper reads
in Minkowski space4

 L NJL � �q�i@6 � M̂0�q�
G
2

XN2
f�1

a�0

�� �q�aq�2 � � �q�ai�5q�2�;

(2.11)

where q � �u; d; s; . . .� represents a quark spinor with
Nc colors and Nf flavors. The �’s are the Gell-Mann
flavor matrices of the U�Nf� group and M̂0 �

diag�mu;md;ms; . . .� stands for the current quark mass
matrix. In the limiting case of vanishing current quark
masses, the classical NJL action is invariant under the
global U�Nf�R 	 U�Nf�L group of transformations. Using
the standard bosonization procedure [54], it is convenient
to introduce auxiliary bosonic fields �S; P; V; A� so that
after formally integrating out the quarks one gets the
effective action5

 �NJL
S; P� � �iNc Tr log�iD� �
1

4G

Z
d4x trf�S2 � P2�:

(2.12)

We use Tr for the full functional trace, trf for the trace in
flavor space, and trc for the trace in color space. Here, the
Dirac operator is given by

 iD � i@6 � M̂0 � �S� i�5P�: (2.13)

The divergencies in Eq. (2.12) from the Dirac determinant
can be regularized in a chiral gauge invariant manner by
means of the Pauli-Villars method, although the issue of
regularization is of little relevance at finite temperature
[22] for T � �. This model is known not to confine and
to produce a constituent quark mass M 300 MeV due to
the spontaneous breaking of chiral symmetry at zero tem-
perature. The Goldstone bosons can be parameterized by
taking

 S� iP �
����
U
p

�
����
U
p

(2.14)

with U a unitary matrix [see Eq. (2.19)] with �y � �, and
one can use that � � M�� with � the scalar field
fluctuation. The partition function for this model can be
written as

 ZNJL �
Z
DUD�ei�NJL
U;��: (2.15)

By minimizing �NJL, one gets S � M, which generates
the spontaneous breaking of chiral symmetry, and one
obtains the gap equation

 

1

G
� �i4Nc

X
i

ci
Z d4k

�2��4
1

k2 �M2 ��2
i

; (2.16)

where the Pauli-Villars regularization has been used. The
Pauli-Villars regulators fulfill c0 � 1, �0 � 0 and the
conditions

P
ici � 0,

P
ici�

2
i � 0, in order to render finite

the logarithmic and quadratic divergencies, respectively. In
practice it is common to take two cutoffs in the coincidence
limit �1 ! �2 � � and hence

P
icif��

2
i � � f�0� �

f��2� ��2f0��2�.

2. The SQM model

In the SQM the effective action reads

 �SQM
U� � �iNc
Z
d!��!�Tr log�iD�; (2.17)

where the Dirac operator is given by

 iD � i@6 �!U�5
� M̂0 (2.18)

and ��!� is the spectral function of a generalized Lehmann
representation of the quark propagator with ! the spectral
mass defined on a suitable contour of the complex plane
[50–53]. The use of certain spectral conditions guarantees
finiteness of the action. The matrixU � u2 � ei

��
2
p

�=f (f is
the pion weak decay constant in the chiral limit) is the
flavor matrix representing the pseudoscalar octet of me-
sons in the nonlinear representation,

4We use Bjorken-Drell convention throughout the paper.
5Obviously at finite temperature the quark fields satisfy anti-

periodic boundary conditions whereas the bosonized fields obey
periodic boundary conditions.
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 � �

1��
2
p �0 � 1��

6
p � �� K�

�� � 1��
2
p �0 � 1��

6
p � K0

K� �K0 � 2��
6
p �

0BB@
1CCA:
(2.19)

A judicious choice of the spectral function based on vector
meson dominance generates a quark propagator with no
poles (analytic confinement). More details of the SQM at
zero and finite temperature relevant for the present paper
are further developed in Appendix A. The partition func-
tion for the SQM can be written as

 ZSQM �
Z
DUei�SQM
U�: (2.20)

D. The Polyakov chiral quark model

As we will show in Sec. III there is a conflict between
large gauge invariance at finite temperature, reviewed in
the previous Secs. II A and II B, and the standard chiral
quark models presented in Sect. II C. The chiral quark
model coupled to the Polyakov loop that will be motivated
in Sec. IVand analyzed in the rest of this paper synthesizes
the solution and corresponds to simply make the replace-
ment

 @4 ! @4 � iA4 (2.21)

in the Dirac operators, Eq. (2.13) and (2.18), and integrat-
ing further over the A4 gluon field in a gauge invariant
manner [55] yielding a generic partition function of the
form

 Z �
Z
DUD�ei�G
��ei�Q
U;��; (2.22)

where DU is the Haar measure of the chiral flavor group
SU�Nf�R � SU�Nf�L and D� the Haar measure of the
color group SU�Nc�, �G is the effective gluon action
whereas �Q stands for the quark effective action. If the
gluonic measure is left out A4 � 0 and � � 1 we recover
the original form of the corresponding chiral quark model,
where there exists a one-to-one mapping between the loop
expansion and the large Nc expansion both at zero and
finite temperature. Equivalently one can make a saddle
point approximation and corrections thereof. In the pres-
ence of the Polyakov loop such a correspondence does not
hold, and we will proceed by a quark loop expansion, i.e. a
saddle point approximation in the bosonic field U, keeping
the integration on the Polyakov loop �. The work of
Ref. [6] corresponds to make also a saddle point approxi-
mation in �. In Sec. V we stick to the one-loop approxi-
mation and keep the group integration. This is the minimal
way to comply with center symmetry at low temperatures.
Although in principle ��x� is a local variable, in what
follows we will investigate the consequences of a spatially
constant Polyakov loop. In this case the functional integra-

tion D� becomes a simple integration over the gauge
group d�. The issue of locality is reconsidered in
Sec. VI C.

III. UNNATURALNESS OF CHIRAL QUARK
MODELS AT FINITE TEMPERATURE

In this section we analyze the problem of chiral quark
models at finite temperature, its interpretation in terms of
thermal Boltzmann factors as well as the corresponding
conflicts with chiral perturbation theory at finite
temperature.

A. The problem

As already mentioned, chiral quark models at finite
temperature have a problem since, even at low tempera-
tures, excited states with any number of quarks are in-
volved, whether they can form a color singlet or not.
This is hardly a new observation, the surprising thing is
that nothing has been done about it so far, attributing the
failure to common diseases of the model, such as the lack
of confinement. To illustrate this point in some more detail
we will use a constituent quark model like the NJL model,
where the quark propagator has a constant mass. To be
specific, let us consider as an example the calculation of the
quark condensate for a single flavor in constituent quark
models with mass M. At finite temperature in the
Matsubara formulation we have the standard rule

 

Z dk0

2�
F� ~k; k0� ! iT

X1
n��1

F� ~k; i!n� (3.1)

with !n the fermionic Matsubara frequencies, !n �
2�T�n� 1=2�. For the discussion in this and forthcoming
sections it is convenient to elaborate this formula a bit
further. Using Poisson’s summation formula

 

X1
m��1

F�m� �
X1

n��1

Z 1
�1

dxF�x�ei2�xn (3.2)

one gets the rule

 

Z dk0

2�
F� ~k; k0� ! i

X1
n��1

��1�n
Z dk4

2�
F� ~k; ik4�e

ink4=T:

(3.3)

In terms of the Fourier transform, one obtains for a finite
temperature fermionic propagator starting and ending at
the same point,

 

~F�x; x� !
X1

n��1

��1�n ~F� ~x; x0 � in=T; ~x; x0�: (3.4)

Note that the zero temperature contribution corresponds to
the term n � 0 in the sum. From a path integral point of

POLYAKOV LOOP IN CHIRAL QUARK MODELS AT . . . PHYSICAL REVIEW D 74, 065005 (2006)

065005-5



view, the zero temperature term comes from contractile
closed paths whereas thermal contributions come from
closed paths which wind n times around the thermal cyl-
inder. For fermions, each winding picks up a �1 factor.

For the (single flavor) condensate we get6

 

h �qqi� � �iNc
X1

n��1

��1�n trDiracS�x�
��������x0�in=T

� �i4MNc
X1

n��1

Z d4k

�2��4
e�ik�x��1�n

k2 �M2

��������x0�in=T

� h �qqi � 2
NcM2T

�2

X1
n�1

��1�n

n
K1�nM=T�: (3.5)

In writing the previous formula, finite cutoff corrections,
appearing in the chiral quark models such as the NJL
model at finite temperature, have been neglected. This is
not a bad approximation provided the temperature is low
enough T � � (typically one has � � 1 GeV so even for
T � M � 300 MeV the approximation works). At low
temperatures we may use the asymptotic form of the
Bessel function [56]

 Kn�z�  e
�z

�����
�
2z

r
(3.6)

to get for the leading contribution,

 h �qqi�  h �qqi � 4Nc

�
MT
2�

�
3=2
e�M=T: (3.7)

This means a rather flat dependence on temperature for
T & M. [Numerically, the correction is about 1% for T �
100 MeV for M � 300 MeV and h �qqi � ��240 MeV�3.]
The strong attractive interaction which causes chiral dy-
namical symmetry breaking is reduced at finite tempera-
ture and the energy is decreased by a decreasing
constituent quark mass M�, eventually leading to a chiral
phase transition [21,22]; the critical temperature is
T � 200 MeV.7 The coincidence of this number with lat-
tice simulations has been considered a big success of chiral
quark models and has triggered a lot of activity in the past
(see e.g. Ref. [24] and references therein). We show below
that this apparent success might be completely accidental,
as it does not incorporate basic physical requirements.

B. Interpretation

An interpretation of the previous formula for the con-
densate is in terms of statistical Boltzmann factors. Using
the definition of the quark propagator in coordinate space

 S�x� �
Z d4k

�2��4
e�ik�x

k6 �M
� �i@6 �M���x� (3.8)

with

 ��x� �
Z d4k

�2��4
e�ik�x

k2 �M2 �
M2

4�2i

K1�
����������������
�M2x2
p

�����������������
�M2x2
p ; (3.9)

at low temperature we get

 S� ~x; i=T�  e�M=T: (3.10)

Thus, for h �qqi� and up to prefactors, we have the exponen-
tial suppression for a single quark propagator at low tem-
perature. Using Eqs. (3.5) and (3.6), the quark condensate
can be written in terms of Boltzmann factors with a mass
formula Mn � nM corresponding to any number of quark
states.

One might object against the previous interpretation by
arguing that these factors only reflect in the Euclidean
coordinate space the pole of the propagator in Min-
kowski momentum space, and hence that they are a natural
consequence of the lack of confinement. While the former
statement is true, in the sense that singularities in Min-
kowski momentum space can be seen at large Euclidean
coordinate values, the conclusion drawn from there is
incorrect. As shown in Ref. [52] (see Appendix A) quark
propagators with no poles but cuts can also produce a
Boltzmann factor without prefactors, as it should be.8 To
the same level of approximation, i.e. one quark loop, in the
SQM we get (see Appendix A for details)

 

h �qqi�

h �qqi
� tanh�MS=4T�

� 1� 2e�MS=2T � 2e�MS=T � � � � ; (3.11)

where the ‘‘Boltzmann’’ constituent mass can be identified
with half the scalar meson mass M � MS=2.9 These cal-
culations illustrate our main point and can be extended to
any observables which are color singlets in the zero tem-
perature limit; quark model calculations at finite tempera-
ture in the one-loop approximation generate all possible
quark states,

 O � � O�Oqe�M=T �Oqqe�2M=T � � � � : (3.12)

While there is no doubt that the leading term Oq has a
Boltzmann factor corresponding to a single quark state, the
term with mass 2M could in principle be equally a qq
diquark state or a �qq meson state. The latter possibility

6In what follows we use an asterisk as superscript for finite
temperature quantities, i. e. O� � OT .

7The minimization can be written as the equation h �qqi� �
�M��=M� � h �qqi�M�=M, so one has to know the mass depen-
dence of the condensate at zero temperature.

8Actually, the previous counter example shows that the lack of
confinement has more to do with the presence of the exponential
prefactors which are related to the available phase space.

9This relation together with the large Nc quark-hadron duality
relation MS � MV discussed in Ref. [53] yields M � MV=2
385 MeV, a reasonable value.
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should be discarded, however. At one loop a �qq pair can
only come from the quark line going upwards and then
downwards in imaginary time propagation. Since such a
path does not wind around the thermal cylinder it is already
counted in the zero temperature term. The qq contribution,
instead, corresponds to the single quark line looping twice
around the thermal cylinder and is a proper thermal con-
tribution. This is confirmed below. These Boltzmann fac-
tors control the whole physics, and temperature effects are
sizeable for T � M.

C. Conflicts with ChPT

Our observation on the Boltzmann factor is rather puz-
zling because it seems hard to understand how it is possible
to generate nonsinglet states by just increasing the tem-
perature. The reason has to do with the fact that the
condensate itself is not invariant under Z�Nc� transforma-
tions at finite temperature. For the example of the conden-
sate we trivially obtain

 h �qqi� �
X1

n��1

��1�nh �q�x0�q�0�i
��������x0�in=T

(3.13)

i.e., the condensate at finite temperature can be written as a
coherent sum of nonlocal quark condensates at zero tem-
perature. If we make a gauge transformation of the central
type, we get

 h �qqi� !
X1

n��1

��z�nh �q�x0�q�0�i
��������x0�in=T

(3.14)

i.e., the condensate can be decomposed as a sum of irre-
ducible representations of a given triality n. Thus, the state
with Boltzmann factor e�nM=T is indeed a multiquark state.

This avoids the paradox, and suggests that in order to
make a (centrally extended) gauge invariant definition of
the condensate we could simply discard from the sum those
terms which do not have zero triality, i.e. we would get

 h �qqi�jsinglet �
X1

n��1

��1�nNch �q�x0�q�0�i
��������x0�iNcn=T

:

(3.15)

This would generate as a first thermal correction a term
with a Boltzmann factor corresponding to mass NcM (a
baryon) which is obviously very much suppressed. Since a
quark loop generates a dependence proportional to Nc we
would obtain a Nce�MNc=T dependence.

Another problem now comes from comparison with the
expectations of chiral perturbation theory at finite tempera-
ture [19]. In the chiral limit, i.e., for m� � 2�T � 4�f�
the leading thermal corrections to the quark condensate for
Nf � 2, for instance, are given by

 h �qqi�jChPT � h �qqi
�

1�
T2

8f2
�
�

T4

384f4
�
� � � �

�
: (3.16)

Thus, the finite temperature correction is Nc suppressed as
compared to the zero temperature value, since f2

� scales as
Nc. This feature remains for finite pion mass and is generic
to any thermal correction in ChPT; the dominant contribu-
tion comes from quantum pionic fluctuations and not from
quark thermal excitations. Although the previous formula
predicts a lowering of the quark condensate, it cannot
describe the chiral phase transition since ChPT assumes
from the start a nonvanishing chiral condensate. In this
sense, the scaling behavior of the critical temperature with
f� and therefore with Nc suggested from direct extrapola-
tion of the formula can only be regarded as an assumption.

At this point we should remind that the mechanism by
which the chiral symmetry is restored at finite temperature
in standard chiral quark models in the one quark loop
approximation is quite different from the trend deduced
from ChPT based mainly on pion loops. While in the first
case it is due to populating states of the Dirac levels with
the Fermi-Dirac thermal factor and a sudden decrease of
the constituent quark mass gap 2M, in ChPT the ‘‘phase
transition’’ is merely due to large quark-antiquark excita-
tions with the lightest pion quantum numbers with a fixed
gap (otherwise ChPT method cannot be applied). These
two pictures of the chiral symmetry restoration are not dual
to each other; the Nc behavior of the critical temperature is
different since in chiral quark models one has Tc M
N0
c while in ChPT the extrapolated value of the ‘‘critical

temperature’’ is Tc  2
���
2
p
f� 

������
Nc
p

. Quantum fluctua-
tions have been included in chiral quark models at finite
temperature [23] (for a review see e.g. Ref. [24]) and they
are known to be 1=Nc suppressed. Actually, the subleading
1=Nc contribution reproduces the first term of ChPT,
Eq. (3.16), thus largely dominating at low temperatures.
Taking into account that ChPT by itself and more refined
approaches incorporating meson resonance effects [57,58]
provide similar values of the ‘‘critical temperature’’ quite
close to the lattice predictions [2] for dynamical fermions
and extrapolated to the chiral limit, one may wonder what
is the meaning of the mean field quark chiral phase tran-
sition predicted in the past [21,22,24] and which has be-
come a justification for chiral quark models at finite
temperatures. These problems are also common to models
where quarks and mesons are regarded as independent
degrees of freedom.

We will see in the rest of the paper how a convenient Nc
suppression of quark thermal corrections arises naturally
when a color source, the Polyakov loop, is coupled to the
chiral quark model and subsequent projection onto color
neutral states is carried out. In this scenario one would have
a large transition temperature Tc  NcM due to quarks, i.e.
no symmetry restoration due to filling in the states
above the Dirac levels in the absence of dynamical gluons
and in the quenched approximation (Polyakov cooling).
Nonperturbative gluonic corrections modify this picture;
they do predict instead a critical temperature roughly equal
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the deconfinement phase transition, Tc � TD. Finally, pion
loops are protected from additional suppressions, so that
the final result will be fully compatible with the ChPT
behavior at low temperature.

IV. COUPLING THE POLYAKOV LOOP IN CHIRAL
QUARK MODELS

A. General considerations

As we have said, one can formally maintain gauge
invariance at zero temperature by coupling gluons to the
model. In the spirit of the model these degrees of freedom
should be treated within perturbation theory, since the
constituent quarks carry some information on nonpertur-
bative gluon effects (see e.g. Refs. [43,44] for explicit
calculations in the low energy limit). At finite temperature
the situation is radically different; a perturbative treatment
of the A0 component of gluon field manifestly breaks
gauge invariance (namely, under large gauge transforma-
tions). The consequences of treating such a coupling non-
perturbatively in the case of a constant A0 field are
straightforward and enlightening (see below for a discus-
sion on the x-dependent case).

Actually, in a more general context, the Polyakov loop
appears naturally in any finite temperature calculation in
the presence of minimally coupled vector fields within a
derivative expansion or a heat-kernel expansion approach.
In this case, as shown in [31,59], a local one-loop quantity,
such as the effective Lagrangian or an observable, takes the
form

 L �x� �
X
n

tr
fn���x��On�x��; (4.1)

where tr acts on all internal degrees of freedom, n labels all
possible local gauge invariant operators On�x� (i.e. con-
taining covariant derivatives), possibly with breaking of
Lorentz symmetry down to rotational symmetry, and
fn���x�� are temperature-dependent functions of the
Polyakov loop which replace the numerical coefficients
present in the zero temperature case. In this general context
��x� would be the local Polyakov loop of all minimally
coupled fields.10 In particular, a chemical potential would
give a contribution e�=T . Here we can see the necessity of
the presence of � in (4.1): � being a constant, it gives no
contribution in the covariant derivative and so in On�x�,
therefore the chemical potential can only act through the
presence of the Polyakov loop in the expression. This
consideration also illustrates the breaking of gauge invari-
ance in a perturbative treatment of �: e�=T depends peri-
odically on the chemical potential, with period 2�iT; this
is a consequence of the coupling of � to the integer

quantized particle (or rather charge) number. Such period-
icity would be spoiled in a perturbative treatment. Note
that such periodicity is equivalent to one-valuedness of the
functions fn in (4.1).

B. Coupling the Polyakov loop

Coming back to chiral quark models with gluonic
Polyakov loops, in fact, the analogy with the chemical
potential has been invoked in a recent proposal of
Fukushima [6],11 which suggests coupling chiral quark
models to the Polyakov loop at finite temperature in this
way. Our own approach is similar, except that, as in (4.1),
we consider a local Polyakov loop �� ~x� coupled to the
quarks. This is what comes out of explicit one-loop calcu-
lations within a derivative expansion approach at finite
temperature [59,62,63]. In those calculations there is a
loop momenta integration at each given x, and the
Polyakov loop appears minimally coupled, i.e., through
the modified fermionic Matsubara frequencies,

 !̂ n � 2�T�n� 1=2� 	̂�; (4.2)

which are shifted by the logarithm of the Polyakov loop

 � � ei2�	̂; (4.3)

i.e. 	̂� ~x� � A4� ~x�=�2�T�. In our considerations, this is the
only place where explicit dependence on color degrees of
freedom appears, so it is useful to think of 	̂ as the
corresponding eigenvalues. The effect of such a shift cor-
responds to change Eq. (3.4) into

(−Ω)n

FIG. 1. Typical one quark loop diagram with a nontrivial
Wilson line. For n windings around the U(1) compactified
imaginary time the quarks get a topological factor �n in addition
to the Fermi-Dirac statistical factor ��1�n. Wavy lines are
external fields. The total contribution to the diagram is obtained
by summing over all windings and tracing over color degrees of
freedom.

10As noted below, in a model with vector mesons, there would
be a corresponding flavor Polyakov loop. Such a contribution is
expected to be much suppressed due to the large physical mass
of the mesons.

11After our work was sent for publication Refs. [60,61] ap-
peared, extending the results of Fukushima.

E. MEGÍAS, E. RUIZ ARRIOLA, AND L. L. SALCEDO PHYSICAL REVIEW D 74, 065005 (2006)

065005-8



 

~F�x; x� !
X1

n��1

���� ~x��n ~F� ~x; x0 � in=T; ~x; x0�: (4.4)

The interpretation of this formula can be visualized in
Fig. 1; in a one quark loop with any number of external
fields at finite temperature and with a nontrivial Polyakov
line, the quarks pick up a phase (� 1) due to Fermi-Dirac
statistics, and a non-Abelian Aharonov-Bohm12 factor �
each time the quarks wind around the compactified
Euclidean time. The total contribution to the diagram is
obtained by summing over all windings and tracing over
color degrees of freedom.

C. Dynamical Polyakov loop

The above prescription gives the contribution for a given
gluon field configuration, of which we have only retained
the Polyakov loop.13 The next step is to integrate the
gluons according to the QCD dynamics. This implies an
average over the local Polyakov loop with some normal-
ized weight ���; ~x�d�. Here d� is the Haar measure of
SU�Nc� and ���; ~x� the (temperature-dependent) proba-
bility distribution of �� ~x� over the gauge group. The
emergence of the Haar measure of the integral representa-
tion of the Yang-Mills partition function was explicitly
shown in Ref. [55]. Because of gauge invariance, ����
will be invariant under similarity transformations, and
hence it is really a function of the eigenvalues of �. In
this section we will mainly remain within a quenched
approximation and so the weight follows from a pure
Yang-Mills dynamics, in particular, the weight will be ~x
independent, as we do not consider external fields coupled
to the gluons.14 In Yang-Mills dynamics (in four dimen-
sions and three colors) it its known to take place at first-
order transition from a center symmetric phase to a broken
symmetry or deconfining phase. Note that this is a rather
peculiar phase transition where the symmetry is restored
below the critical temperature, just the opposite as the
standard case. Since the transition is discontinuous in
observables such as the expectation value of the
Polyakov loop, the probability distribution ���� will also
be discontinuous as a function of the temperature at the
critical temperature. In the confining phase ���� will be
invariant under Z�Nc�, ���� � ��z��. In the deconfining
phase, such symmetry is spontaneously broken and one
expects the Polyakov loop to concentrate around one of the

elements of the center, at random. The coupling of dynami-
cal quarks favors the perturbative value � � 1 (A4 � 0) as
follows from computations of the effective potential at
high temperature [64–66]. So in that phase we expect to
have � concentrated near � � 1, which would be equiva-
lent to no Polyakov loop in the calculation.

Actually, one does not need the full distribution of � on
SU�Nc�, but only the marginal distribution of eigenvalues.
Denoting the Polyakov loop average by hi, we have for a
quark observable

 L �x� �
X
n

htrcfn���i trOn�x�: (4.5)

Consistently with gauge invariance, the functions fn���
are just ordinary functions fn�z� evaluated at z � � (e.g.
e�) hence, if ei�j , j � 1; . . . ; Nc are the eigenvalues of �

 

�
1

Nc
trcf���

�
�
Z

SU�Nc�
d�����

1

Nc

XNc
j�1

f�ei�j�

�
Z �

��

d�
2�

�̂���f�ei�� (4.6)

with

 �̂��� :�
Z

SU�Nc�
d�����

1

Nc

XNc
j�1

2�
����j�: (4.7)

Equivalently, all that it is needed is the set of momenta of
the distribution, htrc��n�i.

D. Group averaging

At sufficiently low temperature in the quenched theory
we can go further on the analytical side, since the distri-
bution of the Polyakov loop becomes just the Haar measure
in this regime. As it will be discussed in Sec. VI B, this fact
is justified with results based on strong coupling expan-
sions and in one massive gluon loop approximation.
Actually, from Eq. (6.18) we find that in observables
such as the quark condensate, the effect of ���� being
different from unity is almost negligible for all tempera-
tures below the transition, implying that a Haar measure
distribution is an extremely good approximation in the
confined phase. We elaborate further on gluonic correc-
tions in Sec. VI B.

The corresponding density of eigenvalues of the SU�Nc�
group is given by [67,68]

 

1

Nc!
2�


�XNc
i�1

�i

�YNc
i<j

jei�i � ei�j j2
YNc
i�1

d�i

2�
; (4.8)

so �̂��� of (4.7) is simply

 �̂��� � 1�
2��1�Nc

Nc
cos�Nc��: (4.9)

Using this result one can easily deduce the following useful

12This is an electric type of phase and not the standard magnetic
one. The name is nonetheless appropriate since this electric
phase was discussed first in the original AB paper.

13In addition, gluons appear also perturbatively through the
covariant derivative. This will produce perturbative gluon ex-
change contributions as in the zero temperature case. We will not
consider those in this work.

14In Secs. VI C and VII we will discuss some implications
about local corrections in the Polyakov loop and unquenched
results, respectively.
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formulas for the average over the SU�Nc� Haar measure

 htrc����niSU�Nc� �

8><>:
Nc; n � 0 �4:10�
�1; n � �Nc �4:11�
0; otherwise �4:12�:

When this is inserted in, e.g., Eq. (4.5), one finds that the
effect is not only to remove the triality breaking terms, as in
Eq. (3.15), but additionally, the surviving thermal contri-
butions are Nc suppressed as compared to the naı̈ve expec-
tation. This solves the second problem noted in Sec. III.

E. Polyakov cooling mechanism

In an insightful work, Fukushima [6] has modeled the
coupling of the Polyakov loop to chiral quarks, with em-
phasis in the description of the deconfining and chiral
phase transitions (or rather, crossovers). The fact that the
critical temperatures for both transitions are nearly equal,
according to lattice calculations [40], finds a natural ex-
planation in that model. This follows from what we will
call the Polyakov cooling mechanism, namely, the obser-
vation that, upon introduction of coupling with the
Polyakov loop, any quark observable at temperature T
(below TD) roughly corresponds to the same observable
in the theory without Polyakov loop but at a lower tem-
perature, of the order of T=Nc, as already noted in [69].
This is a direct consequence of triality conservation. As
discussed for Eqs. (3.14) and (3.15) at the end of Sec. III,
Boltzmann weights e�M=T are suppressed in favor of
e�NcM=T . An extreme example of cooling would come
from considering an U(1) gauge theory in a confined phase
in such a way that � is a completely random phase coupled
to the quark. This would be equivalent to a uniform average
of the variable 	̂ in Eq. (4.2) in the interval 
0; 1�. Clearly,
such an average completely removes the discretization of
the Matsubara frequencies and gives back the continuum
frequency of the zero temperature theory. The same ex-
treme cooling would be obtained in an U�Nc� gauge theory.
In the SU�Nc� case the average is not so effective since the
phases corresponding to each of the Nc colors are not
changed independently, owing to the restriction det� �
1. The cooling mechanism will be substantially modified in
the unquenched theory, since sea quark loops allow the
creation of thermal [i.e., with n different from zero in e.g.
Eq. (3.4)] color singlet quark-antiquark pairs which propa-
gate without any direct influence of the Polyakov loop.

The way Polyakov cooling brings the chiral and decon-
fining critical points to coincide is as follows. In the chiral
theory without Polyakov loop, the critical temperature of
the chiral transition is such that T��1

� < TD yet NcT��1
� >

TD. Hence, in the theory with coupling to the Polyakov
loop, one finds that for T < TD Polyakov cooling acts,
h �qqi� becomes roughly that of T=Nc which is below
T��1
� and chiral symmetry is broken. On the other hand,

for T > TD, Polyakov cooling no longer acts and �

quickly becomes unity, as in the theory without Polyakov
loop at the same temperature; since T is above T��1

� , chiral
symmetry is restored. As a consequence the chiral transi-
tion is moved up and takes place at the same temperature as
the deconfining transition, Th�i� � TD. This result is con-
sistent with [70] where it is shown that, at least in the large
Nc limit, confinement implies chiral symmetry breaking.

We note a difference in our treatment of the Polyakov
loop coupling and that in [6], namely, we use a local
Polyakov loop subject to thermal and quantum fluctua-
tions, as described by the distribution ���; ~x�d�. This is
in contrast with [6] where � is global and does not fluc-
tuate. Instead � is determined through a mean field mini-
mization procedure plus a specific choice of the allowed
values (orbit) of � on the group manifold. In this way a
model is obtained which is simple and at the same time can
be used to address key issues of QCD at finite temperature.
Nevertheless, let us argue why such an approach needs to
be improved. At sufficiently low temperature the model in
Ref. [6] for the gluon dynamics consists just of the invari-
ant Haar measure on the gauge group, therefore any group
element is just as probable as any other. If one takes some
coordinates on the group manifold and makes a maximi-
zation of the resulting probability density, one is actually
maximazing the Jacobian and the result will depend on the
coordinates chosen. In the deconfined phase the local
Polyakov loop is still subject to fluctuations (even in the
thermodynamic limit). A different quantity is ��, the spatial
average of the local loop.15 This is a global object by
construction. Both quantities, ��x� and ��, have the same
expectation value, due to translational invariance, but ��
does not fluctuate in the thermodynamic limit. The usual
effective potential is so defined that its minimum gives the
correct expectation value, and so ��, but it does not give
information on the fluctuations of ��x�.

In the confining phase of the quenched theory triality is
preserved, hence, after gluon average, Eq. (4.4) becomes

 

~F�x; x� !
X1

n��1

h���� ~x��nNci ~F� ~x; x0 � inNc=T; ~x; x0�;

(4.13)

which is the quenching invoked in Sec. III.

V. ONE QUARK LOOP RESULTS

The calculations outlined above in Sec. IV can be rou-
tinely applied to all observables. A more thorough and
systematic study will be presented elsewhere. As an illus-
tration we show here low temperature results (i.e. retaining
only the Haar measure in the gluon averaging) for the
quark condensate and the pion weak and electromagnetic
anomalous decays for their relevance in chiral symmetry

15The quantity �� so defined does not lie on the group manifold,
so some prescription should be devised to map it onto the group.
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breaking, both for the NJL model as well as for the SQM at
the one quark loop level. In Sec. VI A we discuss the
structure of higher order corrections due to quark loops
while in Sec. VI B dynamical gluonic effects are consid-
ered. Corrections beyond the quenched approximation will
be explicitly computed in Sec. VII. In Ref. [71] we com-
pute the full chiral Lagrangian at finite temperature at the
one quark loop level.

A. Results for constituent quark models

To visualize the additional suppression, we apply the
previous result to the calculation of the condensate at finite
temperature. At the one-loop level we just make the sub-
stitution Nc��1�n ! trch����ni. We get
 

h �qqi� ��i4M
X1

n��1

trch����ni
Z d4k

�2��4
e�ikx

k2�M2

��������x0�in=T
:

(5.1)

This yields

 h �qqi� � h �qqi �
2M2T

�2Nc
K1�NcM=T� � � � � : (5.2)

The dots indicate higher gluonic or sea quark effects.
Because T is small we have further

 h �qqi�  h �qqi � 4
�
MT

2�Nc

�
3=2
e�NcM=T: (5.3)

When compared to the ChPT result Eq. (3.16) we see that
the Nc suppression of the constituent quark loop model is
consistent with the expectations.

For the pion weak decay constant we obtain
 

f�2� ��i4M2
X1

n��1

trch����ni
Z d4k

�2��4
e�ik�x


k2�M2�2

��������x0�in=T

(5.4)

yielding

 

f�2�
f2
�
� 1�

M2

�2f2
�
K0�NcM=T� � � � � : (5.5)

The �0 ! �� amplitude is given by
 

F���� � i
8M2

Ncf�

X1
n��1

trch����ni

�
Z d4k

�2��4
e�ik�x


k2 �M2�3

��������x0�in=T
: (5.6)

Using the value obtained at zero temperature, F��� �
1=4�2f�, consistent with the anomaly, we get

 

F����
F���

� 1�
2M
T
K1�NcM=T� � � � � : (5.7)

This obviously complies again to the fact that the leading

low temperature corrections should be encoded in pionic
thermal excitations rather than quark excitations.

B. Spectral quark model

In the spectral quark model one averages with a given
spectral function the previous result (3.11) and including
the Polyakov loop average we get (see Appendix A for
details)

 

h �qqi�

h �qqi
� 1�

2

Nc
e�NcMS=2T � � � � : (5.8)

For the pion weak decay constant we obtain

 

f�2�
f2
�
� 1�

1

Nc

�
2�

NcMV

T

�
e�NcMV=2T � � � � ; (5.9)

and the �0 ! �� amplitude is given by
 

F����
F���

� 1�
1

6Nc

�
12�

6NcMV

T
�

�
NcMV

T

�
2
�
e�NcMV=2T

� � � � : (5.10)

VI. CORRECTIONS BEYOND ONE QUARK LOOP

In the previous sections we have restricted discussion to
the one quark loop approximation for observables. This
corresponds to the quenched approximation within the
model, and to some extent this provides an oversimplified
picture. In the present section we discuss the kind of
corrections that we expect in this approximation.

A. Higher quark loop corrections

Going beyond the one quark loop approximation may
require tedious calculations (see e.g. Refs. [23,24] for

 a                          b                         c 
FIG. 2. Typical higher quark loop diagram for the quark con-
densate operator �qq. Quark lines with independent momenta
may wind n times around the compactified Euclidean time,
yielding a Fermi-Polyakov factor ����n. Triality conservation
allows the internal quark-antiquark lines to wind with opposite
signs only once, yielding an exponential suppression e�2M=T for
diagram (a). A similar suppression occurs for diagram (b) if the
quark-antiquark windings happen at any of the bubbles.
Diagram (c) corresponds to summing up all intermediate states
with the same quantum numbers and can be interpreted as a
meson line.
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explicit calculations in the standard NJL model with no
Polyakov loop). However, some general features based on
Nc counting rules at finite temperature can be deduced as
follows. Let us, for instance, consider the three loop dia-
gram of Fig. 2(a) contribution to the quark condensate in
the NJL model in terms of quark propagators. Writing out
for simplicity the Matsubara frequencies only we have

 Fig : 2�a� �
X

w�1�;w�2�;w�3�
S�w�1�� 	 S�w�1�� 	 S�w�2��

	 S�w�3�� 	 S�w�1� � w�3� � w�2��; (6.1)

where 	 means tensor product in the Dirac and internal
space sense. Using the Poisson’s summation formula
Eq. (3.2) and going to Euclidean time space we get

 

Fig: 2�a� �
X

n1;n2;n3

h�n1�n2�n3i
Z 1
�1

d�1d�3S��1�

	 S���1 � �3 � n1=T � n3=T�

	 S���3 � n2=T � n3=T� 	 S��3 � n3=T�


X

n1;n2;n3

h�n1�n2�n3ie�M=T�jn1j�jn2j�jn3j�: (6.2)

For this diagram triality conservation implies n1 � n2 �
n3 � kNc and the minimum argument of the exponent
corresponds to take n1 � n2 � n3 � 0, which is the zero
temperature contribution. The next thermal correction at
low temperature is given by n1 � 0, n2 � �n3 � 1 so the
3 loop diagram of Fig. 2(a) is suppressed by a thermal
factor e�2M=T , to be compared to the one quark loop
suppression e�NcM=T . A similar thermal suppression is
obtained by inserting the standard bubble summation
which can be coupled to meson quantum numbers trans-
forming the argument of the exponent 2M ! M �qq.
Obviously, this contribution becomes most important for
the lightest pion state. Actually, the quark-meson diagram
in Fig. 2(b) looks like a two loop bosonized diagram as
shown in Fig. 2(c). For such a bosonized diagram the
previous argument becomes actually much simpler, since
the number of loops equals the number of quark propaga-
tors. The pion polarization operator, proportional to the
pion propagator, can then be taken at zero temperature,
since the most important suppression comes from the quark
lines not coupled to pion quantum numbers.

For a bosonized diagram with L quark loops we have to
consider L-fold Matsubara generalization of the previous
one quark loop correction Eq. (4.4). Actually, the analysis
becomes simpler in coordinate space. Regardless of the
total number of quark propagators we may choose to apply
the Poisson’s summation to L quark propagators. This can
be seen by just using the formula

 

X1
n;m��1

Z 1=T

0
dx4F�x4 � n=T �m=T�

�
X1

n��1

Z 1
�1

dx4F�x4 � n=T� (6.3)

and its multidimensional generalization both in the sum
and in the integral sense. This effectively means that it is
possible to remove as many Poisson summations as coor-
dinate integrals appear in the expression. Using L � I �
�V � 1� and 4V � E� 2I we also have

 

YL
i�0

Z
d4ziG2L

X
n1;...;nL

YL
i�1

����niS� ~xi; ti � ini=T�: (6.4)

Actually, this rule does not depend on the precise form of
the quark interaction. At low temperatures, each quark line
with an independent Poisson index generates a constituent
quark mass suppression. Thus, the contribution to an ob-
servable can schematically be decomposed as follows:

 O � �
X
L

X
n1;...;nL

On1...nLh�
n1�����nLie��jn1j�����jnLj�M=T:

(6.5)

Triality conservation of the measure �! z� at this level
implies

 n1 � � � � � nL � Nck (6.6)

with k an integer. The dominant term in the previous
expansion is the one for which n1 � . . . � nL � 0 with
any arbitrary number of quark loops L and corresponds to
the zero temperature contribution. One also sees that for
L � 1 we only have contributions from n1 � kNc, which
give the correction e�NcM=T , hence reproducing the results
of Sec. V. According to Eq. (6.5), we can organize the
thermal expansion at finite but low temperatures. The most
important contributions come from minimizing

PL
i�1 jnij

subjected to the triality constraint, Eq. (6.6). At finite T and
for Nc � 3 the leading temperature-dependent contribu-
tion is given by L � 2 and n1 � �n2 � 1 with n3 �

� � � � nL � 0, which gives a factor e�2M=T and corre-
sponds to a �qq singlet meson state. This contribution has
an additional 1=Nc power suppression, as compared to the
zero temperature contribution. For Nc � 3 the next term in
the expansion would correspond to L � 3 and n1 � n2 �
n3 � 1 and yields a finite temperature suppression
e�NcM=T . For Nc � 5 we would instead get L � 4 and
n1 � �n2 � n3 � n4 � 1 and n5 � � � � nL � 0.
Assuming Nc � 3 we have16

16In the case without Polyakov loop one would have
ZqNq � �qq�Nm 

1
NNmc

e��2Nm�Nq�M=T instead. So the leading contribu-
tions are those corresponding to one quark state.
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 Z �qq 
1

Nc
e�2M=T; (6.7)

 Zqqq  e
�NcM=T; (6.8)

 Zqqq �qq 
1

Nc
e��2�Nc�M=T; (6.9)

 . . . ; (6.10)

 Z� �qq�NM �qqq�NB 
1

NNM
c
e��2NM�NBNc�M=T: (6.11)

Obviously, for Nc � 3 the meson loop contribution domi-
nates over the baryon loop contribution. The previous
argument ignores completely the quark binding effects so
we should actually consider the relevant meson mass m;
thus in summary one would get

 O � 1�
X
m

Om
1

Nc
e�m=T �

X
B

OBe�MB=T � � � � :

(6.12)

This is how quark-hadron duality works at finite tempera-
ture in chiral quark models. As we see contributions of
pion loops are the most important ones, even though they
are 1=Nc suppressed. Higher meson states contribute next
to the total observable at finite T. This is what one naı̈vely
expects and it is rewarding to see that such a feature arises
as a consequence of including the Polyakov loop into the
chiral quark model and subsequent projection onto the
gauge invariant color singlet sector.

Thus, at finite temperature there are the standard power-
like 1=Nce

�2M=T suppression for meson loops accompa-
nied by an exponential suppression and a finite temperature
exponential e�NcM=T for baryon loops. Obviously, the most
important contributions at large Nc or low T are those due
to meson loops. We conclude from this discussion that
thermal pion loops are protected.

The previous discussion has concentrated on quark ob-
servables. For an observable like the Polyakov loop one
would have instead

 

X
L

X
n1;...;nL

On1...nLh�
1�n1�����nLie��jn1j�����jnLj�M=T (6.13)

and

 1� n1 � � � � � nL � Nck: (6.14)

The leading low temperature contribution (in this case
there is no zero temperature term) is then of the type n1 �
�1, n2 � � � � � nL � 0, corresponding to a single anti-
quark loop screening the charge of the test Polyakov loop.
The leading term scales as e�M=T and is controlled by the
constituent quark mass. Unlike the quark condensate case
this behavior should remain unchanged by pionic loops.

B. Gluonic corrections

Up to now we have chosen to represent the full dynami-
cal gluonic measure by a simple group integration.
Unfortunately, we do not know at present any general
argument supporting the idea that there is a low tempera-
ture exponential suppression of gluon degrees of freedom,
leaving only the Haar measure as the only remnant of
gluon dynamics. However, results based on strong cou-
pling expansions [68,72] and in one massive gluon loop
approximation [16,18] do provide such a suppression and
indeed recent lattice findings confirm a striking universal-
ity in all group representations and favoring the simple
group averaging dominance mechanism in gluodynamics
below the phase transition [17]. More specifically, one
finds both from lattice calculations [17] and from the group
measure that

 hbtrc�̂i � 0 (6.15)

in the confining phase for the Polyakov loop in the adjoint
representation. [In the group integration case, the previous
formula follows from (7.6) below.] We stress that this result
is not a consequence of triality preservation since �̂ is
invariant under ’t Hooft transformations. The previous
equation is equivalent to hjtrc�j2i � 1. We note in passing
that in the mean field approximation [6] hjtrc�j2i vanishes
instead, due to the absence of fluctuations.

We analyze now the two above mentioned models.

1. Strong coupling expansion

The gluon potential at the leading order result of the
strong coupling expansion, for Nc � 3, is taken as [68,72]

 � i�G
�� � Vglue
�� � a
3=T � �2�d� 1�e�a=Tjtrc�j

2

(6.16)

with the string tension  � �425 MeV�2. At the mean field
level Vglue leads to a first-order phase transition with the
critical coupling 2�d� 1�e�a=TD � 0:5153. One can fix
the deconfinement transition temperature as the empirical
value TD � 270 MeV by choosing a�1 � 272 MeV [6].
The corresponding mass is mG � a � 664 MeV. At low
temperatures we may expand the exponential in powers of
the gluon action,

 ei�G � 1� i�G �
1
2�

2
G � � � � ; (6.17)

which introduces an exponential suppression for e�mG=T .
For a treatment based on an average over the Polyakov
loop, the normalized weight ����d� suggested by the
strong coupling expansion will be

 ���� � N exp�2�d� 1�e�mG=Tjtrc�j
2�; (6.18)

where N is the normalization constant. Such distribution
preserves exact triality. At low temperature, ���� is close
to unity and the distribution coincides with the Haar mea-
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sure, hence � is completely random with equal probability
to take any group value. At higher temperature ���� tends
to favor concentration of � near the central elements of the
group, with equal probability.

This provides the following mass formula for the
Boltzmann argument of the exponential (in the notation
of Sec. VI A)

 M � nNcMq �mM �qq � lmG; (6.19)

which clearly shows that the leading thermal contribution
at low temperatures is, again, provided by pion thermal
loops, corresponding to n � l � 0 and m � 1 due to
NcMq � mG � M �qq � m�. Note that numerically, even
the two pion contributions would be more important than
gluonic corrections.

2. One massive gluon loop approximation

In a series of recent works [16,18], the equation of state
has been deduced for a gas of massive gluons with a
temperature-dependent mass in the presence of the
Polyakov loop, reproducing the lattice data quite accu-
rately above the deconfinement phase transition. The vac-
uum energy density reads

 Vglue
�� � T
Z d3k

�2��3
btrc log
1� e�!k=T�̂�; (6.20)

where !k �
������������������
k2 �m2

G

q
, with mG the gluons mass and �̂

and btrc are the Polyakov loop and the color trace in the
adjoint representation, respectively. This expression was
discussed with a temperature-dependent mass in the de-
confined phase given by plugging the Debye screening
mass mG�T� � Tg�T�

���
2
p

, which at the phase transition,
T � Tc takes the value mG�Tc� � 1:2–1:3Tc. It is worth
noticing that, if one assumes a constant value for the gluon
mass below the phase transition one gets at low tempera-
tures

 Vglue
�� � �T
X1
n�1

1

n
�jtrc�

nj2 � 1�
Z d3k

�2��3
e�n!k=T;

(6.21)

where the identity

 

btr c�̂n � jtrc�
nj2 � 1 (6.22)

has been used. Using the asymptotic representation of the
Bessel functions we see that, up to prefactors, a similar
suppression of the sort described in the strong coupling
limit, Sec. VI B 1, takes place.

C. Local corrections in the Polyakov loop

Up to now we have assumed a constant � field in space
in our calculations. Quite generally, however, the Polyakov
loop depends both on the Euclidean time and the space

coordinate, as it comes out of explicit one-loop calcula-
tions within a derivative expansion approach at finite tem-
perature [59,62,63]. In the Polyakov gauge, the temporal
dependence becomes simple, but there is still an unknown
space coordinate dependence. In such a case, the previous
rules have to be modified, since Polyakov loop insertions
carry finite momentum, and the result depends on the
ordering of these insertions. If we still assume that the
Polyakov loop is the only color source in the problem, we
are naturally lead to consider Polyakov loop correlation
functions. In the confining phase, we expect a cluster
decomposition property to hold for any pair of variables.
A convenient model to account for Polyakov loop correla-
tions is

 htrc�� ~x� trc�
�1� ~y�i � e�j ~x� ~yj=T; (6.23)

with  the string tension. This includes the correct screen-
ing of the color charge at large distances due to confine-
ment and is consistent with (7.7) for two Polyakov loops at
the same point. Thus, very different values of the spatial
coordinate are suppressed, and it makes sense to make a
sort of local approximation within the correlation length
and expand correlation functions in gradients in that lim-
ited region of space. Effectively, this corresponds to re-
placing the volume to a given confinement domain, by
means of the rule

 

V
T
�

1

T

Z
d3x!

1

T

Z
d3xe�r=T �

8�T2

3 : (6.24)

In Ref. [71] we will see explicitly that when computing the
low energy chiral Lagrangian by expanding the effective
action in derivatives of the meson fields, there appear also
gradients of the Polyakov loop. Actually, since we couple
the coordinate-dependent Polyakov loop effectively as a
x-dependent color chemical potential, our approach resem-
bles a non-Abelian generalization of the local density
approximation of many body physics in nuclear physics
and condensed matter systems, very much in the spirit of a
density functional theory.

VII. RESULTS BEYOND THE QUENCHED
APPROXIMATION AT LOW TEMPERATURES

A. General remarks

The full Polyakov chiral quark model is given in
Sec. II D by Eq. (2.22). Therefore, any expectation value
is defined as

 hOi� �
1

Z

Z
DUD�ei�G
��ei�Q
U;��O; (7.1)

with �G
�� given in (6.16) and �Q
U;�� the quark con-
tribution to the full action, given by (2.12) in the NJL
model and (2.17) for the SQM case. In the latter model
the full quark contribution coincides with the fermion
determinant, while in the NJL model there is an additional
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term arising from the bosonization procedure,

 ei�Q
U;�� � det�iD�� exp
�
�

i
4G

Z
d4x trf�M� M̂0�

2

�
:

(7.2)

(Note that here we have included in D the color degrees of
freedom.)

In this section we gather all our results to provide an
estimate of the Polyakov loop expectation value at low
temperatures as well as the quark condensate. This is
particularly interesting since in the quenched approxima-
tion htrc�i � 0, due to triality conservation. The fermion
determinant does not conserve triality, but we show below
that at low temperatures the violation is exponentially
suppressed, so that it is still a good quantum number, and
the Polyakov loop can be used as an order parameter for
center symmetry in the same way as the chiral condensate
provides a measure of chiral symmetry restoration away
from the chiral limit.

In order to go beyond the quenched approximation, we
will evaluate the fermion determinant in the presence of a
slowly varying Polyakov loop following the techniques
developed in our previous work [59]. According to our
discussion of Sec. VI C of local corrections, such an ap-
proximation makes sense in a confining region where there
are very strong correlations between Polyakov loops. In the
presence of the Polyakov loop, the quark contribution can
be generally written as

 ei�Q
U;�� � ei
R
d4xL�x;��; (7.3)

where L is the chiral Lagrangian as a function of the
Polyakov loop which will be computed at finite tempera-
ture in Ref. [71] in chiral quark models for nonvanishing
meson fields. For our purposes here only the vacuum
contribution with vanishing meson fields will be needed.

B. SQM model

In our case it is simpler to consider first the SQM. We
have

 ei�Q
U;�� � det�iD�� � eVB
�=T; (7.4)

where V is the three-dimensional volume and �B� the
vacuum energy density at finite temperature in the presence
of the Polyakov loop. The result for B� is quite simple and
is listed in (A19) in Appendix A. At low temperatures we
may expand to get

 eVB
�=T � eVB=T

�
1�

VB
T
e�M=T

1

Nc
trc�����1� � � � �

�
(7.5)

with M � MV=2 the constituent quark mass in the SQM
and �B is the vacuum energy density at zero temperature,
B � M4

VNcNf=192�2 � �0:2 GeV�4 for three flavors (see
Appendix A). The calculation of observables requires the

group integration formula [73],

 

Z
d��ij�

�
kl �

1

Nc

ik
jl; (7.6)

whence one gets for the constant Polyakov loop case

 

Z
d� trc� trc�

�1 � 1: (7.7)

Note that the effect of ignoring the Polyakov loop (i.e.,
setting � � 1� promotes this result by two orders in Nc. In
this model the average over pion fields is trivial since the
vacuum energy density does not depend on U at the one
quark loop level. Neglecting momentarily the gluonic cor-
rections �G, using the previous formulas and (7.1) we get
the leading order result

 L �
�

1

Nc
trc�

�
� �

1

N2
c

BV
T
e�MV=2T: (7.8)

Note that at this order the contribution from the denomi-
nator is trivial. As expected, triality is not preserved due to
the presence of dynamical quarks, but the relevant scale is
the constituent quark mass. In addition, note that since B is
proportional to Nc there is an extra 1=Nc suppression. So
the Polyakov loop can be effectively used as an order
parameter. Actually, our calculation suggests that a low
temperature calculation of the Polyakov loop in full QCD
might provide a method of extracting a gauge invariant
constituent quark mass. Proceeding in a similar way from
the expression of the quark condensate (A18) we get the
leading order contribution

 

h �qqi�

h �qqi
� 1�

2BV

N2
cT
e��MV�MS�=2T � � � � : (7.9)

It is noteworthy that the thermal correction scales as 1=Nc
(B scales as Nc), as in the ChPT case. This again is not just
a consequence of triality, but requires the proper integra-
tion over the Polyakov loop manifold. The presence of the
(infinite) four-volume factor V=T has to do with our as-
sumption on a constant Polyakov loop. As we have argued
in Sec. VI C, one has indeed a local Polyakov loop and the
volume should be replaced according to the rule in
Eq. (6.24) by an effective confinement-domain volume.17

The first gluonic correction contributes in L as
e��MV�2mG�=2T , and in the quark condensate as
e��MV�MS�2mG�=2T .

C. NJL model

The previous computation can also be considered within
the NJL model. In this model the fermion determinant can
be obtained by means of a derivative expansion [59,62].
The result will be presented in Ref. [71]. Retaining only the

17For the expectation value of a local observable O� ~x�, points
outside the volume V are not correlated and their contribution
approximately cancels in numerator and denominator.
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vacuum contribution, which coincides with the result given
in Eq. (3) of [6], we have

 det�iD�� � exp
�
i
Z
d4x�Lq�T � 0� �Lq��; T��

�
;

(7.10)

where Lq�T � 0� is the zero temperature contribution. At
low temperature, the thermal correction reads

 L q��; T� � Nf

������������
M3T5

2�3

s
e�M=T trc�����1� � � � � :

(7.11)

Using the volume rule
R
d4xLq ! �V=T�Lq, expanding

Eq. (7.10) in powers of Lq��; T�, and considering the
group integration formula as above, we get the leading
order result18

 L �
�

1

Nc
trc�

�
�
Nf
Nc

V
T

������������
M3T5

2�3

s
e�M=T: (7.12)

[Since the NJL bosonization term in (7.2) cancels in the
calculation of observables, it needs not be included in this
calculation. Also the gluonic corrections have been omit-
ted. Their effect is discussed below.]

For the quark condensate we take into account the result
similar to Eq. (3.5) but replacing ��1�n with ����n,
corresponding to the quark condensate for fixed Polyakov
loop. Thus, including the leading fermion determinant
contribution, using (7.6), and taking into account that
htrc�i � htrc�

�1i, we get for the single flavor condensate

 h �qqi� � h �qqi �
NfV

�3 �MT�
3e�2M=T: (7.13)

Note that the Nf factor comes from the fermion determi-
nant. As in the spectral quark model, the first gluonic
correction contributes in L with e��M�mG�=T , and in the
quark condensate with e��2M�mG�=T .

As we see, beyond the quenched approximation the
Polyakov cooling persists although it is a bit less effective
as in the quenched case, and for instance the temperature
dependence of the low energy constants of the tree-level
chiral effective Lagrangian becomes L�i � Li Low T

e�MV=T [71].
Finally, on top of this one must include higher quark

loops, or equivalently mesonic excitations, from which the
pions are the dominant ones. They yield exactly the results
of ChPT [23] for the chiral condensate h �qqi, and for the
would-be Goldstone bosons, pions dominate at low tem-
peratures. Thus, we see that when suitably coupled to

chiral quark models, the Polyakov loop provides a quite
natural explanation of results found long ago on purely
hadronic grounds [19] as a direct consequence of the
genuinely nonperturbative finite temperature gluonic ef-
fects. The expected leading correction effect on the
Polyakov loop is also an additional exponential suppres-
sion O�e�m�=T�.

VIII. IMPLICATIONS FOR THE PHASE
TRANSITION

The inclusion of the Polyakov loop has the consequence
that one changes the one quark state Boltzmann factor
Nce�M=T into htrc�i at low temperatures. In the quenched
approximation one has htrc�i � 0, whereas the first non-
vanishing contribution stemming from the Dirac sea be-
haves as htrc�i  e�M=T , due to the explicit breaking of
the center symmetry induced by the fermion determinant.
Likewise, for the quark condensate h �qqi, the finite tem-
perature correction changes Nce�M=T ! e�2M=T after the
Polyakov loop integration is considered. Taking into ac-
count the large number of approximations and possible
sources of corrections it is difficult to assess the accuracy
of these Polyakov chiral quark models, in spite of the
phenomenological success achieved in Refs. [6,60] within
the mean field approach. Nevertheless, it is tempting to see
how these results may be modified not only at low tem-
peratures but also in the region around the phase transition
when the proper quantum and local nature of the Polyakov
loop is considered. This requires going beyond low tem-
perature truncations like (7.12) and (7.13). Clearly, a
proper description would demand a good knowledge of
the Polyakov loop distribution as a function of the tem-
perature. Unfortunately, such a distribution is poorly
known and lattice simulations are not designed to extract
it, since a subtle renormalization issue is involved [17,26].
As a first step to investigate the phase transition in the
Polyakov chiral quark model beyond the mean field ap-
proximation we just take the strong coupling model for the
gluonic action of (6.18). Because of the rather large ex-
ponential suppression, this ansatz has the virtue of reduc-
ing to the Haar measure in the low temperature regime, and
as a consequence the vanishing of the adjoint Polyakov
loop expectation value observed in lattice calculations [17]
follows. In our view this is a compelling reason to go
beyond the mean field by integrating over Polyakov loops.
However, such a distribution preserves center symmetry
and would not generate a phase transition per se in gluo-
dynamics. This is unlike the mean field approximation
where the action is minimized by center symmetry break-
ing configurations. As discussed before a side product of
this approximation is to miss the fluctuations and also to
introduce an explicit coordinate dependence in the gauge
group. In our model the breaking of the center symmetry is
attributed only to quarks. As we will see, this explicit
breaking is rather large precisely due to the simultaneous

18Actually we find a negative value for the SQM and positive
for the NJL model. While based on color-charge conjugation
symmetry it can rigorously be shown that L must be real; no
proof exists to our knowledge that L> 0 at any temperature,
although lattice data [74] favor the positive case.
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restoration of the chiral symmetry, since the constituent
quark mass drops to zero. The qualitative agreement with
lattice calculations in full QCD suggests that an important
part of the physics has been retained by the model, leaving
room for improvement in the Polyakov loop distribution.

We will present calculations only for the NJL model. In
practice, we use (7.1), where the fermion determinant
corresponds to Eq. (3) of [6] plus the volume rule (6.24).
The Polyakov loop integration is carried out numerically.
Because of gauge invariance the Polyakov loop depen-
dence is through its eigenvalues, and thus one may use
the marginal distribution of eigenvalues (4.8), which for
Nc � 3 amounts to two independent integration variables.
Full details are given in Appendix B.

In Fig. 3 we show the effect on both the chiral conden-
sate h �qqi and Polyakov loop expectation value L �
htrc�i=Nc within several schemes. In all cases we always
minimize with respect to the quark mass and use ���� in
(6.18) for all temperatures. We compare the standard NJL
model with no Polyakov loop with the mean field calcu-
lation of Ref. [6], which corresponds to minimize the
vacuum energy as a function of the constituent mass and
a given choice of the Polyakov loop matrix. We also
compare with the result one obtains by integrating in the
Polyakov loop instead and minimizing with respect to the
quark mass afterwards. We work in these calculations with
the NJL model with 2-flavor, Nf � 2, and consider for the
current quark mass matrix M̂0 � diag�mu;md� the isospin-
symmetric limit with mu � md � mq � 5:5 MeV. The
zero temperature part of the effective action of Eq. (2.12)

is regulated by the Pauli-Villars method, with the cutoff
�PV � 828 MeV. The coupling is G � 13:13 GeV�2,
which is obtained from the gap Eq. (2.16), corresponding
to a constituent quark massM � 300 MeV. These parame-
ters reproduce the empirical values of the pion weak decay
constant and the quark condensate at zero temperature.
Aspects of locality have been considered in the treatment
of the NJL model with the integration in the Polyakov loop,
by introducing the volume rule (6.24), where the string
tension has been fixed to its zero temperature value  �
�425 MeV�2. Also displayed in the figure is the expectation
value L in gluodynamics within the model of Eq. (6.16) in
the mean field approximation, which leads to a first-order
phase transition at TD � 270 MeV. As we see, the net
effect of the Polyakov loop integration is to displace the
transition temperature to somewhat higher values. So, the
method based on the integration provides an effective
cooling at higher temperatures for fixed parameters. As
we can see in Fig. 4, the crossover transitions for the chiral
condensate h �qqi and for the Polyakov loop expectation
value L coincide at the value Tc ’ 256 MeV.

We have checked that a temperature dependence of the
string tension may accommodate the unquenched lattice
results [74], as we can see in Fig. 5. This provides a range
of string tensions  � 0:181� 0:085 GeV2 which some-
how account for an estimate of the uncertainty in the
present model. In Fig. 5 the error band associated to such
an uncertainty reflects a critical temperature of about TD �
250� 50 MeV. This is compatible with the large rescaling
advocated in Ref. [60]. At present, and taking into account
the many possible sources of corrections to our calcula-
tions, we do not see how more accurate predictions could
reliably be made in the context of Polyakov chiral quark
models. Nevertheless, the semiquantitative success indi-
cates that essential features for the center symmetry break-
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FIG. 3. Temperature dependence of the chiral condensate h �qqi
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ing phase transition are encapsulated by these models, and
further attempts along these lines should be striven.
Nevertheless, the reader should be reminded that although
the breaking of the center symmetry in this model is only
attributed to the presence of quarks, one also has a con-
tribution from gluons. In this regard let us mention that
ignoring the exponentially suppressed gluon action (6.18)
in the averaging has almost no effect below the phase
transition and shifts up the transition temperature by about
30 MeV, a value within our error estimate. Given the
importance of quarks in the phase transition one may

wonder if the temperature-dependent volume enhances
the breaking of the center symmetry. In fact, the volume
at the transition temperature is roughly equal to gluon
volume a3 in (6.16). At low temperatures the exponential
suppression dominates in the Polyakov loop expectation
value where the volume appears as a harmless prefactor,
see e.g. (7.12). The effect of replacing the temperature-
dependent volume by a constant one can be seen in Fig. 8.
Again changes are within our expected uncertainties.

As we have argued, the expectation value of the
Polyakov loop is rather small at temperatures well below
the phase transition. The difference between the mean field
and the direct integration can be best quantified at the level
of the fluctuations. While at the mean field level the
probability of finding a given Polyakov loop would be a
delta function, one expects a spreading of such probability
due to quantum effects. For Nc � 3 the Polyakov loop
contains two independent variables, which correspond to
gluon fields in temperature units

 � � diag�ei�1 ; ei�2 ; e�i��1��2��: (8.1)

The joint distribution ���1; �2� can be factorized as a
product of the purely gluonic and the quark determinant
contributions (see Appendix B)

 ���1; �2� � �G��1; �2��Q��1; �2� (8.2)

echoing the effective action displayed in Eq. (2.22) in
Euclidean space. Note that ���1; �2� is not normalized
to unity, instead its integral gives the full partition function
(see Appendix B). As noted in Sec. IV C by gauge invari-
ance the distribution is invariant under permutation of the
three angles �1,�2 and �3 � ��1 ��2. The use of such
a symmetry is that the trace of any arbitrary function of the
Polyakov loop f��� (a one-body operator) can be averaged
over the group by integrating out one angle, Eq. (4.6). Thus
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one obtains an equivalent one-body distribution as

 �̂��� /
1

2�

Z �

��
d�0�G��;�0��Q��;�0�: (8.3)

It is interesting to compare how this distribution evolves
across the phase transition, and to look for the effects
generated explicitly by the fermion determinant. In Fig. 6
we present such a comparison. Below the phase transition,
and as already advanced in Sec. IV C, the weighting func-
tion presents three maxima at equidistant values, as re-
quired by the center symmetry. In this case the quark
determinant plays a negligible role, although a tiny, indeed
exponentially small, center symmetry breaking can be
observed. As we see, there appears an interesting concen-
tration of angles in the region around the origin as the
phase transition takes place. The quarks are very effective
suppressing contributions not near � � 1. As a conse-
quence, the lack of the spontaneous breaking of the center
symmetry in (6.18) becomes not very relevant for tempera-
tures above the transition.

A further trace of fluctuations can be seen by consider-
ing higher group representations of the Polyakov loop. In
Fig. 7 we also show the expectation value of the Polyakov
loop in the adjoint representation, hbtrc�̂i=�N2

c � 1�.
According to the lattice results of the matrix model in
Ref. [17] one has a vanishing expectation below the phase
transition. As we have argued above, this feature is not
preserved at the mean field level, where a nonvanishing
value �1=�N2

c � 1� is obtained instead [see Eq. (6.22) for
the case n � 1]. Considering the Polyakov loop integra-
tion, as we do, complies with the lattice expectations and
indicates that further developments should consider these
constraints. The full fluctuation of the Polyakov loop, 
, is

defined by

 
2 � �hjtrc�j
2i � htrc�i

2�=N2
c

� �1� hbtrc�̂i � htrc�i2�=N2
c : (8.4)

The fluctuation is also shown in Fig. 7. 
 goes to zero in the
large T regime, and this is compatible with the fact that the
one-body distribution �̂��� tends to concentrate near � �
0 as the temperature increases. In the second equality of
Eq. (8.4) we have used the identity (6.22) with n � 1.

IX. CONCLUSIONS

In the present work we have discussed how the problem
of conventional chiral quark models at finite temperature
may be overcome by introducing the Polyakov loop. In
order to maintain gauge invariance at finite temperature
some nonperturbative explicit gluonic degrees of freedom
must be kept. In practice, and in particular gauges such as
the Polyakov gauge, the approach corresponds to treat the
A0 component of the gluon field as a color-dependent
chemical potential in the quark propagator. This introdu-
ces, however, a color source which generates any possible
color nonsinglet states, calling for a projection onto the
physical color singlet states, or equivalently evaluating the
path integral over the A0 field in a gauge invariant fashion.
As such, the average includes both the gluon action and the
quark determinant. Models for the gluonic part have been
discussed in light of pure gluodynamics results on the
lattice. The net result is that, contrary to standard chiral
quark model calculations at finite temperature, no single
quark excitations are allowed in physical observables.
More generally, the leading thermal corrections at the
one-quark loop level start only at temperatures near the
deconfinement transition. Given the fact that this strong
suppression effect is triggered by a group averaging of
Polyakov loops, we have named this effect Polyakov cool-
ing of the quark excitations. Thus, and to a very good
approximation, we do not expect any important finite
temperature effect on quark observables below the decon-
finement transition. In particular the chiral symmetry
breaking transition cannot occur before the deconfinement
transition. In such a situation the biggest change of ob-
servables such as the quark condensate should come from
pseudoscalar loops at low temperatures and perhaps other
higher meson resonances at intermediate temperatures.
This is precisely what one expects from ChPT or unitarized
approaches thereof which effectively include these loops
on resonances. It is rewarding to see how in practice the
apparent contradiction between chiral quark models and
ChPT in the intermediate temperature region may be re-
solved by a judicious implementation of the Polyakov
loop.

The extrapolation of these ideas to the phase transition is
straightforward but more ingredients are needed. As an
illustration we have investigated in a model the kind of
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effects one might expect from such a schematic Polyakov
chiral quark model when both the quantum and local nature
of the Polyakov loop are taken into account. Several inter-
esting features arise out of such an investigation. At low
temperatures the Polyakov loop is suppressed exponen-
tially in the constituent quark mass suggesting that even-
tually more accurate lattice measurements might provide a
method to extract the constituent quark mass in a gauge
invariant fashion. According to our analysis, corrections to
this leading behavior are provided by pion loops. It would
be extremely helpful to find a general theoretical setup
where these chiral corrections might be reliably computed.
Moreover, we find that the explicit breaking of the center
symmetry due to dynamical quarks at low temperature is
1=Nc suppressed. This is a direct consequence of averaging
over gauge field configurations and confirms the current
usage of the Polyakov loop as an order parameter in the
unquenched case. In light of the present findings one might
conjecture that in the large Nc limit the Polyakov loop
becomes a true order parameter of full QCD.

Another feature we find is that the contribution of the
gluon dynamics below the phase transition does not seem
to be crucial. This is welcome since this is precisely the
region where least information can be deduced from lattice
simulations besides the known preservation of the center
symmetry. Nevertheless, it would be rather interesting for
our understanding of the low temperature gluon dynamics
to compute directly from the lattice the Polyakov loop
probability distribution. From our results we deduce that
although the qualitative features observed in more simpli-
fied treatments are confirmed by calculations, one might
expect large uncertainties in the determination of critical
parameters, such as the critical temperature. Our estimate
is TD � 250� 50 MeV for Nf � 2. Even given these
large uncertainties, the very fact that a crossover between
chiral symmetry restoration and center symmetry breaking
takes place in the bulk part of the expected lattice QCD
simulations with a minimal number of parameters is very
encouraging and motivates that further studies along these
lines should be pursued.

Finally, a more intriguing aspect regards what kind of
model independent information could be inferred out of
these models, where quarks and Polyakov loops are
coupled, in the regime around the phase transition. For
instance, the low temperature behavior of the chiral con-
densate can be described using chiral perturbation theory
in terms of the zero temperature chiral condensate with no
explicit reference to the underlying quark and gluonic
degrees of freedom due to the dominance of pionic fluctu-
ations. Given the fact that the Polyakov loop is a gauge
invariant object which vanishes at zero temperature, it
would be extremely helpful to isolate what physical states
could equivalently describe such an observable and what
specific zero temperature QCD operators drive its low
temperature behavior.
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APPENDIX A: THE SPECTRAL QUARK MODEL
AT FINITE TEMPERATURE

Here we show how calculations for the spectral quark
model introduced in Refs. [50–53] can be extended at
finite temperature.

1. The spectral quark model at zero temperature

In the spectral quark model [50,51] the quark propagator
is written in the generalized Lehmann form

 S�k� �
Z
C
d!

��!�
k6 �!

� k6 A�k2� � B�k2� �
Z�k2�

k6 �M�k2�
;

(A1)

where ��!� is the, generally complex, spectral function
and C denotes a contour in the complex ! plane. M�k2� is
the self-energy and Z�k2� is the wave function renormal-
ization. As discussed already in Ref. [51] the proper nor-
malization and the conditions of finiteness of hadronic
observables are achieved by requesting an infinite set of
spectral conditions for the moments of the quark spectral
function, ��!�, namely,

 �0 �
Z
d!��!� � 1; (A2)

 �n �
Z
d!!n��!� � 0; for n � 1; 2; 3; . . . (A3)

Physical observables are proportional to the zeroth and the
inverse moments,

 ��n �
Z
d!!�n��!�; for n � 0; 1; 2; . . . (A4)

as well as to the ‘‘log moments’’,

 �0n �
Z
d! log�!2�!n��!�; for n � 1; 2; 3; . . . (A5)

Obviously, when an observable is proportional to the di-
mensionless �0 � 1 the result does not depend explicitly
on the regularization. The spectral conditions (A3) remove
the dependence on a scale � in (A5), thus guaranteeing the
absence of any dimensional transmutation. No standard
requirement of positivity for the spectral strength ��!� is
made. The spectral regularization is a physical regulariza-
tion in the sense that it provides a high energy suppression
in one quark loop amplitudes and will not be removed at
the end of the calculation. Using the methods of Ref. [53]
one finds at zero temperature T � 0, and trivial Polyakov
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loop � � 1, and in the chiral limit m� � 0, the following
results for the pion weak decay constant f�, the single
flavor condensate h �qqi, the energy-momentum tensor ��	,
and the anomalous �0 ! 2� amplitude

 f2
� � 4iNc

Z d4k

�2��4

k2A�k2��0; (A6)

 Nfh �qqi � �4iNcNf
Z d4k

�2��4
B�k2�; (A7)

 h��	i � �4iNcNf
Z d4k

�2��4

k�k	A�k2� � g�	�; (A8)

 F��� � i
4

Ncf�

Z d4k

�2��4

k2A�k2��00: (A9)

In these formulas, the prime indicates derivative with
respect to k2. The vacuum energy density is defined by
�V �

1
4 h�

�
�i � �B with B the bag constant. In the meson

dominance version of the SQM one obtains for the even
and odd components of the spectral function

 �V�!� �
1

2

��!� � ���!��

�
1

2�i
1

!
1

�1� 4!2=M2
V�

5=2
; (A10)

 �S�!� �
1

2

��!� � ���!��

�
1

2�i
12�03

M4
S�1� 4!2=M2

S�
5=2
: (A11)

(MV and MS are the vector and scalar meson masses,
respectively) and hence
 

A�k2� �
1

k2

�
1�

1

�1� 4k2=M2
V�

5=2

�
;

B�k2� �
48�2h �qqi

M4
SNc�1� 4k2=M2

S�
5=2
:

(A12)

Thus,

 f2
� �

M2
VNc

24�2 ; (A13)

 �V � �B � �
M4
VNfNc

192�2 � �
Nf
8
f2
�M

2
V: (A14)

For three flavors, one has B � �0:2 GeV�4 for MV �
770 MeV.

2. The spectral quark model at finite temperature and
arbitrary Polyakov loop

We introduce finite temperature and arbitrary Polyakov
loop by using the rule

 

Z dk0

2�
F� ~k; k0� ! iT

X1
n��1

F� ~k; i!̂n�; (A15)

with !̂n the fermionic Matsubara frequencies, !̂n �
2�T�n� 1=2� 	̂�, shifted by the logarithm of the
Polyakov loop � � ei2�	̂. In the meson dominance model,
we use the momentum space representation, evaluate first
the three-dimensional integrals and finally the sums over
the Matsubara frequencies. In practice all sums appearing
are of the form

 Sl�M;T� � T
X1

n��1

1

�M2 � !̂2
n�
l

�
1

�l� 1�!

�
�

d

dM2

�
l�1
S1�M;T�: (A16)

The basic sum is given by

 S1�M;T� �
1

2M
sinh�M=T�

cos�2�	̂� � cosh�M=T�
: (A17)

Using the relations in [51] and the previous formulas, we
get

 

h �qqi�

h �qqi
�

1

Nc
trc

�
sinh�MS=2T�

cos�2�	̂� � cosh�MS=2T�

�
(A18)

and, for the vacuum energy density

 

B�

B
�

1

Nc
trc

�
sinh�MV=2T�

cos�2�	̂� � cosh�MV=2T�

�
: (A19)

Note that the relative temperature dependence of the bag
constant and the quark condensate are alike in the present
model, if we also interchange the vector and scalar masses.
The T and � dependence of f2

� is

 

f�2�
f2
�
�

1

Nc
trc

�
T sinh�MV=T� �MV � cos�2�	̂�
MV cosh�MV=2T� � 2T sinh�MV=2T��

2T�cos�2�	̂� � cosh�MV=2T��2

�
: (A20)

To compute the group averages, we observe that for a sum
of the form of Eq. (A17) we can make z � ei� and t �
e�M=T . Expanding in powers of t we get

 f�z� �
1=t� t

z� 1=z� t� 1=t
� �1�

X1
n�0

��t�n�zn � z�n�;

(A21)

and applying Eq. (4.10)-(4.12) for the average over the
SU�Nc� Haar measure one has

 

�
1

Nc
trcf�z�

�
� 1�

2

Nc
tNc : (A22)

Thus, undoing the change of variables we get
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�
1

Nc
trc

sinh�M=T�
cos�2�	̂� � cosh�M=T�

�
� 1�

2

Nc
e�NcM=T:

(A23)

Beyond the quenched approximation, integrals may be
computed at low temperatures using Eq. (7.7) and general-
izations thereof.

APPENDIX B: DETAILS ON NUMERICAL GROUP
INTEGRATION

In this appendix we give details relative to the calcula-
tion presented in Sec. VIII for the Nambu-Jona-Lasinio
model.

The chiral condensate is obtained from maximization of
the partition function Z, Eq. (2.22), with respect to the
constituent quark mass. To compute Zwe need to carry out
first the color group integration. To this end we consider the
Polyakov gauge and parameterize the SU(3) Polyakov loop
matrix as in Eq. (8.1). The expression is

 Z �
Z �

��

d�1

2�
d�2

2�
�G��1; �2��Q��1; �2�; (B1)

where we have separated a gluonic distribution

 D�ei�G
�� �
d�1

2�
d�2

2�
�G��1; �2� (B2)

and a fermionic one

 ei�Q
�� � �Q��1; �2�: (B3)

Note that in �Q
�� we do not consider any dependence in
the mesonic U fields, because we only retain the vacuum
contribution. �G contains the Haar measure associated
with the SU(3) group integration, as well as the gluonic
corrections given in Eq. (6.16), i.e.
 

�G��1;�2� �
1
6�27� jtrc�j

4� 8 Re��trc��
3� � 18jtrc�j

2�

� exp�2�d� 1�e�a=Tjtrc�j2�; (B4)

and

 tr c��� � ei�1 � ei�2 � e�i��1��2�: (B5)

The quark distribution �Q��1; �2� follows from the
vacuum contribution in Eqs. (7.2) and (7.10). To obtain
�Q
�� we use, passing over to Euclidean space,
 

i�Q
�� � �
V
T
�Lq�T � 0� �Lq�T;��

�
1

4G
trf�M� M̂0�

2�; (B6)

where the correlation volume V is given in (6.24).
Moreover,

 L q�T � 0� � �2NcNf
Z d3k

�2��3
Ek; (B7)

 

Lq�T;�� � �2TNf
Z d3k

�2��3
�trc log
1��e�Ek=T�

� trc log
1��ye�Ek=T��: (B8)

Here Ek �
�������������������
k2 �M2
p

is the energy of quasiquarks and the
constituent quark mass is M � mq �Gh �qqi. For the zero
temperature term we use the Pauli-Villars regularization.
After momentum integration we get

 L q�T � 0� � �
NcNf
�4��2

X
i

ci��2
i �M

2�2 log��2
i �M

2�:

(B9)

For the temperature-dependent part, after momentum in-
tegration and expanding the logarithm function, we obtain

 

Lq�T;�� �
Nf
�2 �MT�

2
X1
n�1

��1�n

n2 K2�nM=T�

� �trc��
n� � trc��

�n��: (B10)

In numerical calculations we check for convergence in
these sums. The expectation value of any observable is
computed as in Eq. (7.1). For any general function f���,
the group averaging can be advantageously evaluated using
Eq. (4.6), where the one-body distribution is given by
Eq. (8.3). It proves convenient to evaluate the double
integral as an iterated one, since with the exception of
the adjoint Polyakov loop, observables depend on one
angle only. A comparison of observables calculated using
a constant correlation volume a3, a�1 � 272 MeV [6] and
the temperature-dependent volume V of Eq. (6.24) is
shown in Fig. 8.
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