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In this paper causal geodesic completeness of Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cos-
mological models is analyzed in terms of generalized power expansions of the scale factor in coordinate
time. The strength of the found singularities is discussed following the usual definitions due to Tipler and
Królak. It is shown that while classical cosmological models are both timelike and lightlike geodesically
incomplete, certain observationally allowed models which have been proposed recently are lightlike
geodesically complete.
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I. INTRODUCTION

In the last few years the evidence that the Universe
contains a large proportion of some not ordinary stuff
which makes it expand acceleratedly is getting stronger
grounds (see [1] for a recent review). Because of such
considerations, quite a few names have been added to the
original list of contents of the Universe along its different
epochs. Among those, quintessence and phantom energy
are the most popular, and, particularly the latter, has trig-
gered a feverish activity in many directions, one of them
being the investigation of the unusual geometric properties
of the cosmological models they lead to. Phantom uni-
verses have rather awkward singularities [2], which go into
the basket of ‘‘cosmological milestones’’ [3] along with
other geometric curiosities such as bounces or extremality
events appearing in other sorts of universes.

Observationally, phantom universes seem to be pre-
ferred over geometrywise dull lambda-cold dark matter
(LCDM) cosmologies [4], thus making legitimate the sort
of questions addressed here about the fate of phantom
universes. We are going to perform an innovative analysis
of those models in conjunction with all the other FLRW
models in the literature, which will bring some surprises to
build on the atypicality of phantom cosmologies. In addi-
tion, our analysis opens new paths for the exploration of
other sort of milestones, such as sudden singularities which
have received considerable attention recently.

We have borrowed the denomination ‘‘cosmological
milestones’’ from [3], where FLRW cosmological models
were analyzed in terms of a generalized power expansion
of the scale factor. The appearance of polynomial scalar
curvature singularities and derivative curvature singular-
ities, together with the satisfaction of energy conditions
were shown to depend most generally on just the first three
terms of the expansion.

Clearly, there are many interesting geometrical features
which are elusive to studies of that sort. Since the usual
definitions of singularities are related not only to the
properties of the curvature tensor but also to the existence
of causal geodesics that cannot be extended to arbitrary
values of their proper time (geodesic incompleteness) [5]
or even of general causal curves with the same property
(b-incompleteness) [6,7], it is of interest to analyze singu-
larities in general FLRW cosmologies within this frame-
work, as it was done in [8] for sudden singularities [9]. It is
relevant to do so because causal geodesics describe the
trajectories of observers subject just to gravitational forces.
Note that curvature is a static concept, in the sense that it
only reflects what happens at each event, whereas features
derived from tracking the observer along its trajectory are
more dynamical, and somewhat more enlightening. Thus,
our study covers key issues that were overlooked in recent
related classifications [3,10]

We begin therefore in Sec. II by arranging geodesic
equations for FLRW cosmological models in a suitable
fashion for integration in terms of a generalized power
expansion in coordinate time. We proceed then in Sec. III
to analyze the behavior of lightlike geodesics in these
models, which sets the foundations allowing to check
whether the singularities that are found are strong or not
according to the usual definitions reviewed and refined in
Sec. IV. Timelike geodesics are integrated in Sec. Vand the
strength of their singularities is dealt with in Sec. VI. The
paper ends with a discussion of the results in Sec. VII.
Special remarks are done throughout the paper regarding
observationally allowed/favored phantom cosmologies,
because there is a peculiar class of such cosmologies which
persist to stand out of the crowd of all phantom models, as
long as their geometrical properties are concerned.

II. GEODESICS IN FLRW COSMOLOGICAL
MODELS

We consider spacetimes endowed with a FLRW metric
of the form
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ds2 � �dt2 � a2�t�ff2�r�dr2 � r2�d�2 � sin2�d�2�g;

f2�r� �
1

1� kr2 ; k � 0;�1: (1)

As in [3], we assume that at a coordinate time t0, a
singular event or cosmological milestone comes up in
such spacetime. To allow our results to be most general,
we just require the scale factor a�t� to have a generalized
Puiseux expansion around the event at t0,

 a�t� � c0jt� t0j�0 � c1jt� t1j�1 � � � � ; (2)

where the exponents �i are real and ordered,

 �0 <�1 < � � �

This framework covers every proposal of the FLRW
cosmological model in the literature.

At first order, a model admitting such expansion behaves
as a power-law model of exponent �0, which in the case of
a flat universe, k � 0, would correspond to a linear equa-
tion of state for the cosmological fluid

 p � w�; w � �1� 2=3�0:

In order to have a positive expansion factor, we require
c0 to be positive.

Depending on the value of �0, several types of cosmo-
logical milestones arise [3]:

(i) �0 > 0: the scale factor vanishes at t0 and generi-
cally we have a big bang or big crunch singularity.

(ii) �0 � 0: the scale factor is finite at t0. If a�t� is
analytical, the event at t0 is regular. Otherwise a
weak or sudden singularity appears [9].

(iii) �0 < 0: the scale factor diverges at t0 and a big rip
singularity appears.

Since the singular event at t0 is approached from just one
side (the past for a big bang, the future for a big crunch
singularity), there is usually no need to consider absolute
values in the expansion (2), except in the case, for instance,
of sudden or weak singularities [9], which have been seen
to be traversable [8] for geodesic observers.

In order to avoid dealing with signs, we consider singu-
larities in the past, t > t0. Of course the analysis is valid
also for singularities in the future, since the equations are
time symmetric, and occasionally we will comment what
would happen if the singularity lies in the past.

We consider causal geodesics parametrized by their
proper time �, (t���, r���, ����, ����). This means that
the velocity u of the parametrization ( _t, _r, _�, _�) satisfies

 � � �gij _xi _xj; xi; xj � t; r; �; �; (3)

where � takes the zero value for lightlike geodesics and the
value one for timelike geodesics. It takes the value minus
one for spacelike geodesics, but since we need just causal

curves for our analysis, we will discard the � � �1 case.
The dot stands for derivation with respect to proper time.

Condition (3) defines proper time up to a change of scale
and a translation, ~� � A�� B, and therefore the parame-
trization is also called affine parametrization.

Geodesic equations are quasilinear in the acceleration (�t,
�r, ��, ��) and depend on the metric components gij through
the Christoffel symbols

 �x i � �ijk _xj _xk � 0; (4)

 �ijk �
1
2g
ilfglj;k � glk;j � gjk;lg: (5)

For a FLRW cosmology they may be written as

 

�t � �
aa0

1� kr2
_r2 � aa0r2� _�2 � sin2� _�2�; (6a)

�r � �2
a0

a
_t _r�

kr

1� kr2
_r2

� �1� kr2�r� _�2 � sin2� _�2�; (6b)

�� � �2
a0

a
_t _��

2

r
_r _�� sin� cos� _�2; (6c)

�� � �2
a0

a
_t _��

2

r
_r _��2 cot� _� _�; (6d)

where the comma stands for derivation with respect to
coordinate time t.

Taking into account that orbits of geodesics in spheri-
cally symmetric spacetimes remain in equatorial hyper-
surfaces, they can be fit in a hypersurface � � �=2 by
choosing coordinates accordingly. This allows a simplica-
tion of the system of equations,

 

�t � �
aa0

1� kr2
_r2 � aa0r2 _�2; (7a)

�r � �2
a0

a
_t _r�

kr

1� kr2
_r2 � �1� kr2�r _�2; (7b)

�� � �2
a0

a
_t _��

2

r
_r _� : (7c)

Finally, due to the existence of isometries, the following
conserved quantities of geodesic motion exist:

 

P1 � a�t�
�
f�r� cos� _r�

r
f�r�

sin� _�
�
; (8a)

P2 � a�t�
�
f�r� sin� _r�

r
f�r�

cos� _�
�
; (8b)

L � a�t�r2 _�: (8c)

They allow us to reduce (7) to a simple set of first order
differential equations:
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_t2 � ��
P2 � kL2

a2�t�
; (9a)

_r �
P1 cos�� P2 sin�

a2�t�f�r�
; (9b)

_� �
L

a2�t�r2 : (9c)

These constants of geodesic motion are related to angu-
lar momentum and linear momentum,

 P2 � P2
1 � P

2
2; (10)

and even allow us to obtain the equation of the orbits,
namely,

 f�r�r �
L

P2 cos�� P1 sin�
; (11)

which is just the equation of a straight line in polar coor-
dinates in the flat case k � 0:

 P2x� P1y � L;

as it was to be expected.
It may be seen that the distinction between different

types of universes (flat, open, closed) appears only through
the constant k in (9a) and in the function f�r� in (9b). This
function may be factored away in that equation just by
taking

 

_R �
P1 cos�� P2 sin�

a2�t�
; R �

8<
:

arcsinhr k � �1
r k � 0
arcsinr k � 1

:

Therefore, the relevant information for geodesics is
encoded in the scale factor a�t�. We make use of this fact
on analyzing the behavior of causal geodesics.

From (9) we learn that just the equation for t needs to be
solved, since the equations for the other coordinates are
reduced to quadratures once the solution of (9a) is known.

We can forget the equation for� along a geodesic since,
due to homogeneity and isotropy of the FLRW universe,
the origin may be located at any point on the geodesic and
hence this appears as a straight line with zero angular
velocity:
 

_t �

��������������������
��

P2

a2�t�

s
; (12a)

_r � �
P

a2�t�f�r�
: (12b)

Possibly a quicker way to reach this result is considering
beforehand that geodesics are straight lines due to the
homogeneity and isotropy of the spacetime and that @R �
@r=f�r� is a generator of an isometry along one of these
lines. Hence,

 � P � u �
@r
f�r�

� a2�t�f�r� _r;

is a conserved quantity of geodesic motion. The equation
for _t is derived from the normalization condition (3),

 � � _t2 � a2�t�f2�r� _r2:

We consider future-pointing geodesics and therefore we
take _t > 0.

Now we may begin to draw information about causal
geodesics from their equations. Following [5] we take
causal geodesic completeness as a minimum condition
for a spacetime to be considered singularity free.
Therefore, we analyze the cases where causal geodesics
are incomplete, that is, where they cannot be extended to
arbitrarily large values of their proper time �.

However, we must bear in mind that, since we have no
guarantee that the coordinate chart that allows us to write
the metric in the form (1) covers the whole universe, some
conclusions about incompleteness may not be correct if the
spacetime is extendible to a larger one. That is, a geodesic
may leave the portion of spacetime depicted by our coor-
dinates in finite proper time, but not the universe itself.
Therefore, some of the singularities we may encounter may
not be real, since the universe can be extended.

This is the case of Milne universe, which is the case of
(1) for k � �1, a�t� � t. This universe can be reduced to a
portion of empty Minkowski spacetime by the coordinate
transformation

 T � t
��������������
1� r2

p
; R � rt;

which covers just the region inside the null cone T2 � R2.
It is, therefore, a geodesically complete and singularity-
free spacetime, but it appears singular in the Milne form,
since it can be extended to the whole Minkowski
spacetime.

III. LIGHTLIKE GEODESICS

The lightlike case is fairly simple and can be explicitly
integrated for the time coordinate,

 a�t� _t � P)
Z t

t0
a�t0�dt0 � P��� �0�:

Close to t0, the leading term in the power expansion of
Eq. (12a) is the one with the lowest exponent �0. In many
cases, in order to analyze the singular behavior of geo-
desics near t0, we just require the first term of the power
expansion

 a�t� ’ c0jt� t0j�0 ;

which provides the time coordinate at first order in terms of
proper time �, after integrating (12a),
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Z t

t0
c0jt

0 � t0j
�0dt0 ’ P��� �0�;

t ’ t0 �
�
�1� �0�P

c0

�
1=�1��0�

��� �0�
1=�1��0�;

(13)

for �0 � �1. If �0 � �1, the leading term is exponential

 t ’ t0 � CeP�=c0 :

Other cases which require a different treatment, involv-
ing more terms of the power expansion, are those with
�0 � �1� n�=n with n a positive natural number. We
elaborate further on those cases below.

From either the expression of t in (13) or _t and its
derivatives one gets
 

_t ’
P
c0
jt� t0j��0 ; (14a)

�t ’ �
�0P
c0
jt� t0j��0�1 _t

’ �
�0P2

c2
0

jt� t0j
�2�0�1; (14b)

tn� ’ �njt� t0j
1�n�n�0 ; (14c)

with

 �n � ��1�n�1�0 � � � ��n� 1��0 � n� 2�
�
P
c0

�
n
: (15)

Several possibilities arise, since (14c) implies that if

 �0 �
1� n
n

;
5n� 3

3�1� n�
� w � �1; (16)

there is no blow up in any of the derivatives of order lower
than or equal to n. The latter condition is not too stringent,
that is, such cases appear often, so it is of utmost relevance
to get further insight into the details of the different sub-
cases one can distinguish:

(i) �0 > 0: This case includes all classical matter con-
tents (for flat universes, scalar field �0 � 1=3, ra-
diation �0 � 1=2, dust �0 � 2=3 . . . , with
w>�1). Since the exponent 1=�1� �0� is lower
than one, t is not differentiable at t0 and the deriva-
tive _t blows up.

(ii) �0 2 ��1=2; 0�: It corresponds to w<�7=3 for
flat power-law models. In this case _t does not blow
up at t0, but �t does.

(iii) �0 2 ��2=3;�1=2�: It corresponds to w 2
��7=3;�2� for flat power-law models. In this
case �t does not blow up at t0, but t

:::
does.

(iv) �0 2 �
1�n
n ; 2�n

n�1�: It corresponds to w 2
� 5n�8
3�2�n� ;

5n�3
3�1�n�� for flat power-law models. The

derivative tn�1� does not blow up at t0, but tn� does.
(v) �0 <�1: It corresponds to w 2 ��5=3;�1� for

power-law models. According to (13), the time
coordinate along the lightlike geodesic is domi-

nated by a negative power of proper time �. This
means that these geodesics never reach t0, since t�
t0 only vanishes when � tends to infinity. Typically,
best fit phantom models have a value of w within
this range, so it seems very likely that if the uni-
verse is phantom its geodesics are going to have
this peculiar behavior.

The limit cases where �0 is of the form �1� n�=n
(0;�1=2;�2=3;�3=4; . . . ;�1) fall out of this classifica-
tion since the derivative tn�1� vanishes, as it follows from
(15). If every exponent �i in the generalized power expan-
sion of a�t�were of this form, none of the derivatives of the
time coordinate along lightlike geodesics would blow up.
These are extremely fine-tuned cases, so we will not con-
sider them any further, and we will then turn back to the
cases �i � �1� n�=n for i � 0 only.

For this analysis we have to resort to the next term of the
power expansion, c1�t� t0��1 , but if the term does not
provide sufficient information, one would have to keep
adding terms until a satisfactory expression is obtained.

Up to second order

 

_t �
P
a�t�
’
P
c0
jt� t0j��0 �

Pc1

c2
0

jt� t0j�1�2�0 � � � �

we see that, after the contribution of the first term to the
derivative tn�1� vanishes,

 tn�1� 	 jt� t0j
�1��n�2��0�n;

the leading term for lightlike geodesic behavior in these
cases is the one with �1.

Let us take a look to the new cases arising:
(i) �0 � 0. In this case the scale factor is neither zero

nor does it tend to infinity at t0 and, in principle,
Eqs. (12a) are regular at t0 as it was pointed out in
[8]. This is the case of the models proposed by
Barrow [9]. How regular/singular geodesics are in
these spacetimes depends on the next exponent,
�1 > 0, in the expansion of the scale factor. For
any such value _t does not blow up at t0, but some
remarks are in order.
If �1 2 �n� 2; n� 1�, n > 1, the derivative tn�1�

does not blow up at t0 but tn� does. The phenome-
non called sudden singularity [9], which has
aroused much interest [9,11–13],1 corresponds to
the models with �1 > 1, which have therefore non-
singular �t at t0, and were shown to have well-
defined geodesics around t0 in [8].
If �1 is a natural number, the same reasoning is

1In [9] and some of the references inspired by that work
[11,14], the treatment is purely phenomenological and the focus
is on a quest for ad hoc parametrizations of a�t� leading to such
singular behavior to arise (see [13] for an approximate recon-
struction of the equation of state or [14] for statefinder parame-
ters). Interestingly, sudden singularities can appear in more solid
contexts, for instance in some braneworld models [15].
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applied to the first exponent �N which is not natu-
ral. If every exponent �i is natural, then no deriva-
tive of lightlike geodesics diverges at t0. This is the
case of course of a nonvanishing analytical a�t� in
the vicinity of t0, such as, for instance, in de Sitter,
a�t� � cosht, and anti-de Sitter universes, a�t� �
cost.

(ii) �0 � �1=2. For all of these cases �t does not blow
up at t0. Since t

:::
	 jt� t0j

�1 , the third derivative
blows up if �1 is negative.
Since tn� 	 jt� t0j�1��3�n�=2 in this case, if �1 2
��n� 4�=2; �n� 3�=2�, n > 2, the derivative tn�1�

does not blow up at t0 but tn� does.
(iii) �0 � �2=3. In these models t

:::
is finite at t0. Since

t
::::
	 jt� t0j

�1�1=3, the fourth derivative blows up if
�1 <�1=3.
Since tn� 	 jt� t0j

�1��5�n�=3, if �1 2 ��n�
6�=3; �n� 5�=3�, n > 3, the derivative tn�1� does
not blow up at t0 but tn� does.

Therefore we see different levels of singular behavior at
t � t0 along lightlike geodesics. As �0 decreases to get
closer to the value �1, the regularity of the geodesic
improves in the sense that one has to go to derivatives of
higher order to find singular behavior. This limit model has
been named superphantom [16] in the case of flat power-
law cosmologies with w � �5=3. For �0 lower than
or equal to�1 these geodesics do not even reach the event
at t0.

As we have already pointed out, the geodesic equation
for r does not add any further information, as we see in the
equation of the orbit

 

��������dRdt
��������� j _Rj

_t
�

1

a�t�
’
jt� t0j��0

c0
;

which is integrable close to t0 if �0 < 1. That is, it adds no
new information, since cases with �0 
 1 have already
been shown to be singular. These results are summarized in
Table I.

IV. STRENGTH OF SINGULARITIES ALONG
LIGHTLIKE GEODESICS

As we have shown in the previous section, the
‘‘strength’’ of singularities decreases qualitatively as the
exponent �0 decreases. It would be interesting to check
these differences in behavior with the usual definitions of
strong singularities.

The idea of a strong singularity was first introduced by
Ellis and Schmidt [17]. A singularity is meant to be strong
if tidal forces exert a severe disruption on finite objects
falling into it. There have been several attempts to provide
a rigorous mathematical definition for this idea.

The finite volume is considered to be spanned by three
orthogonal Jacobi fields which form an orthonormal basis
with the velocity of the incomplete geodesic. According to
Tipler [18], the singularity is strong if the volume tends to
zero as the geodesic approaches the value of proper time
where it meets its end. Królak’s definition [19] is less
restrictive, since it just requires the derivative of the vol-
ume with respect to proper time to be negative. This
definition has been further refined in [20].

However, these definitions are meant for focusing gravi-
tational forces, that is, Rijuiuj must be non-negative for
timelike and lightlike observers with velocity u. Hence,
these definitions leave out the possibility of big rip singu-
larities, but they can be extended to these cases just revers-
ing signs. For instance, for negative Rijuiuj Tipler’s
definition requires a volume tending to infinity as the
geodesic meets its end and Królak’s definition requires a
positive derivative of the volume close to the end of the
geodesic.

Fortunately, one is not to construct the basis of Jacobi
fields in order to check these definitions. There are neces-
sary and sufficient conditions due to Clarke and Królak
[21] related to integrals of Riemann tensor components
along the incomplete geodesic. They are not affected by the
inclusion of big rip singularities since they just require
components of the Riemann tensor to blow up along causal
geodesics. In order to apply them we need the components
of the Riemann tensor

 

Rtrtr
f2 �

Rt�t�
r2 �

Rt�t�
r2sin2�

� aa00;

Rrttr � R�tt� � R�tt� �
a00

a
;

Rr�r�
r2 �

Rr�r�
r2sin2�

� �
R�rr�
f2 �

R����
r2sin2�

� �
R�rr�
f2

� �
R����
r2 � a02 � k;

omitting the ones that can be obtained by the symmetries of
the tensor, and Ricci tensor components

TABLE I. Derivatives of lightlike geodesics at t0. A slash
indicates the cases where t0 is never reached.

�0 �1 _t �t t
:::

tn�

(0, 1) (�0, 1) 1 1 1 1

0 (0, 1) finite 1 1 1

(1, 2) finite finite 1 1

(2, 3) finite finite finite 1

(� 1=2, 0) (�0, 1) finite 1 1 1

�1=2 (� 1=2, 0) finite finite 1 1

(0, 1=2) finite finite finite 1

(� 2=3, �1=2) (�0, 1) finite finite 1 1

�2=3 (� 2=3, �1=3) finite finite finite 1

( 1�n
n , 2�n

n�1 ) (�0, 1) finite finite finite 1

(�1, �1] (�0, 1) / / / /
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 Rtt � �
3a00

a
;

Rrr
f2 �

R��
r2 �

R��
r2sin2�

� aa00 � 2�a02 � k�:

For FLRW models conditions are simpler, since the
Weyl tensor vanishes and therefore only conditions related
to the Ricci tensor are relevant. According to [21], a light-
like geodesic meets a strong singularity, according to
Tipler’s definition, at proper time �0 if and only if the
integral of the Ricci tensor

 

Z �

0
d�0

Z �0

0
d�00Rijuiuj (17)

diverges as � tends to �0.
For Królak’s definition the condition is less restrictive: a

lightlike geodesic meets a strong singularity at proper time
�0 if and only if the integral

 

Z �

0
d�0Riju

iuj (18)

diverges as � tends to �0.
In our case, the velocity of the geodesic is

 ut � _t �
P
a
; ur � _r � �

P

fa2 ;

and therefore the component of the Ricci tensor measured
along the geodesic is

 Riju
iuj � 2P2

�
a02 � k

a4 �
a00

a3

�
:

At first order in our generalized power expansion, we
have two cases, depending on whether the curvature term is
leading or not

 Riju
iuj ’

2P2�0

c2
0jt� t0j

2��0�1�
�

2kP2

c4
0jt� t0j

4�0
� � � � ;

(i) First, the case �0 � �1, which is complete, since
lightlike geodesics never reach t � t0, as we have
seen.

(ii) For �0 2 ��1; 1�, k � 0 or �0 >�1, k � 0, using
(13),

 Riju
iuj ’

2P2�0

c2
0

jt� t0j
�2��0�1�

’
2�0

��0 � 1�2
1

j�� �0j
2 ;

produces a logarithmic divergence with Tipler’s
definition and an inverse power divergence with
Królak’s for 0 � �0 >�1 and therefore we have
a strong singularity in these cases.

(iii) There is a subcase left, �0 � 0, for which the
approximation at first order leaves

 Riju
iuj ’ 2P2

�
k

c4
0

�
c1�1��1 � 1�

c3
0jt� t0j

2��1

�

’
2kP2

c4
0

�
2P�1c1�1��1 � 1�

c�1�1
0 j�� �0j

2��1
;

which provides no divergent integral with Tipler’s
definition, since �1 > 0, but provides one with
Królak’s one if �1 2 �0; 1�. This generalizes the
result of [8], since there it was shown that sudden
singularities, a special case with �0 � 0, �1 > 1,
were not in fact singularities.
For �1 � 1 we have to use still another term of the
expansion,

 Rijuiuj ’ 2P2

�
k� c2

1

c4
0

�
c2�2��2 � 1�

c3
0jt� t0j

2��2

�

’
2�k� c2

1�P
2

c4
0

�
2P�2c2�2��2 � 1�

c�2�1
0 j�� �0j

2��2
;

which shows that this subcase does not produce a
divergent integral since �2 > 1.

(iv) For �0 � 1,

 Riju
iuj ’ 2P2 c

2
0 � k

c4
0

jt� t0j
�4;

we see that both integrals are divergent, since the
exponent is smaller than �2, unless k � �1, c0 �
1, values for which the Ricci tensor vanishes at first
order, because at this order it is a Milne model. We
are to resort then to the next term, �1 > 1,

 Riju
iuj ’ �

2P2�1��1 � 3�c1

jt� t0j
5��1

’ �
2��1�3�=2P��1�1�=2�1��1 � 3�c1

j�� �0j
�5��1�=2

;

which produces no divergent integral for Tipler’s
definition but for Królak’s one the singularity is
strong if �1 < 3.
We need another term, �2 > 3, to check the regu-

TABLE II. Degree of singularity of null geodesics around t0.

�0 �1 k c0 Tipler Królak

(�1, �1] Regular Regular
(� 1, 0) (�0, 1) 0, �1 (0, 1) Strong Strong
0 (0, 1) Weak Strong

[1, 1) Weak Weak
(0, 1) (�0, 1) Strong Strong
1 (1, 1) 0, 1 Strong Strong

(1, 1) �0; 1� [ �1;1� Strong Strong
(1, 3) �1 1 Weak Strong
[3, 1) Weak Weak

(1, 1) (�0, 1) 0, �1 (0, 1) Strong Strong
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larity of the �1 � 3 subcase with Królak’s defini-
tion,

 Rijuiuj ’ �
2P2�2��2 � 3�c2

jt� t0j5��2
;

and we find that it is similar to the �1 contribution.
Hence it does not diverge for �2 > 3.

(v) Finally, in the cases with k � 0 and �0 
 1 the
leading term in the Ricci tensor component is the
curvature one

 Rijuiuj ’
2kP2

a4 ’
2kP2

c4
0jt� t0j

4�0

’
2k�1� �0�

�4=�1��0�P2�4�0=�1��0�

c4�4�0=�1��0�
0 j�� �0j

4�0=�1��0�
;

which also provides divergent integrals since the
exponent of the denominator is larger than 2.
Hence, the singularities are strong in these cases
too.

We conclude that for �0 >�1 lightlike geodesics in all
models meet a strong singularity except for the cases �0 �
0 (and �1 
 1 with Królak’s definition) and �0 � 1, k �
�1, c0 � 1 (�1 
 3 with Królak’s definition), which are
regular. These are the only cases, together with �0 � �1,
that are null geodesically complete, even though the cur-
vature is singular also for these models, as it was shown in
[3].

We notice that the different behavior of geodesics for
positive and negative �0 does not quite influence the
strength of the curvature singularity at t0. Generically
models with a big rip have null geodesics with derivatives
that do not blow up at t0, whereas all derivatives of null
geodesics in models with a big bang or crunch are infinite.
These results are summarized in Table II.

V. TIMELIKE GEODESICS

For timelike geodesics the relevant equation is, at first
order of the power expansion,

 

_t �

���������������
1�

P2

a2

s
’

����������������������������������������
1�

P2

c2
0

�t� t0�
�2�0

s
; (19)

which can be solved explicitly in terms of hypergeometric
functions,

 �t� t0�F
�
1

2
;�

1

2p
; 1�

1

2p
;�

P2

c2
0

�t� t0��2�0

�
’ �� �0;

where F is the hypergeometric function, but we shall not
use this expression.

It is clear, as it happened for lightlike geodesics, that for
�0 > 0 the geodesic is singular at t � t0, since _t blows up
there, unless P is zero, which is a trivial regular case,

 t� t0 � �� �0; r � r0;

the comoving congruence of fluid wordlines.
On the contrary, this derivative is well defined and takes

the value one if �0 is negative. In this case we may
approximate _t in the vicinity of t0,

 

_t ’ 1�
P2

2c2
0

�t� t0��2�0 : (20)

In order to carry out the analysis of the behavior of these
geodesics, we need expressions for higher derivatives of
coordinate time t,
 

�t � �
P2a0

a3
�����������������������
1� P2a�2
p _t � �

P2a0

a3

’ �
P2�0�t� t0��2�0�1

c2
0

; (21a)

t
:::
� P2

�
3a02

a4 �
a00

a3

�
_t (21b)

’
P2�0�2�0 � 1��t� t0��2�0�2

c2
0

;

tn� ’ ~�n�t� t0�
�2�0�n�1: (21c)

with

 

~� n �
��1�n�1P22�0 � � � �2�0 � n� 2�

2c2
0

: (21d)

From these expressions we may draw valuable informa-
tion about timelike geodesics around t0:

(i) �0 > 0: As it happened in the lightlike case, time-
like geodesics are singular at t0, since the derivative
_t blows up. For flat power-law models it corre-
sponds to w>�1.

(ii) �0 2 ��1=2; 0�: Again as it happened for lightlike
geodesics, the derivative �t blows up at t0, whereas _t
does not. It corresponds to w<�7=3 for flat
power-law models.

(iii) �0 2 ��1;�1=2�: For these cases we find the first
difference with lightlike geodesics. The derivative t

:::

blows up at t0, but �t does not. They correspond to
flat power-law models with w 2 ��7=3;�5=3�.

(iv) �0 2 �
1�n

2 ; 2�n
2 �, n > 1: Whereas lightlike geode-

sics did not reach t0 in finite proper time in these
models, timelike geodesics do, with regular tn�1�

but with infinite tn� at t0. The corresponding flat
power-law coefficients would be w 2
� 3n�2
3�2�n� ;

3n�1
3�1�n��.

Again for the limit cases �0 �
1�n

2 (0;�1=2;�1 . . . ) the
contribution of the term with exponent �0 to the derivative
tn�1� vanishes and we have to resort to the next term in the
expansion with a nonvanishing contribution to higher de-
rivatives,
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_t ’ 1�
P2

2c2
0

�t� t0��2�0 �
P2c1

c3
0

�t� t0��1�3�0

�
P4

8c4
0

�t� t0�
�4�0 � � � � ; (22)

which is the term with exponent �1 � 3�0 and therefore
the relevant contribution to the derivative tn�1� is of the
form �t� t0��1�3�0�n.

Let us analyze some of these cases:
(i) �0 � 0<�1: The discussion is entirely similar to

the one for lightlike geodesics. The scale factor
does not vanish at t0 and therefore these are sudden
or weak singularities. Since _t	 jt� t0j

�1 , they
have finite _t at t0 and the derivative �t is finite for
�1 
 1. If �1 2 �n� 2; n� 1�, n > 2, the deriva-
tive tn�1� is also finite at t0 but tn� is not.

(ii) Again, if �1 is natural, we would have to resort to
the first exponent �N which is not natural and if all
of them are natural, then no derivative of timelike
geodesics diverges at t0.

(iii) �0 � �1=2. In these cases t
:::

is finite at t0. Since
t
:::
	 jt� t0j�1�1=2, the third derivative is finite if
�1 
 1=2. When �1 2 �n� 7=2; n� 5=2�, n >
3, the derivative tn�1� is finite at t0 and tn� is not.

(iv) �0 � �1. Now t
:::

is finite at t0 and t
::::
	 jt� t0j�1 .

Hence the fourth derivative is finite if�1 is positive.
For �1 2 �n� 5; n� 4�, n > 4, the derivative
tn�1� is finite at t0 whereas tn� is not.

Summarizing, geodesic behavior is similar for timelike
and lightlike geodesics in models with �0 >�1=2, but
there is a different pattern for the rest of the models.
Differentiability of timelike geodesics improves as �0

decreases, but there are only isolated cases for which
they are completely regular and this makes a difference
with the lightlike case. There are no timelike geodesics
which take an infinite proper time to reach t0, as it happens
with null geodesics with �0 � �1.

Equation (12b) for r does not add further information on
the behavior of timelike geodesics either. We may tackle
the equation of the orbit of the geodesics

 

��������dRdt
��������� j _Rj

_t
�

P

a�t�
����������������������
P2 � a2�t�

p ;

in a similar fashion.
If �0 > 0, we get, close to t0,

 

��������dRdt
��������� 1

a�t�
’

1

c0
jt� t0j��0 ;

which is not integrable if �0 
 1, but these are all already
singular cases.

If �0 � 0, we get, close to t0,

 

��������dRdt
��������� P

a2�t�
’
P

c2
0

jt� t0j�2�0 ;

which is integrable for �0 < 1=2.
Therefore, no new singular behavior appears on consid-

ering the geodesic equation for r. The radial coordinate is
singular where t is already singular. These results are
summarized in Table III.

VI. STRENGTH OF SINGULARITIES ALONG
TIMELIKE GEODESICS

Again, it would be quite interesting to know whether the
singularities encountered by timelike geodesics are strong
or not according to the usual definitions.

Conditions like (17) and (18) are not so simple for
timelike geodesics, since there are not both necessary
and sufficient conditions in this case. Those conditions
become just sufficient if the Weyl tensor vanishes.

A timelike geodesic meets a strong singularity, accord-
ing to Tipler’s definition, at proper time �0 if the integral of
the Ricci tensor

 

Z �

0
d�0

Z �0

0
d�00Riju

iuj (23)

diverges as � tends to �0.
In contrast, for Królak’s definition, a timelike geodesic

meets a strong singularity at proper time �0 if the integral

 

Z �

0
d�0Rijuiuj (24)

diverges as � tends to �0.
First we use the comoving fluid worldline congruence,

with velocity u � @t. In this case, _t � 1, proper time and
coordinate time are the same t� t0 � �� �0. The compo-
nent of the Ricci tensor measured by observers along this
congruence,

 Rijuiuj � �
3a00

a
’ �

3�0��0 � 1�

jt� t0j
2 � �

3�0��0 � 1�

j�� �0j
2 ;

produces a logarithmic divergence with Tipler’s definition
and an inverse power divergence with Królak’s one, so we

TABLE III. Derivatives of timelike geodesics at t0.

�0 �1 _t �t t
:::

tn�

(0, 1) (�0, 1) 1 1 1 1

0 (0, 1) finite 1 1 1

(1, 2) finite finite 1 1

(2, 3) finite finite finite 1

(� 1=2, 0) (�0, 1) finite 1 1 1

�1=2 (� 1=2, 1=2) finite finite 1 1

(1=2, 3=2) finite finite finite 1

(� 1, �1=2) (�0, 1) finite finite 1 1

�1 (� 1, 0) finite finite finite 1

( 1�n
2 , 2�n

2 ) (�0, 1) finite finite finite 1
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may conclude that the singularities are strong for all mod-
els with 1 � �0 � 0. Therefore we have:

(i) For 1 � �0 � 0 the geodesics in the fluid congru-
ence meet a strong singularity at t0.

(ii) For �0 � 0, we need another term in the expansion

 

3a00

a
’

3c1�1��1 � 1�

c0jt� t0j
2��1

�
3c1�1��1 � 1�

c0j�� �0j
2��1

;

and we see that in these cases the integrals do not
diverge with Tipler’s definition, but they do with
Królak’s for �1 2 �0; 1�.

(iii) For �0 � 0, �1 � 1, we still need another term

 

3a00

a
’

3c2�2��2 � 1�

c0jt� t0j
2��2

�
3c2�2��2 � 1�

c0j�� �0j
2��2

;

in order to check that integrals do not diverge for
these models with both definitions, since �2 > 1.

(iv) For �0 � 1, we resort to the second term in the
expansion,

 

3a00

a
’

3c1�1��1 � 1�

c0jt� t0j3��1
�

3c1�1��1 � 1�

c0j�� �0j
3��1

;

and we find that for these models the integrals do
not diverge with Tipler’s definition, but they do
with Królak’s for �1 2 �1; 2�.

These results are summarized in Table IV.
This result may be further refined using timelike radial

geodesics, for which

 ut � _t �

���������������
1�

P2

a2

s
; ur � _r � �

P

fa2 ;

Riju
iuj � �

3a00

a
� 2P2

�
a02 � k

a4 �
a00

a3

�
:

Taking a look at the geodesic Eq. (19) for t, we notice
three different possibilities:

(i) �0 < 0: Since _t ’ 1, t� t0 ’ �� �0 close to t0.

(ii) �0 � 0: Now _t ’
����������������������
1� P2=c2

0

q
� 	 close to t0 and

so t� t0 ’ 	��� �0�.
(iii) �0 > 0: For these cases _t ’ P=a close to t0 as for

lightlike geodesics.
Accordingly, there are several cases:

(i) �0 < 0: At lowest order, the P- dependent terms

 

a02 � k

a4
�
a00

a3 ’
�0

c2
0j�� �0j

2��0�1�
;

produce no divergent integral with Tipler’s defini-
tion but they do with Królak’s one for �0 2
��1=2; 0�, but it does not matter, since the first
term was already seen to be divergent, as it is the
same as for the fluid congruence in all these cases.

(ii) �0 � 0: The P- dependent terms are essentially the
same as for lightlike geodesics and we reach there-
fore the same conclusion: these models produce no

divergent integral with Tipler’s definition, but with
Królak’s one they do if �1 2 �0; 1�. The same
happens with the first term, which is the same as
for the fluid congruence.

(iii) �0 � 1: The P- dependent terms are the same as
for lightlike geodesics. Hence, these cases are all
singular but except maybe for k � �1, c0 � 1.
Models with k � �1, c0 � 1, and �1 < 3 are sin-
gular with Królak’s definition. On the other hand,
the first term

 

3a00

a
’

3c1�1��1 � 1�

c0jt� t0j3��1

’

�
2P
c0

�
�1�3=2 3c1�1��1 � 1�

c0j�� �0j
3��1=2

does not diverge.
(iv) 1 � �0 > 0: The P- dependent term for these geo-

desics is the same as for lightlike geodesics and
therefore it is divergent in all cases, though the first
term

 

3a00

a
’

3�0��0 � 1�

jt� t0j2

’

�
c0

P�1� �0�

�
2=1��0 3�0��0 � 1�

j�� �0j
2=1��0

does not diverge with Tipler’s definition and only
with Królak’s for �0 2 �0; 1�.

Therefore we have so far exactly the same models with
strong singularities as we found for lightlike geodesics plus
the �0 � �1 models, which are null, but not timelike,
geodesically complete. That is, we know that all models
with 0 � �0 � 1 have strong singularities at t0. We do not
know what happens with models with �0 � 0, though
those with �1 2 �0; 1� have strong singularities according
to Królak. And the same happens with models with �0 �
1, k � �1, c0 � 1, though those with �1 2 �1; 3� have
also strong singularities according to Królak.

Since the condition on integrals of the Ricci tensor is not
also a necessary condition for the appearance of strong
singularities, we have to check other ways to get informa-
tion about the �0 � 0 and �0 � 1 models.

TABLE IV. Degree of singularity of the fluid congruence of
timelike geodesics around t0.

�0 �1 Tipler Królak

(�1, 0) (�0, 1) Strong Strong
0 (0, 1) Weak Strong

[1, 1) Weak Complete
(0,1) (�0, 1) Strong Strong
1 (1, 2] Weak Strong

(2, 1) Weak Weak
(1, 1) (�0, 1) Strong Strong
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For Tipler’s definition [21], if a causal geodesic with
velocity u meets a strong singularity, then the integral

 Iij��� �
Z �

0
d�0

Z �0

0
d�00jRikjlu

kulj; (25)

diverges as � tends to �0 for some i, j. The components are
referred to a parallelly transported orthonormal frame.

Again Królak’s definition is less restrictive and just
requires that the integral

 Iij��� �
Z �

0
d�0jRikjlu

kulj (26)

diverges as � tends to �0 for some i, j.
We begin again with the fluid worldline congruence,

ut � 1, for which the only nonvanishing components of
the Riemann tensor,

 Ritit � �
a00

a
; i � r; �; �;

produce a necessary condition which is the same as the
already studied sufficient condition.

Therefore, geodesics in the fluid worldline congruence
meet a strong singularity if and only if 1 � �0 � 0 (or
�0 � 0,�1 2 �0; 1� and�0 � 1,�1 2 �1; 2�with Królak’s
definition).

Radial timelike geodesics show more strong singular-
ities, as we may see. We complete the orthonormal basis
formed by u,

 u � _t@t � _r@r �

���������������
1�

P2

a2

s
@t �

P

a2f
@r;

and a vector v,

 v � af _r@t �
_t
af
@r � �

P
a
@t �

1

af

���������������
1�

P2

a2

s
@r;

adding the corresponding unitary vectors parallel to @� and
@�. The parallel transport requirement is trivially satisfied.

The � and � components of the Riemann tensor

 R�k�lu
kul � R�t�t _t2 � R�r�r _r2 � �R�t�r � R

�
r�t� _t _r

� �
a00

a
� P2

�
a00

a3 �
a02 � k

a4

�
� R�k�lu

kul

have similar terms as Rijuiuj and therefore produce the
same results as the corresponding sufficient condition.

Finally, the v components
 

Rikjlviukvjul � Rtrtr

�
P4

a6f2
�

1

a2f2

�
1�

P2

a2

�
2

� 2
P2

a4f2

�
1�

P2

a2

��
� �

a00

a

provide a term that has already been discussed and there-
fore we may conclude also that sufficient conditions for the
appearance of strong singularities along timelike geodesics
are also necessary, as it happened for lightlike ones. These
results are summarized in Table V.

VII. DISCUSSION

We have obtained a thorough classification of singular
events in FLRW cosmological models in terms of the
exponents of a generalized power expansion of the scale
factor in coordinate time around a cosmological milestone
at t0. The behavior of causal geodesics has been obtained in
the vicinity of the event. The first difference that has been
found is that whereas the velocity of causal geodesics
blows up at big bang and big crunch singularities, it is
finite at big rip singularities, as well as acceleration and
other derivatives, depending on the first exponent in the
expansion, �0. For sudden singularities the velocity is
finite and the acceleration may be finite or not, depending
on the next exponent �1.

However this difference of regularity between big bang/
crunch and big rip singularities does not prevent the strong
character of both types of cosmological milestones with
both Tipler and Królak’s definitions of strong singularities.
There is only a curious feature in big rip singularities in
models with �0 � �1 (which are precisely those favored
by observations): lightlike geodesics do not reach the
curvature singularity at t0 in finite proper time and there-
fore these spacetimes are null geodesically complete close
to the singular event. Hence photons never experience big
rip singularities and the Universe would last eternally for
them. This feature, however, is lost on dealing with time-
like geodesics, which reach t0 in finite proper time and
meet a strong singularity.

The only models which allow regular behavior close to
t0 are those with �0 � 0 and with �0 � 1, k � �1, c0 �
1. The latter ones are Milne universes at first order, which
are essentially Minkowski spacetime after extending the
model beyond t0. The former ones include models with a
nonvanishing analytical scale factor, such as de Sitter uni-

TABLE V. Degree of singularity of radial timelike geodesics
around t0.

�0 �1 k c0 Tipler Królak

(�1, 0) (�0, 1) Strong Strong
0 (0, 1) Weak Strong

[1, 1) 0, �1 (0, 1) Weak Weak
(0,1) (�0, 1) Strong Strong
1 (1, 1) 0,1 Strong Strong

�1;1� �0; 1� [ �1;1� Strong Strong
(1,3) �1 1 Weak Strong

[3, 1) Weak Weak
(1, 1) (�0, 1) 0, �1 (0, 1) Strong Strong
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verses, and models with sudden singularities, which have
finite velocity, but nonfinite acceleration or higher deriva-
tives of the parametrization of the geodesics depending on
the exponent �1. The larger this exponent is, the better the
properties of the model are. These cosmologies prevent the
formation of strong singularities according to Tipler’s defi-
nition, which requires the crushing to zero or disrupting to
infinity of finite volume objects evolving along causal
geodesics. With Królak’s definition, which requires just a
positive derivative of volume for big bang and big rip
singularities and a negative derivative for big rip singular-
ities, strong singularities are avoided in models with �1 

1. This definition seems more appropriate, since causal
geodesics in models with �1 2 �0; 1� do not have finite
acceleration and therefore geodesic equations would be
singular at t0, though the curves may be extended beyond
that event.

We may compare these results with those studied by
Cattoën and Visser in [3], where just singularities in cur-
vature were considered, without taking into account their
strength nor the behavior of causal geodesics. Those au-
thors found that the only models without polynomial cur-
vature singularities are those with �0 � 0, �1 
 2 or
�1 � 1, �2 
 2, and those with �0 � 1, k � �1, c0 �
1, �1 
 3. Dealing with derivative curvature singularities,
the list reduces to models with �0 � 0 and natural expo-
nents �i, i 
 1 and those with �0 � 1, k � �1, c0 � 1,
and natural exponents �i 
 3, i 
 1. Derivative curvature

singularities are not reflected in our classification since
derivatives of the Riemann tensor appear neither in geode-
sic equations nor in Jacobi equations. The apparent dis-
crepancy between our results and the presence of
polynomial curvature singularities lies on the fact that
either geodesics do not reach that singularity or that they
reach it, but the curvature growth is not enough to form a
strong singularity.

Finally, another consequence is that singularities appear
just in models with vanishing, divergent, or nonsmooth
scale factors. From the mathematical point of view at least
it is worth mentioning that regular models are an open set
within the family of smooth homogeneous and isotropic
spacetimes, as it happened for instance with inhomogene-
ous scalar field Abelian diagonal G2 models [22]. On the
contrary, singular models are not an open set, since the
vanishing requirement is not generic.
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