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Counting of microscopic states of black holes is performed within the framework of loop quantum
gravity. This is the first calculation of the pure horizon states using statistical methods, which reveals the
possibility of additional states missed in the earlier calculations, leading to an increase of entropy. Also for
the first time a microcanonical temperature is introduced within the framework.
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I. INTRODUCTION

A nonperturbative framework of quantum gravity using
holonomy as fundamental variables, popularly known as
loop quantum gravity, has been in vogue for some years
now, see [1] for a recent survey. In this framework, a start
was made in [2] in the direction of quantizing a black hole
and thereby counting its microstates. In this approach, a
black hole is characterized effectively by an isolated hori-
zon, see [3] and references therein. The quantum states
arise from quantizing the phase space of an isolated hori-
zon whose cross sections, which are two-spheres, are
punctured by suitable spin networks. The spin quantum
numbers j, m, which characterize the punctures, also label
the quantum states. The entropy is obtained by counting
the manifold possibilities of such quantum states, or es-
sentially the labels, that are consistent with a fixed area of
the cross section [2].

A calculation of microscopic states was carried out in [4]
using a recursion relation technique. Soon after, in [5], an
explicit combinatorial method was introduced, which in
addition to counting states also gives the dominant con-
figuration of spins, namely, the configuration yielding the
maximum number of states. However, the two counting
calculations gave slightly different results. See also [6] for
a recent survey, which supports the result of [5]. The root of
this difference has been briefly discussed in [5]: while [4]
takes into account only the spin projection (m) labels of the
microstates, thus counting what we refer to as the pure
horizon states in the present work, [5,6] take into account
the spin j, which in some sense characterizes the bulk
states, as well as the m-labels. Any counting involves
two constraints to be met. While one of them, the spin
projection constraint (see below for details), which arises
from an interplay of the bulk and the horizon Hilbert
spaces, can be expressed solely in terms of the m-labels,
the other constraint involving the area of the horizon,
cannot bypass the j-labels. The calculation of [5] was
essentially based upon the intuition that a quantum isolated
horizon can never be completely characterized by states of

the horizon (or surface) Hilbert space, the bulk states play
an essential rôle.

The first part of the present work uses the combinatorial
method of [5] to count the number of the pure horizon
states which were sought to be counted in [4]. This leads to
an increased number. Unlike the result of [4], this number
is consistent with the thesis presented in [7], in the sense
that j � 1 allows three values of m. In the second part of
the work, we introduce a microcanonical temperature for
each null normal vector field defined on the horizon. It
involves the Immirzi parameter and the surface gravity
corresponding to a null normal vector field. We comment
on the possible connection between processes involving
vanishing of punctures and Hawking radiation.

II. COUNTING OF STATES

We set our units such that 4��‘2
P � 1, where � is the so-

called Barbero-Immirzi parameter involved in the quanti-
zation and ‘P the Planck length. Equating the classical area
A of the horizon to the eigenvalue (for a specific spin
configuration of punctures on the horizon) of the area
operator we find

 A � 2
X
p

����������������������
jp�jp � 1�

q
; (1)

where the p-th puncture carries a spin jp > 0, more accu-
rately an irreducible spin representation labeled by jp,

contributing a quantum of area 2
����������������������
jp�jp � 1�

q
to the total

area eigenvalue.
Let the configuration be such that sj is the number of

punctures carrying spin j. So in (1) the sum over punctures
can now be replaced by the sum over spins

 A � 2
X
j

sj
�����������������
j�j� 1�

q
: (2)

Such a spin configuration will be called permissible if it
obeys (2) together with the spin projection constraint
which will be introduced shortly.
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A. The combinatorial method

First, we briefly review the calculation of [5] before
going on to apply the method to the counting of horizon
states. Given a configuration labeled by sj, different pro-
jections m of j give

Q
j�2j� 1�sj quantum states. But the

sjs themselves can be chosen in �
P
sj�!=

Q
sj! ways since

the punctures are considered distinguishable. Therefore,
the total number of quantum states given by such a con-
figuration sj is

 dsj �
�
P
j sj�!Q
j sj!

Y
j

�2j� 1�sj : (3)

To obtain the total number of states for all configurations
(3) is to be summed over all configurations. We estimate
the sum by maximizing lndsj by varying sj subject to (2).
In the variation we assume that sj � 1 for each j and only
such configurations dominate the counting. Such an as-
sumption breaks down if A� o�1�. The variational equa-
tion � lndsj � ��A, where � is the Lagrange multiplier,
gives

 

sjP
sj
� �2j� 1�e�2�

�����������
j�j�1�
p

: (4)

Clearly, for consistency (i.e. summing both sides over all
j), � must obey (cf. [8])

 1 �
X
j

�2j� 1�e�2�
�����������
j�j�1�
p

: (5)

The counting however should also incorporate the spin
projection constraint. In order to implement this constraint
the configuration must be given finer labels. Let sj;m denote
the number of punctures carrying spin j with projection m.
With these new variables the area and the spin projection
constraints take the respective simple forms

 A � 2
X
j;m

sj;m
�����������������
j�j� 1�

q
; 0 �

X
j;m

msj;m: (6)

A configuration sj;m will be called permissible if it satisfies
both of these Eqs. (6). The total number of quantum states
for these configurations is

 dsj;m �
�
P
j;m sj;m�!Q
j;m sj;m!

: (7)

To obtain the dominant permissible configuration that
contributes the largest number of quantum states, we max-
imize lndsj;m by varying sj;m subject to (6). The result can
be expressed in terms of two Lagrange multipliers �, �:

 

sj;mP
sj;m

� e�2�
�����������
j�j�1�
p

��m: (8)

Consistency requires that � and � be related to each other

by
P
je
�2�

�����������
j�j�1�
p P

me
��m � 1. In order that (8) satisfies

the spin projection constraint we requireP
je
�2�

�����������
j�j�1�
p P

mme
��m � 0. This is possible if and

only if
P
mme

��m � 0 for each j, which essentially im-
plies � � 0 (the value 2i� is excluded by positivity of
sj;m). Therefore, the condition (5) on � remains unchanged.
Note that each sj;m is proportional to the area A because of
the area constraint.

The total number of quantum states for all permissible
configurations is clearly d�A� �

P
sj;mdsj;m . To estimate

d�A� we expand lnd around the dominant configuration
(8), which we shall denote by �sj;m. Thus lnd � lnd�sj;m �
1
2

P
�sj;mKj;m;j0m0�sj0m0 � o��s2

j;m� where K is the sym-
metric matrix Kj;m;j0m0 � �jj0�mm0= �sj;m � 1=

P
k;l �sk;l. All

variations �sj;m � �sj;m must satisfy the two conditions

(6) which yield two conditions
P
�sj;m

�����������������
j�j� 1�

p
� 0

and
P
�sj;mm � 0. Taking into account these equations

we can express the total number of states as

 d � d�sj;m

X1
�1

e�1=2
P

�sj;mKj;m;j0m0�sj0m0

� �
�X

�sj;m
�����������������
j�j� 1�

q �
�
�X

�sj;mm
�

� Cd�sj;m

"Y
j;m

����
A
p

#,
A; (9)

where C is a constant independent of A. The denominator
takes the particular form because the two constraints re-
move two factors of

����
A
p

, which would be present otherwise
in the Gaussian sum. It may be noted that K has a zero
eigenvalue, but this is taken care of by the area constraint
and all other eigenvalues of K are proportional to 1=A.
Inserting (8) into (7) and dropping factors of o�1�we obtain

 d�sj;m �
�
P

�sj;m�
1=2Q

j;m�2� �sj;m�1=2
e�A: (10)

Plugging these expressions into d we finally obtain

 d �
�����
A
p e�A; where �� o�1�; (11)

leading to the formula [5]

 S � �
A

4��‘2
P

�
1

2
ln

A

4��‘2
P

(12)

for entropy. The origin of the
����
A
p

in d or 1
2 lnA in lnd can be

easily traced in this approach: it is the condition
P
msj;m �

0. This shows that the coefficient of the log-correction is
robust and does not depend on the details of the configu-
rations at all. It is directly linked with the boundary con-
ditions the horizon must satisfy.
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B. Application of the method to horizon states

The above calculation was based on the understanding
that j is a relevant quantum number. An alternative plan,
adopted in [2,4], is instead to count the states of the horizon
Hilbert space alone. For this purpose, one has to consider
the number sm of punctures carrying spin projection m,
ignoring what spins j they come from. One can distinguish
between sj and sm from the context. It is clear that

 sm �
X
j

sj;m; j � jmj; jmj � 1; jmj � 2; . . . : (13)

For the sm configuration the number of states is dsm �
�
P
msm�!=

Q
msm! and the total number of states is obtained

by summing over all configurations. As in the earlier cases,
the sum can be approximated by maximizing lndsm subject
to the conditions (6). The calculation resembles the pre-
vious one in spirit, but there are important differences as
discussed below. The constrained extremization conditions
for variation of sj;m are

 �

�
ln

smP
m sm

� 2�
�����������������
j�j� 1�

q
� �m

�
� 0: (14)

Clearly, the above equations cannot hold for arbitrary j
even for a fixed m, because inconsistencies will arise for
nonzero �. In fact, for any fixed m the above equation
admits at most one j—let us denote it by j�m�. For j �

j�m�, the first derivative becomes nonzero. Such a situation
can arise if and only if lndsm is maximized at the boundary
(in the space of all permissible configurations) for all j �

j�m� and at an interior point for j � j�m�. This means that
for the dominant configuration sj;m � 0 for all j � j�m�:
the corresponding first derivative is then only required to
be zero or negative because in any variation sj;m can only
increase from its zero value. Thus, sm � sj�m�;m for the
dominant configuration.

Then (14) gives

 

smP
m sm

� e�2�
���������������������
j�m��j�m��1�
p

��m: (15)

As before, � � 0 in order that the dominant configuration
satisfies the spin projection constraint. The parameter � is
determined by a consistency condition involving j�m�.
Since the entropy increases with �, and lower j�m� gives
higher �, the maximum entropy is obtained when j�m� is
minimum, i.e., j�m� � jmin�m�, the minimum value for j
for a given m. For all m � 0, we have jmin�m� � jmj. But
for m � 0, we must have jmin�m� � 1, since j � 0 is
excluded.

The configuration (15) with j�m� � jmin�m� implies that
the entropy is given by (12) in terms of �, which is now
determined by the altered consistency relation

 1 �
X
j�1

2e�2�
�����������
j�j�1�
p

� 3e�2�
��
2
p

; (16)

where each j � 1 is associated with m � 	j only, but j �
1 also has m � 0. Note that for � zero or negative, such
relations would be impossible to satisfy, hence no such
solutions exist.

This equation for � differs from that of [4] in allowing
m � 0 for j � 1 and thus yields a slightly greater value
0.790 instead of 0.746. The difference arises because we
have used the area constraint directly, using the definition
of the area involving j. In contrast, [4] used an inequality
involving m,

 A 
 2
X
m

sm
���������������������������
jmj�jmj � 1�

q
; (17)

which can be derived on the basis of the inequality j 
 jmj,
but is not saturated for punctures with j � 1,m � 0, which
the maximization conditions allow. The value 0.790 of � is
naturally less than the value 0.861 obtained by taking both
j and m to be relevant quantum numbers [5].

It is to be noted that our counting of horizon states
allows three spin states for j � 1 and is thus consistent
with the general ideas in [7] which reported an intriguing
connection between the spin degeneracy and an observed
factor of ln3 occurring in the classical quasinormal modes
of black holes. Reference [7] recommends only j � 1,
which could be accommodated by setting sj;m � 0 for all
m except 0 and 1. Our earlier calculation of bulk states [5]
was also consistent with [7] and coincides with the present
calculation for j � 1. In contrast, the counting of [4]
allows only two projection states for j � 1 and is therefore,
inconsistent with [7].

III. TOWARDS THE DEFINITION OF A
TEMPERATURE

First we make some comments on the interpretation of
the laws of the mechanics of a weakly isolated horizon
(WIH) as thermodynamic laws.

(1) The zeroeth law of WIH states that the surface
gravity ��‘� associated with each ‘‘fixed‘‘ null nor-
mal vector ‘a (which generates the WIH) is constant
on the horizon. However for a given isolated hori-
zon, ‘a is fixed only up to a constant rescaling.
Under such a rescaling ‘a � c‘a, where c is a
positive number, both ��‘� and the ‘horizon-mass’
M�‘� (which also depends on the choice of ‘a, see [3]
for details) are rescaled by the same constant c,
whereas the horizon-area A does not alter. In fact
the first law of a nonrotating WIH, which states that
the change of the horizon-mass

 �M�‘� �
��‘�
8�G

�A; (18)

where �A is the associated change of the horizon-
area, depends explicitly on ‘a (although the above
scaling argument show that the form (18) is inde-
pendent of ‘a). Thus, both zeroeth and first laws of
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WIH make an explicit reference to a ‘‘fixed‘‘ null
normal vector field ‘a. This fact is to be kept in mind
whenever we draw analogies between a WIH and a
thermodynamic system. Unless some ‘a is fixed,
confusions will arise in the thermodynamic inter-
pretation of a WIH.

(2) This is regarding the quantum statistical mechanics
of a WIH. Now that there is a quantum mechanical
entropy of a WIH, we have definite quantum states
of a WIH. However, a realistic statistical interpreta-
tion of a WIH, even as a microcanonical ensemble,
requires states of the ‘‘environment‘‘, viz., the states
of the bulk of the spacetime of which the WIH is a
subsystem, the bulk and the WIH together forming
an isolated system. The microcanonical ensemble
assumes a weak interaction between the bulk and the
horizon such that the horizon-area A is constant
(more precisely, it lies in a small interval �A�
�; A� �� where � A). The trace over the bulk
spacetime states provides a density matrix for the
WIH (which for a microcanonical ensemble is triv-
ial, proportional to the identity matrix). This is
related to the comment made in the introduction
that a quantum WIH can never be fully described
by surface states alone, the bulk states act like a
heat-bath as indicated above.

It is not at all difficult to arrive at an expression of a
microcanonical temperature based on the formal analogy
with thermodynamics. We already found that for a fixed ‘a

the surface gravity ��‘� should be related to the temperature
and the first law (18) is to be interpreted as the first law of
thermodynamics. Since the entropy is given by (12), its
variation is (ignoring the log-correction for now) �S �
��A=4��‘2

P and equating T�‘��Swith the RHS of (18) we
get an expression

 T�‘� �
@���‘�

2�
: (19)

This is the microcanonical temperature of a WIH having a
fixed null normal vector field.

To interpret the microcanonical ensemble as a canonical
or a grand-canonical ensemble we need to allow interac-
tions between the WIH and the bulk. For each permissible
configuration sj �

P
msj;m the area spectrum is A �

8��‘2
P
P
sj

�����������������
j�j� 1�

p
. Now imagine a quantum mechani-

cal process that changes the configuration sj to another
permissible configuration sj ��sj, that causes the area to

change by �A � 8��‘2
P
P

�sj
�����������������
j�j� 1�

p
. (This change

�sj should not be confused with �sj we used earlier.
Here permissibility of the new configuration sj � �sj
does not imply

P
�sj

�����������������
j�j� 1�

p
� 0: while the permissi-

bility of sj is associated with the area A, the one of sj �
�sj is associated with the area A��A, where �A is a
physical change of area.) Thus, from (18) we obtain

 �M�‘� � @��‘��
X

�sj
�����������������
j�j� 1�

q
: (20)

This is a key result showing how the mass/energy of the
WIH can leak to the bulk of the spacetime. This involves
the creation and annihilation of punctures. In a microca-
nonical ensemble these processes take place only under the
strict permissibility conditions (which basically ensure that
the area and the energy cannot change). But in a canonical
or grand-canonical ensemble these restrictions are to be
removed. A detailed study is required in this direction to
interpret the temperature (19) in a canonical ensemble.

Since a WIH involves an infinite family of null normal
vectors, it also admits an infinite family of corresponding
temperatures, fixed for each fixed ‘a. Moreover, (19)
shows that the relation �� � � which yields the semiclas-
sical expression of entropy, also gives the semiclassical
expression of temperature T�‘� � @��‘�=2�. It is interesting
to ask what alteration the log correction to the entropy (12)
induces in the temperature. A simple calculation shows
that T�‘� � �@��‘��=2���1� 2��‘2

P=�A�. So while the en-
tropy receives a universal log-correction, the temperature
is corrected only by a power-law. Unlike the case of the
entropy, the coefficient of the power-law correction is not
universal—it depends on the underlying quantum theory.
However, the value of � that gives the semiclassical sector
of quantum gravity also makes the coefficient independent
of �.

IV. DISCUSSION

We have followed the combinatorial approach of [5] to
count horizon states and have found that there are more of
these than indicated by the approximate analysis of [4].
The increased number is of course still not as large as the
total number of microscopic states found in [5] where not
only m but also j was regarded as a relevant label for a
microscopic state. However, the correction brings the num-
ber of states distinguished by m closer to the number of
states labeled by j;m and also makes it consistent with [7].

Thereafter we have sought to introduce a temperature
corresponding to each choice of the null normal vector
field ‘a. The discussion in the previous section suggests
that the area ensemble may be regarded as an energy
ensemble for each fixed ‘a. Standard statistical mechanical
arguments then may permit us to view the microcanonical
ensemble as a canonical or grand-canonical ensemble. At
thermal equilibrium the quantum mechanical process
changing the horizon-area suggests the following picture:
quantum states associated with the punctures get annihi-
lated from the surface Hilbert space by transforming into
bulk states. If the bulk is taken to be asymptotically flat
then such bulk states appear to be the usual Fock states.
Reversibly, the Fock states from the bulk of the spacetime
must transform into the puncture-states and these two
processes must take place at the same rate. These processes
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are quite analogous, though not identical, to the particle
creation and annihilation processes we encounter in quan-
tum field theories. In quantum field theories in flat space
the creation and destruction of one-particle states are per-
formed by certain linear operators in the Fock space.
Furthermore, such one-particle states are labeled by their
energy and momenta, so a fixed stationary background
metric is required. However here we are considering cre-
ation and annihilation of punctures in changing sj to sj �
�sj. Moreover, no background metric is present. Punctures
are also labeled by the spin quantum numbers. The linear
operators that can create or destroy punctures should be
related to the spin-raising and spin-lowering operators in
the bulk Hilbert space of loop quantum gravity. Such
operators have indeed been constructed while obtaining
the area-spectrum [9]. For the time being, it is an open

problem to show that such processes exist in the Hilbert
space within the framework of loop quantum gravity. Of
course, the bigger question is whether, when the reverse
process (bulk states to surface states) is ignored, the for-
ward process (surface states to bulk states) appears as
black-body radiation.

One can also arrive at a generalized statement of the
second law that the combined entropy of the horizon and
the bulk does not decrease. While the microscopic degrees
of freedom associated with the horizon are punctures, those
of the bulk remain the standard matter and field particles.
In order that a thermal equilibrium is reached, these 2
degrees of freedom must transform into each other con-
tinuously. It remains to be seen how such a picture emerges
in quantum geometry.
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