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We discuss inelastic collisions of two rotating disks by using the conservation laws for baryonic mass
and angular momentum. In particular, we formulate conditions for the formation of a new disk after the
collision and calculate the total energy loss to obtain upper limits for the emitted gravitational energy.
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I. INTRODUCTION

Disk-like matter configurations play an important role in
astrophysics (e.g. as models for galaxies, accretion disks or
intermediate phases in the merger process of two neutron
stars). The simplest models for such configurations are
disks of dust. From a mathematical point of view they
are solutions to boundary value problems of the Einstein
equations. Explicit solutions in terms of standard functions
or integrals are known for rigidly rotating disks of dust [1–
5] (the only known solutions for isolated rigidly rotating
bodies) and counterrotating disks of dust, consisting of
clockwise and counterclockwise rotating dust particles
(see e.g. [6,7] or [8]).

In this paper we want to study inelastic collisions of
rotating disks. (Because of the gravitational radiation there
exist no elastic collisions in general relativity.) A rigorous
mathematical description of such merging processes is
extremely difficult, for the solution of the corresponding
initial boundary value problem requires extensive numeri-
cal investigations. We adopt a different method and per-
form a ‘‘thermodynamic’’ analysis. In this way we forgo
the detailed analysis in favor of a simpler description
leading to a ‘‘rough’’ picture of the merging processes. A
classical example for this procedure was given by Hawking
and Ellis who discussed the efficiency of the collision and
coalescence of two black holes, cf. [9]. By using the area
theorem for black holes they obtained, for spherically
symmetric black holes, an upper limit for the efficiency
of conversion of mass into gravitational radiation of 1�
1=

���
2
p
� 29:3%. One of our results will be a similar limit

for the coalescence of two disks as an example for ‘‘normal
matter’’ collisions. Considerations like these are typical for
thermodynamics, in which initial and final equilibrium
states are linked by conserved quantities bridging the
intermediate nonequilibrium states of the system. Inter-
estingly, a Gibbs equation for the thermodynamical poten-
tial energy (-mass) M as a function of baryonic mass M0

and angular momentum J can be formulated even in the
case of rotating dust matter, see Eq. (15).

In particular, we study the ‘‘head on’’ collision of two
aligned rigidly rotating disks of dust with parallel

[scenario (a)] or antiparallel [scenario (b)] angular mo-
menta, cf. Fig. 1. Rigid rotation is a universal limit for
rotating disks of dust. Any amount of friction between the
rings comprising the disk of dust will lead to an equilib-
rium state with constant angular velocity � after a suffi-
ciently long time. As a consequence, rigidly rotating disks
are characterized by an extremum in the binding energy,
compared to differentially rotating disks with the same
baryonic mass and angular momentum, see appendix A.
We assume that the initial distance between the disks is
large enough to keep the initial gravitational interaction
very small.

As already mentioned, the dynamics of the collision
process is outside the scope of our considerations.
However, we know that the total baryonic mass M0 and
the total angular momentum J are conserved. Finally, due
to the outgoing gravitational radiation and possible dissi-
pative processes, the collision ends in a stationary (and
axisymmetric) configuration with the total baryonic mass
M0 and the total angular momentum J.

In this paper we confine ourselves to two problems: the
formation of a rigidly rotating disk (RR disk) from two
rigidly rotating initial disks and, as a second example, the
formation of the rigidly counterrotating disk described by
Bardeen, and Morgan and Morgan [6] (RCR disk) from
two rigidly rotating initial disks with opposite angular
momenta. We will discuss questions like these: For which
parameter values of the initial disks can the collision lead
to a rigidly rotating or rigidly counterrotating disk at all?
Which domain of the M0-J-parameter space can be
reached by such processes? As we will see in Sec. II A 2,
the relative binding energy Eb of the rigidly counterrotat-
ing disks takes positive as well as negative values.

a)

two disks one disk  two disks

b)

counter−rotating disk 

FIG. 1. Illustration of the two collision scenarios*Electronic address: J.Hennig@tpi.uni-jena.de
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Therefore, it is an interesting question if the formation of
RCR disks with a negative binding energy is a possible
result of collision processes. Finally, we calculate upper
limits for the energy loss due to gravitational radiation in
such collision processes.

The mathematical analysis of these problems requires
the examination of the ‘‘thermodynamics’’ of rigidly rotat-
ing disks and rigidly counterrotating disks and the discus-
sion of the equations of state for mass and angular
momentum. This is done in Sec. II. In Sec. III we discuss
limits for the formation of disks after the collision. The
conservation equations can be used to calculate the pa-
rameters of the merged disks in terms of elliptic functions.
This analysis and the resulting plots can be found in
Sec. IV. The energy loss, i.e. the efficiency of the two
scenarios is calculated in Sec. V.

The metric coefficients of the rigidly rotating disk of
dust solution are given in terms of ultraelliptic theta func-
tions which reduce to elliptic functions along the axis of
symmetry. Since the multipole moments for energy (-mass)
M and angular momentum J, as the central quantities of
our thermodynamic considerations, can be read off from
the axis values of the metric, our analysis has to make
extensive use of elliptic functions. To avoid lengthy calcu-
lations in the main body of the text, we relegate the analytic
expressions to the appendix and present the results in
graphical form in the main text.

For the sake of simplicity, we restrict ourselves to iden-
tical initial disks (i.e. disks of equal baryonic mass and
equal absolute values for the angular momenta). The gen-
eralization to different disks is a straightforward procedure.

II. ‘‘THERMODYNAMICS’’ OF DISK MODELS

A. Disk of dust solutions

1. Rigidly rotating disks of dust

This section is devoted to a thermodynamic description
of the ‘‘ingredients’’ of the collision processes: rigidly
rotating disks (RR disks) and rigidly counterrotating disks
(RCR disks).

The free boundary value problem for the relativistic
rigidly rotating disk of dust was approximately discussed
by Bardeen and Wagoner [4,5] and analytically solved in
terms of ultraelliptic theta functions by Neugebauer and
Meinel [1–3] using the inverse scattering method. For a
discussion of the physical properties see [10]. The solution
is stationary (Killing vector: �i) and axisymmetric (Killing
vector: �i). Its line element together with the Killing
vectors can therefore be written in the Weyl-Lewis-
Papapetrou standard form
 

ds2 � e�2U�e2k�d�2 � d�2� � �2d’2� � e2U�dt� ad’�2;

�i � �it; �i � �i’; (1)

where U, k and a are functions of � and � alone and �ik is
the four-dimensional Kronecker symbol. Note that we use

the normalized units where c � 1 for the speed of light and
G � 1 for Newton’s gravitational constant. The solution
can be written in terms of the complex Ernst potential
f��; �� � e2U��;�� � ib��; ��, where the imaginary part is
related to a by a;� � �e�4Ub;� and a;� � ��e�4Ub;�. In
this formulation, the vacuum Einstein equations are
equivalent to the Ernst equation

 �<f�
�
f;�� � f;�� �

1

�
f;�

�
� f2

;� � f
2
;� : (2)

(k can be calculated via a path integral from the Ernst
potential f.)

The matter of the disk of dust is described by the energy-
momentum tensor

 Tij � "uiuj; " � ��������; (3)

where ", � and ui are the mass density, the surface mass
density (���� � 0 if � > �0, �0 being the coordinate
radius of the disk) and the four-velocity of the dust parti-
cles, respectively. For rigidly rotating bodies, the four-
velocity is a linear combination of the two killing vectors,

 ui � e�V0��i ���i�; (4)

where � is the constant angular velocity of the body. Here,
as a consequence of the geodesic motion of the dust
particles, the coefficient e�V0 turns out to be a constant too,

 V0 � constant: (5)

The RR disk solution depends on two parameters. As an
example, one may choose the coefficients e�V0 and �e�V0

of the linear combination (4) or, alternatively the coordi-
nate radius �0 of the disk and a centrifugal parameter � �
2�2�2

0e�2V0 (�! 0 turns out to be the Newtonian limit
and �! 4:629 66 . . . the ultrarelativistic limit, where the
disk approaches the extreme Kerr black hole, cf. [2,10] for
these and further properties).

The baryonic massM0, the gravitational (ADM) massM
and the angular momentum J of the disk are given by

 M0 �
Z

�
"

�������
�g
p

utd3x; (6)

 M � 2
Z

�
�Tij �

1
2Tgij�n

i�jdV; (7)

 J � �
Z

�
Tijn

i�jdV; (8)

with Tij as in (3). � is the spacelike hypersurface t �
constant with the unit future-pointing normal vector ni.

2. Rigidly counterrotating disks of dust

An interesting example of a counterrotating disk is the
RCR disk by Bardeen, Morgan and Morgan [6], consisting
of a clockwise and a counterclockwise rotating component
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of dust. All mass elements move along geodesic lines and
the two components have constant angular velocities with
opposite signs. Since the net angular momentum of the
disk vanishes, its metric can be written in the static Weyl-
Lewis-Papapetrou form [a � 0 in (1)],

 d s2 � e�2U�e2k�d�2 � d�2� � �2d’2� � e2Udt2;

�i � �it; �i � �i’; �i�i � 0:
(9)

The metric functions U and k are standard integrals, see
appendix D. Here the energy-momentum tensor is the
superposition of two expressions (3),

 Tij � 1
2"�u

iuj � vivj�; ui � e�V0��i ���i�;

vi � e�V0��i ���i�;
(10)

where ui and vi denote the four-velocities of the counter-
clockwise and clockwise moving dust particles. Just as for
the case of the RR disk, V0 turns out to be a constant as a
consequence of the constant angular velocity � and the
geodesic motion of the dust particles, and the solution is
again governed by two parameters. As with the RR disks,
these could be chosen to be the coordinate radius �0 of the
disk and the centrifugal parameter � � 2�2�2

0e�2V0 .
However, it turns out that, instead of �, the parameter b �
��0e�2V0 simplifies the discussions. (b! 0 is the
Newtonian limit and b! 1 the ultrarelativistic limit.)

The baryonic mass M0 and the gravitational mass M of
the RCR disk and the angular momenta 	J of the counter-
clockwise and clockwise rotating part (the resulting angu-
lar momentum vanishes) can again be calculated from the
Eqs. (6)–(8) (where in the formula for J only the energy-
momentum tensor of the counterclockwise rotating dust
component is used). For the calculation we refer to
appendix C.

B. Equilibrium and stability

Equilibrium configurations can be described with the aid
of variational principles (cf. [11,12]). For disks of dust we
may consider the thermodynamic potential

 E :�
Z
t�t0

�
R

8�
� "

� �������
�g
p

d3x� n�J�
M
2
; (11)

where R is the Ricci scalar and n indicates the number of
dust components (n � 1 for RR disks and n � 2 for RCR
disks). The variation of E leads to

 �E � �
1

8�

Z �
Rij �

R
2
gij � 8�Tij

� �������
�g
p

�gijd
3x

� eV0�M0 � n��J; (12)

with Tij from (3) or (10) and M0, M and J from (6)–(8).
Obviously, for fixed baryonic mass M0 and fixed angular
momentum J, i.e. �M0 � 0 and �J � 0, the condition
�EjM0;J � 0 leads to the Einsteinian field equations. On
the other hand, for solutions to the field equations it turns

out that E is equal to the gravitational mass M. Hence, one
obtains

 �M � eV0�M0 � n��J: (13)

To illustrate the meaning of the potential E we should
mention that the Newtonian limit of Eq. (11) is given by

 E � M0 �
1

2

Z
�NUNd3x� n

J2

2I
; (14)

where �N, UN and I are the Newtonian mass density, the
Newtonian gravitational potential and the moment of iner-
tia of the disk, respectively. In this limit, E is the sum of the
rest energy M0c2 (c � 1), the potential energy and the
rotational energy. The function E in Eq. (14) is precisely
the quantity that was used by Katz in [13] to study equi-
librium and stability of Maclaurin and Jacobi ellipsoids in
Newtonian theory. In subsection II C 2 we will use the
relativistic generalization (11) of E to investigate the
stability of counterrotating (RCR) disks of dust.

C. Applications

1. Rigidly rotating disks of dust

The extensive quantities M0, M and J are not indepen-
dent of each other. Because of Eq. (13) (with n � 1) they
have to satisfy the Gibbs formula (see also [5,12] or [14])

 dM � eV0 dM0 ��dJ; (15)

where M � M�M0; J� is a potential in M0, J. Other poten-
tials can be obtained via Legendre transformations. As an
example we may use, as a consequence of (6)–(8), the
parameter relation

 M � eV0M0 � 2�J (16)

to eliminate M in (15). We arrive at

 d��J� � �Jd�� eV0M0dV0; (17)

and can now use the potential �J to calculate J and M as
functions of the pair � and V0 or, alternatively, � and �.
To get explicit expressions for these ‘‘equations of state’’
we make use of the disk of dust solution [1–3] to obtain

 �J �
eV0

4�

Z �

0
e�V0�x�b00�x�dx�

1

4�
b0���; (18)

where b0 is the imaginary part of the Ernst potential in the
center of the disk, b0 � b�� � 0; � � 0��, and, as a con-
sequence of (17),

 M0��; �� � �e�V0
@��J�
@V0

���������

� �
1

4�

Z �

0
e�V0�x�b00�x�dx; (19)
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 J��; �� � �
@��J�
@�

��������V0

�
eV0

4�2

Z �

0
e�V0�x�b00�x�dx�

1

4�2 b0���: (20)

The parameter relation (16) takes the form

 M � eV0M0 � 2�J � �eV0M0 �
1

2�
b0���: (21)

For explicit expressions for the metric coefficients b0���,
V0���, the massesM0 and M and the angular momentum J
in terms of elliptic functions see appendix B.

There is an interesting scaling behavior of the disk
parameters. For example ��0, �M, �M0, �2J, M=M0,
M2=J and M2

0=J depend only on the centrifugal parameter
� but not on a second parameter, cf. (19)–(21) and
appendix B.

For an illustration of the equations of state Fig. 2
shows relations between �M0, M2

0=J and the relative
binding energy Eb � 1�M=M0. The figure also
displays the coordinate radius �0 and the ‘‘circumferential
radius’’ �c (defined as �c �

1
2�

R
dsj���0;t�t0;��0 ����������g’’

p
j���0;t�t0;��0). Thereby Eb ! 0 and Eb !

0:3733 . . . are the Newtonian and the ultrarelativistic limit,
respectively. The picture demonstrates the ‘‘parametric
collapse’’ of a disk towards the black hole limit [15]:
Consider a disk with a fixed number of baryons (i.e. fixed
M0) occupying states with decreasing energy M. Then, the
angular velocity increases and the angular momentum
decreases while the disk shrinks (�0 ! 0, while the
‘‘true’’ radius remains strictly positive, �c ! 1:4372 . . . 

M0). In the limit Eb � 0:3733 . . . , M2

0=J � 2:5460 . . . one
obtains a ratioM2=J � M2

0=J 
 �1� Eb�
2 � 1 correspond-

ing to the extreme Kerr black hole [15].

2. Rigidly counterrotating disks of dust

As in the case of RR disks we can formulate a Gibbs
relation for RCR disks, too. From Eq. (13) (with n � 2) we
obtain

 dM � eV0 dM0 � 2�dJ: (22)

A Legendre transformation leads to the potential �J sat-
isfying the equation

 d��J� � �Jd�� 1
2e
V0M0dV0: (23)

From the analytic solution we find

 �J��; V0� �
1

8��

Z ��������������
e�4V0�1
p

0

�
1�������������

1� t2
p � e2V0

�

�
t arctant

1� t2
dt: (24)

This potential can be used to calculate the baryonic mass
M0 and the angular momentum J via

 M0 � �2e�V0
@��J�
@V0

���������
; J � �

@��J�
@�

��������V0

;

M � eV0M0 � 4�J;

(25)

where V0 and � are related to the parameters �0 and b by
the equations

 e�4V0 � 1� 4b2; ��0 � b=
�����������������
1� 4b2

p
: (26)

The RCR disks show the same scaling behavior of the
disk parameters as the RR disks, e.g. ��0, �M, �M0,
�2J, M=M0, M2=J and M2

0=J depend only on the parame-
ter b and not on the coordinate radius �0.

An interesting feature of the RCR disks is the strange
behavior of the binding energy, which is negative for b >
4:1074 . . . as shown in Fig. 3. Interestingly, there are sev-
eral physical arguments against the formation of RCR
disks in this region. In fact, the following application of
the stability analysis of sec. II B will show a transition from
stability to instability at b � 1:3393 . . . , even before the

FIG. 2. �M0, M2
0=J and the radii �0 and �c as functions of the

relative binding energy Eb � 1�M=M0 for the rigidly rotating
disk of dust.

FIG. 3. Left picture: The relative binding energy Eb � 1�
M=M0 of the RCR disk as a function of the centrifugal parameter
b. Eb reaches negative values in the relativistic region (large b).
Right picture: The coordinate radius �0 and the ‘‘circumferential
radius’’ �c divided by the baryonic mass M0 as functions of the
centrifugal parameter b.
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binding energy Eb becomes negative. Moreover, using a
general argument resulting from the baryonic mass con-
servation we will show in the next section that RCR disks
with negative binding energy cannot form by collision.

Figure 3 also shows �0=M0 and �c=M0 as functions of b
(right picture), with �c defined as in subsection II C 1. For
increasing b the radii first decrease, reach a minimum and
increase again. There is no ‘‘parametric collapse’’ of the
RCR disks towards a black hole.

In order to understand the strange behavior of the bind-
ing energy we now apply the stability analysis of sec. II B
to RCR disks. Calculating the Ricci scalar R of the metric
(9) we obtain from (11)

 E �
Z � 1

8�
�rU�2 � "

�������
�g
p

�
d�d’d� � 2�J: (27)

Note that the termM=2 in (11) is compensated by a surface
term resulting from the integration over R. The variation
�EjM0;J � 0 leads to the equations
 

4U � S�������;

S������� :� �e2k�2U�Ttt � T
’
’�

� "e2k�2V�1��2�2e�4U�;

(28)

 

M0 �
Z
"e�V

�������
�g
p

d�d’d� � constant;

J �
Z "

2
e�V�iui

�������
�g
p

d�d’d� � constant:
(29)

Using the relation (28) and the equation e2V � e2U�1�
�2�2e�4U� as a consequence of uiui � vivi � �1, (27)
can be rewritten as

 E � 2�
Z �
�

1

2
SU�

e4U ��2�2

e4U ��2�2 S
�

d�� 2�J: (30)

In the same way we calculate the baryonic massM0 and the
angular momentum J as defined in (29),

 M0 � 2�
Z �0

0

�������������������������
e4U ��2�2

p
e4U ��2�2 S���eU�d�; (31)

 J � ��
Z �0

0

S���

e4U ��2�2 �
3d�: (32)

Now we consider the two-parametric family of functions

 S��;�0; b� �
b

�2�0

1���������������������
1� 4b2 �2

�2
0

r arctan
2b

�������������
1� �2

�2
0

r
���������������������
1� 4b2 �2

�2
0

r (33)

and the corresponding disk potential [as a solution of (28)]

 U��;�0; b� �
1

2
ln

1�
���������������������
1� 4b2 �2

�2
0

r
2
�����������������
1� 4b2
p ; (34)

where b and �0 are arbitrary constants. Obviously, E
depends on the parameters b, �0 and �, E �
E�b; �0;��. It should be emphasized that S��;�0; b� and
U��;�0; b� define a family of trial functions which do not
satisfy the Eq. (29). Only if b, �0 and � are connected by
the relation (26) we arrive at the RCR disk solution. To
calculate the extremum of E for fixed values of M0, J
(�EjM0;J � 0) we replace �0 and � via (31) and (32) by
M0 and J. With the explicit expressions (33) and (34), M0,
J and E take the form

 M0 � �0g1�b;��0�; J � ��3
0g2�b;��0�;

E � �0g3�b;��0� � 2�J
(35)

with functions g1, g2 and g3 expressible in terms of inte-
grals resulting from (30)–(32). The combination

 s :� M2
0=J �

g1�b;��0�

��0g2�b;��0�
(36)

allows to express ��0 in terms of b and s, ��0 � g4�b; s�.
Hence, we finally obtain E in the form

 E � M0
g3�b; g4�b; s�� � 2g2

4�b; s�g2�b; g4�b; s��
g1�b; g4�b; s��

�: �M0
~E�b; s�; (37)

where the dependence of ~E on b and s is given implicitly
by some integral relations. The minima of E for fixed M0

and J are the maxima of ~E for fixed s and vice versa.
The numerical discussion of ~E�b; s� leads to the follow-

ing results: The extremum condition @ ~E=@b � 0 yields the
parameter relation (26). That means the RCR disk solution
is an extremum of ~E (at least a stationary point). As it was
shown by Poincaré and discussed by Katz in [13], stability
can be analyzed with the help of conjugate variables with
respect to a thermodynamic potential. Here, we may
choose the variable s and its conjugate K�s� with respect
to ~E,

 K�s� :�
@ ~E
@s
�be�s�; s�; (38)

where b � be�s� is the equilibrium relation between b and
s. Figure 4 shows the pair �s; K�s��. The criterion for a
change of stability is the existence of a vertical tangent to
this curve. Obviously, such a behavior is given at the point
A where s � 0:9634 . . . (b � 1:3393 . . . ). A careful nu-
merical analysis of the curve K�s� shows that there is no
other point with a vertical tangent. Since a stable branch
can be identified as the one with a positive slope near the
vertical tangent, we conclude that the lower branch in
Fig. 4 is stable according to Poincaré’s definition and the
upper branch (dashed curve) is unstable: RCR disks are
unstable for b > 1:3393 . . . This result includes the insta-
bility of RCR disks with negative binding energy Eb (Eb <
0 for b > 4:1074 . . . ).
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Because of the definition (36), M2
0=J takes its maximum

just at the critical value b � 1:3393 . . . (see Fig. 6).

III. PARTICULAR COLLISION PROCESSES

A. Conservation laws

As mentioned before, we consider ‘‘head on’’ collisions
of rigidly rotating disks of dust for parallel and antiparallel
angular momenta as sketched in Fig. 1 [from now on
denoted as scenario (a) and scenario (b), respectively]. To
compare the initial disks with the resulting merged disk we
will make use of conservation laws. Obviously, there are
two conserved quantities. One of them is the baryonic
mass. Considering two colliding bodies A and B, we have

 

~M 0 � MA
0 �M

B
0 ; (39)

where the baryonic mass ~M0 of the final body is the sum of
the baryonic masses MA

0 and MB
0 of the colliding bodies

(from now on, tildes denote quantities of the final bodies).
A first consequence of (39) is that the (inelastic) collision
of two bodies with positive binding energies cannot lead to
a body with a negative binding energy. Namely,
 

~M0 � ~M � �MA
0 �M

A� � �MB
0 �M

B�

� �MA �MB � ~M�: (40)

According to our assumption, the first two terms on the
right-hand side are positive. Because of the loss of energy
by gravitational radiation the last term has to be positive,
too,

 

~M<MA �MB: (41)

Hence ( ~M0 > 0) the relative binding energy of the resulting
body is positive,

 

~E b � 1�
~M
~M0

> 0: (42)

Applying this result to our disks of dust we may exclude
the ‘‘strange’’ branch (Fig. 3, b > 4:1074 . . . ) of the RCR
disk solution: RCR disks with b > 4:1074 . . . , Eb < 0
cannot form by collisions.

From now on, we confine ourselves to colliding RR
disks with equal baryonic masses, MA

0 � MB
0 � M0.

Then, Eq. (39) takes the form

 

~M0 � 2M0: (43)

(For dust, the conservation of the baryonic mass is a
consequence of the local energy-momentum conservation
Tij;j � 0.)

Because of the existence of an azimuthal killing vector
�i the angular momentum is conserved as well. In the first
scenario, the two parallel angular momenta J of the two
rigidly rotating disks sum up to 2J in the final disk,

 

~J � 2J: (44)

In a second case we will study questions connected with
the formation of the RCR disk by collisions of two one-
component disks with antiparallel angular momenta as
described in Sec. II A 1 and assume the conservation of
the angular momentum for each component separately,

 	 ~J � 	J (45)

(the resulting angular momentum of the initial RR disks
and the final RCR disk vanishes). It should be emphasized
that the assumption (45) is not very realistic. A small
amount of friction between the two dust components would
violate the separate conservation of the angular momenta.
Nevertheless an assumption like (45) can lead to deeper
insight into the physical processes connected with the
formation of counterrotating disks and allows, by way of
example, a comparison between collisions of disks with
parallel and antiparallel angular momenta.

The conservation equations (43)–(45) enable us to cal-
culate the parameters characterizing the final disk as func-
tions of the parameters of the initial RR disks without
studying the intermediate, complicated dynamical process.

B. Collision of disks with parallel angular momenta

The equations in Sec. II A 1 show that the combination
M2

0=J of the conserved quantities depends on � alone (and
not on some second parameter). Therefore the relation

 

~M2
0

~J
�
M2

0

J
� ~�� � 2

M2
0

J
��� (46)

combining the Eqs. (43) and (44) allows us to calculate the
parameter ~� of the final disk as a function of � alone.
Using the formulas (B2) and (B3) of appendix B Fig. 5
shows that the initial disk ratio M2

0=J as a function of �

FIG. 4. The pair of conjugate variables s and K�s� for the RCR
disk. At the point A the parameter s takes the ‘‘critical’’ value
s � 0:9634 . . . (corresponding to b � 1:3393 . . . ). The vertical
tangent at that point indicates a change of stability.
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reaches a maximum of max�M2
0=J� � 2:5460 . . . at the

ultrarelativistic limit of the disk of dust � � 4:629 66 . . .
Thus Eq. (46) cannot have solutions for all values of �.
Obviously, the solutions are restricted to the interval

 0 
M2

0

J


1

2
max

�
M2

0

J

�
� 1:2729 . . . (47)

that is equivalent to the interval

 0  �  1:9540 . . . ; (48)

cf. the first picture of Fig. 7.
Only for initial disks in this parameter range can the

collision again lead to a rigidly rotating disk of dust.
Beyond the limit � � 1:9540 . . . a collision must lead to
other final states, e.g. black holes or black holes surrounded
by matter rings.

On the other hand, ~� can take on all values in the
interval �0; 4:629 66 . . .� being considered, i.e. there is no
restriction on the parameters of the resulting RR disks.
That means every rigidly rotating disk can be formed in a
collision of two rigidly rotating initial disks. If the cen-
trifugal parameter � of the initial disks approaches the
maximum � � 1:9540 . . . , then the collision leads to a
rigidly rotating disk with ~� � 4:629 66 . . . arbitrarily close
to the extreme Kerr black hole.

Having solved (46) to obtain ~� � ~����, cf. the first
graph of Fig. 7, one may calculate the new coordinate
radius ~�0 from (43) via ~M� ~�; ~�0� � 2M0��;�0�. The re-
sult is plotted in the second graph of Fig. 7.

C. Collision of disks with antiparallel angular momenta

As with the rigidly rotating disk, the ratio M2
0=J for

the counterrotating disk depends only on a centrifugal
parameter, here b, and not on �0. With the definition
(cf. appendix C)

 f�~b� :�
~M2

0

~J
�

�ln
����������
1�4~b2
p

2 arctan�2~b� � =�dilog 1�2i~b
2 ��

2

��4~b� �2� ln
����������
1�4~b2
p

2 � arctan�2~b� � =�dilog 1�2i ~b
2 ��

(49)

and with the conservation equations (43) and (45) one finds

 

~M2
0

~J
�~b� � f�~b� � 4

M2
0

J
���; (50)

which can be used to calculate the counterrotating disk
parameter ~b as a function of the initial disk parameter �.

Similar to the case of scenario (a), by using the formulas
of the appendices B and C it turns out, that (50) does not
have solutions ~b for all values � in the allowed range 0 
�  4:629 66 . . . Fig. 6 shows that f�~b� reaches a maxi-

mum of fmax � 0:963 44 . . . for ~b � bmax � 1:339 34 . . . ,
while the right hand side of (50) grows to much larger
values. Thus the formation of a counterrotating disk is only
possible in the small range

 0 
M2

0

J


1

4
fmax � 0:2408 . . . ; (51)

i.e. from initial disks in the parameter range

 0  �  0:101 003 . . . : (52)

For values of � in this interval Eq. (50) always has two
solutions: ~b can be smaller or larger than bmax, ~b + bmax.
Later it will turn out, that in general only the solution ~b <
bmax is of physical relevance, since the formation of a
counterrotating disk system with the larger value of ~b
would only be possible if external energy were put into
the system.

Finally, if ~b has been calculated, (43) can be used to
determine ~�0.

FIG. 5. M2
0=J of the rigidly rotating disk as function of the

centrifugal parameter �

FIG. 6. Baryonic mass M0 and angular momentum J before
and after the collision, cf. Eq. (50).
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IV. PROPERTIES OF THE MERGED DISKS

A. General parameter conditions

In the last section we showed which initial parameters
can lead to rigidly rotating or counterrotating disks after a
collision. Now we will discuss the parameters of the re-
sulting disks as functions of the initial parameters. For this
purpose we make use of the explicit expressions for mass
M, baryonic mass M0 and angular momentum J, (B1)–
(B3), (C6), and (C8), and plug them into the conservation
laws (43), (46), and (50). In this way we obtain the desired

parameter relations implicitly in terms of elliptic functions.
In Fig. 7 one can see a number of parameter relations
generated by a numerical evaluation of those implicit
relations (solid lines). They may be compared with the
corresponding post-Newtonian approximations derived in
subsection IV B (dotted lines). As expected, the curves
agree well for small values of the centrifugal parameter
�, but differ for larger � even qualitatively.

As mentioned earlier [Eq. (48)], in scenario (a) the
formation of an RR disk after the collision is only possible
for 0  �  1:9540 . . . while for the final disk all parame-

FIG. 7. Parameters of the resulting disks after collision (tilded quantities) as functions of the initial disk parameter � in the allowed
range 0  �  1:9540 . . . [scenario (a)] and 0  �  0:101 003 . . . [scenario (b)] compared with the post-Newtonian approximations
for small � (dashed lines), cf. Sec. IV B. �, �, �0 and M belong to the initial disks.

JÖRG HENNIG AND GERNOT NEUGEBAUER PHYSICAL REVIEW D 74, 064025 (2006)

064025-8



ters 0  ~�  4:62966 . . . are allowed [Fig. 7(a)]. The new
coordinate radius ~�0 is one half of �0 in the Newtonian
limit, but smaller in the general case. In the limit � �
1:9540 . . . the collision leads to a disk in transition to the
extreme Kerr black hole with vanishing coordinate radius,
~�0 � 0 [Fig. 7(b)]. The angular velocity increases, maxi-
mally by a factor of 4 in the Newtonian limit [Fig. 7(c)].
For the maximum amount of lost energy ~M� 2M during
the merger process due to gravitational waves one obtains
a limit of 23.8% of the total initial mass [Fig. 7(d)].

In scenario (b) the formation of an RCR disk is only
possible in the small parameter range 0  � 
0:101 003 . . . As mentioned before (Sec. III C), there al-
ways exist two values of ~b, ~b + bmax � 1:339 34 . . . , for a
given � (or M2

0=J). In the first case (~b < bmax), the coor-
dinate radius ~�0 shrinks to one half of the initial radius or
smaller, but never reaches zero [Fig. 7(f)]. The angular
velocity increases by a factor of 4 or larger [Fig. 7(g)] and
the limit for the relative energy loss is 4.2% [Fig. 7(h)]. In
the second case (~b > bmax), the new coordinate radius ~�0 is
arbitrarily small for small � [Fig. 8(b)] and the angular
velocity grows to infinity for �! 0 [Fig. 8(c)].

We have seen that the emission condition (41)

 

~M<MA �MB � 2M (53)

forbids the formation of RCR disks with negative binding
energy (~b > 4:1074 . . . ). The preceding analysis together
with the exclusion of energy transfer into the system (53)
enlarges the forbidden ~b-interval and restricts the forma-
tion of RCR disks aditionally. Figures 7(h) and 8(d) show
that Eq. (53) is completely satisfied for the first interval
(0< ~b  bmax � 1:339 34 . . . ) and holds for the small
piece 0:0728 . . .  �  0:101 003 . . . of the second inter-

val corresponding to 1:339 34 . . .  ~b  3:8038 . . . but is
violated for 0  �< 0:0728 . . . which corresponds to
3:8038 . . .< ~b <1. Obviously, this implies our former
result that RCR disks formed by collisions have always a
positive binding energy, ~Eb > 0 for ~b < 4:1074 . . .

Adding now the result of Sec. II B where we showed the
instability of RCR disks in the interval b > 1:3393 . . . we
conclude that for physical reasons we cannot expect the
formation of RCR disks in the second branch b >
1:3393 . . .

B. Analytic parameter conditions for weakly relativistic
disks

For most astrophysical applications, rigidly rotating disk
models are characterized by very small values of the
centrifugal parameter, �� 1. For such weakly relativistic
disks it is useful and possible to obtain analytic parameter
conditions derived by post-Newtonian expansions of the
equations of state and the conservation laws (46) and (50).
[For counterrotating disks, for which Eq. (50) has two
solution branches, we restrict ourselves to solutions with
~b� bmax excluding the ‘‘strange’’ branch with negative
binding energy.]

1. Scenario (a)

The expansion of the relations in appendix B in a power
series for � leads to

 �M �

���
2
p

�

�
1

3
�3=2 �

1

10
�5=2

�
�O��7=2�; (54)

 �M0 �

���
2
p

3�

�
�3=2 �

1

5
�5=2

�
�O��7=2�; (55)

FIG. 8. Behavior of the parameters of the resulting RCR disks [scenario (b)] for the solutions ~b > bmax.
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and

 �2J �

���
2
p

15�

�
�5=2 �

1

2
�7=2

�
�O��9=2�: (56)

The conservation equation (46) now can be written as

 10 ~�1=2 � ~�3=2 �O� ~�5=2� � 2�10�1=2 ��3=2�

�O��5=2� (57)

with the solution

 ~� � 4�� 12
5�

2 �O��3�: (58)

With ~� and the expansions (55) and ! � ��0 �

1=
���
2
p
��1=2 � 1=2�3=2� �O��5=2� one can calculate ~�0

from Eq. (43),

 ~�0=�0 �
1
2�

3
20��O��2�: (59)

That means, in the lowest order, the new coordinate radius
is one half of the original radius. For the change of the
angular velocity, we obtain

 

~�=� � 4� 6��O��2�; (60)

i.e. the rotation of the final disk will be 4 times faster than
the rotation of the initial disks in the lowest order. By
comparing the gravitational masses of the two initial disks
and the final disk, one can determine the energy loss due to
gravitational radiation during the dynamical process. The
relative energy loss is

 � ~M� 2M�=2M � � 3
10��O��2�; (61)

where the minus sign shows, that the energy indeed leaves
the system.

To compare the post-Newtonian approximations with
the exact parameter conditions of the last section they are
plotted in Fig. 7 as dotted curves.

2. Scenario (b)

With the expansion of Eq. (49) in terms of the centrifu-
gal parameter ~b, f�~b� � 4

3� �5
~b� 64

7
~b3� �O�~b5�, Eq. (50)

takes the form

 �10�1=2 ��3=2� �O��5=2� �
���
2
p �

5~b�
64

7
~b3
�
�O�~b5�

(62)

with the solution

 

~b �
���
2
p �

�1=2 �
263

70
�3=2

�
�O��5=2�: (63)

From this and with ~M0 � 4~�0=3��~b2 � 11
5

~b4 �O�~b6��

one finds for the coordinate radius of the disk

 ~�0=�0 �
1
2�

197
140��O��2�: (64)

The change of the angular velocity can be calculated from

� � !=�0 and ~� � ~b=�~�0

�����������������
1� 4~b2
p

�. It leads to

 

~�=� � 4� 86
7��O��2�: (65)

For the relative energy loss one obtains

 � ~M� 2M�=2M � � 3
10��O��2�: (66)

Comparing the collisions of disks with parallel and
antiparallel angular momenta, it turns out, that to the low-
est order, the change of the angular velocity and the change
of the coordinate radius are equal in both scenarios.
Namely, the lowest order terms represent the Newtonian
results and in the Newtonian theory there is no influence of
the direction of rotation on the gravitational field. Inter-
estingly, a similar effect occurs in the post-Newtonian
regime: The energy loss for both scenarios also coincides
to the lowest order.

As an example, one can calculate the energy loss for the
merger of two disks with mass and radius of our milky way
(�0 � 15 000 pc andM � 2� 1011M�, respectively). The
corresponding centrifugal parameter � � 3� 10�6 is so
small that the post-Newtonian approximation is sufficient
to calculate the efficiency. With Eq. (66) one finds for the
energy loss �M � ~M� 2M � �4� 105M� for both
scenarios.

V. THE EFFICIENCY OF GRAVITATIONAL
EMISSION

An important quantity in the collision process is its
efficiency �, which is the negative value of the relative
energy loss,

 � �
2M� ~M

2M
: (67)

Obviously, � is the upper limit for the energy transported
away by gravitational radiation. (Some part of the energy
will also dissipate due to friction. To guarantee the for-
mation of a new rigidly rotating or rigidly counterrotating
disk, friction is necessary to force a constant angular
velocity.)

As shown in Sec. IV B, for weakly relativistic disks the
efficiency is given as

 � � 0:3�; (68)

cf. (61).
In Sec. IVA we already presented the relative energy

loss as a function of the centrifugal parameter � of the
initial disks, cf. Fig. 7(d). Here we derive a more explicit
expression for the efficiency making use of the scaling
behavior of the disks: M=M0 and M2

0=J are functions of
the centrifugal parameter alone (� for RR and b for RCR).
Therefore M=M0 is a function of M2

0=J,

 

M
M0
� F�x�; x :�

M2
0

J
: (69)
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Using the conservation laws (43) and (44) or (45) we
obtain the following expressions for the efficiency � as a
function of the quantity M2

0=J of the initial disks,

 ��x� � 1�
F�2x�
F�x�

for scenario �a�; (70)

 ��x� � 1�
~F�4x�
F�x�

for scenario �b�; (71)

where F and ~F can be calculated in terms of elliptic
functions from the equations of state of the RR disks and
the RCR disks, respectively. Accordingly, � is determined
completely by the relative binding energy Eb �
1�M=M0 � 1� F�x� of the RR or RCR disks.

The efficiencies (70) and (71) are plotted in Fig. 9. Note
that the efficiency measures the energy loss. The picture
shows that the formation of a counterrotating RCR disk
[scenario (b)] is ‘‘more efficient’’ than the formation of a
rigidly rotating disk [scenario (a)] for initial disks with the
same amount of angular momentum and baryonic mass,
but is possible only in a much smaller parameter range. It
ends with a comparably small maximum value of � �
4:2%. The limit � � 23:8% for the collision of disks
with parallel angular momenta has the order of magnitude
of Hawking’s and Ellis’ limit � � 29:3% for the coales-
cence of two spherically symmetric black holes.

VI. CONCLUSION

In this paper we have discussed the collision and merger
processes of rigidly rotating (RR) disks leading again to a
RR disk or a rigidly counterrotating (RCR) disk. The
conservation equations for mass and angular momentum
showed, that these processes are restricted to limited pa-
rameter intervals for the initial disks: Only for rigidly

rotating disks whose centrifugal parameter � does not
exceed a given maximum value do these conditions allow
the formation of a new rigidly rotating disk, and in an even
much smaller parameter range, the process can lead to a
counterrotating disk. (But of course, even if the balance
equations can be satisfied in these parameter ranges, it is
not clear if these processes are dynamically possible.) We
were able to calculate the physically relevant relations
between the parameters (‘‘equations of state’’) by a nu-
merical evaluation of the exact but implicit conditions
resulting from the conservation equations. Explicit analyti-
cal expressions could be derived for the post-Newtonian
domain.

It turned out, that every RR disk can be the result of such
a collision process (every point of the two-dimensional
parameter range can be reached), while the formation of
RCR disks is restricted. RCR disks with negative binding
energy (as described by a branch of the RCR solution)
cannot be formed in a collision process. An interesting
result is the calculated upper limit for the efficiency of � �
23:8% for the formation of RR disks and of � � 4:2% for
the formation of RCR disks.

Counterrotating disks are interesting initial configura-
tions for axisymmetric collapse scenarios with gravita-
tional emission. In these cases, the mathematical analysis
consists in the discussion of initial-boundary problems for
the vacuum Einstein equations. A typical example will be
published elsewhere.
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APPENDIX A: WHY RIGID ROTATION?

If there is a small amount of friction between the dust
rings (which can be anticipated for every realistic system),
differentially rotating disks will develop towards an equi-
librium state with rigid rotation. Because of the loss of
energy via gravitational or thermal radiation the gravita-
tional mass M of the disk decreases in these processes.
Therefore we expect to find rigidly rotating disks as min-
ima of the gravitational mass M compared to differentially
rotating disks with the same baryonic mass M0 and the
same angular momentum J. Here, we show that M indeed
takes an extremum.1

FIG. 9. The efficiency � for scenario (a) (long curve) and
scenario (b) (short curve) as function of the physical quantity
M2

0=J of the initial RR disks up to the natural end points of the
intervals for which disk formation is possible.

1To avoid confusion we want to point out that we use two
different kinds of variational principles in this paper. In this
section, we compare different solutions to the Einstein equations
(with different rotational laws) to find the rigidly rotating disks
as extrema of the gravitational mass M. In contrast to this we
consider trial functions that do not solve the field equations in
Sec. II B to find the solutions as extrema of the thermodynamic
potential E.

COLLISIONS OF RIGIDLY ROTATING DISKS OF . . . PHYSICAL REVIEW D 74, 064025 (2006)

064025-11



Following the calculations in [12], one can generalize
the Gibbs formula (15) to disks with differential rotation
� � ����. The result is

 �M �
Z
t�t0
��0���M0

�������
�g
p

� �����J
�������
�g
p

��d3x; (A1)

where �0 � �0��� is the chemical potential (specific free
enthalpy), g is the determinant of the metric tensor and �M0

and �J denote the densities of baryonic mass and angular
momentum, respectively, defined by

 M0 �
Z
t�t0

�M0

�������
�g
p

d3x; J �
Z
t�t0

�J
�������
�g
p

d3x:

(A2)

If one now considers the set of all disks with different
rotation laws � � ����, but fixed baryonic mass and
angular momentum, i.e. with the constraints

 C1 :� M0 � constant; C2 :� J � constant; (A3)

then one can find the disks with extremal gravitational
mass M (and accordingly—due to M0 � constant—with
extremal binding energy M0 �M). With the Lagrange
multipliers 	1 and 	2, the condition for a stationary point is

 ��M� 	1C1 � 	2C2� � 0: (A4)

Using (A1)–(A3), the latter equation takes the form
 Z
t�t0
���0�	1����M0

�������
�g
p

�����	2����J
�������
�g
p

��d3x�0:

(A5)

Since �M0
and �J are varied independently, one finds

 � � constant; �0 � constant; (A6)

i.e. the family of rigidly rotating disks of dust.
The same considerations are valid for counterrotating

disks of dust. The generalization of Eq. (A1) is

 �M �
X2

i�1

Z
t�t0
��
�i�

0���
�i�
M0

�������
�g
p

� ��
�i�
���
�i�
J
�������
�g
p

��d3x;

(A7)

where the index i distinguishes between the two fluid
components. With the restriction to disks with the same

chemical potential (�
�1�

0 � �
�2�

0 �: 1
2�0) and baryonic mass

density (�
�1�
M0
� �
�2�
M0
�: 1

2�M0
) and opposite values of an-

gular velocity (�
�1�

� ��
�2�

�: �) and angular momentum

density (�
�1�
J � ��2��J �: �J), Eq. (A7) reduces to

Eq. (A1), i.e. the extremal problem leads to the rigidly
counterrotating disks with � � constant.

APPENDIX B: MULTIPOLE MOMENTS OF THE
RIGIDLY ROTATING DISK

By specifying the formulas of the general solution to the
axis of symmetry, it is possible to calculate all multipole
moments of the disk [16]. In particular, one can derive
expressions for the gravitational (ADM) mass M, the bar-
yonic mass M0 and the angular momentum J,

 �M��� � �1
2�!���a1��� � b0����; (B1)

 �M0��� �

�������
2�
p

4
a1���; (B2)

 �2J��� � �1
2�!���a1��� �

1
2b0����; (B3)

where one needs the relations
 

a1 �
1����
�
p

�
2
���������������
1��2

q
I0���

�
h02 �

E�h�
K�h�

�
� I1���

� �1��2�1=4 �
K�h�

�0�am�Î���; h0�; h��
�

�
1����
�
p

� �������
2

hh0

s
�E�am�Î���; h0�; h0� � h2Î� � I1���

�
;

b0 � �
1

h���
sn�Î���; h0����dn�Î���; h0����;

! � ��0 �
1

2

�����������������������
1�

h02���

h2���

s
cn�Î���; h0����;

e2V0 �
h0���
h���

cn2�Î���; h0����;

h �

������������������������������������
1

2

�
1�

����������������
1��2

p �s
; h0 �

��������������
1� h2

p
;

In �
1

�

Z �

0

ln�
��������������
1� x2
p

� x���������������
1� x2
p

xn�������������
�� x
p dx;

Î � �1��2�1=4I0���;

with the complete elliptic integrals K�k� � F��=2; k� and
E�k� � E��=2; k�, Heumann’s Lambda function
�0� ;k� �

2
� �E�k�F� ;k

0��K�k�E� ;k0��K�k�F� ;k0��,

k0 �
��������������
1� k2
p

and the Jacobian elliptic functions sn, cn, dn
and am.

APPENDIX C: MULTIPOLE MOMENTS OF THE
RIGIDLY COUNTERROTATING DISK

For the metric (9), by using the field equations, the
relations (6)–(8) for mass and angular momentum can be
expressed using only the metric potential U and its �- and
�-derivative in the disk. For general counterrotating disks
one finds

 M �
Z �0

0
U;��d�; (C1)
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 M0 �
Z �0

0
e�U

������������������������������������������������
�1� 2�U;���1� �U;��

q
U;��d� (C2)

and

 J �
1

2

Z �0

0
e�2U

���������������������������������
�U;��1� �U;��

q
U;��2d�: (C3)

These equations can be applied to rigidly counterrotating
disks (RCR disks) with the explicit expressions (see [6])

 U��; � � 0� �
1

2
ln
�

��0

2b
�1�

������������������������������
1� 4b2�2=�2

0

q
�

�
; (C4)

 

U;� ��; � � 0��

�
2b
��0

1������������������������������
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0

q arctan
2b

����������������������
1� �2=�2

0

q
������������������������������
1� 4b2�2=�2

0

q ; (C5)

where � � b=��0

�����������������
1� 4b2
p

� is the constant angular veloc-
ity. They lead to

 M �
�0

�

�
1�

1

2b
arctan�2b�

�
; (C6)

 M0 �
�0

4�b
�1� 4b2�1=4

�
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�����������������
1� 4b2
p

2
arctan�2b�

� =

�
dilog

1� 2ib
2

��
(C7)

and
 

J �
�2

0

16�b2

�����������������
1� 4b2

p �
4b�

�
2� ln

�����������������
1� 4b2
p

2

�
arctan�2b�

� =

�
dilog

1� 2ib
2

��
(C8)

with the dilogarithm function

 dilog �z� �
Z z

1

lnw
1� w

dw: (C9)

APPENDIX D: THE COUNTERROTATING DISK OF
DUST METRIC

The inverse scattering method (cf. [17]) can be used to
calculate the function U��; �� in the line element (9) of the
counterrotating RCR disk. For an angular velocity � and a
coordinate radius �0 it leads to

 

U��; �� �
1

4�

Z 1

�1

ln�1� 
�1� k2������������������������������������������������
�ik� �=�0�

2 � �2=�2
0

q dk;


 :� 4�2�2
0: (D1)

By using elliptical coordinates ��; �� with

 � � �0

������������������������������������
�1� �2��1� �2�

q
; � � �0��; (D2)

it is possible to express U in terms of the dilogarithm
function (C9). The result is
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2�
=
X2

j�1
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where

 A	j � 1�
��1� ����� i�

��1�j
���������������������������������������������������������������
1� �2�1� �2 � �2� 	 2���

p
� ����	 1�

; � :�

�������������



1� 


r
(D4)

and

 n �

���������������������������������������������������������������
1� �2�1� �2 � �2� � 2���

p
� 1� ���

�
������������������������������������
�1� �2��1� �2�

p : (D5)

The function k can be calculated from U via line integration by using the field equations

 k;� � ��U2
;� �U

2
;� �; k;� � 2�U;�U;� : (D6)
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[7] J. Bičák, D. Lynden-Bell, and J. Katz, Phys. Rev. D 47,
4334 (1993).

[8] W. Meinhardt, Ph.D. thesis, Friedrich-Schiller-Universität
Jena, 1994.

[9] S. W. Hawking and G. F. R. Ellis, The Large Scale
Structure of Space-Time (Cambridge Monographs on

Mathematical Physics) (Cambridge University Press,
Cambridge, England, 1973).

[10] G. Neugebauer, A. Kleinwächter, and R. Meinel, Helv.
Phys. Acta 69, 472 (1996).

[11] J. B. Hartle and D. H. Sharp, Astrophys. J. 147, 317
(1967).

[12] G. Neugebauer, in Proceedings of the 2nd Hungarian
Relativity Workshop, Budapest, 1987, edited by Z. Perjés
(World Scientific, Singapore, 1988), p. 134.

[13] J. Katz, Found. Phys. 33, 223 (2003).
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