
Fermionic collective modes of an anisotropic quark-gluon plasma

Björn Schenke
Institut für Theoretische Physik, Johann Wolfgang Goethe - Universität Frankfurt, Max-von-Laue-Straße 1, D-60438

Frankfurt am Main, Germany

Michael Strickland
Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe—Universität Frankfurt, Max-von-Laue-Straße 1, D-60438

Frankfurt am Main, Germany
(Received 28 June 2006; published 8 September 2006)

We determine the fermionic collective modes of a quark-gluon plasma which is anisotropic in
momentum space. We calculate the fermion self-energy in both the imaginary- and real-time formalisms
and find that numerically and analytically (for two special cases) there are no unstable fermionic modes.
In addition we demonstrate that in the hard-loop limit the Kubo-Martin-Schwinger condition, which
relates the off-diagonal components of the real-time fermion self-energy, holds even for the anisotropic,
and therefore nonequilibrium, quark-gluon plasma considered here. The results obtained here set the stage
for the calculation of the nonequilibrium photon production rate from an anisotropic quark-gluon plasma.
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I. INTRODUCTION

The ultrarelativistic heavy-ion collision experiments on-
going at the Brookhaven Relativistic Heavy Ion Collider
(RHIC) and planned at the CERN Large Hadron Collider
(LHC) will study the behavior of nuclear matter under
extreme conditions. Specifically, these experiments will
explore the QCD phase diagram at large temperatures
and small quark chemical potentials. Based on the data
currently available from the RHIC collisions there is some
evidence that an isotropic and thermalized state has been
created at times on the order of 1 fm=c [1–4]. The fact that
thermalization proceeds rather rapidly is in contradiction
with estimates from leading-order equilibrium perturbation
theory. However, to truly understand how the plasma
evolves and thermalizes one has to go beyond the equilib-
rium description and study the dynamics of a nonequilib-
rium quark-gluon plasma. In addition, it is important to
know how any deviations from equilibrium affect observ-
ables so that one might be able to gauge how close the
system truly is to being isotropic and thermal.

For example, one would like to know how a momentum-
space anisotropy in the distribution function of the hard
modes would affect observables which are sensitive to the
earliest times of quark-gluon plasma evolution when the
anisotropy is expected to be largest. The best signatures in
this regard are electromagnetic probes such as photon and
dilepton production since these particles escape the plasma
without strong final state interactions. In order to calculate
in-medium photon production, however, it is necessary to
include the effects of medium-induced fermion masses
which serve to screen infrared divergences in the calcula-
tion of production cross sections. In equilibrium this can be
done self-consistently within the hard thermal loop frame-
work [5–8] and there are now many papers dedicated to the
calculation of equilibrium photon production at leading

and next-to-leading order [9–27]. In addition, there have
been calculations of electromagnetic signatures from a
plasma which is not chemically equilibrated [28–36].
However, the problem of photon and dilepton production
from a quark-gluon plasma which is not isotropic in mo-
mentum space has not yet been considered. Here we set the
stage for such a calculation by computing the quark self-
energy in such an anisotropic plasma.

Momentum-space anisotropic distribution functions are
relevant because of the rapid longitudinal expansion of the
partonic matter created in a heavy-ion collision. This rapid
longitudinal expansion implies that at proper times � >
hpTi�1, where pT is the typical transverse partonic mo-
mentum of the nuclear wavefunction, the parton distribu-
tion functions are oblate in momentum space with
hpTi> hpLi. For RHIC energies this implies that the dis-
tribution is oblate for � * 0:2 fm=c and for LHC � *

0:1 fm=c. Such an anisotropic quark-gluon plasma is quali-
tatively different from an isotropic one since the gluonic
collective modes can then be unstable [37–55]. The pres-
ence of these gluonic instabilities can dramatically influ-
ence the system’s evolution leading, in particular, to its
faster isotropization and equilibration. Treating this prob-
lem in all of its generality is a daunting task. In order to
make analytic progress we consider here the limit of high
particle momentum scale (large pT) and small coupling in
order to calculate the fermionic self-energy in the hard-
loop approximation.

In two previous papers by Paul Romatschke and one of
us [43,45], we calculated the hard-loop gluon polarization
tensor in the case that the momentum-space anisotropy is
obtained from an isotropic distribution by the rescaling of
one direction in momentum space (corresponding to
stretching or squeezing of the particle distribution function
along a special direction in momentum space). In this
paper we extend this exploration of the collective modes
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of an anisotropic quark-gluon plasma by studying the
quark collective modes using the same framework.
Specifically, we derive integral expressions for the quark
self-energy for arbitrary anisotropy and evaluate these
numerically using the momentum-space rescaling used in
the previous papers. We show for quarks there are still only
two stable quasiparticle modes and no unstable modes
using the momentum-space rescaled distribution functions.
The result is similar to the case of the fermionic collective
modes in a two-stream system [56] where it was also found
that there were no unstable modes.1

The absence of unstable fermionic modes is expected on
physical grounds due to the fact that fermion exclusion
precludes the condensation of modes; however, it could be
possible that, through pairing, fermions could circumvent
this as has been predicted [57–61] and demonstrated [62]
in superfluid condensation of cold fermionic atoms.
However, this would require a description in terms of
fermionic bound or composite states which are not in-
cluded at the level of hard loops so we do not expect to
find any fermionic condensatelike instabilities using this
approximation. This is verified via an explicit contour
integration of the inverse hard-loop quark propagator for
the two special cases in which we can obtain analytic
expressions for the self-energy. The special cases consid-
ered analytically are (a) the case when the wave vector of
the collective mode is parallel to the anisotropy direction
with arbitrary oblate anisotropy and (b) for all angles of
propagation in the limit of an infinitely oblate anisotropy.

Finally, we present a calculation of the off-diagonal
components of the anisotropic fermion self-energy using
the real-time formalism of quantum field theory. Using this
explicit calculation we demonstrate that within the hard-
loop framework the high-temperature limit of the Kubo-
Martin-Schwinger (KMS) formula, namely �12 � ��21,
holds even for the nonequilibrium configuration consid-
ered here. This is a nontrivial result since relations of this
kind can only be proven to hold in an equilibrated plasma.
If generic, this implies that a kind of generalized KMS
condition applies also in a nonequilibrium setting.

The organization of the paper is as follows: In Sec. II we
derive integral expressions for the retarded quark self-
energy in a system with an anisotropic distribution ob-
tained from contracting an isotropic distribution in one
direction. We show plots of the different components of
this self-energy for different anisotropy strengths and vari-
ous orientations of the wave vector with respect to the
direction of the anisotropy. We point out the strong depen-
dence of the self-energy on the strength of the anisotropy
and the angle of propagation with respect to the anistropy
direction. In Sec. II A we prove analytically that for the

case that the wave vector of the collective mode lies in the
direction of the anisotropy there are no unstable modes.
The same proof is performed in Sec. II B for the extremely
anisotropic limit and arbitrary orientation of the wave
vector. In Sec. III we extend our previous results to the
real-time formalism and compare with the results obtained
in the imaginary time formalism.

II. ANISOTROPIC QUARK SELF-ENERGY

The integral expression for the retarded hard-loop quark
self-energy for an anisotropic system has been obtained
previously [40] and is given by

 ��K� �
CF
4
g2
Z

p

f�p�
jpj

P � �
P � K

; (1)

where CF � �N2
c � 1�=2Nc,

R
p �

R
d3p=�2��3, and

 f�p� � 2�n�p� � �n�p�� � 4ng�p�:

To obtain Eq. (1) one computes the leading-order quark
self-energy diagram assuming that (a) the quarks are mass-
less, (b) the external fermion momentum is soft, k0 � k�
gphard, (c) the momentum carried by internal lines is hard,
p0 � p� phard, and (d) the distribution function f is sym-
metric in momentum-space, f�p� � f��p�. The hard
scale, phard, can be identified with the temperature T in
the case of thermal equilibrium but represents an arbitrary
hard scale present in the nonequilbrium distribution func-
tion, e.g. the nuclear saturation scale, Qs.

To simplify the calculation we follow Ref. [43] and
require the distribution function f�p� to be given by

 f�p� � f��p� � N���fiso�
������������������������������
p2 � ��p � n̂�2

q
�: (2)

Here n̂ is the direction of the anisotropy, � >�1 is a
parameter reflecting the strength of the anisotropy and
N��� is a normalization constant. For the application to
heavy-ion collisions n̂ is the beamline (longitudinal) di-
rection and the relevant anisotropy parameter at times � >
hpTi

�1 is positive, � > 0, corresponding to an oblate
distribution.

To fix N��� we require that the number density to be the
same both for isotropic and arbitrary anisotropic systems,

 

Z
p
fiso�p� �

Z
p
f��p� � N���

Z
p
fiso�

������������������������������
p2 � ��p � n̂�2

q
�:

(3)

It can be evaluated to be

 N��� �
������������
1� �

p
: (4)

Using Eq. (2) and performing the change of variables

 ~p 2 � p2�1� ��p̂ � n̂�2�; (5)

we obtain

1Note that if there were, in fact, fermionic unstable modes one
would expect extra generation of fermions and antifermions
which would naively increase electromagnetic emission from
the plasma.
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 ��K� � m2
q

������������
1� �

p Z d�

4�
�1� ��p̂ � n̂�2��1 P � �

P � K
; (6)

where

 m2
q �

g2CF
8�2

Z 1
0
dppfiso�p�: (7)

We then decompose the self-energy into four contributions

 ��K� � �0�0 � � ��: (8)

The fermionic collective modes are determined by find-
ing all four-momenta for which the determinate of the
inverse propagator vanishes

 detS�1 � 0; (9)

where

 iS�1�P� � ��p� �� � ��A�: (10)

with A�K� � �k0 � �0;k� ��. Using the fact that
det���A�� � �A

�A��
2 and defining A2

s � A �A we obtain

 A0 � 	As: (11)

In practice, we can define the z-axis to be in the n̂
direction and use the azimuthal symmetry to restrict our
consideration to the x� z plane. In this case we need only
three functions instead of four

 �0�!; k; �n; �� �
1

2
m2
q

������������
1� �

p Z 1

�1
dx
R�!� k cos�nx; k sin�n

��������������
1� x2
p

�

1� �x2 ;

�x�!; k; �n; �� �
1

2
m2
q

������������
1� �

p Z 1

�1
dx

��������������
1� x2
p

S�!� k cos�nx; k sin�n
��������������
1� x2
p

�

1� �x2 ;

�z�!; k; �n; �� �
1

2
m2
q

������������
1� �

p Z 1

�1
dx
xR�!� k cos�nx; k sin�n

��������������
1� x2
p

�

1� �x2 ;

(12)

where

 R�a; b� � �
�����������������������
a� b� i�
p �����������������������

a� b� i�
p

��1;

S�a; b� �
1

b

aR�a; b� � 1�:

(13)

In Figs. 1–3 we plot the real and imaginary parts of the
quark self-energies �0, �x, and �z for � � f0; 10; 100g.
From these Figures we see that the spacelike quark self-
energy is strongly affected by the presence of an anisotropy
with a peak appearing at !=k � sin�n for strong anisotro-

pies. To further illustrate this in Fig. 4 we have plotted �0

for � � 100 and �n � f0; �=4; �=2g. From this Figure we
see that there is a large directional dependence of the
spacelike quark self-energy. Note that this could have a
measurable impact on quark-gluon plasma photon produc-
tion during the early stages of evolution since screening of
infrared divergences in leading-order photon production
amplitudes requires as input the hard-loop fermion propa-
gator for spacelike momentum. We return to this point in
Sec. III and sketch how to calculate photon emission from
an anisotropic quark-gluon plasma. Assuming the neces-
sary measurements of the rapidity dependence of the ther-
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FIG. 1. Real and imaginary part of �0 as a function of !=k for �n � �=4 and � � f0; 10 100g.
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mal photon spectrum could be performed, photon emission
could provide an excellent measure of the degree of
momentum-space anisotropy in the partonic distribution
functions at early stages of a heavy-ion collision.

For general � and �n we have to evaluate the integrals
given in Eq. (12) numerically. To find the collective modes
we then numerically solve the fermionic dispersion rela-
tions given by Eq. (11). As in the isotropic case, for real
timelike momenta ( j ! j > j k j , Im�!=k� � 0) there are
two stable quasiparticle modes which result from choosing
either plus or minus in Eq. (11).2 We have looked for
modes in the upper- and lower-half planes and numerically
we find none. In the next section we explicitly count the
number of modes using complex contour integration and
demonstrate that there are no unstable collective modes in
two special cases.

Note that the two positive-energy stable modes have the
same relations between helicity and chirality as in the
isotropic case. This stems from the fact [8] that the ratio
of the spinor chirality to helicity obeys

 � �
chirality� �
helicity� �

� sgn
�
As
A0

�
: (14)

The fermionic dispersion relations given by Eq. (11) have
two possible solutions which give different values for �.
The solution with A0 � �As corresponds to a state with
� � �1 and the solution with A0 � �As corresponds to
� � �1 so that in this latter case the usual relation be-
tween chirality and helicity is ‘‘flipped’’. The two solutions
with � � 	1 match smoothly onto the ones obtained in the
isotropic limit since the fermionic dispersion relations
Eq. (11) have the same algebraic form for both isotropic
and anisotropic systems.
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FIG. 3. Real and imaginary part of �z as a function of !=k for �n � �=4 and � � f0; 10 100g.
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FIG. 2. Real and imaginary part of �x as a function of !=k for �n � �=4 and � � f0; 10 100g.

2Note that there are four solutions to the dispersion relations
since each solution exists at both positive and negative !.
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A. Special case: k k n̂

Let us consider the special case where the momentum of
the collective mode is in the direction of the anisotropy

k k n̂, i.e., �n � 0. In this case the integrals in Eq. (12) can
be evaluated analytically. �x becomes zero, while the other
components read

 �0�!; k; �n � 0; �� �
1

2
m2
q

������������
1� �
p

�!2 � k2

�
2
���
�

p
! arctan

���
�

p
� k ln

�
!� k
!� k

��
;

�z�!; k; �n � 0; �� �
1

2
m2
q

������������
1� �
p

�!2 � k2

�
�2

1���
�
p k arctan

���
�

p
�! ln

�
!� k
!� k

��
:

(15)

Equation (11) simplifies to

 !��0 � 	�k� �z�: (16)

Nyquist analysis

We now show analytically for this special case that
unstable modes do not exist. This is done by a Nyquist
analysis of the following function:

 f��!;k;�� �!��0�!;k;�� � 
k��z�!;k;���: (17)

In practice, that means that we evaluate the contour integral

 

1

2�i

I
C
dz
f0��z�
f��z�

� N � P; (18)

which gives the numbers of zeros N minus the number of
poles P of f� in the region encircled by the closed path C.
In Eq. (18) and in the following, we write the functions f�
in terms of z � !=k and for clarity do not always state the
explicit dependence of f� on k and �. Choosing the path
depicted in Fig. 5, which excludes the logarithmic cut for
real z with z2 < 1 of the function (17), leads to P � 0 and
the left hand side of Eq. (18) equals the number of modes
N. Evaluation of the respective pieces of the contour C for
each f� and f� leads to

 N� � 1� 0� 0� 1 � 2; (19)

such that the total number is N � N� � N� � 4, which
corresponds to the stable modes (two for positive ! and
two for negative !). The four contributions in (19) are the
following:

(1) The first 1 results from integration along the large
circle at jzj  1.

 0

 2

 4

 6

 8

 0  0.5  1  1.5  2

R
e(

k 
Σ 0

) 
/ m

q2

ω/k

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2

Im
(k

 Σ
0)

 / 
m

q2

ω/k

θn=0
θn=π/4
θn=π/2

FIG. 4. Real and imaginary part of �0 as a function of !=k for � � 100 and �n � f0; �=4; �=2g.

FIG. 5. Contour C in the complex z-plane used for the Nyquist
analysis.
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(2) The first zero is the contribution from the path
connecting the large circle with the contour around
z � 	1.

(3) The second zero stems from the two small half-
circles around z � 	1

(4) The last 1 is obtained from integration along the
straight lines running infinitesimally above and be-
low the cut between z � �1 and z � 1. See below
for details on this integration.

The last contribution can be evaluated using

 

Z 1�i�

�1�i�
dz
f0��z�
f��z�

� ln
f��1� i��
f���1� i��

� 2�in; (20)

for the line above and the corresponding expression for the
line below the cut. n is the number of times the function f�
crosses the logarithmic cut located on the real axis, running
from zero to minus infinity. This cut is due to the appear-
ance of the logarithm on the right hand side of Eq. (20). In
the sum of the line integrations above and below the cut
diverging contributions from the first part on the right hand
side of Eq. (20) cancel and we are left with a contribution
of 2�i for each function. Furthermore it is necessary to
show that neither f� nor f� crosses the cut. The proof is
given in some detail for f� and is performed analogously
for f�. From Eq. (17) we find for f�:

 f��z; k; �� � z� 1�

������������
1� �
p

2�1� �x2�

1

k2

�
�2

�
z�

1

�

�

�
���
�

p
arctan

���
�

p
� �z� 1� ln

�
z� 1

z� 1

��
:

(21)

We want to study whether this function crosses the real axis
in the range Re
z� 2 
�1; 1�, i.e., whether the imaginary
part of f� changes sign in that range. On the straight line
infinitesimally above the cut the imaginary part of f� is
given by

 Im 
lim
�!0

f��x� i�; k; ��� � �
�
2

������������
1� �
p

�x� 1�

k2�1� �x2�
; (22)

for real x. It is only zero for x � 1, which means that the
function f� can not cross but merely touch the cut within
the limits of the integration. On the straight line below the
cut we get the same result (24) with a minus sign. For f�,
we find that the imaginary part in the regarded range only
becomes zero for x � �1, which means that the logarith-
mic cut is not crossed within 
�1; 1� either. Hence we have
proved for the case k k n̂ that there are no more solutions
than the four stable modes. In particular we have shown
that unstable fermionic modes can not exist.

B. Large-� limit

In the extremely anisotropic case where �! 1 the self-
energies for arbitrary angle �n can be calculated explicitly.
The distribution function (2) becomes [63]

 lim
�!1

f��p� � 	�p̂ � n̂�
Z 1
�1

dxfiso�p
��������������
1� x2

p
�: (23)

With n̂ in the z-direction this implies that p lies in the
x-y-plane only. As in Sec. II, due to azimuthal symmetry,
we consider the case where k lies in the x-z-plane only.
Using (23) we obtain from Eqs. (12)
 

�0�!;k;�n��
�
2
m2
q

1������������������������
!�ksin�n
p ������������������������

!�ksin�n
p ;

�x�!;k;�n��
�

2ksin�n
m2
q

�
!������������������������

!�ksin�n
p ������������������������

!�ksin�n
p �1

�
:

(24)

Since pz is always zero, �z vanishes. Equation (11) now
becomes

 !� �0 � 	
���������������������������������
�kx � �x�

2 � k2
z

q
: (25)

Nyquist analysis

Again, we only find four stable modes and will now
show analytically that these are the only solutions in the
large �-limit for arbitrary angle �n. The cut resulting from
the complex square roots in (24) can be chosen to lie
between z � � sin�n and z � sin�n on the real axis. The
Nyquist analysis can then be performed analogously to that
in Sec. II A with the contour in Fig. 5 adjusted such that the
inner path still runs infinitesimally close around the cut.
Using this path in the evaluation of Eq. (18) for the
functions

 f��!; k; �n� � !� �0 �
���������������������������������
�kx � �x�

2 � k2
z

q
; (26)

we find the number of solutions to Eq. (25) to be

 N� � 1� 0�
1

4
�

1

4
�

1

2
� 2; (27)

so that again there are N � N� � N� � 4 solutions,
which are the known stable modes. The decomposition in
(27) is done as follows:

(1) The first contribution to N� comes from integration
along the large outer circle at jzj  1.

(2) The zero stems from the paths connecting the outer
and the inner circle.

(3) The two contributions of 1=4 result from integra-
tions along the small circles around � sin�n and
sin�n.

(4) The last contribution of 1=2 comes from integration
along the straight lines running infinitesimally close
above and below the cut. We discuss this part in
further detail below.

The last contribution can be obtained using Eq. (20). For
the evaluation of the limit �! 0 it is essential to note that
the f� behave like ln� or 1=�ln�� (depending on which
function is evaluated on which line) and are both negative
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as �! 0. This results in a contribution of �i� for each
function and integration, because in all cases the imaginary
part of both functions can be shown to be positive in the
regarded limit. All other contributions, including the di-
verging parts 	 ln�� ln�� cancel in the sum of the results
from the upper and lower line.

Again, we need to show that the functions f� do not
cross the logarithmic cut for z 2 
� sin�n; sin�n�, i.e., that
n � 0 in Eq. (20). It is possible to find an analytic expres-
sion for the imaginary part of f� using

 Im
��������������
x� iy

p
�

1���
2
p sgn�y�

��������������������������������������������
x2 � y2

q
� x

r
; (28)

for the imaginary part of the square root appearing in (26)
with real x and y. Then the only solutions to

 Im f��z� � 0 (29)

are found analytically to be Re�z� � sin�n and Re�z� �
� sin�n for f� and f� respectively. This means that the cut
is not crossed during the integration along the straight lines
and that the contribution from this piece is in fact 1=2.

III. FERMION SELF-ENERGY FROM THE
REAL-TIME FORMALISM

In this section we extend our previous results to the real-
time formalism and demonstrate that the high-temperature
limit of the Kubo-Martin-Schwinger formula, �12 �
��21, holds even for the nonequilibrium configuration
considered here. We will use the real-time formulation of
Refs. [64–69]. In this case both propagators and self-
energies become 2� 2 matrices. The free propagators
are given by
 

S�K�� �K6 �m�
� 1

K2�m2�i�
0

0 �1
K2�m2�i�

0@ 1A�2�i	�K2�m2�

�
fF�K� ����k0��fF�K�

���k0��fF�K� fF�K�

 !�
; (30)

with the general fermion distribution function fF�K�.
The components (12) and (21) of the self-energy matri-

ces are related to the emission and absorption probability
of the particle species under consideration [67,70,71]. To
lowest order photons are produced via annihilation and
Compton processes

 q� �q! g� �; q� �q� � g! q� �q� � �: (31)

Within the real-time formalism the rate of photon emission
can be expressed as [36]

 E
dR

d3q
�

i

2�2��3
��

12��Q�; (32)

from the trace of the (12)-element �12 of the photon-
polarization tensor.

 

�i��
12��Q� � �e

2e2
qNc

Z d4p

�2��4
Tr
��iS?12�P�jHL��

� iS21�P�Q�

� ��iS12�P�Q���iS
?
21�P�jHL�; (33)

where eq is the quark charge. Here S12 and S21 are the free
fermion propagators from Eq. (30) and propagators with an
HL subscript are the full propagators in the hard-loop
approximation. The hard-loop propagators satisfy a fluc-
tuation dissipation relation, which in the quasistatic case is
given by

 S�12=21�P�jHL � S�ret�P�jHL�12=21�P�S�adv�P�jHL: (34)

The retarded propagator reads

 S�ret�P�jHL �
1

P�m���P�
; (35)

where ��P� is the retarded self-energy given in Eq. (1).
The advanced propagator follows analogously with the
advanced self-energy, and to one loop order �12 is given by

 �12�P� � 2ig2CF

Z d4k

�2��4
S12�K��12�P� K�; (36)

where �12 is the (12)-element of the matrix boson propa-
gator given by

 ��K� �
1

K2�m2�i�
0

0 �1
K2�m2�i�

 !
� 2�i	�K2 �m2�

�
fB�K� ���k0� � fB�K�

��k0� � fB�K� fB�K�

� �
: (37)

With the anisotropic distribution function (2) �12 can be
evaluated in the hard-loop approximation to read
 

��
12�P�� i

g2CF

�2��2
Z
d~k
Z 2�

0
d


Z �1

�1
dx

~k2

�1��x2�3=2

�

�
k�

k

��������k0�k
	�g��N���fiso

F �
~k��N���fiso

B �
~k��1�

�
k�

k

��������k0��k
	�g��N���fiso

B �
~k��N���fiso

F �
~k��1�

�
;

(38)

where

 g	�2
~k����������������

1��x2
p 
	p0�p�sin�n

�������������
1�x2

p
cos
�cos�nx��

(39)
and we chose p to lie in the x� z-plane and used the
change of variables (5) for k. Note that in the hard-loop
limit one can ignore the quark masses and hence they have
been explicitly set to zero above. The term k�=k does not
depend on k and is given by �	1; sin� cos
; sin� sin
;
cos��. Evaluation of the 	-function leads to

 � i��
12�P;�n;���A�

��P;�n;���B���P;�n;��; (40)
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with

 ���P; �n; �� �
Z
d


X
i

k�

k

��������k0�k

�������� �1� x2
i �

1=2

�1� x2
i �

1=2�p cos�n � p0�xi� � p sin�nxi�1� �� cos


����������1� x2
i �

���P; �n; �� �
Z
d


X
i

k�

k

��������k0��k

�������� �1� ~x2
i �

1=2

�1� ~x2
i �

1=2�p cos�n � p0�~xi� � p sin�n~xi�1� �� cos


����������1� ~x2
i �;

(41)

where the xi and ~xi are solutions to ~k����������
1��x2
p �


�p0 � p�sin�n
��������������
1� x2
p

cos
� cos�nx�� � 0 and
~k����������

1��x2
p 
p0 � p�sin�n

��������������
1� x2
p

cos
� cos�nx�� � 0, re-

spectively, and

 A �
g2CF

8�2

Z
dkkN���fiso

F �k��N���f
iso
B �k� � 1�; (42)

 B �
g2CF

8�2

Z
dkkN���fiso

B �k��N���f
iso
F �k� � 1�: (43)

There can be N 2 f0; 1; 2g solutions for both xi and ~xi,
depending on the parameters p, p0, �n and 
. Note that k

�

k
is also given in terms of the xi. It is easily verified that

 ���P; �n; �� � ��
��P; �n; ��; (44)

such that Eq. (40) greatly simplifies to read

 � i��
12�P; �n; �� � �A� B��

��P; �n; ��; (45)

where

 A� B �
g2CF
8�2 N���

�Z 1
0
dkk�fiso

B �k� � f
iso
F �k��

�

�
1

4
m2
qN���; (46)

assuming equal quark and antiquark distributions. We did
not present the analogous explicit calculation of �21, but
find for it the same result as for �12 with A and B inter-
changed. We also verified that �12 and �21 fulfill the

general relation

 �21 � �12 � 2iIm�; (47)

with the retarded self-energy � given in Sec. II.
Furthermore, since �21 is given by Eq. (45) with A and B
interchanged it follows within the hard-loop approximation
that with the form of the anisotropic distribution function
assumed here it always holds that

 �12 � ��21; (48)

which can be seen as a high-temperature limit for the
Kubo-Martin-Schwinger relation in equilibrium, but also

 0
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holds for finite � and hence for nonequilibrium.
Equations (47) and (48) show that in order to calculate
the hard-loop photon production rate from an anisotropic
plasma one need only know the retarded self-energy. We
plot the functions � for an anisotropy parameter of � �
100 and different angles �n in Figs. 6–8, to emphasize the
strong angular dependence once more.

IV. CONCLUSIONS

In this paper we have extended the exploration of the
collective modes of an anisotropic quark-gluon plasma by
studying the quark collective modes. Specifically, we de-
rived integral expressions for the quark self-energy for
arbitrary anisotropy and evaluate these numerically using
the momentum-space rescaling introduced in previous pa-
pers. Using direct numerical calculation we found only real
timelike fermionic modes and no unstable modes.
Additionally using complex contour integration we have
proven analytically in the cases (a) when the wave vector of
the collective mode is parallel to the anisotropy direction
with arbitrary oblate anisotropy and (b) for all angles of
propagation in the limit of an infinitely oblate anisotropy
that there are no fermionic unstable modes. Finally, we
calculated the fermion self-energy of an anisotropic plasma
in the real-time formalism and demonstrated that within
the hard-loop approximation the high-temperature limit of
the Kubo-Martin-Schwinger formula, �12 � ��21, holds
even for the nonequilibrium configuration considered here.
This means that it suffices to only have the retarded self-
energy � in order to complete a calculation of photon
production from an anisotropic plasma in the hard-loop
framework. This calculation is currently underway [72].
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APPENDIX: SMALL-� LIMIT

In the limit �! 0 we can evaluate the quark self-energy
in a power series in the anisotropy parameter �. To linear
order in � we obtain
 

�0 � �iso
0 �

�
4
f
z
k
�3 cos2�n � 1� ��iso

0 
cos2�n � 1

� �3 cos2�n � 1�z2�g; (A1)

 

�x

sin�n
� �iso

s �
�
12

�
1

k
�5 cos2�n � 3� � 3�iso

s 
3 cos2�n � 3

� �5 cos2�n � 3�z2�

�
; (A2)

 

�z

cos�n
� �iso

s �
�
12

�
1

k
�5 cos2�n � 1� � 3�iso

s 
3 cos2�n

� 1� �5 cos2�n � 1�z2�

�
; (A3)

where

 �iso
0 �

m2
q

2k
log
!� k
!� k

; (A4)

 �iso
s �

m2
q

k

�
!
2k

log
!� k
!� k

� 1
�
: (A5)
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