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Spherically symmetric solutions of modified field equations in f(R) theories of gravity
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Spherically symmetric static empty space solutions are studied in f(R) theories of gravity. We reduce
the set of modified Einstein’s equations to a single equation and show how one can construct exact
solutions in different f(R) models. In particular, we show that for a large class models, including e.g. the
f(R) = R — u*/R model, the Schwarzschild-de Sitter metric is an exact solution of the field equations.
The significance of these solutions is discussed in light of solar system constraints on f(R) theories of

gravity.
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I. INTRODUCTION

The accelerating expansion of the universe has trans-
formed our view of the universe from a matter filled
cosmos to one dominated by dark energy. Modern day
cosmological observations are in contradiction with a mat-
ter dominated critical density universe whose expansion is
decelerating and instead we find evidence for expansion
that is accelerating. Direct evidence supporting the cosmic
acceleration comes from the supernovae observations [1]
and other observations, such as the cosmic microwave
background [2] and large scale structure [3], provide
more indirect evidence. Combining all of the observations,
a cosmological concordance model has emerged: a critical
density universe dominated by cold dark matter and cos-
mological constant-like dark energy.

The most commonly considered candidate for dark en-
ergy is the cosmological constant (for a review, see e.g.
[4]), but numerous alternative mechanisms for generating
the cosmic acceleration have been considered. Very
roughly, one can divide the different alternative explana-
tions of cosmic acceleration into two classes: those that
include cosmic fluids with exotic equations of state and
those that modify gravity. In terms of the Friedmann
equation one can, again very roughly, consider the former
to modify the right-hand side (rhs) of the equation, the
stress-energy tensor, and the latter the left-hand side, the
Einstein tensor.

Modifications of general relativity (GR) as a source of
cosmic acceleration have been recently considered in nu-
merous works. One particular class of models that has
drawn a significant amount attention is the f(R) gravity
models (see e.g. [5-11] and references therein). These
models are a particular class of higher derivative gravity
theories that include higher order curvature invariants as
functions of the Ricci scalar. Such theories avoid the
Ostrogradski’s instability [12] that can otherwise prove to
be problematic for general higher derivative theories [13].
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A number of challenges have been identified in building
phenomenologically viable models of f(R) gravity theo-
ries. Such possible obstacles include instabilities within
matter [14], outside matter [15], stability of the vacuum
[16], and constraints arising from known properties of
gravity in our solar system (see e.g. [17—-19] and references
therein). In addition, identifying the specific functional
form of f(R) from cosmological observations is problem-
atic since the background expansion does not determine
f(R) uniquely [20].

In a number of works, the solar system constraints on
f(R) theories of gravity are derived by first conformally
transforming the theory to a scalar-tensor theory and then
considering the parametrized post-Newtonian limit
[21,22]. This procedure does not seem to be without con-
troversy, however [23,24]. In this light, it is interesting to
consider solutions of the modified Einstein’s equations of
f(R) theory. Armed with the metric, one can hope to study
orbital motion directly without resorting to conformal
transformations. As a first step in this direction, we con-
sider vacuum solutions of the modified Einstein’s equa-
tions in this paper. We show how one can reduce the set of
equations into a single equation that one can then utilize to
construct explicit solutions. As an example we show that a
large class of f(R) models has the Schwarzschild-de Sitter
(SdS) metric as an exact solution. In addition, we construct
other solutions corresponding to different metrics.

II. f(R) GRAVITY FORMALISM
The action for f(R) gravity is (see e.g. [25])

s = f d*x=g(f(R) + L,), (1)

where we have set 87G = 1. The field equations resulting
from this action in the metric approach, i.e. assuming that
the connection is the Levi-Civita connection and variating
with respect to the metric g,,,, are

G,uv = R,uv - %Rgpm = T;CLV + T;rfw ()

where the stress-energy tensor of the gravitational fluid is
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T = i [ 2 T(®) ~ RF(R)

+ F(R);aﬁ(gap,gﬁv - g,uvgaﬁ)} (3)
with F(R) = df(R)/dR.
The standard minimally coupled stress-energy tensor
derived from the matter Lagrangian L,, in the action
by
/.LV

;m
(1), is related to T
Ty, =Ty,/F(R). 4)

In empty space (vacuum), the equations of motion reduce
to

F(R)R,,, = 3f(R)gu, — V,V,F(R) + g, 0F(R) = 0.
&)
Contracting these vacuum equations we obtain simply
F(R)R — 2f(R) + 30F(R) = 0. (6)

This equation is useful, because it allows us to express f(R)
in terms of its derivatives. If T}}, # O there is an additional
trace of stress-energy tensor 7,* in the rhs of Eq. (6).

III. SPHERICALLY SYMMETRIC VACUUM
SOLUTIONS

We are interested in spherically symmetric, time inde-
pendent solutions of the empty space field equations. From
properties of maximally symmetric subspaces, we know
that the metric reads as (in spherically symmetric coordi-
nates)

s(t,r) 0 0 0
0 —p(t,r) 0 0
g,uV = O po _ 1”2 0 (7)
0 0 0 —r%sin(9)

The (01)-component of the Einstein equations is satisfied if
both p =0 and s(z, r) is separable with respect to its
variables. This means that R = 0 and, as in the well-known
case of the Schwarzschild metric, the time dependence can
be totally removed from the metric by redefinition of time.
Here we make the same simplifying assumption and thus
we consider henceforth only time independent solutions,
ie. s = s(r) and p = p(r).

4F? + 4rFF' + r*F? — 37°FF"

3) + ¢/
s rFQF + rF')
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The corresponding scalar curvature is
2 / / 2 o 2 M
R— (1_p (S__£><r_r_s_>+r_s_>, ®)
rp s p 4 s 2 s
where we have defined ' = d/dr.

Using the contracted equation, Eq. (6), the modified
Einstein’s equations become

FR,, —V,V,F =1i¢,,(FR —OF). 9)

Since the metric only depends on r, one can view Eq. (9) as
a set of differential equations for F(r), s(r), and p(r). In
this case both sides are diagonal and hence we have four
equations. In addition, we have a consistency relation for
F(r),

RF' — R'F + 3(OF) =0, (10)

which arises by differentiating the contracted equation,
Eq. (6) with respect to r. Any solution of Eq. (9) must
satisfy this relation in order to be also a solution of the
original modified Einstein’s equations, Eq. (5).

From Eq. (9) it is obvious that the combination A, =
(FR,, —V,V,F)/g,, (with fixed indices) is indepen-
dent of the index u and therefore A, — A, = 0 for all u,
v. This allows us to write two equations:

X’ X’
2—+rF'——=2rF"=0 (11D
X X
F' F’ X’
—Ads +4X — drs— + 2125’ — + 2rs —
F F X
X/
— r2s’y + 2r2s" =0, (12)

where we have defined X(r) = p(r)s(r). From Eq. (11) one
can solve for X’/X algebraically and substitute into
Eq. (12) to obtain X:

F/ F//
X(r) = s<1 +r—-— r27>

F " 2F+rF
1 X N
+ = 2 _ __2//_ 13
2”<r2F+rF' F> s (13)

Consistency then requires that this form of X(r) satisfies
Egs. (11) and (12), giving an equation relating F and s. In
addition, the modified Einstein’s equations give four equa-
tions relating F' and s. However, all of the equations have a
common factor of the form:

J8F FAF + PEF2@F + rF") + PFA6F” — 37 F" + rF'(rF® — 2F")) + 2rF3(4F' + r(rF? — F"))
r’F*(2F + rF')?
PF* + PFF2QBF + rF") + rFX(=3rF" + F/(F" + rF®)) + F32rQ2F" + rF?) — 4F') _0 (14)

+ 2s

PF2(2F + rF')?
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Therefore, any pair s(r), F(r) satisfying this equation will
be a solution of the modified Einstein’s equations. In
addition, if Eq. (14) is satisfied, also the consistency rela-
tion, Eq. (10) is automatically satisfied. From s and F, one
can then calculate R(r) and in principle construct the
corresponding f(R) by using Eq. (6). Note that the result-
ing f(R) is not unique due to the presence of an integration
constant. In addition, a larger degeneracy can also exist,
e.g. for the SdS solution discussed below, s(r) and F(r) do
not determine the f(R) theory uniquely, even when dis-
counting the integration constant.

A. Solutions with constant curvature

Looking for constant curvature solutions, R = R, the
field equations reduce to

sp' + ps' =0, (15)
PR (AL A LAE S N S P
b 2<p s><2s ) 2 s '

which are straightforwardly solvable:

p(r) = ‘o s(r) = ¢y + ay cor?, a7
s(r) r
where c; are integration constants. For conventional defi-
nitions of space and time we require ¢y > 0. The scalar
curvature Eq. (8) for this solution is R = 12¢,/cy.
Redefining the time coordinate, r — 1/,/c0 with ¢, —
c1/+/c0 and ¢, — c,/+/c0, we can always choose ¢, = 1.
The Schwarzschild solution in the presence of a cosmo-
logical constant, Schwarzschild-de Sitter -spacetime (SdS)
arising using f(R) = R + A, has the form

A(r) 0 0 0
[ o -1/40 o 0
g,uv - 0 0 _r2 0 B (18)
0 0 0 —r%sin%(9)

where A(r) = 1 — 2M/r — Ar?/3 and A is the cosmologi-
cal constant. The scalar curvature in this case is a constant,
R = —4A. For a finite mass distribution, the parameter M
can in this case be identified as total material mass

M, = f " XTI, (19)

Note that this integral also contains a part of gravitational
energy inside the radius r,, of the mass distribution [26],
while the total energy within the same radius also includes
vacuum energy, E, = [d’x(T§° + A).

Comparing the solution, Eq. (17), to the SdS metric,
Eq. (18), one sees that the two metrics are identical with
¢y = —2M, ¢, = —A /3. From Egq. (6) it is clear that this
metric is a solution for any form of f(R) for which there
exists a constant (real) R, such that Ryf'(Ry) — 2f(R,) =
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0. In other words, the SdS metric is an exact solution for a
set of functions f(R) that satisfy Ryf"(Ry) — 2f(Ry) = 0
such that R, is real. For example, for the f(R)=
R — p*/R model, it is easy to see that the SAS metric is

a solution when R} = 3u* = 144¢3, i.e. ¢, = /3u*/144.
The same exact result also holds for the other commonly
considered model f(R) = R — u*/R + €R>.

The physical interpretation of the parameters M and A
are not as straightforward as in the case of general relativ-
ity. The naive identification M = M, is problematic and a
more careful analysis is required. In the presence on
spherically finite symmetric mass distribution the empty
space solution we are studying needs to be matched to the
solution valid inside the mass distribution at r = r,,. Since
the field equations are in general higher order differential
equations than in GR, more integration constants need to
be determined. In particular, this means that values of the
metric components inside the mass distribution depend
explicitly on the details of the mass distribution, making
matching with the outside solution nonunique. This can be
explicitly seen by studying e.g. solutions of spherical shells
of different thicknesses: the boundary values at r,, depend
explicitly on the thickness of the shell. This also demon-
strates that the Birkhoff theorem is no longer valid since
the external solution depends on the internal mass distri-
bution. This is a general property of all (empty space)
solutions of f(R) theories whenever F differs from a
constant. If we define the central mass by the gravitational
effect it gives rise to the external space, the parameter M
becomes defined as the central mass, but it does not coin-
cide with (19).

B. General solutions with p(r)s(r) = const

From Eq. (11), it is clear that when X = const = X,
F"(r) = 0, and hence F(r) = Ar + B. Equation (14) can
now be solved, giving
Ac; ¢ AB*X,+Ac))

282 3Br | B
3A2B%X,+ 2B*c, + 2A*(B*X, + Ac,)In|B/r + A|

s(r)=X,+

+ 2
" 287

(20)

where c; are constants. Requiring a SdS-type solution, we
must choose X, = 1, which then sets A = 0 and we may
write also c¢; = 6BM, reducing Eq. (20) to s(r) =
1 —2M/r + c,r? with constant curvature. If we were to
choose c; = 0 instead, the mass term would be absent. It
is, however, unclear whether these solutions correspond to
maximally symmetric (spatial) spaces or to some other
type of spherically symmetric (but nonsingular) cases.

Requiring that the SdS-type metric is a solution is hence
equivalent to requiring constant scalar curvature and the
conclusions of the previous section apply.
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As in the constant curvature case, time can always be
rescaled so that X; = 1. [Alternatively we can choose the
time scaling of s(r) so that X, + Ac,/2B> = 1, which
generally leads to X, # 1. For examples, see Sec. IIID.]
Taking X, = 1 we find that for small values of the radial
coordinate r, the leading terms of the general solution (20)
read s(r) ~ 1 + Ac,/2B? — ¢, /3 Br where we again iden-
tify ¢; = 6BM, leading to the correct form of Newtonian
potential. However, additional corrections to the geodetic
motion appear because in general Ac,/2B> # 0, giving
rise to additional parameter constraints. In the large r limit,
the leading contribution comes from the r>-term. It should
be noted, however, that s(r) may have large finite zeros like
in the SdS solution, making the limit r — oo physically
uninteresting.

C. Asymptotic solutions

In order to have a better handle on the question of
uniqueness of the solutions, we consider asymptotic solu—J
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tions for which s(r) — 1 at large r, mimicking the standard
Schwarzschild solution. Our Ansdtze are
s(ry=1—-2M/r F(r) = Fyr".

Inserting these into the modified Einstein’s equations, by
requiring that the highest order term vanishes, one finds
that n = 0 or F(r) = const is the leading term in F. Hence,
there are no new solutions that tend to constant scalar
curvature in the large r limit along with s(r), suggesting
that any new solutions will be radically different from the
Schwarzschild (de Sitter) solution.

D. Exact solutions

We have also found a number of exact solutions to
Eq. (14) and, by considering different Ansdtze for s(r) or
F(r), one can easily find and construct more solutions. A
number of interesting solutions along with the correspond-
ing forms of f(R) are

s(r) F(r) X(r) f(R) R
I 1 =2 —1AP2 1= 2 R+ V-R-2A+A —L—2A
11 1—1AP For 2 +2/—R —2A 5 =2A
; m(m— 43 —4n— m n(2—n n/2 —n —n)n . —
1 Sol"m FO}"”, n=2 fn*Zl) —2" (:;Jr;)lzn 2 Sor % <132£2211f)2> Rl n32(32n12 r ’

These solutions, in particular / and /1, could be consid-
ered as suitable asymptotic limit, either R— 0 or R —
—o0, of a more general f(R) having linear f(R) « R term.

IV. DISCUSSION AND CONCLUSIONS

We have seen that the set of Einstein’s equations reduces
to a single nonlinear differential equation relating s(r) and
F(r). In spite of the complicated form, a number of solu-
tions is straightforwardly found. The applicability of the
general solutions could probably be tested e.g. by exploit-
ing parameter constraints appearing from the solar system
and comparing these with those arising from cosmology.

Considering the SdS solution that is present in a large
class of models, e.g. the R — u*/R model with R} = 3u*
or A2 = 3u*/16, the parameter A can be constrained by a
number of different observations in the solar system. Such
are the gravitational redshift measurements, gravitational
time delay measurements by the Cassini spacecraft, and the
perihelion shift of Mercury (see e.g. [27]). The tightest
constraint arises from the perihelion shift of Mercury, for
which it is found [27] that |A] < 107 m~2 (the cosmo-
logically observed value is roughly 10732 m~2). The solar
system observations are hence not able to effectively con-
strain such a metric compared to the cosmologically rele-
vant values. For the other solutions we have found, solar
system observations are likely to be more efficient (e.g. for
X #1).

In terms of the equivalent scalar-tensor theory, the SdS
solution corresponds to a constant field solution. It is

[straightforward to see that the effective scalar mass, m? =
VI'(p), is positive when F(Ro)/f"(Ry) —
2f(Ry)/f'(Ry) > 0. This is equivalent to requiring that
the vacuum state is stable with respect to small perturba-
tions [16]. However, it is not at all clear what, if any, role
the effective scalar plays since the metric solution is inde-
pendent of the scalar mass. This question will be addressed
in further work.

Important questions in addressing the validity of the
metric solutions presented here are the stability and
uniqueness of the solution. For example, in order for the
SdS metric to be physically relevant, it must be stable with
respect to small perturbations; i.e. instead of a test mass,
one needs to consider the effect of a massive body on the
metric. Uniqueness of f(R) is also an interesting question
assessing the physical relevance of a solution. Asymptotic
considerations indicate that Schwarzschild-type metrics
lead to constant curvature suggesting that new solutions
will deviate strongly from the standard Schwarzschild
metric.

By considering the boundary conditions of the general
SdS solution, we have noted that the Birkhoff theorem is
not valid for nontrivial f(R) theories as the solutions
around spherically symmetric mass distribution depends
on the shape of the distribution. Hence, the straightforward
Schwarzschild-ian relation between the gravitational effect
and total energy of a finite mass distribution has been
broken. By requiring that it holds, we are restricted to
some class of special mass distributions. Also we are led
to ask which distributions are physically relevant and what
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kind of distributions are likely to form from collapsing
matter. These most interesting but also technically ex-
tremely tricky questions certainly require further examina-
tion because they may offer additional constraints on
allowed f(R) models.

Our results show that, in addition to the SAS metric, f(R)
theories typically also have new different solutions.
Although further work is needed to determine their physi-
cal relevance, they offer an interesting new avenue of
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research that can guide us in assessing the significance of
f(R) theories of gravity as a possible solution to the dark
energy problem.
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