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We conjecture that, in certain cases, quantum dynamics is consistent in the presence of closed timelike
curves. We consider time dependent orbifolds of three-dimensional Minkowski space describing, in the
limit of large anti-de Sitter (AdS) radius, Bañados, Teitelboim, Zanelli (BTZ) black holes inside the
horizon. Although perturbative unitarity fails, we show that, for discrete values of the gravitational
coupling, particle propagation is consistent with unitarity. This quantization corresponds to the quantiza-
tion of the black hole angular momentum, as expected from the dual conformal field theory (CFT)
description. Note, however, that we recover this result by analyzing the physics inside the horizon and near
the singularity. The space-time under consideration has no AdS boundary, and we are therefore not using
any assumption regarding a possible dual formulation. We perform the computation at very low energies,
where string effects are irrelevant and interactions are dominated by graviton exchange in the eikonal
regime. We probe the noncausal structure of space-time to leading order, but work to all orders in the
gravitational coupling.
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I. INTRODUCTION

One of the outstanding difficulties of the anti-de Sitter/
conformal field theory (AdS/CFT) correspondence [1] is to
understand physics in the bulk of the AdS space in terms of
CFT data. In particular, understanding the space-time
causal structure of black holes is still a fundamental prob-
lem from the view point of the duality. Although one
believes, based on basic properties of the dual CFT, that
the bulk dynamics is well defined, it is fair to say that the
quantum nature of horizons and singularities remains
rather mysterious [2].

The AdS3=CFT2 case is one of the best studied examples
of the duality, with black hole geometries given by the BTZ
metric [3,4]

 ds2 � �N2dt2 � N�2dr2 � r2�d�� N�dt�
2; (1)

where

 N2 �
1

‘2r2 �r
2 � r2

���r
2 � r2

��; N� �
1

‘
r�r�
r2 :

The AdS3 radius is given by ‘, and r�, r� are the positions
of the outer and inner horizons determining the mass and
the angular momentum of the black hole

 Mbh �
�M

4

�
r2
� � r

2
�

‘2 � 1
�
; J �

�M
2

r�r�
‘

;

in terms of the three-dimensional Planck mass1 M.

In the dual CFT2 description, these black holes corre-
spond to states with [5]

 L0 � ~L0 � ‘Mbh; L0 � ~L0 � J;

where L0, ~L0 are the Virasoro zero modes. Moreover, since
the � circle is a noncontractible loop in space-time, in the
presence of fermions one needs to choose a spin structure.
Usually one considers periodic boundary conditions for the
fermions, which allow for a covariantly constant spinor in
the extremal case r� � r� and which give a state in the
Ramond sector of the CFT2. One may also choose anti-
periodic boundary conditions, which describe a nonsuper-
symmetric state in the NS sector of the CFT2. From this
point of view, the spin eigenvalue J is naturally quantized
in half integral units

 2J 2 Z: (2)

On the other hand, from a purely gravitational view point,
the quantization of the angular momentum is rather myste-
rious. Classically, J is a continuous parameter, and the
usual arguments leading to (2) rely on the asymptotic
symmetries of quantum gravity on AdS3 [6], and therefore
implicitly on the existence of a dual CFT2.

An intriguing property of the BTZ black holes is the
existence of closed causal curves (CCC’s) in the geometry.
In fact, these holes are quotients of AdS3 by the action of a
specific isometry parameterized by r�, r�, and the identi-
fication creates CCC’s located in the region inside the inner
horizon. The black hole has a chronological singularity
where the generator of the orbifold isometry becomes null.
Therefore, if we ignore the dual CFT description, we
naively expect that quantum gravity in the BTZ geometry
presents pathologies due to the existence of these CCC’s.
In particular, one would a priori expect violations of
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unitarity, which would undermine the possible existence of
an S matrix.

By studying quantum field theory in the flat space limit
‘! 1 of the BTZ geometry, we shall show that the
quantization condition (2) can be obtained by demanding
that quantum propagation of fields is consistent with uni-
tarity, even in the presence of CCC’s. The argument will
use very limited information about the underlying quantum
gravity. In particular, we shall not use any string theoretic
arguments, since we shall work at energies well below the
string scale, where �0 corrections should be negligible.
More specifically, we will consider corrections to free
propagation of scalar fields due to interactions with parti-
cles winding around the closed timelike direction, as
shown in Fig. 1. By carefully choosing the quantum num-
bers of the external states, we will show, using general
arguments [7], that the interaction is dominated by graviton
exchange in the eikonal regime. In this kinematical regime,
one has enough control over the resummation of the per-
turbative series determining the gravitational interaction,
and one can recover the quantization condition (2) by
enforcing unitarity.

For a given BTZ black hole with geometric parameters
r�, r�, one could in principle start by considering quantum
gravity at arbitrary values of the gravitational coupling
M�1. However, the presence of CCC’s breaks unitarity
order by order in the coupling constant [8], suggesting
that one is not free to choose M�1 at will and that one
needs to resum the perturbation series. The quantization
condition (2), which follows from unitarity, can then be
interpreted as fixing the gravitational coupling M�1 at
some specific values.

The usual belief regarding the dynamics inside the hori-
zons of a BTZ black hole is that the geometry (1) will be
modified due to the classical instability of the inner horizon
[9] and also due to divergences of the quantum stress-
energy tensor at polarization surfaces in the region inside
the inner horizon [10]. We propose, on the other hand, that

the geometry remains unaltered and noncausal, but the
propagation of states is strongly modified by quantum
effects in the inner region and is consistent whenever (2)
is satisfied. It is tempting to speculate that such modifica-
tion of the dynamics inside the horizons is responsible for
the reduction of degrees of freedom associated to the black
hole entropy, which is not proportional to the volume of the
black hole but to its horizon area.

II. THE ORBIFOLD

For simplicity we focus on the extremal black hole, with
r� � r� and Penrose diagram given in Fig. 2(a), which is a
quotient of AdS3 space. In the flat space ‘! 1 limit,
keeping the energy scale

 E �
‘

�2�r��
2

fixed, the region inside the black hole horizon becomes an
orbifold of flat Minkowski space M3=e�, introduced in
[11]. Choosing coordinates x�, x on M3, such that the
metric is

 ds2 � �2dx�dx� � dx2;

the orbifold generator � is the Killing vector

 � � i�L�x � E�1K�� � ��x�@x � x@�� � E�1@�;

where Lab, Ka are, respectively, the generators of Lorentz
transformations and translations, and where E parameter-
izes inequivalent orbifolds. For a detailed derivation of the

FIG. 1. Leading correction to the free propagation of a scalar
field due to gravitational interactions with virtual particles wind-
ing closed causal curves.

FIG. 2. Penrose diagram of the extremal BTZ black hole (a).
The shaded area represents the region behind the chronological
singularity, where closed causal curves are present. In the limit
‘! 1, J fixed, one focuses on the region inside the black hole
horizon and obtains a flat space orbifold with Penrose
diagram (b).

LORENZO CORNALBA AND MIGUEL S. COSTA PHYSICAL REVIEW D 74, 064024 (2006)

064024-2



‘! 1 limiting procedure, we refer the reader to
Appendix A.

Under the change of coordinates

 x� � y� � Eyy� �
E2

6
�y��3; x� � y�;

x � y�
E
2
�y��2;

(3)

the metric becomes

 ds2 � �2dy�dy� � 2Ey�dy��2 � dy2 (4)

and the Killing vector

 � �
1

E
@
@y�

:

The direction y� is therefore compact with period

 y� � y� �
1

E
:

Note that the form of the metric (4) can be directly ob-
tained from the BTZ metric (1) for r� � r�, by setting y �
2�2Er2, 2�y� � t, 2�Ey� � �, and then by taking the
limit ‘! 1 described above. Reexpressing the metric (6)
as

 ds2 � �
�dy��2

2Ey
� dy2 � 2Ey

�
dy� �

dy�

2Ey

�
2
;

we can easily draw the corresponding Penrose diagram as
in Fig. 2(b), showing that we are focusing on the region
inside the horizon of the extremal BTZ black hole. In the
nonextremal case a similar large ‘ limit leads to the shift-
boost orbifold of M3, which focuses on the region inside
the outer horizon [12].

The quantization of the BTZ black hole angular momen-
tum (2) becomes, in the flat space limit, the condition

 2J �
M

4�E
2 Z: (5)

In this case, on the other hand, one cannot justify this
quantization condition with arguments relying on asymp-
totic symmetries and on the existence of a dual CFT. In
fact, the Minkowski space orbifold just described focuses
on the region inside the horizons, and the asymptotic AdS
boundary is no longer part of the geometry.

An independent way of deriving (5) is to embed the
orbifold in string theory, by considering Type II strings on
M3=e� � T7 [11]. After a sequence of dualities, the ge-
ometry becomes that of an orientifold O8 plane [13]. From
this point of view, (5) results from the fact that 8-
dimensional Ramond-Ramond (RR) charged objects have
charges quantized in units of the D8-brane charge.
Although these arguments rely on the low-energy super-
gravity description of the system, they lead to the same
condition.

It is the main point of this paper to derive the quantiza-
tion condition (5) purely within the framework of quantum
field theory in the presence of gravitational interactions.
From this perspective, (5) is obtained by requiring unitarity
in the space M3=e�, which possess CCC’s. Hence we see
that unitarity in the presence of CCC’s is related to charge
quantization in dual descriptions of the system. The me-
chanics that protects chronology is rather different than
that proposed by Hawking [14], which is based on a large
backreaction due to UV effects.

For other studies of orbifolds with CCC’s, where an
analogous study of unitarity can in principle be done, see
[15–32].

A. Geometry

We now analyze, in more detail, the geometry of the
orbifold M3=e�. First let us note that the square-norm of �
is given by

 �2 �
2y
E
:

The compact y� circle is spacelike for y > 0 and timelike
for y < 0. Therefore, the geometry has CCC’s. It is simple
to show that all CCC’s must go in the region with y < 0. To
prove this fact, assume that we have a CCC parameterized
by ya��� with � 2 	0; 1
. Since y��0� � y��1�, the func-
tion y���� must achieve an extremum for some �� 2 �0; 1�.
At � � ��, the metric (4) reduces to 2Ey�dy��2 � dy2,
which is positive-definite for y > 0. Therefore, the curve
can be timelike or null only if y� ��� � 0. A schematic
representation of these basic features of the geometry is
shown in Fig. 3.

A particularly interesting class of closed curves are the
ones obtained from geodesics in the covering space M3

connecting points which are related by the action of the
orbifold group. Denoting, for notational convenience, the
orbifold group generator by

FIG. 3. A representation of the basic features of the orbifold
geometry. The null Killing direction y� and the transverse
direction y are drawn on the plane. The compact y� circle is
spacelike for positive y and timelike in the shaded region after
the chronological singularity. Represented are also the first
polarization surfaces at yw � w2=�24E�. Finally we show a
closed timelike curve and a closed null curve. The latter starts
and ends on the first polarization surface.
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 � � e�;

it is a simple matter to show, starting from (3), that the
continuous transformation y� ! y� � s=E generated by
�s reads, in the coordinates xa,

 ��sx�� � x� � sx�
s2

2
x� �

s3

6E
;

��sx�� � x� �
s
E
; ��sx� � x� sx� �

s2

2E
:

(6)

Therefore, the geodesic distance squared ��wx� x�2 be-
tween a point x and its w-th image (w 2 Z) is given by

 

2w2

E

�
y�

w2

24E

�
;

and becomes null at the so-called polarization surfaces

 y �
w2

24E
:

For y < w2=�24E� the geodesic from x to �wx is a closed
timelike curve. The polarization surfaces are also repre-
sented in Fig. 3.

B. Particle wave functions

In order to analyze the propagation of scalar fields in the
orbifold geometry, we must first find a convenient basis of
functions invariant under the orbifold action. It is useful to
consider first the transformation of the plane waves

 �k�x� � eik�x

under the action of �. Using (6), it is simple to show that

 �k��
�sx� � ��sk�x�e�i’�k;s�; (7)

where the transformed momentum �sk is given by

 ��sk�� � k�; ��sk�� � k� � sk�
s2

2
k�;

��sk� � k� sk�:

(8)

The above phase ’�k; s� is given by

 ’�k; s� �
1

E

�
s3

6
k� � sk� �

s2

2
k
�
;

and satisfies ’�k; s� t� � ’�k; s� � ’��sk; t�.
We can construct, starting from any plane wave�k�x�, a

function on M3 which is invariant under � and which is an
eigenvector of � with eigenvalue 2�in, where n 2 Z. This
is given by the integral representation

 

Z
dse2�ins�k��

�sx� �
Z
ds��sk�x�e2�ins�i’�k;s�: (9)

Since ��sk�2 � k2, and since ��sk�� � k�, the above
functions are automatically eigenvectors of the Laplacian
� and of the momentum operatorK�. We then choose, as a
convenient basis for the invariant functions on M3=e�,

eigenfunctions V�;p�;p��x� of the commuting operators
�, K�, and �, with eigenvalues

 � � �; K� � p�; �iE� � p�; (10)

where p� is related to the eigenvalue n by2

 p� � 2�En:

Choosing, in (9), the momentum k � �p�; �=2p�; 0�, we
immediately obtain the explicit representation

 V�;p�;p��x� �
1

jp�j

Z
dkei�p�x

��k�x��kx� exp
i

2Ep2
�

�

�
�2p�p� � ��k�

k3

3

�
; (11)

where we have changed the integration variable to k �
sp�, and where k� is given by the on-shell condition

 k� �
k2 � �

2p�
:

The sector with p� � 0 clearly requires a separate treat-
ment. In this case, (8) implies that the component k �
��sk� is invariant under �, and we can choose eigenfunc-
tions Vp;p��x� with

 K � p; �iE� � p�;

whereK is the momentum operator�i@x. Choosing, in (9),
the momentum k � �0; 0; p�, and as integration variable
k� � sp, we obtain the integral representation
 

Vp;p��x� �
1

jpj

Z
dk�ei�k�x

��px� exp
i
pE

�
p�k� �

�k��
2

2

�
;

(12)

which has p� � 0 and � � �p2.
The functions V�;p�;p� and Vp;p� represent a complete

basis of invariant functions on M3=e�, and transform,
under conjugation, as
 

V�;p�;p��x� � V�;�p�;�p��x�; Vp;p��x�� V�p;�p��x�:

It is useful to consider the above functions in the coor-
dinates y�, y. The operators in (10) are given, in these
coordinates, by

 � � �2@y�@y� � 2Ey@2
y� � @

2
y; K� � �i@y� ;

� iE� � �i@y� :

We can then use separation of variables to find functions
satisfying (10) of the form f�y�ei�p�y

��p�y��, where f�y�
solves

2Throughout the paper, we use k, q to denote covering space
momenta—i.e eigenvalues of �i@x. We reserve p� for the
momenta in the y coordinates �i@y� .
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�
2p�p� � 2Ep2

�y�
d2

dy2 � �
�
f�y� � 0: (13)

Defining the dimensionless variable

 z � �2Ep2
��

1=3�y� y0�;
�
y0 �

�� 2p�p�
2Ep2

�

�
the above differential equation simplifies to d2f=dz2 �
zf � 0, which describes in quantum mechanics a zero
energy particle subject to a linear potential. The solutions
are the Airy functions Ai��z� and Bi��z�, which are,
respectively, exponentially damped and exponentially
growing in the z < 0 region. This region corresponds
mostly to negative y, where the Killing vector � is timelike.
In the sequel, we shall consider the normalizable solution
Ai��z� which corresponds to the integral representation
(11). Using the representation of the Airy function

 Ai ��z� �
1

2�

Z
dtei�zt��t

3=3��;

it is a matter of computation to show, using (3) and (11),
that

 V�;p�;p��y� � 2�
�

2E
jp�j

�
1=3

Ai��z�ei�p�y
��p�y��:

The case p� � 0 is simpler since in the differential
Eq. (13) the linear potential term is absent. The solutions
are simply plane waves f�y� / e�ipy, with p2 � ��. In
fact, we can explicitly integrate (12) and obtain

 Vp;p��y� �

����������
2�E
ip

s
ei�py�p�y

��: (14)

Finally, the inner product of the wave functions is given
by

 Z
F
d3xV�;p�;p��x�V


�0;p0�;p

0
�
�x� � 16�3���� �0���p� � p

0
���p��p0� ;

Z
F
d3xVp;p��x�V


p0;p0�
�x� �

4�2

jpj
T��p� p0��p��p0� ;

(15)

where T �
R
dy� � 2���p� � 0� is the volume in the y�

direction and F �M3 is a fundamental domain of the
orbifold (we can consider F to be, for concreteness, the
region 0< y� < 1=E). A simple way to prove the above
expressions is to use the integral representations (11) and
(12) and to extend the integration region from F to M3.
One then uses the orthogonality of the plane waves �k�x�
to derive the desired result. The overcounting due to the
extension of the integration region can be taken into ac-
count by substituting, at the end of the computation, the
Dirac �-function with the Kronecher symbol for the dis-
crete Kałuża-Klein charge as follows:

 ��n� n0� ! �n�n0 ; 2���p� � p0�� ! E�1�p��p0� :

(16)

The correctness of the normalization in the above expres-
sion can be checked, for instance, by computing (15)
directly in the y-coordinates, using the explicit expression
(14).

III. FEYNMAN RULES

We shall start our investigation of quantum field theory
in the orbifold space by considering, as a simple toy model,

a scalar field � with a cubic coupling, described by the
action

 

Z
F
d3x

�
1

2
����m2���

g
6

�3

�
: (17)

We shall analyze the perturbative expansion of this theory
in some detail, since some of the basic features of field and
string theory on M3=e� can be already understood in this
simple setting. Later on we will be interested in the free
theory of a scalar field coupled to gravity.

Consider first the scalar propagator, which is simply
given by the method of images. Denoting the Feynman
propagator in the covering space by

 ��x;x0� �
Z d3q
�2��3

�i

q2 �m2 � i�
eiq�x�x0�;

we can write the full propagator as a sum

 h��x���x0�i �
X
w2Z

���wx;x0�:

Lorentz invariance implies that ���sx;�sx0� � ��x;x0�,
and therefore we can write the summand ���wx;x0� �
���w=2x;��w=2x0� symmetrically as

 

Z d3q
�2��3

�i

q2 �m2 � i�
�q��

w=2x��q���w=2x0� �
Z d3q
�2��3

�i

q2 �m2 � i�
ei=E�wq���w

3=24�q�����w=2q�x��

�w=2q

�x0�:

(18)
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In the last equation we have used Eq. (7) to obtain the
phase

 ’
�
q;
w
2

�
� ’

�
q;�

w
2

�
:

From Eq. (18) we deduce that, in Fourier space, a scalar
propagator is labeled by a momentum q and a winding
number w. The propagator is then given by

 

�i

q2 �m2 � i�
ei=E�wq���w

3=24�q��:

Moreover, as we move along the propagator, the momen-
tum gets transformed under the action of the orbifold group
element ��w. Therefore, the incoming momentum along
the line is �w=2q and the outgoing one is ��w=2q, as
shown in Fig. 4. We have made an explicit choice of i�
prescription for the propagator, which is implicitly a choice
of vacuum for the space-time under consideration. This
choice is canonical in orbifold theories, and for BTZ black
holes corresponds to the usual Hartle-Hawking vacuum.

We are now ready to state the Feynman rules for com-
puting the amputated n-point amplitude of a given con-
nected graph G. We are not going to give a formal proof of
these rules, since it is simple but notationally quite cum-
bersome. We hope that the reader with some familiarity
with the standard techniques of field theory can convince
(her)himself of the validity of the rules below.

(i) First assign winding numbers wi to all internal
propagators of G. This defines a 1-cocycle for the
graph, and therefore an element of the cohomology
group ! 2 H1�G�. We can think of propagators in
the graph literally as particle propagation. The
numbers wi define how many times the particle
winds around the compact y� circle as one goes
around a loop of G. For the element ! 2 H1�G�,
the intermediate results of the computation will
depend on the specific choice of representative
wi�!�, but the final result will only depend on the
class !. We should consider as distinct only
choices of windings wi corresponding to different
classes in H1�G�. As an illustration, Fig. 5 shows
the choices of winding numbers and classes for a
given two-loop graph.

(ii) Fix external momenta ki flowing into the graph,
and compute the diagram with the usual Feynman
rules, but with propagators given by the above
prescription. The result will depend on the explicit

choice of representative wi�!�. Let us denote it by

 �wi�k1; � � � ;kn�:

The momenta ki should be thought of as covering
space momenta, even though �wi is not in general
Lorentz invariant. However, since invariance under
K� is preserved, the above amplitude will always
contain a delta function 2����iki��.

(iii) Average over the action of the group on the external
states as we did for the particle wave functions, by
considering the integral

 

Z
ds1 � � � dsne

i��si��wi��
s1k1; � � � ;�

snkn�; (19)

with

 ��si� � 2�
X
i

sini �i

X
i

’�ki; si�:

The above integral overcounts the result, since
invariance under the orbifold action � implies that

 ei��si��wi��
siki� � e2�is

P
i
niei��s

0
i��wi��

s0iki�;

where si � s0i � s. We may insert, in (19), the
identity ‘‘1’’

 

��������X
i

ci

��������Z ds��icis
0
i�;

where the constants ci can be chosen arbitrarily, as
long as

P
ici � 0. Changing integration variables to

the s0i, we can perform the integral over s and obtain
a delta function ��

P
ini�. Restricting the integral

over s to a single action of the orbifold generator,
from 0 to 1, or following the prescription in (16),
we can substitute this �-function with a Kronecher

− i
q2 + m 2− e

i
E wq− + w 3

24 q+

FIG. 4. Scalar propagator for a particle winding w times the
compact y� direction. The incoming and outgoing momenta are
related by the action of the orbifold generator and the usual
propagator is multiplied by a momentum dependent phase.

FIG. 5. A two-loop graph, with loop winding numbers !1, !2.
The winding numbers wi for the propagators can be chosen
arbitrarily, as long as !1 �

P4
i�1 wi and !2 � w5 � w3.
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symbol. Dropping the primes we arrive at the am-
plitude
 

��ni

��������X
i

ci

��������Z ds1 � � � dsn�
�X

i

cisi

�
� ei��si��wi��

siki�: (20)

This expression depends only on the specific class
! 2 H1�G� and it is the final result given a specific
choice of ! and of external states.

(iv) Finally sum over !. The term with ! � 0 is
singled out since it comes from the parent theory
in M3. In fact, we can choosewi � 0 for all internal
propagators and, in this case, �wi�ki� can be com-
puted with the usual flat space Feynman propaga-
tor. The only sign of the orbifold would then be in
the choice of external states. If G is a tree level
graph, then H1�G� � 0 and the only term in the
sum comes from the parent theory. This is usually
called the inheritance principle.

To do computations, it is convenient to specialize the
formula (20) to the external states given by the functions
V�;p�;p� and Vp;p� . Consider first the case when all n
external states have p� � 0 and are labeled by �i, pi�,
pi�. We must then compute the following integral (rescal-
ing ci ! cipi�)

 ��pi�

��������
P
i cipi�Q
i pi�

��������Z dk1 � � � dkn�
�X

i

ciki

�
ei��ki��wi�ki�;

(21)

where the phase � is given by

 ��ki� �
X
i

1

2Ep2
i�

�
�2pi�pi� � �i�ki �

k3
i

3

�
; (22)

and where

 ki� � pi�; ki� �
�i � k

2
i

2pi�
:

If, on the other hand, we have n� 1 external states, one of
which has p� � 0 and therefore is labeled by p, p�, we
may choose the corresponding variable s to vanish in (20)
and obtain

 �p���pi�

�������� 1Q
i pi�

��������Z dk1 � � � dknei��ki��wi�k;ki�; (23)

where k � �0; 0; p� and i runs over the remaining n exter-
nal states.

IV. PROPAGATION IN THE PRESENCE OF CCC’S

We have now the basic tools to address the main issue of
this paper, namely, the analysis of particle propagation in
the presence of CCC’s. We shall consider a scalar field with
action (17), minimally coupled to gravity, and for simplic-
ity consider the massless case m � 0. One expects that the

existence of CCC’s will not allow a consistent definition of
single particle states and of an unitary S matrix in the
interacting theory. This belief is supported by perturbative
computations, since the usual Cutkosky cutting rules are no
longer valid, and unitarity fails order by order in the
coupling constant [8]. A simple example of this fact will
be described in Sec. IVA. On the other hand, from the
duality arguments given in the introduction, one expects,
for a given value of the geometric parameter E, to be able
to define consistently a unitary S matrix for the discrete
values of the Planck mass given by (5). For those values of
M, we expect to be able to define particle states interacting
strongly with the gravitational field and scattering with unit
probability, as show pictorially in Fig. 6.

To investigate the possible restoration of unitarity, we
shall study the two-point function of the scalar field, which
defines single particle states. As shown in Fig. 7, this two-
point function is determined by the conserved momenta
p�, p� flowing in the diagram, together with the off-shell
mass squared �, �0 of the external legs. We denote it by
�p�;p���; �

0�, so that the full propagator becomes

FIG. 6. Scattering process in the orbifold geometry. The dy-
namics is strongly coupled in the shaded region due to gravita-
tional interactions in the presence of CCC’s, which naively
violate unitarity. We expect, on the other hand, to be able to
define particle states and a consistent S–matrix for discrete
values of the gravitational coupling constant M�1.

FIG. 7. The correction to the free scalar propagator due to
interactions. The conserved momenta p� flow through the
diagram, whereas �, �0 are the off–shell mass squared of the
external legs. The shaded blob is computed using the Feynman
rules of Sec. III and includes internal propagators winding the
compact y� direction.
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 16�2E��� i������ �0� � �p�;p���; �
0�: (24)

It is then possible to define consistently single particle
states whenever the above kernel has real eigenfunctions
with vanishing eigenvalue. This will certainly be the case if
the effective potential �p�;p� determining the propagation
of the scalar field satisfies the reality condition

 �p�;p���; �
0� � �p�;p���

0; ��: (25)

Note that, in quantum field theory, the potential �p�;p� can
in principle have an imaginary part coming from on-shell
intermediate states. On the other hand, the contribution to
� considered in this paper has no contributions from inter-
mediate on-shell lines and therefore any deviation from the
reality condition (25) would be a sign of inconsistency of
the theory. We shall comeback to this point at the end of
section IV D.

We will be able, in particular, to compute the first non-
trivial contribution to the full scalar propagator probing the
noncausal structure of space-time. As shown in Fig. 8, we
consider an expansion of �p�;p���

0; �� in increasing num-
ber of internal propagators with nonvanishing winding
number. We shall focus on the leading nontrivial contribu-
tion arising from the graph 9. The loop propagator will
have nonvanishing winding number w, whereas the bubble
in the graph represents the four-point interaction in the
parent theory on M3 to all orders in the couplings. In the
limit of p�, �, �0 small, we shall see that, to compute the
graph, we will only need control over the parent four-point
amplitude in the eikonal kinematical regime, where resum-
mation techniques are known and where general arguments
indicate that interactions are dominated by graviton ex-
change. The form of the eikonal amplitude in three dimen-
sions is such that �p�;p���

0; �� satisfies (25) exactly at the
values of the gravitational coupling constant M�1 given by
(5).

As a warm-up exercise, we compute, in the next sub-
section, the scalar one-loop tadpole graph, so that the

reader can get acquainted with loop computations in the
orbifold theory. This simple computation already shows
the breakdown of the cutting rules.

A. One-loop tadpole

Let us explicitly compute the one-loop tadpole graph of
Fig. 10, which contributes to the effective action with the
term

 

Z
F
d3x��x���x�: (26)

Conservation of p� forces the external leg to have quantum
numbers p� � 0. Thus the one-loop tadpole can be written
in momentum space as

FIG. 8. Complete scalar propagator �p�;p���
0; �� and tadpole

expanded in increasing number of internal propagators with
nonvanishing winding number, represented by dashed lines.
The remaining effective vertices, shown with light gray blobs,
are computed in the parent theory to all orders in the coupling
constant, with internal propagators with vanishing winding
number.

FIG. 9. Leading nontrivial contribution to the two–point func-
tion �p�;p���; �

0�, as shown in Fig. 8. The loop momentum has
nonvanishing winding number w, whereas the blob A repre-
sents the four-point amplitude in the parent theory to all orders in
the coupling constants.

FIG. 10. The one-loop scalar tadpole. The on-shell particle
winding the compact y� direction contributes an imaginary
part to the tadpole, which is nonvanishing only for p < 0. In
position space the tadpole diverges at the polarization surfaces.
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 ��p� �
1

TE�1

Z
F
d3xVp;0�x���x�;

where the wave functions Vp;0 were introduced in Sec. II B.
Changing to the y-coordinates, it is easy to see that ��y�
actually depends only on the coordinate y, and that

 ��y� �
Z dp

2�
e�ipy��p�

����������
ip

2�E

s
: (27)

To compute the function ��p�, we start with the ampli-
tude ��k� using Feynman rule (ii) of last section

 i��k� �
ig
2

X
w�0

Z d3q

�2��3
�i

q2 � i�
ei=E�wq���w

3=24�q���2��3��k����k� � wq���k� wq��

� �2���k��
ig
2

X
w�0

ei=E�w
2k=24�

Z dq�
2�i

ei=Ewq�

2wq�k� k
2
� � i�

;

where the w � 0 term is eliminated by renormalization of
the parent theory. The integral is nonvanishing only for k <
0. Closing the q� counter at infinity, the contribution of the
pole, which is associated to the winding particle going on-
shell, gives

 ��k� � 2���k��	��k�
g

4jkj

X
w�0

1

jwj
ei=E��w

2k=24���k2
�=2k��:

Finally, using (23), we conclude that TE�1��p� � ��k�,
with k � �0; 0; p�, so that the result is

 ��p� � 	��p�
gE

4jpj

X
w�0

1

jwj
ei=E�w

2p=24�: (28)

Let us note that, for the simple tadpole graph under
consideration, one could compute ��x� directly in position
space

 ��x� �
g
2

X
w�0

���wx;x�:

Denoting with

 dw�y� �

�������������������������������������������
2w2

E

�
y�

w2

24E

�
� i�

s
;

the distance between the point x and its w-th image as a
function of the y-coordinate y�x�, we obtain from the
standard expression for the three-dimensional scalar propa-
gator

 ��y� �
g

8�

X
w�0

1

dw�y�
:

The reader can check, using (27), that the Fourier trans-
form of the above expression yields (28).

Clearly, for fixed w, the contribution to the one-loop
tadpole diverges at the polarization surface y � w2=�24E�
and becomes complex for y < w2=�24E�. Correspondingly,
in momentum space, the contribution to ��p� is nonvanish-
ing only for p < 0 and comes uniquely from on-shell
particles running in the loop, which wind around the
compact circle and contribute with an imaginary part to
the one-loop tadpole.

In the computation of the graph in Fig. 10, the three-
vertex is probed at high energies, and therefore interactions
will drastically modify its behavior, even in the parent
theory. As for the two-point function, we should consider
the expansion in Fig. 8 and compute graph 10 with the
complete parent three-point coupling. This coupling is
dominated by gravitational interactions and can be re-
summed in some cases with eikonal techniques. On the
other hand, we shall not pursue this line any further and we
shall concentrate mostly on the most relevant computation
of the two-point function.

B. Two-point function

Let us consider now the quadratic term in the effective
action, which is composed of the free part in (17), together
with the contribution from interactions given by

 

1

2

Z
F
d3xd3x0��x���x0���x;x0�: (29)

In momentum space the two-point function ��x;x0� be-
comes

 

Z
F
d3xd3x0V�;p�;p��x�V�0;p0�;p0� �x

0���x;x0�

� E�1�p��p0�2���p� � p0���p�;p���; �
0�;

where �p�;p���; �
0� � ��p�;�p���

0; ��. As for the one-
loop tadpole, the last equation can be explicitly computed
using the Feynman rules of Sec. III, in particular, using
Eq. (21). It gives the two-point function written in the basis
V�;p�;p� , with the conservation of p� momenta explicitly
stated. Reality of the interaction ��x;x0� then reads

 �p�;p���; �
0� � �p�;p���

0; �� � ��p�;�p���; �
0�: (30)

Using (21), we may write �p�;p���; �
0� as follows:

 �p�;p���; �
0� �

2E
Tjp�j

Z
dkei��k���k;k0�; (31)

where the phase ��k� is explicitly given by
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 ��k� �
1

Ep2
�

��
2p�p� �

�� �0

2

�
k�

k3

3

�
:

The amplitude ��k;k0� is computed using Feynman rule
(ii) of Sec. III, with external momenta given by

 k �
�
p�;

�� k2

2p�
; k
�
; k0 �

�
�p�;�

�0 � k2

2p�
; k
�
:

We now focus our attention on external states in the two-
point function such that the integral (31) can be computed
using the saddle point approximation. This requires that
4p�p� > �� �0, in order to have saddle points on the real
k axis at k � �p, with

 p �

������������������������������������
2p�p� �

�� �0

2

s
:

Then, the gaussian approximation to (31) is valid provided
that

 Ep2
� � p3: (32)

In this situation, the two-point function becomes

 

�p�;p���; �
0� ’

E
T

����������
4�E
ip

s
e2i=3�p3=Ep2

����k;k0� � �p$ �p�;

where the external momenta k, k0 are fixed, at the saddle
point k � p, to be

 k �
�
p�; p� �

�� �0

4p�
; p
�
;

k0 �
�
�p�;�p� �

�� �0

4p�
; p
�
:

We consider in what follows the first nontrivial two-
point graph probing the noncausal structure of space-time,
which has a single scalar propagator with nonvanishing
winding number w. This graph is shown in Fig. 9, where
the bubble represents the four-point amplitude in the parent
theory which we denote by
 

�2��3�3���w=2q� k� k0 ��w=2q�

�A���w=2q;k;k0;��w=2q�:

Since ���w=2q�2 � ��w=2q�2, the amplitude A depends
only on five kinematical invariants. Moreover, since � �
�k2 and �0 � �k02 are kept fixed, A depends only on the
Mandelstam invariants

 s � ��k���w=2q�2; t � ��k� k0�2;

u � ��k��w=2q�2:

Finally, again because ���w=2q�2 � ��w=2q�2, the ampli-
tude A�s; t; u� is symmetric under interchange of s$ u
and of �$ �0.

For simplicity, we consider first the case of on-shell
external states with � � �0 � 0. In this case, in order to
satisfy (32), we will take the limit of small p�, since p�
and E are fixed. Then, the contribution to ��k;k0� of the
graph with winding number w is

 

�w�k;k0� �
1

2

Z d3q
�2��3

i

�q2 � i�
ei=E�wq���w

3=24�q���2��3�3���w=2q� k� k0 ��w=2q�A���w=2q;k;k0;��w=2q�

� �
T
8
ei=E�w

2p=12�
Z dq�

2�i
1

pwq� � i�
e�i=E�wq�A���w=2q;k;k0;��w=2q�: (33)

Two of the �-functions fix q� � 2p=w and q � 0, while the remaining �-function gives the overall factor T. In the last
line, we therefore have that

 ��w=2q �
�
2p
w
; q� �

wp
4
;�p

�
; ��w=2q � �

�
2p
w
; q� �

wp
4
; p
�
:

The corresponding Mandelstam invariants can be readily
computed
 

s � 2
�
2p
w
� p�

��
q� �

wp
4
� p�

�
’

4p
w
�q� � p��;

t � �4p2;

u � 2
�
2p
w
� p�

��
q� �

wp
4
� p�

�
’

4p
w
�q� � p��;

(34)

where we have expanded s and u to leading order in p�����������
jp�j

p
, since we are working in the limit p� ! 0. More

precisely, we will be working under the assumption that

 p�
E
jwj

; (35)

which implies (32) but is more stringent for jwj � 1.
The integral (33) reads

 

�w�k;k0� ’ �
T
8
ei=E�w

2p=12�

�
Z dq�

2�i
1

pwq� � i�
e�i=E�wq�A�s; t; u�;

where the Mandelstam invariants are given above. Notice
that this integral is invariant under w! �w. This can be
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seen by changing integration variable to�q� and by using
s$ u invariance of A. For the same reasons, changing
p! �p has the unique effect of changing the phases to
their complex conjugates e��i=E�wq� and e��i=E��w

2p=12�.
Using (31), we conclude that the two-point amplitude
can be written as

 �p�;p��0; 0� ’
X
w�0

�cw��w � cw��w �;

where
 

��w �
Z ds

2�i
e��i=4��w2=pE�s

jwjs� 4pp� � i�

�A

�
s; t � �4p2; u � s�

8pp�
jwj

�
(36)

and the constant cw is given by

 cw � �
E
8p

����������
4�E
ip

s
ei=E��2p

3=3p2
����w

2p=12��: (37)

The reality condition (30) implies that �p�;p��0; 0� is real,
which in turn implies that �

P
wcw��w �

 �
P
wc

w��w . On

physical grounds, we expect the stronger condition

 ���w �
 � ��w (38)

to hold for each value of w. This can be understood, for
example, from the behavior of the one-loop tadpole in
position space. For a given value of w, the contribution
to the tadpole diverges and acquires an imaginary part at
the w-th polarization surface. Therefore, in position space,
this singular behavior occurs at widely separated positions
for different values of the winding numberw and we expect
these pathologies to be cured for each w.

We close this section with an important kinematic con-
sideration. When the winding particle is on-shell, then s �
�u � 4pp�=jwj. Since jtj � p2, the parent amplitude is
evaluated in the eikonal regime

 jsj; juj � jtj:

Moreover, this regime continues to be valid throughout the
whole integration region in s. In fact, for the nongeneric
case where jsj & jtj, the other invariant u is of order
pp�=jwj and still satisfies u� t. A similar remark applies
when juj & jtj. In the following section we do a detour on
the eikonal approximation to the scattering of a scalar field
in three dimensions. The results will be used in the com-
putation of the orbifold two-point amplitude.

C. Eikonal approximation

Let us recall first the s-channel partial wave decompo-
sition for the on-shell scattering amplitude of massless
scalars in three dimensions

 1� iA � 4
���
s
p X

n

ein	e2i�n�s�:

The scattering angle 	 is given by sin2�	=2� � �t=s and
the phase shifts satisfy �n � ��n. Unitarity requires that
Im�n � 0. In the eikonal limit s ’ �u��t, the scatter-
ing angle is given by 	 ’ 2

�����������
�t=s

p
and one may replace the

sum over partial waves with an integral over the impact
parameter x � 2n=

���
s
p

. One then obtains the eikonal ex-
pression

 1� iA ’ 2s
Z
dxeix

�����
�t
p

e2i��s;x�: (39)

This representation can be derived by studying the s� jtj
limit of the generalized ladder graphs shown in Fig. 11. It
turns out that the loop expansion matches the expansion in
powers of � [7,33–35], so that the phase shift is given, in
terms of the leading tree level interaction Atree�s; t�, by the
simple Fourier transform

 A tree ’ 4s
Z
dxeix

�����
�t
p

��s; x�:

Consider now scattering due to the exchange of a spin j
massless particle. Then Atree ’ �4M3�2jsj=t, where we
are implicitly assuming that the coupling constants are of
order one in Planck units.3 The phase shift is then given by

FIG. 11. Generalized ladder diagram contributing to the scat-
tering amplitude A of scalar particles in the eikonal regime s�
jtj. The exchanged particle can have in general spin j but, in the
kinematical regime of interest, the gravitational interaction j �
2 will dominate.

3We assume that all couplings are of the same order in Planck
units mostly for notational simplicity. In case of a large ratios
between the couplings, the gravitational interaction will still
dominate in the regimes of interest, as explained in the rest of
this section, but the specific bounds will have to be modified
accordingly. Moreover, the most relevant examples coming from
compactifications of supergravity theories do have a single
gravitational coupling.
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 2��s; x� ’ ��s=M2�j�1Mjxj: (40)

It is linear in the impact parameter jxj and negative. These
facts are easily understood in the j � 2 case of graviton
exchange. In this case, following the work of ’t Hooft [7],
we can think of the scattered particle as moving in the
conical geometry created by the target. The qualitative
features of (40) can then be immediately understood
from Fig. 12. The full eikonal amplitude for spin-j ex-
change finally reads [36–38]

 1� iA ’ �4iM
�s=M2�j

�t=M2� � �s=M2�2j�2 � i�
: (41)

This result has been quoted in the literature only for the
case j � 2, although its derivation easily extends to the
case of general j, as shown in the above derivation.

The eikonal amplitude has a pole at real values of the
kinematical invariants given by �t � M2�s=M2�2j�2. We
shall call this pole the ’t Hooft pole, in analogy with those
discussed in [7] for graviton exchange in four dimensions.
At the pole, the i� prescription is obtained by requiring
convergence of the integral (39) at large values of jxj. One
can physically understand this prescription by first noting
that, at vanishing coupling and phase-shift, (39) gives the
S-matrix element

 4�s��
������
�t
p
�:

This amplitude corresponds to free propagation of parti-
cles, with no interaction. Using the fact that Im�x�
i���1 � ���x� in the amplitude (41), we then see that
the �-function contribution in the free theory is replaced,
in the interacting theory, by
 

2�s��
������
�t
p

�M�s=M2�j�1� � 2�s��
������
�t
p

�M�s=M2�j�1�:

We conclude that a specific scattering angle, dependent on
the energy of the process, is singled out by the eikonal
amplitude. Notice that the pole is in the physical eikonal
region s��twhenever �s=M2�2j�3 � 1. This shows that

gravitons behave quite differently from lower spin parti-
cles. In fact, for j � 2, the eikonal approximation is reli-
able around the ’t Hooft pole for center of mass energies
well below the Planck mass.

We may now discuss which interaction dominates in the
kinematical regime of interest in (36). More specifically,
we will concentrate on the cases j � 0, 1, 2, which arise in
standard compactifications of supergravity theories. We
will compare the relative importance of the various con-
tributions when the propagator in (36) is on-shell, that is at
s � 4pp�=jwj and t � �4p2. We are only interested in an
order of magnitude estimate, dropping factors of order
unity. Assume that the Kałuża-Klein charge n �
p�=�2�E� is of order unity and that

 E�
M
J
;

with J * 1, which is consistent with the quantization
condition (5). The kinematical invariants are then given by

 s�
pE
w
�
pM
wJ

; jtj � p2;

and the basic requirement s� jtj for the eikonal approxi-
mation to be valid is

 p�
M
wJ

:

When this condition is satisfied, the saddle point approxi-
mation (32) in the previous subsection is also justified.

Next we analyze the behavior of the eikonal amplitude
(41) for different values of j. For j � 0, 1, the denominator
in (41) is dominated by the second term, whereas for j � 2
the first term dominates. We therefore arrive at the follow-
ing estimates for the amplitudes
 

M�s=M2�2�j �M
�
p

MwJ

�
2�j
�

M

�wJ�4�2j ; �j � 0; 1�

1

M
s2

t
�

M

�wJ�2
: �j � 2�

Thus, the graviton interaction dominates in the kinematical
region of interest. Therefore, from now on, we will only
consider the case j � 2.

Up to this point, we have discussed the amplitude A on-
shell, with s ’ �u. On the other hand, as it is clear from
(36), one needs to understand the off-shell extension of the
amplitude (41) for generic values of s, u. We also allow in
principle for nonvanishing �, �0, small compared to s, u. In
what follows, we shall indicate explicitly only the depen-
dence on the ‘‘large’’ variables s, u, leaving implicit the
dependence on the ‘‘small’’ ones t, �, �0. The tree level
result is simple to compute and gives

 A tree ’ �
�s� u�2

Mt
: (42)

To understand the off-shell amplitude to all orders, we first

FIG. 12. Phase shift for a scattering process in the gravitational
background created by the target. In three dimensions, the
background geometry is a conical space with deficit angle
proportional to

���
s
p
=M. The phase shift � is proportional to the

impact parameter x and is negative.
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rewrite the on-shell result (41) as follows:

 A� ’ �
�s� u�2

2
������
�t
p

�
1

s�M
������
�t
p

� i�

�
1

u�M
������
�t
p

� i�

�
: (43)

We neglect from now on the free propagation term
4�s��

������
�t
p
� in the S-matrix element (41) since it does

not contribute to the orbifold amplitude (36), which is
computed at fixed nonvanishing momentum transfer. One
may interpret (43) as the exchange, in the s and u channels,
of an effective particle of mass squared M

������
�t
p

. Note,
however, that the i� prescription, which arises from the
eikonal result, is opposite to the usual one. Alternatively,
recalling that s ’ �u on-shell, one rewrites (43) as

 A� ’
�s� u�2

2
������
�t
p

�
1

s�M
������
�t
p

� i�
�

1

u�M
������
�t
p

� i�

�
;

which can be viewed as resulting from the exchange of a
tachyonic effective particle of mass squared�M

������
�t
p

, with
the usual i� prescription.

Given the above observations, we shall assume that the
off-shell extension of the eikonal amplitude has poles
determined by effective particles with mass squared
�M

������
�t
p

. The amplitude A�s; u� therefore has poles
placed at

 s � M
������
�t
p

� i�; u � M
������
�t
p

� i�;

and at

 s � �M
������
�t
p

� i�; u � �M
������
�t
p

� i�:

We denote the residues of the amplitude A�s; u� by

 Res sA�s � �M
������
�t
p

; u � s� 
� � f��
�;

ResuA�s � u� 
; u � �M
������
�t
p
� � f���
�;

where the real functions f� are the same at the s and u
poles because of s, u symmetry of the amplitude. For later
convenience, we expressed the above functions f� in terms
of 
 � s� u.

It is important to stress that, in order to compute the
orbifold two-point function and to check the quantization
condition (5), we shall only assume that the poles of the
eikonal amplitude are placed at s, u � �M

������
�t
p

, as for the
on-shell case. The i� prescription, on the other hand, is
fixed by the on-shell computation. Finally, the reality of the
functions f� follows from the fact that, in the absence of
discontinuities, field theoretic amplitudes are real.

A simple example of an off-shell extension of the eiko-
nal amplitude (41), satisfying the above requirements, is

 a�A� � a�A�; (44)

with a� constant and A� as defined above. To match the
off-shell tree level result (42) and the on-shell eikonal

amplitude we must have that

 a� � a� � 1: (45)

D. Quantization condition from unitarity

We are now in position to finish the computation of the
two-point function for a massless scalar field in the orbi-
fold geometry. As shown in Secs. IV B and IV C, this
amounts to evaluating the integral
 

��w �
Z ds

2�i
e��i=4��w2=pE�s

jwjs� 4pp� � i�

�A

�
s; t � �4p2; u � s�

8pp�
jwj

�
; (46)

where the amplitude A is dominated by graviton ex-
change in the eikonal regime. The integrand has a pole at
s � 4pp�=w� i�, coming from the winding propagator,
and poles at s � �M

������
�t
p

� i� and at u � �M
������
�t
p

� i�,
from the eikonal amplitude A. The pole structure of the
integrand is shown in Fig. 13.

To compute ��w one closes the s-contour in the upper
half plane, so that the integral is determined by the poles of
A with positive imaginary part at s, u � M

������
�t
p

� i� �
2pM� i�. The phase in (46) is given at both poles by
ei�w

2M=2E�, since p� is quantized in units of 2�E. One then
obtains

 ��w �
1

jwj
ei�w

2M=2E�F�;

where F� is given by the real constant

 F� �
2f��
�

4pM� 

�

2f���
�
4pM� 


and where 
 � s� u � 8pp�=jwj. Similarly, ��w is de-
termined by the poles in the lower half s-plane, with the
result

−M
√
−t 4pp−

|w|
u = −M

√
−t

M
√
−t u = M

√
−t

FIG. 13. Poles of the integrand in Eq. (46) in the s-plane. The
pole denoted with a dot comes from the winding propagator,
whereas the poles marked with a cross come from the eikonal
amplitude A. Recall that s � u� 
, with 
 � 8pp�=jwj.
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 ��w �
1

jwj
�ei�w

2M=2E�F� �Aon�shell�;

where now

 F� �
2f��
�

4pM� 

�

2f���
�
4pM� 


:

The on-shell amplitude

 A on�shell � �4M
4p2
�

4p2
� � w2M2 �

4M
2

16M2p2 � 
2 (47)

is computed at the pole of the winding propagator.
Finally, we can investigate the implication of the reality

condition (38), which now reads

 � ei�w
2M=2E�F� � e�i�w

2M=2E�F� �Aon�shell: (48)

We consider the equation above for different values of w.
In order for the inequality (35) to be valid for all w, we
keep p� fixed and tune p� so that p � �=jwj, for a fixed
energy scale �� E. As w! 1, we then have that 
 �
8�p�=w

2 ! 0. Note that F�, F�, and Aon�shell are all
analytic functions of
, with at most poles and branch cuts.
This is clear for (47), and it follows from general properties
of analyticity of Feynman amplitudes for the functions f�,
and therefore for F�. As w! 1, the phase ei�w

2M=2E�

oscillates unless ei�M=2E� � 1, whereas the functions F�,
F�, and Aon�shell have a regular behavior for 
! 0.
Under mild regularity assumptions, we show4 in
appendix B that, in order for (48) to be satisfied for all
values of w, we must have that ei�M=2E� � 1 and therefore
that

 

M
2E
2 2�Z;

which is the quantization condition (5). In this case, we
have the additional requirement on the residues

 � F� � F� �Aon�shell: (49)

Consider this last constraint in the case of the off-shell
eikonal amplitude given in example (44). The residue
functions f� are then explicitly given by

 f��
� � �a�

2

4p
;

and we conclude that F� � �a�Aon�shell. Therefore,
condition (49) implies that a� � a� � 1, exactly as in
(45).

A few comments are in order. Firstly note that, in the
regime of interest, all kinematical invariants are much
smaller than M=J. Assuming that the three-dimensional
geometry comes from a ten dimensional string compacti-
fication with Planck and string masses, respectively, given

byM10 andMs, we see that string and Kałuża-Klein effects
are irrelevant when JMs � M and when J7=8M10 � M,
which is always true for large charge J.

Secondly, suppose we use, instead of the full eikonal
amplitude A, only the tree level result �4s2=tM for
gravitational scattering. Then, the single contribution to
the two-point function comes from the pole of the winding
propagator, violating the reality condition (38). This one-
loop violation of unitarity is analogous to the one found in
the computation of the one-point function in Sec. IVA,
where the tadpole ��p� in (28) has support only for p < 0.

Thirdly, within the eikonal approximation we cannot
have a violation of the reality of �p�;p� due to intermediate
on-shell lines. In fact, the eikonal interaction is essentially
transverse [33], with no k� exchange. Therefore, the scalar
lines in Fig. 1 have a fixed value of theK� momentum. It is
then impossible to cut the graph so that all the cut propa-
gators have positive K� momentum flowing from one part
of the graph to the other.

Finally, note that, although the amplitude (44) is the
simplest off-shell generalization of the on-shell eikonal
result, it is quite remarkable that we obtain the same
constraint on the coefficients a� by imposing the condition
(49) on the residues. This fact clearly deserves a more
thorough investigation, which we leave for future work.

V. EXTENDING THE RESULTS TO OFF-SHELL
EXTERNAL STATES

We now generalize the results of the last section to the
case of nonvanishing �, �0. More precisely, we shall work
in the limit when Ep� * �, �0 satisfying

 Ep�; �; �
0 � �E=w�2;

where w is the winding number of the loop propagator in
Fig. 9. The first expression in Eq. (33) is still correct, but
now the �-functions fix q� � 2p=w and q � ���
�0�=�2wp��. Therefore we have that

 

�w�k;k0� � �
T
8
ei=E�w

2p=12�
Z dq�

2�i
1

pwq� �
����0�2

16p2
�

� i�

� ei=Ewq�A���w=2q;k;k0;��w=2q�;

with

 

��w=2q �
�
2p
w
; q� �

�� �0

4p�
�
wp
4
;
�� �0

2wp�
� p

�
;

��w=2q � �
�
2p
w
; q� �

�� �0

4p�
�
wp
4
;
�� �0

2wp�
� p

�
:

An approximation similar to the one used in Eq. (34) gives
the Mandelstam invariants4We thank M. Cornalba for suggesting this argument.
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 s ’
4p
w
�q� � p�� �

��� �0�2

4w2p2
�

; t � �4p2;

u ’
4p
w
�q� � p�� �

��� �0�2

4w2p2
�

:

Just as for the on-shell case, the expression for �w�k;k0� is
invariant under p$ �p, aside from conjugation of the
phase. Moreover, �w�k;k0� is invariant under w$ �w
and �$ �0. Thus we arrive at the final expression

 �p�;p���; �
0� ’ ei=E�����

0�2=16p2
�p�

X
w�0

cw��w

� e��i=E������
0�2=16p2

�p�
X
w�0

cw��w ; (50)

where the constant cw, given by (37), is unchanged from
the on-shell case and where
 

��w �
Z ds

2�i
e��i=4��w2=pE�s

jwjs� 4pp� � i�

�A

�
s; t � �4p2; u � s�

8pp�
jwj

�
:

The expression for ��w is formally identical to the on-shell
expression (36), but yields a result depending on the ex-
ternal off-shell masses, due to the implicit dependence of
the momentum p and of the amplitude A on �, �0. As for
the on-shell case, the reality condition (30), together with
the fact that �p�;p���; �

0� is symmetric in �, �0, implies
that �

P
cw��w �

 �
P
cw��w . Under the usual assumption

regarding the separation of different winding modes, we
have that ���w � � ��w .

A. Particle states

To conclude the discussion of the two-point function, we
wish to analyze the single particle wave function ����,
which solves the linearized quantum equation of motion

 

Z
d�0K��; �0����0� � 0: (51)

The kernel K is given by the full propagator (24)

 K��; �0� � ��� i������ �0� �
1

16�2E
�p�;p���; �

0�:

In order to analyze (51) we need to compute �p�;p���; �
0�

for all values of �, �0. However, we shall use, for the
discussion below, the results of the previous section, which
are strictly valid only for small values of �, �0. Therefore
the following analysis should be considered heuristic and
qualitative.

Equation (51) is reminiscent of a scattering theory prob-
lem and is formally solved by

 � � ��
1

16�2E

1

�1� i�
�p�;p��; (52)

where ���� � ���� is the solution to the free equation of

motion. Using (37) and (47), we note that the amplitude
�p�;p�=E is of order �E=M��E=p�3=2 or J�5=2�M=p�3=2.
Therefore, for large J we can solve (52) in powers of
�p�;p� , with the leading ‘‘Born’’ term given by

 ���� ’ ���� �
1

16�2E

1

�� i�
�p�;p���; 0�:

In terms of ����, the dependence of the wave function on
the transverse coordinate y is given by

 ��y� � 2�
�

2E
jp�j

�
1=3 Z

d�����Ai��z�:

The normalization has been chosen for later convenience
and we recall that

 z � �2Ep2
��

1=3

�
y�

2p�p� � �

2Ep2
�

�
: (53)

Using the integral representation for the Airy function Ai,
we can write ��y� explicitly as

 ��y� �
1

jp�j

�
Z
d�dk����ei=2Ep2

�	�2Ep
2
�y�2p�p����k��k3=3�
:

Let us now use the results of Sec. V. In particular, the
leading contribution to the �-dependence of �p�;p� comes
from the implicit dependence of p on � within the constant
cw in Eq. (50). Expanding the phase to linear order in �,
and neglecting any other �-dependence, the expression for
�p�;p���; 0� is given by

 

1

16�2E
�p�;p���; 0� ’

�
2�i

e�i�p=2Ep2
��� �

�

2�i
ei�p=2Ep2

���;

where we compute p �
����������������
2p�p�
p

and the constant � �
i�8�E��1P

w�0cw��w at � � 0. The other term in the phase
linear in � is w2�=�Ep� and is subleading since p� �
E=w2. Using the fact that

R
d�e�i����� i�� �

�2�i	���, we can write the position space wave function
as
 

��y� ’
1

jp�j

Z
dk�1� �	�k� p� � �	�k� p��

� ei=2Ep2
�	�p

2�2Ep2
�y�k��k

3=3�
:

This integral can be computed using the saddle point
approximation for �2Ep2

��
��2=3��p2 � 2Ep2

�y� � 1. In
particular, this approximation is valid around y� 0 since

p3 � Ep2
�. For y� 0 the two saddle points at k �

�
���������������������������
p2 � 2Ep2

�y
q

are around�p and the 	-functions create
discontinuities. More precisely, we obtain

 �1� �� ��g��y� � g��y�; �y > 0�

�1� ��	g��y� � g��y�
; �y < 0�
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where g��y� are the left and right moving waves
 

g��y� �
����������������
�2�iE
p

�p2 � 2Ep2
�y�

�1=4e��i=3Ep2
���p

2�2Ep2
�y�

3=2
;

’ 2�
�

2E
jp�j

�
1=3 Ai��z� � iBi��z�

2
;

with z given by (53) for � � 0. The interaction term �p�;p�
creates a discontinuous behavior around y � 0, consistent
with the conjectured dual description in terms of an ori-
entifold plane [11,13]. Because of the crudeness of the
approximations involved, these ideas clearly require a
more thorough analysis.

VI. CONCLUSIONS

The propagation of quantum fields in a geometry with
closed causal curves is not unitary order by order in the
coupling constant. This breakdown of unitarity arises from
the interactions of external states with on-shell particle
loops that wind the closed causal curves. In this paper we
showed that, for a orbifold of three-dimensional flat space
with closed causal curves, unitarity can be restored for
specific values of the Newton coupling constant. The re-
sults relied on the eikonal approximation to particle scat-
tering, in a kinematic regime where graviton exchange is
dominant. Since in the eikonal approximation one is able to
resum the perturbative series expansion, this approxima-
tion provides a window to new effects in quantum gravity,
such as the quantization of the Newton constant from the
unitarity requirement. Alternatively, for fixed coupling
constant, one can see this condition as quantizing the
orbifold geometry, consistently with the quantization of
the extremal BTZ black hole angular momentum. Given
that a similar condition holds for generic BTZ black holes,
the results of this paper may have profound implications
for the dynamics of particle states inside black hole
horizons.

We have used the off-shell extension of the eikonal
amplitude for 2! 2 scattering in flat space. Although
the explicit form of this amplitude is not known, we have
only assumed that such extension has the pole structure of
the on-shell amplitude, compatibly with the symmetries of
the amplitude itself. Clearly, it would be desirable to ex-
plicitly compute the off-shell extension of the amplitude
and to check if the additional requirement (49) is satisfied.
In the usual flat space computation, one needs to deal with
IR divergences, which in principle can be eliminated by
considering eikonal scattering in AdS3. We think this is an
interesting direction of research to pursue, since new con-
nections between quantum gravity in AdS spaces and dual
CFT’s may be derived.

Based on the particle effective action derived from the
orbifold two-point amplitude for off-shell external states,
we gave in the final section a heuristic argument showing
that particle states are changed precisely at the chronologi-
cal singularity. This analysis shows that, at finite values of

the coupling, particle states are very different from the free
particle wave functions of Sec. II B. In fact, free particle
states are unstable beyond the chronological singularity.
Hence, for zero coupling constant, the condensation of
these fields will change the geometry in the pathological
region of space-time [32]. It is plausible that, at the end-
point of this transition, the coupling constant is fixed at
some fixed value and the geometry is that of a wall placed
at the chronological singularity. This picture is suggested
by a sequence of string dualities that maps the orbifold
geometry to an orientifold 8-plane and the quantization
condition (5) to the quantization of RR charge [11]. Our
computation of the particle effective action, which sees
finite coupling constant effects, is also consistent with this
picture.
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APPENDIX A

We focus on the extremal black hole, with r� � r�.
Writing AdS3 as the surface

 � �z0�2 � �z1�2 � �z2�2 � �z3�2 � �‘2

the BPS black hole is given by AdS3=e�, where
 

� �
i���
2
p �J02 � J12� �

i���
2
p
�2�r��

2

‘2 �J02 � J12 � J03 � J13�

with iJ� � z�@ � z@� the generators of the SO�2; 2�
isometry group. Parameterizing AdS3 with coordinates xa

�a � 0; 1; 2�

 z0 � iz3 � �ieix
0=‘

��������������������������������������
‘2 � �x1�2 � �x2�2

q
;

z1 � iz2 � x1 � ix2;

we recover, in the ‘! 1 limit, flat Minkowski space M3

with isometry group ISO�1; 2�. Moreover, the generators
J� converge to the generators Ka, Lab of ISO�1; 2�,
according to
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 Jab ! Lab;
1

‘
J3a ! Ka:

In the limit ‘! 1, keeping the energy scale

 E �
‘

�2�r��
2

fixed, we arrive at the orbifold M3=e� with

 � �
i���
2
p �L02 � L12� �

i���
2
p E�1�K0 � K1�:

Introducing light-cone coordinates x� � �x0 � x1�=
���
2
p

and x � x2, the metric on the covering space is

 ds2 � �2dx�dx� � dx2;

and � simplifies to

 � � i�L�x � E�1K��:

APPENDIX B

We consider Eq. (48) for different values w, with 
 �
s� u � 8�p�=w

2 and 2p �
������
�t
p

� 2�=jwj ��������������������

�=2p�

p
(we consider the case p� > 0 for concrete-

ness). Introduce, for notational convenience, the phase

 � � ei�M=2E�

and the constant c � 8�p. Then (48) reads

 � �w
2
F��c=w2� � ��w

2
F��c=w2� �A�c=w2�; (B1)

where we denote A �Aon�shell for brevity.
We wish to show, under minimal regularity assumptions,

that (B1) can be satisfied for all values of w only if � � 1.
To this end, we will only need to assume that F�, A 2 F ,
where F is a class of continuous real-valued functions of a
real variable defined on intervals �0; a�, a > 0, with the
following properties:

(i) if f 2 F , then either f � 0 or f�
� � 0 for 

sufficiently close to 0.

(ii) if f, g 2 F , and f
wg is a sequence of positive
reals converging to zero such that f�
w�=g�
w� is
bounded, then f�
�=g�
� converges for 
! 0.

(iii) if f, g 2 F , then f� g 2 F .
An example of a class of functions satisfying (i), (ii), and

(iii) is the one of finite sums of terms xalogn�
�’�
�,
where a is a real number, n is an integer and ’ is hol-
omorphic on a neighborhood of the origin in C and real on
the real axis. This example applies, in particular, to the case
relevant for this paper in Sec. IV D, thanks to general
properties of analyticity of scattering amplitudes.

We first assume that � � �1. As shown in Sec. IV D, the
function A is nowhere vanishing for 
 � 0. Therefore, if
F� � 0, reality of the functionsF�, A and Eq. (B1) imply
that F� vanishes arbitrarily close to 0, so that F� � 0 by
(ii). A similar reasoning applies if F� � 0. Therefore we
can assume, by (i), that F�, A � 0 in the range 0<
<
1=W2 for some W 2 N. Since � � �1, there are arbi-
trarily large values ofw such that �w

2
is not real. We denote

with S 2 N the set of these values of w which are greater
than W. Equating imaginary parts in condition (B1) shows
that, for w 2 S, F��c=w2� � �F��c=w2�, and hence (B1)
reduces to

 2 Re��w
2
�F��c=w

2� �A�c=w2�: �w 2 S� (B2)

It follows from condition (ii) that the ratios
�A�
�=F��
� converge for 
! 0 (to the same limit).
Now we distinguish two cases:

(a) � is a k-th root of unity. If w� 1 is a multiple of k,
then �w

2
� � and w 2 S. Thus (B2) implies that

 � lim

!0

A�
�
F��
�

� 2 Re���:

On the other hand, condition (B1) for w multiple of
k gives

 � lim

!0

F��
�
A�
�

� lim

!0

F��
�
A�
�

� 1;

which is incompatible with the above, as � � 1,
unless � � �i. In this last case, however, (B2)
shows that A�1=w2� � 0 for all odd w, which con-
tradicts the result of Sec. IV D.

(b) � is not a root of unity. In this case �w
2

is never real
for w � 0 and (B2) shows that the sequence
fRe��w

2
�g converges to some limit cos	. Note, how-

ever, that � �w�1�2 � �w
2
�2w�1 and �2w�1 is dense on

the unit circle as we vary w. Therefore we can
choose w large enough so that Re�w

2
is arbitrarily

close to cos	, and so that �2w�1 is arbitrarily close to
any chosen number � on the unit circle. By choosing
� different from e�2i	, we can then make Re� �w�1�2

differ from cos	 by a finite amount for arbitrarily
large values of w, therefore showing that the se-
quence fRe��w

2
�g does not converge.

We finally deal with the case � � �1. From (B1) we
deduce that

 � F��c=w
2� � F��c=w

2� � ���wA�c=w2�:

Since A has constant sign near 0, this relation implies that
�F��
� � F��
� vanishes arbitrarily close to 0 and is
nonvanishing. This is a contradiction by (iii).
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