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A first step in the analysis of the renormalizability of gravity at large N is carried out. Suitable
resummations of planar diagrams give rise to a theory in which there is only a finite number of primitive,
superficially divergent, Feynman diagrams. The mechanism is similar to the one which makes the 3D
Gross-Neveu model renormalizable at large N. The connections with gravitational confinement and
Kawai-Lewellen-Tye relations are briefly analyzed. Some potential problems in fulfilling the Zinn-Justin

equations are pointed out.
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L. INTRODUCTION

The quantum theory of renormalizable interactions
plays the main role in our present understanding of funda-
mental physical laws. It gave rise to the formulation of the
standard model of elementary particles which is still
widely used today. Of course, there are many problems
which have not been solved yet (such as confinement in
QCD); some of these problems are likely to be ““technical’’
problems in the sense that a better understanding of the
actual standard theory should be enough to give the correct
solutions. As far as other problems (such as the hierarchy
problem, the cosmological constant, the quantum version
of the gravitational interaction, and so on) are concerned,
the standard theory is likely to be inadequate. In particular,
the lack of a precise understanding of nonperturbative
phenomena occurring in the strongly coupled phase of
gravity (which should clarify important and still poorly
understood features of early cosmology) is unpleasant:
since gravity is perturbatively nonrenormalizable, it is
not possible to make detailed predictions in such a phase.
The two main candidates for the final theory of quantum
gravity, superstring theory and loop quantum gravity
(which are not necessarily to be thought of as mutually
exclusive), are still too complicated to be fully understood.
Thus, it is worth exploring new ways in which ‘““physical
effects beyond the standard model” could already be
manifest in low energy (low with respect to the Planck
scale) physics. The dominant point of view of string the-
orists is to see the Einstein-Hilbert action as an effective
action in which the “heavy degrees of freedom’ have been
integrated out. Unfortunately, in order to make this idea
predictive and to clarify how it is possible to improve in
practice the UV behavior of gravity, it is important to
understand in more detail the dynamics of such degrees
of freedom and, at the present stage, this is a rather difficult
task.

It is not enough to say that “gravity is an effective field
theory”: even if this is the case, to perform meaningful
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computations in the strongly coupled regime with the
technical tools at our disposal (perturbative expansions of
various kind, renormalization groups, and so on), physical
effects “beyond the standard model” (related, for instance,
to string theory) which enable such meaningful (and, hope-
fully, predictive) computations still have to be clarified. To
be more specific, string theory predicts various types of
geometrical corrections to the “bare” Einstein-Hilbert
action:

Scorr = SEH + Z(a,l)n /M fn(R,quo‘)dlu’

where Sgy is the Einstein-Hilbert action, ' is the string
length, and f, are higher order curvature invariants. Even if
a large but finite number of terms are added, the corrected
action remains nonrenormalizable and, consequently, it is
not yet clear how to perform meaningful quantum compu-
tations (unless one could sum the whole series: a hopeless
task indeed). In a sense, the analysis of the &’ corrections
as a tool to shed light on nonperturbative phenomena in
gravity is like the analysis of the standard perturbation
expansion in QCD to understand confinement. Clearly, in
QCD there is little hope to understand nonperturbative
phenomena with ordinary perturbation theory. In the
same way, in gravity one should expect physics beyond
the standard model to manifest itself in a different, perhaps
more subtle, way. Renormalizability is not a mere aesthetic
requirement; it is, in fact, the need to have a theory which is
predictive in the strongly coupled phase: one should expect
(it is better to say ‘“‘hope’’) that physics beyond the stan-
dard model will improve the Einstein-Hilbert gravity pre-
cisely in this direction.

A sound theoretical framework is the holographic prin-
ciple introduced in [1,2] (for two detailed reviews, see
[3,4]) which is at the basis of the string-theoretical corre-
spondence between supergravity in anti-de Sitter space and
conformal field theory on its boundary (henceforth AdS/
CFT) [5]. In a recent paper [6] a large N expansion for the
gravitational interaction was formulated which shed new
light on the relations between higher spins, the holographic
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principle, and nonperturbative phenomena such as (a sort
of) gravitational confinement. In SU(N) gauge theory, the
large N expansion introduced by ’t Hooft in [7,8] and
refined by Veneziano [9] is indeed one of the most power-
ful nonperturbative techniques available to investigate the
strongly coupled phase. (It provides the issues of confine-
ment, chiral symmetry breaking, and the relation with
string theory with a rather detailed understanding; a clear
analysis of the role of baryons at large N has been given in
[10]: for two detailed pedagogical reviews, see [11].)

One of the main properties of the large N expansion is
that many nontrivial models [such as the O(N) ¢* model in
five space-time dimensions and the Gross-Neveu model in
three space-time dimensions which are not renormalizable
in the standard perturbative expansion] become, in fact,
renormalizable (see, for example, [12]): the Green func-
tions are not analytic anymore in the small coupling con-
stant region (see, for example, [13—15]). Thus, the large N
expansion can be seen as a strong coupling expansion
which, besides clarifying nonperturbative phenomena
such as confinement and chiral symmetry breaking, greatly
improves the UV behavior of theories that, at first glance,
would appear meaningless at high energies. Here, it will be
argued that, under very reasonable assumptions, this could
also happen in gravity. The large N expansion suggests
suitable resummations of planar diagrams which lead to a
UV softening of gravity: the relation between the Newton
constant and the mass of higher spin field(s) seems to be
quite similar to the relation between the Fermi coupling
constant and the mass of the W.. bosons of the electroweak
interactions.

The paper is organized as follows: in Sec. II the dia-
grammatic formulation of general relativity as a con-
strained topological theory (the topological theory
suitable to describe gravity is the BF theory whose name
comes from the fact that the principal fields are a differ-
ential 2-form called B and a connection 1-form A whose
curvature is called F) is shortly described and the well-
known result about the perturbative nonrenormalizability
of gravity is described in this formalism. In Sec. III, the
large N resummations which improve the UV behavior of
gravity are introduced: for the sake of clarity, in Sec. III the
complications connected to ghosts will be neglected keep-
ing manifest, however, the main physical features leading
to the UV softening. In Sec. IV, the ghost effects which
could prevent the UV softening are analyzed. In Sec. V, a
possible physical interpretation of the large N “UV soft-
ening”’ is proposed and the connections with the Kawai-
Lewellen-Tye (KLT) relations equation are pointed out.
Eventually, the conclusions are drawn.

II. BF GRAVITY AND FEYNMAN RULES

In this section the BF formulation of gravity and the
corresponding Feynman rules will be briefly described.
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The topological BF theory [16] in four dimensions is
defined by the following action:

S[A, B] = [M BY A* (Fyy(A))

1

= Z fM Saﬁ’yng]ﬁFyaljdétx, (1)

BY = 3B{jpdx® A dxP, Fiy = 3F aprdx® A dxP,

Fopry = (0,45 — dgA.) 1 + AL AgLy — AI,Z;IAaLJ,
(2

where M is the four-dimensional space-time, * is the
Hodge dual, the Greek letters denote space-times indices,
£2P79 is the totally skew-symmetric Levi-Civita symbol in
four-dimensional space-times, and I, J, and K are the
internal Lorentz indices which are raised and lowered
with the Minkowski metric n;;: I, J = 1,..., N. Thus,
the basic fields are a so(N — 1, 1)-valued differential 2-
form B;; and a so(N — 1, 1) connection 1-form A, ;, the
internal gauge group being SO(N — 1,1). Also, the
Riemannian theory can be considered in which the internal
gauge group is SO(N) and the internal indices are raised
and lowered with the Euclidean metric d;;; in any case,
both B;; and A, ; are in the adjoint representation of the
(algebra of the) internal gauge group. The equations of
motion are

F=0, VABZO, VA=V=d+[A,] (3)

where V, is the covariant derivative with respect to the
connection A,y ;. The above equations tell us that A,;; is,
locally, a pure gauge and B!/ is covariantly constant. When
N = 4 and B" has the form

BY = Jel X A et (4)
the action (1) is nothing but the Palatini form of the
Einstein-Hilbert action. Equation (4) can be enforced by

adding to the action (1) a suitable constraint: the basic
action in the BF formalism is

GSor — S[A. B] - jM<¢,,KLB” ABKL + wH($)), (5)

where G is the gravitational coupling constant, w is a fixed
differential 4-form, and H(¢) is a scalar which may have
one of the following expressions:

UKL

H, = d’% Hy = ¢kLe ,
H3 = alHl + a2H2,

(6)

with a; being real constants (see [17-21]). It is worth
noting here that the Lagrange multiplier ¢ has four internal
indices. The form (5) of the Einstein-Hilbert action is a
natural starting point to formulate the “‘gravitational” large
N expansion [6] since the connection formulation allows us
to adopt the double-line notation. (However, the funda-
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mental representation of so(N — 1, 1) being real, the lines
of internal indices carry no arrows.)

The classical action in Eq. (5) is left invariant by so(N —
1, 1)-gauge transformations and by diffeomorphisms. The
analysis of the Becchi-Rouet-Stora-Tyutin (henceforth
BRST) invariance (which, as it is well known, is the
quantum counterpart of the classical gauge invariance) of
the gravitational action in the BF formalism can be found
in [22]. As far as the scope of the present paper is con-
cerned, a technical complication is that the natural kinetic
term [see Eq. (14) below] is invariant under a further
transformation

83AM = O, 63B,u,, = V[M(I)V]

[where w, is a so(N — 1, 1)-valued 1-form] which has to
be gauge fixed too in order to derive the propagators (a
detailed discussion of this issue can be found in [23,24]).

The most suitable way to proceed is to follow [24] in
which the authors (in the case of the BF formulation of
Yang-Mills theory) introduced an auxiliary nonphysical
field ,, (a Lie-algebra-valued 1-form), in the combination

B'=B—Vn,

whose role is to keep, at the same time, both the local
degrees of freedom of Yang-Mills theory and the symme-
tries of the BF theory (physically, i represents the longi-
tudinal components of B). It is worth noting here that,
because of the Bianchi identities, one has

S[A, B'] = S[A, B].

In the Yang-Mills case, this procedure is lawful as is
because the (classical) action of the BF Yang-Mills theory
is

Sy = S[A, B] — ¢ fM w(B),,(B)* ()

(where e is the Yang-Mills coupling constant). In gravity,
the second term on the right-hand side of the above equa-
tion is replaced by the constraint in Eq. (5),

/M(¢1JKLB” A BXL + W H(9)).

The consequence is that, in order to produce the Yang-
Mills kinetic term for 7, it is convenient to add the second
term on the right-hand side of Eq. (7) to the gravitational
action. This is possible since it has been shown in [23,24]
that the small e limit does not present any problem (the
theory is “perturbative” in ¢). In other words, the second
term on the right-hand side of Eq. (7) can be regarded as a
true vertex: therefore, one can consider the gravitational
case as the small e limit of the action [25] (8).

Indeed, n has only a technical role since it just repre-
sents the longitudinal components of B, and one of 7’s
transformation laws is given by a shift [see below,
Eq. (10)]. However, at this stage of the analysis, it seems
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to be unavoidable to add the Yang-Mills term [the second
term on the right-hand side of Eq. (7)] in order to obtain the
Feynman rules, vertices, and propagators. On the other
hand, due to the comparison with Yang-Mills theory, this
scheme is mandatory if one wants to clearly identify the
“guilty of the perturbative nonrenormalizability of grav-
ity”” in the BF scheme: but, for this enlargement of the
gravitational action, it would not be possible to “large N
improve the UV behavior of gravity.

The classical symmetries of the “enlarged” classical BF
gravitational action

GSa = S[A, B] - [M(MB')“ A B + wH(d)
— & fM w(B)*(B), ®)

[where a, b, c, and so on are indices in the adjoint repre-
sentation of so(N — 1, 1)] are

(SIA,LL = (va(l)),u,: 61B,u,1/ = [Bp,w 0(1)1 (9)
1My = [ 0]
BZAM = O, (SZB/.U/ = V[MC()V], 62’7’]# = w’u,
(10)
63AM = 0, 53B,u1/ = [F,lLV’ 0(3)], (11)

831, = V00,

where 6;) are so(N — 1, 1)-valued gauge scalars. &, is a
simple gauge transformation so that the action is invariant.
As far as 6, and &5 are concerned, the transformations of B
cancel out the transformations of 7 in the second and in the
third terms on the right-hand side of Eq. (8). The BF term is
left invariant by 8, because of the Bianchi identities and by
8, because it reduces to a trivial gauge transformation on
the usual F? term of (the standard formulation of) Yang-
Mills theory. It is worth noting that the symmetries &, and
85 are reducible, as it is clear if one considers in Egs. (10)
and (11)

(V0(3))/L = wu.

To obtain the Feynman rules, the gauge-fixing and ghost
terms related to the above symmetries have to be included.
A convenient gauge-fixing term is

d,A% =0,

© dum* =0,

9,B*" =0  (12)

so that the corresponding gauge-fixing term of the action is
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Sy = f {e(=9,V#)c + hy(9,A)
’ M

+ I,nya”’{_[Bl“}, C] + V[M{/Iv] + [F,u,w P]}
+ hp(d,B*) + por{~[n, cl+ ¢, +V,p}
+ hy(9,m") + u(dhg) + hlz(aylz”)

+ gﬂa{[df,u’ C] + Vp.‘f} + hz//(aulﬂy)}’ (13)

where (c, &, hy), (i, ¢, hg), and (p, p, h,) are, respectively,
the ghost, the antighost, and the Lagrange multiplier for 6,
and 8,; (&, &, h,) the ghost, the antighost and the Lagrange
multiplier for the zero mode of the topological symmetry
83 and (u, hy) a pair of fields which takes into account a
further degeneracy associated with . It is worth stressing
here that all the fields appearing in the gauge-fixing term
(13) are in the adjoint representation of the gauge group:
this will be important when the role of the ghost loop
effects (which, as it will be shown in the next section, do
not prevent the UV softening) will be discussed. The
following tables summarize the ghost numbers and dimen-
sions of the fields:

Fields A m ¢ © v hy g
Dimension 1 2 1 0 2 1 1 2 1
Ghost number 0 0 O 1 -1 1 -1 0 0
Fields & £ hy p P h, u h;
Dimension 0o 2 2 0 2 2 2 2
Ghost number 2 =2 —1 1 —1 0 0 1

The natural choice is to consider, as the Gaussian part of
the fields A and B, the off-diagonal kinetic term

1
So==—-jn(eaﬂyﬁBzﬁayA@ax (14)
K JMm

plus the quadratic terms for ghosts in the gauge-fixing term
(13). The A — B propagator (which propagates A, into
B,,) has the following structure (a simple method to find
them can be found in [26,27]):

(a,b) - _
A(A,B),MV’}/ 2 “urya

—- (15)
The internal index structures of the propagators tell us that,
as one should expect, the internal index is conserved along
the gravitational internal color lines. The A— A, B— B
and the n — 7 propagators are

A(a,b) _ 6abiz<8/.l,ll . pﬂp,}),

(AA) v P Y
a,B (16)
(a,b) — _ sab pp
A(E,B)wmo = =0 urarEyppa 7
T
A@D = (sur PP sab, a7)
(n,m) P2

PHYSICAL REVIEW D 74, 064020 (2006)

The ghost propagators can be deduced from the gauge-
fixing term in Eq. (13):

1 “p
Ay = —i5“b—2(5/“’ o >
D p p
1
(ab) _ _:sab
A(lclc_) = 16a ?,
A@d) — s L n@h — isa b
(8 Pk (0.0) 72

Graphically, all the propagators in the double-line notation
are represented by two parallel internal “‘gravitational”
color lines [along which the internal so(N — 1, 1) index
is conserved] with no arrows [7,9].

The coupling with matter fields (as discussed in [6])
shows that the number of internal ‘“‘gravitational color”
lines associated with each matter field is connected with its
spin: the higher the spin, the more internal lines are needed
[that is, the higher the representation of the internal gauge
group so(N — 1, 1) is] to describe the matter field in the
double-line notation (so that the Lagrange multiplier field
¢ should be considered as a nonpropagating higher spin
field). For the sake of simplicity, in this paper the purely
gravitational case will be considered; however, the inclu-
sion of matter fields should not destroy the main conclu-
sions since, usually, matter fields do not worsen the UV
behavior.

The theory has the following matter vertices:

Vl(Aa > Alb/’ Bgﬁ) = Gfabcs,u.vaﬂ’ (18)
V(B B g, d°Y) = G8,08pq8"" P, (19)

where f¢’¢ are the structure constants (the Newton con-
stant G, as usual, has been absorbed in the fields in such a
way that it appears only in the vertices which are depicted
in Fig. 1). The first vertex is also present in the BF
formulation of Yang-Mills theory while the second one
only pertains to general relativity and is likely to be the
main vertex responsible for the quantum realization of the
holographic principle [6]. The ghost vertices in the gauge-

Standard notation | Double-line notation
A A N
B K !
AAB ::>»——— >> "
K / J
A A 4
B B BJ:§§§¢¢JB
BBBB ::>x(i:
5 5B X Af 5

FIG. 1. Here, the double-line structures of the two matter
vertices are displayed: the AAB vertex is in common with the
BF-Yang-Mills theory; the 4-uple B vertex is peculiar of gravity.
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Ghost vertices

C Cly cly v
YO,
U] PP n|® U]
hr
p p|d oY p
T TN

Double-line structures

I I\

FIG. 2. In this picture the ghost vertices have been drawn: they
have only two types of connected internal index structures.

fixing term are

V3(Aa, Cb, Ed) — _Gfabdp,u,
(20)

V4(l/_/ao’ ng cd) = _Gfahdpyaz')
VS(Aa’ ZI;’ J/g')
e — _fabdp[p, 51/]0"
7 (21)
V(AL p°, %) )
e = e,
Vi(4g, p*, p?) = —Gfiph,
V. ( a b —d) =G abd (22)
s\ Ny, P f 8#1/01,8)
V9(Aa s fb’ gd) = Gfabdp#’
(23)

Vio(c?, (//Z’ éd) = Gfbdpr

Vi (A%, A%, pP, g) = G2 febd ple 717 87, 8 fme. (24)

It is worth noting that the internal index structures of the
ghost vertices are standard, that is, they have a connected
structure (see Fig. 2): this fact will play an important role in
the following.

The aim of this paper is to show that, in the large N
expansion, there is only a finite number of superficially
divergent diagrams. However, large N resummations (even
if they improve the UV behavior of the theory) could give
rise to some problems in fulfilling the Zinn-Justin equation
which is needed to ensure that the infinities can be ab-
sorbed in counterterms not violating the symmetries of the
original action. This point will be discussed in slightly
more detail later on.
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The ‘““nonrenormalizable’ vertex

The perturbative nonrenormalizability of (super)gravity
[28] was an important result: even if, at first glance, this
could be rather obvious by power counting, there are many
examples (such as gravity in three dimensions [29]) of
theories which are trivially renormalizable (being exact
in the cohomology of the operator associated with the
BRST symmetry) and, in fact, would not appear in this
way by naive power-counting arguments. Moreover, the
results in [30] about the one-loop finiteness of the Einstein-
Hilbert action lead to the expectations that the powerful
symmetries of gravity could give rise to some ‘““miracle,” at
least in supergravity: indeed, in the standard perturbative
formulation, such a miracle does not occur. It is important
to understand this result in the present formalism; the
question is, which is the “wrong” vertex responsible for
the perturbative nonrenormalizability of the theory? The
answer is as follows: if one would drop the vertex in
Eq. (19), one would obtain the topological BF Yang-
Mills theory which, obviously, is renormalizable. Thus,
the vertex responsible for the perturbative nonrenormaliz-
ability of the theory is the one in Eq. (19). In gravity, the
problem is mainly connected to the 4-uple B vertex.
Indeed, B has bad asymptotic behavior [see Eq. (16)]:
such a propagator is also present in the BF Yang-Mills
theory [27]. However, in the Yang-Mills case, the B field is
always attached to the better-behaved A field through the
good AAB vertex. Consequently, loops with only B fields
cannot arise. Such loops in which only the B fields appear
are at the origin of the perturbative nonrenormalizability of
gravity. The 4-uple vertex for B (see the left column of
Fig. 5 in which there is a typical nonrenormalizable dia-
gram which cannot arise in the BF formulation of Yang-
Mills theory) gives rise to badly behaved in the UV loops in
which only B fields appear: at any order in perturbation
theory, new diagrams diverging in the UV appear in the
expansion.

III. LARGE N RESUMMATIONS AND EFFECTIVE
PROPAGATORS

Here, it will be shown that the large N expansion sug-
gests a useful resummation of a certain class of planar
diagrams which greatly improves the UV behavior of
gravity. For the sake of clarity, we will first present a
simplified version of the argument [31] (in which, however,
the main physical ideas are manifest) leading to the UV
improvement. In the next section, the effects of ghosts in
the loops will be discussed.

It is worth briefly recalling what happens in the large N
expansion of the 5D O(N) ¢* model [12]. The Lagrangian
is

Ly = 50,0980 + w2, 80) + 5 (9,00,

i=1...,N 25)
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O(N) ®* model example

Feynman Rules

®-propagator

o-propagator

®dbo - vertex —_-
(6]

Improved o-propagator

A =~~=4 - O+-0-0O--+...

FIG. 3. In this picture the large N improvement of the scalar
¢* — O(N) model is depicted: the constant propagator of the
Lagrange multiplier is UV softened since the leading large N
contribution is given by the geometric sum of bubble diagrams.

¢; being an N-component scalar field, A the coupling
constant, and m the mass. It is convenient to introduce a
Lagrange multiplier field o as follows:

Ly, =30,¢,0¢) + (m* + io/A) b ,;¢7) + 12 (26)

Of course, due to the equation of motion of o, this
Lagrangian is equivalent to the previous one. In the mo-
mentum space, the bare propagator D (k) of o is constant:

D, (k) = 1.

The Lagrangian in Eq. (26) in five space-time dimensions
gives rise to a nonrenormalizable theory. On the other
hand, by the taking into account that at large N the domi-
nating diagrams are the well-known bubble diagrams, it is
possible to obtain an improved propagator D, (k) at the
leading order in 1/N (see Fig. 3):

1

Da’(k) = W,

H(k)k—;ok, g = AN.
Such an effective propagator improves the UV behavior of
the theory in such a way that there are only three super-
ficially divergent diagrams and the theory becomes renor-
malizable in the 1/N expansion. This miracle happens in
the following way: many diverging diagrams in the stan-
dard perturbative expansion (which are of different order in
the standard coupling constant A) are, in fact, of the same
order in 1/N; this fact tells us that such diagrams should be
summed together (such a resummation is easy, being a
geometric series). The difference with respect to the stan-
dard perturbative renormalizability is that the propagator is
not analytic anymore in the region of the small effective
coupling constant g (see, for instance, [13-15]).

As far as gravity is concerned, one has to cure mainly the
“nonrenormalizable” vertex in Eq. (19). In the scalar O(N)
case, the large N expansion tells us that a suitable class of
diverging diagrams (the ‘“‘bubble diagrams”) should be
summed together; of course, from the technical point of
view, the gravitational case is more difficult. However,

PHYSICAL REVIEW D 74, 064020 (2006)

Standard notation

FIG. 4. In this picture the tree-level large N 4-uple B vertex
has been drawn. Because of the presence of the Lagrange
multiplier with four internal color indices, it is clear that the
tree-level large N 4-uple B vertex is the (geometric) sum of an
infinite number of terms which have no closed color loop but
have an always-increasing number of loops of the standard
Feynman expansion. Indeed, this phenomenon is peculiar of
gravity.

similarities in the two cases are indeed present. It is easy to
see that the dominant contributions to the 4-uple B vertex
come from bubblelike diagrams which, from the internal
index point of view, are “tree diagrams” (see Fig. 4): that
is, they are planar diagrams with no closed color loops so
that they contribute to the “large N-bare” vertex which is
the relevant quantity as far as power-counting arguments
are concerned [32]. Thus, one is simply computing the
treelike term of the topological expansion at genus zero.
These large-N tree diagrams can be formally summed as a
geometric series, as will be shown in a moment.

This is very much in the spirit of the large N expansion
[7,9]: at any fixed genus, the contributions are weighted by
the effective coupling constant

geit = GN 27)

(kept fixed at large N) to the power of the number of closed
color loops L and, consequently, the tree diagrams should
be summed together as it happens in standard Feynman
diagram calculations. To be more precise, at any given
genus in the topological expansion, the large N diagrams
are weighted by the effective coupling constant in Eq. (27).
To any closed color loop in the topological expansion, it
corresponds by a factor g.¢ in the same way as the powers
of the Planck constant weight the usual loops in the stan-
dard Feynman diagrams. Any interesting physical observ-
able (O) can be expanded at large N as follows:

(0) = ZNzizgin(geff)L Oy (28)
T

g,b

where g is the genus, b is the number of closed matter

064020-6



HIGH ENERGY BEHAVIOR OF GRAVITY AT LARGE N

loops, L is the number of closed color loops, and O, ;, ; is
the sum of fat diagrams contributing at genus g, with b
matter loops and L closed color loops. In the same way, in
the standard Feynman expansion, for physical quantities
such as amplitudes, one has

Oy = S ()0
Lp

where 7 is the Planck constant, Ly is the number of loops,
and O(LFF) is the sum of the Feynman diagrams contributing

at L loops: the bare propagators and vertices have, by
definition, L, = O (the similarity between the topological
expansion with g and b fixed and the standard Feynman
expansion is apparent). Thus, in very much the same way,
in the large N expansion the bare propagators and vertices
must not contain any closed color loops [33]. The key point
is that, to count the number of primitive superficially
divergent diagrams, one only needs treelike propagators
and vertices (see, for instance, [34]).

UV-softening of the 4-uple B vertex

The “guilty of perturbative nonrenormalizability” 4-
uple B vertex is UV softened by large N effects: the factor
which dresses V;, is related to the geometric ‘“‘bubblelike”
series in Fig. 4. It is worth stressing here that the above
bubblelike series is made of “‘treelike large N** diagrams:
that is, it is the sum of diagrams with no closed internal
color lines (L = 0). A peculiar feature of gravity is the
possibility of constructing a treelike large N quantity
(which, therefore, enters at the leading order in the large
N expansion) which, in fact, contains an infinite number of
standard Feynman loops. In the large N expansion of Yang-
Mills theory, the treelike large N vertices and propagators
coincide with the standard treelike Feynman vertices and
propagators since the vertices have connected structures.

In the standard Feynman expansion, the basic building
blocks are treelike vertices and propagators (that is, verti-
ces and propagators without Feynman loops): starting from
these vertices and propagators, well-known arguments
(and, in particular, the Bogoljubov-Parasiuk-Hepp-
Zimmermann theorem) tell us whether or not the perturba-
tion expansion has a finite number of primitive, super-
ficially divergent diagrams. In very much the same way,
the analogous question in the large N expansion has to be
answered by looking at the treelike large N vertices and
propagators [35] [as it is clear from well-studied
O(N)-vectorial examples: see, for instance, [12]]. Thus,
to understand whether or not gravity in the large N expan-
sion has a finite number of primitive, superficially diver-
gent diagrams, one has to use treelike large N vertices and
propagators: thus the 4-uple B vertex (which is a treelike
quantity in the Feynman expansion) has to be replaced by
the bubblelike series in Fig. 4 which correctly accounts for
all the treelike large N contributions.

PHYSICAL REVIEW D 74, 064020 (2006)

Divergent in the usual
perturbation theory Convergent at large N
B B Q B
B B B
5 O—2—0"&
B B B B
B B B N 5 N B
B B B B

FIG. 5. In this picture a typical diagram is shown which is
divergent in the usual Feynman expansion and is, in fact, con-
vergent at large N. It is manifest that three “large N improved”
4-uple B vertices are enough to make a loop integral UV finite.
This should be compared with standard loop integrals with only
B propagators which trigger the perturbative nonrenormalizabil-
ity of gravity; such loops are no longer a problem in the large N
expansion.

Any potentially dangerous 4-uple B vertex is dressed by
a factor vanishing in the UV as 1/4?. In Fig. 5 we depict a
diagram which diverges in the standard perturbative ex-
pansion and is finite in the large N improved expansion.
This UV improvement appears to be quite consistent with
the Weinberg asymptotic safety scenario [36]. The large N
dressed vertex is

1
1 —TII(¢g*)’

where I1(g?) is the B self-energy giving rise to the geo-
metric series:

(¢?) = G [A & A (DD sy (P — )

apnB(py — —
— G2(84)i1l]3f d4pp p (p C])g(P Q)n -
A

Vip(q) =V, (29)

p*(p — q)?* A—oo
(30)
A_’ (11G2A2)q2 + (G212A4) + ...
(84)5;3 = 8uva/\8yp,8)\8MV§X8yan’ (31)

where A g is the B propagator. In the momentum inte-
grals, a cutoff A (to be removed in a suitable way) has been
introduced, terms which are subleading for A — oo and
N — oo have been neglected, and /; and [, are two non-
vanishing real constants (whose precise values are not
important as far as the present discussion is concerned so
that, from now on, they will be set equal to 1). It is worth
noting that, in the geometric series giving rise to I1(¢?), no
factor N appears since there are no closed color loops
[I1(g?) is a sum of the large N tree diagrams]. It is useful
to rewrite Eq. (29),
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MZ
A\ =V,—5——5—7—,
4B(Q) 2M(2)—q2+'~-
1
MG = M? o+ SMG = M2 = bA% MP = s,

(32)
where in the denominator of Eq. (32) subleading terms
when A — oo have been neglected [37]. The most conve-
nient way to remove the cutoff is

A finite value = M? = — fixed, (33)

N A, N—oo

1
(GA)?
where M could be interpreted as a sort of renormalized
Planck mass. The divergent term SM3 ~ —bA? has the
typical form which can be removed by a tadpole
contribution.

The same phenomenon also occurs in simpler models in
which the large N technique works (see, for instance, [38]).
In such models the quadratically divergent contribution to
the mass is already included in the so-called gap equation.
The gap equation accounts for the tadpole embodying it in
the effective coupling constant(s). However, to do this, it is
necessary to write down and solve the saddle point equa-
tions at large N for the full Lagrangian. In the gravitational
case this seems to be rather difficult so that one is forced to
remove the divergent contribution to the mass ‘“‘by hand”
with counterterms. The typical tadpole diagram [39] con-
tributing to the quadratically divergent contribution to the
mass is in Fig. 6: one can easily see that it is of order A?
due to the UV behavior of the B propagator.

Once the quadratically divergent term in the denomina-
tor is removed [40], one gets

M2
Vap(g) = Vzm (34)
where, in the denominator, terms which are subleading in
the large N limit have been neglected.

It is now possible to compute the superficial degree of
divergence of the large N diagrams in which one simply
has to use the 4-uple B vertex in Eq. (34) instead of V,.
Since any 4-uple B vertex now decreases by 2 the super-
ficial degree of divergence () of a loop integral, the three
vertices of the type of Eq. (34) are enough to make a loop
integral convergent; thus, () =4 — E (where E is the
number of external legs in the diagrams) as in the
BF-Yang-Mills case [27] (in Fig. 5 there is a meaningful
example). The large N prescription gives rise to a gravita-
tional theory with only a finite number of primitive, super-
ficially divergent diagrams (in good agreement with the
Weinberg asymptotic safety scenario [36]): interestingly
enough, this opens the unexpected possibility to control the
UV behavior gravity exploring, for instance, the inflation-
ary phase of cosmology.

However, in theories with local symmetries, one also has
to show that the infinities of the theory have the suitable
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symmetries which allow us to cancel such infinities by
adding counterterms not violating the original symmetries
of the action (see, for instance, [34]). It is not clear at this
stage of the analysis if such ‘“large N reorganization™
prevents the fulfillment of the Zinn-Justin equation; for
instance, the large N expansion could not commute with
the BRST and Slavnov operators. This is a rather involved
technical problem; I hope to return to this issue in a future
publication.

It would be very interesting to compare more closely the
above results with the ones obtained in a series of papers
[41-43] in which the authors began the analysis of the
Einstein-Hilbert in the standard metric variables using the
method of the nonperturbative renormalization group. The
authors found sound evidences supporting the existence of
a nontrivial UV fixed point (which, obviously, would con-
firm the Weinberg asymptotic safety scenario [36]). The
present results, although derived in a completely different
way, seem to be consistent with such a scheme.

The above UV improvement is conceptually very similar
to what happens in the change from the Fermi effective
model of weak interaction to the Glashow-Weinberg-
Salam model of electroweak interactions: in this case the
nonrenormalizable Fermi coupling constant G is replaced
by the W= propagators (for a detailed pedagogical expo-
sition, see [34])

G
My, — ¢?

where gy is the (dimensionless) electroweak coupling
constant and My, is the mass of the W bosons. In the
gravitational case, the large N expansion suggests that, in
the strongly coupled phase of gravity, a similar phenome-
non should occur:

M2

GG .
M?* — T1(g%)

Thus, the sentence ‘“‘gravity is an effective field theory”
would acquire a rather precise meaning. Such a nonrenor-
malizability should be removed by nonperturbative effects,
displayed by the large N expansion, which correctly take
into account the heavy degrees of freedom in a way very
similar to what happens in the electroweak model.

IV. POSSIBLE COMPLICATIONS

The main effects which have been neglected in the
previous discussion are related to the ghosts. In particular,
ghost loops could cancel out, asymptotically, the B loops
neutralizing the previous UV softening. In fact, the large N
expansion itself provides one with a natural recipe to deal
with this problem.

In the gravitational case, due to the ‘higher spin”
Lagrange multiplier ¢, it is possible to construct planar
diagrams without closed color loops (thus contributing to
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Typical Tadpole diagram

B

B B

FIG. 6. In this picture the typical tadpole diagram has been
drawn. In simpler models [such as the scalar ¢* — O(N) model]
one can take care of the tadpoles by using the so-called gap
equation. In gravity, it seems difficult to write and solve the gap
equation so one has to remove by hand the typical tadpole
quadratic divergences.

the large N bare propagators) containing an infinite number
of loops of the standard Feynman expansion [44]. The
question is, do the ghost contributions to the 4-uple B
vertex survive at tree level in the large N expansion in
such a way as to prevent the above analyzed UV softening?
In other words, is it possible to construct a contribution to
the 4-uple B vertex by using the ghost vertices in
Egs. (20)—(24) without closed internal lines? The key point
is that the only way in which ghost effects could neutralize
the previously considered UV softening is by changing the
treelike large N vertices and, in particular, the 4-uple B
vertex (since the large N power counting only depends on
treelike large N vertices and propagators): ghost effects
have to come into play at tree level, otherwise the power
counting does not change. It is easy to see that all the
possible ghost-mediated corrections to the 4-uple B vertex
contain at least one closed color loop [since the vertices in
Egs. (20)—(24) have connected structures] and, therefore,
do not contribute to the bare large N propagators and
vertices. Let us consider the ghost contribution to the B
vertex in Fig. 7: indeed, at genus zero, it contains at least
one closed color loop. More generally, in the presence of

A subleading contribution to the
4-uple B vertex

Double-line notation
i B
B gy
B \/—/
B /R
B

FIG. 7. In this picture a typical ghost contribution to the 4-uple
B vertex has been drawn. It is clear that, in the large N
expansion, the ghost contributions are always subleading since,
due to their connected structures, they contain at least one closed
color loop (consequently, they do not contribute to the tree-level
large N 4-uple B vertex).

Standard notation

€l
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Leading order large N contribution to
the 4-uple B vertex

B\“Planar/B
/ box” \B

B

“Loopless” planar boxes

PB(1)]: PB(2)

X
X

Examples of planar boxes with loops

_v
PB@)|: C:| |:| |: C
—

PB(4)|: M ~ |PB)]+|PBE)

B 1]

'j

FIG. 8. In this picture the double-line structures of the possible
contributions to the 4-uple B vertex have been drawn. Only two
structures could contribute at the tree-level large N 4-uple B
vertex: PB(1) (which, however, is not present in the theory) and
PB(2). All other planar boxes with four external B lines have at
least one closed color loop inside; therefore, they are not relevant
as far as UV power counting is concerned.

fields living in the adjoint representation of the gauge
group and vertices with the ghost vertices of the BF for-
mulation of gravity, it is not possible to construct treelike
large N diagrams without closed color loops contributing
to the 4-uple B vertex (see Fig. 8). Therefore, ghost effects
do not affect the UV softening of the previously considered
bubblelike series.

The role of

Up to now, the role of 1 has not been discussed. Its
introduction (as in the Yang-Mills case) is dictated by
technical reasons. To deduce the large N effects on the
interactions of 1 and B, one can consider the large N
improvements for the 4-uple vertex without separating B’
in B and V7. Obviously, since B and V7 can be “reas-
sembled” in a unique field, the vertices between V7 and B
experience, at large N, similar UV improvements as in
Eq. (34). In other words, n represents the longitudinal
components of B’ so that the separation of B’ in B and
V7 is an artifact; the physical field is B + V%. This
implies that one can trivially deduce the large N effects
on the interactions between V7 and B by analyzing the
large N improvements of the effective 4-uple vertex for the
physical field B + V7 [45] and then separating it into B
and V7. On the other hand, since 7 can be gauged to zero
(one of its transformation laws being given by a shift) its
properties do not affect the UV behavior.

As was already mentioned, at this stage of the analysis, it
is not clear if and how one could avoid the introduction of
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the auxiliary 7 field from the very beginning. Indeed, the
introduction of 7 and of the ““Yang-Mills” term [46] is not
a mere avoidable technical complication: it is, in fact, the
more transparent way to identify the “guilty’’ vertex and to
cure it by means of the large N expansion.

V. A POSSIBLE PHYSICAL INTERPRETATION

I will now discuss a possible interpretation of the pre-
vious results in terms of a sort of gravitational confinement
(in which the gravitational color, that is, the spin, is con-
fined) which should be dual, in the sense of the gauge/
gravity correspondence (for two detailed reviews, see
[47,48]) to the standard gauge theoretical confinement.

In many other cases, such as the O(N) scalar (in five
space-time dimensions) and fermionic (in three space-time
dimensions) models with quartic interactions, the seem-
ingly “magic’’ properties of the large N resummations are,
in fact, related in a very simple way to physical properties
of the models. In the above-mentioned cases, the large N
expansion is able to explore the strongly coupled phase of
the theory in which phenomena such as the appearance of
“colorless” bound states in the spectrum, spontaneous
breaking of symmetries, and so on occur. Thus, a natural
question is, which phenomenon is behind the improvement
of the UV behavior of gravity at large N? In the present
formulation of the gravitational action, matter fields should
be described as scalar fields living in a suitable represen-
tation of the internal gauge group according to their spin
[6]. At large N, in the strongly coupled phase of gravity (as
it is also suggested by the gauge/gravity correspondence),
the physical spectrum should be dominated by colorless
bound states. In this context, colorless particles are simply
scalar particles which, therefore, should dominate the
spectrum in the UV region [49]. Gravitational confinement
would dramatically improve the renormalizability of the
theory. The reason is that, if the gravitational interaction
confines at the Planck scale, one is left with only scalar
fields at high energy: this would soften the UV behavior of
the theory. This can be seen by forgetting for a moment the
present formalism (in which the spin of particles is repre-
sented by an internal index in a suitable representation
of the internal gauge group) and returning to the standard
“space-time’’ interpretation of spinful particles. The con-
tribution to the scattering amplitude A;(s, ¢) in the ¢ chan-
nel (where ¢ and s are Mandelstam variables) at high
energies of particles with spin equal to J is roughly

s/

— 2’
t—m3}

Ay(s, 1) = —e?

m; being the mass of the particle and e being a suitable
coupling constant. When J < 1, loop integrals in which
such a spin J particle appears are convergent; when J = 1
there are logarithmic divergences (which, in this case, can
be renormalized), and when J > 1 there are nonrenorma-
lizable divergences. This fact is behind the perturbative
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nonrenormalizability of the Einstein-Hilbert action. In fact,
if there is a critical energy scale, beyond which only scalars
are left in the spectrum due to the gravitational confine-
ment, the above problems are naturally solved by the
dynamics of the gravitational field; thus, the gravitational
interaction could be nonperturbatively renormalizable.

It is worth noting that the main vertex responsible for the
good UV properties of gravity at large N is, presumably, a
sort of gravitational confinement. On the other hand, in
gauge theories, suitable order parameters for confinement
are the Wilson loops. Therefore, one should expect that the
gravitational analogue of the Wilson loops should play a
fundamental role in understanding the strongly coupled
phase of gravity. Interestingly enough, such operators
have been introduced in [50] in the context of the
Ashtekar formalism for gravity [51] (for an updated re-
view, see [52]). Thus, an intriguing relation between loop
quantum gravity and the present large N expansion for
gravity is apparent.

This is a good point to think about the following ques-
tion: what would be the physical meaning of renormaliz-
ability at large N? As far as the standard perturbative
expansion is concerned, a pragmatic answer is that a given
theory (without local symmetries) is renormalizable (in the
standard Feynman expansion) when the number of primi-
tive divergent Feynman diagrams is finite. This issue can
be dealt with by looking at the UV behavior of bare
propagators and vertices (on which the standard perturba-
tive expansion is based). The deep physical meaning of
such a property is manifest in the Wilson point of view (to
discuss the Wilson point of view in a gravitational context
is far beyond the scope of this paper). As far as the present
scheme is concerned, it is enough to say that a UV renor-
malizable theory is a theory which allows meaningful and
predictive computations (in the UV) because the fields
appearing in the Lagrangian are suitable to describe the
UV phase [53]. When this does not happen, there are two
possibilities: either the theory is wrong or the UV degrees
of freedom are nontrivial, nonlocal combinations of the
ones appearing in the Lagrangian [54].

Thus, a pragmatic answer to the question about the
physical meaning of renormalizability at large N [55]
could be as follows: a theory which is UV renormalizable
at large N (and is not UV renormalizable in the standard
perturbative expansion such as the Gross-Neveu model in
three dimensions or the ¢»* model in five dimensions [12])
is a theory which is formulated in terms of fields not
suitable to describe the UV phase. However, it is not
wrong: the large N recipe tells us how to sum a class of
diagrams of the standard expansion in order to obtain a
meaningful expansion (with a finite number of primitive,
superficially ~divergent diagrams). In the already-
mentioned examples, this has a very precise meaning: in
the UV phase, new degrees of freedom appear which are
bound states of the original fields (see, for instance, [38]).
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This is exactly the picture which seems to emerge from the
present scheme: scalar bound states which soften the UV
behavior of amplitudes of particles carrying spin 2 or
greater. However, as I will discuss in a moment, in gravity
there is the further complication of local symmetries: one
should also prove that local symmetries are preserved by
the large N resummations.

Connections with the KLT relations

It is worth mentioning here an interesting relation
(which is worth being further investigated) with the so-
called KLT relations [56]. The KLT relations were first
obtained in a string-theoretical framework: they allow us
to express closed string amplitudes in terms of open string
amplitudes. Schematically, the factorization of the vertex
operators

closed _ ysopen [7open
14 - Vleft X Vright

(where the V’s are vertex operators of the closed string, and
open string left modes and right modes) is related to the
results in [57], stating that correlations of vertex operators
factorize at the level of integrands (that is, before the world
sheet integrations are performed). Kawai, Lewellen, and
Tye were able to prove a stronger result: the complete
closed string amplitudes factorize into products of open
string amplitudes even after the world sheet integrations.
Indeed, the KLT relations go well beyond string theory
itself: they imply, for instance, highly nontrivial relations
in the low energy limit among tree amplitudes of gravity in
four dimensions which factorize (in suitable nonlinear
gauges) into gauge theoretical tree amplitudes in four
dimensions. These results have been generalized to include
loops by using unitarity relations (for a pedagogical review,
see [58]); however, a complete proof of these very useful
factorization results is not available yet. Usually, one deals
with the KLT relations in the standard metric formalism in
which, having in mind small deviations from a flat metric

g,uv ~ 77/1,1/ + h,uw

the basic variable is the metric fluctuation h,,. In the
standard metric formulation of gravity, the structure of
the many vertices present in the theory is very complicated.
To fully exploit the KLT relations, one needs to choose a
gauge in which, roughly speaking, the right index and the
left index of h,, are never contracted with each other
(otherwise no “left-right” factorization

hy, ~ €, ®€,;

would be apparent [59]). Such (nonlinear) gauge choices
are highly nontrivial, and the many vertices of the theory in
the metric formalism sometimes obscure the physical ori-

gin behind the KLT relations. In the present framework
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A
S/

FIG. 9. In this picture a typical gravitational large N diagram
which could be responsible for the KLT relations has been
drawn. The important role which the 4-uple B vertex (which is
disconnected from the “internal lines” point of view) could have
is manifest in explaining such important relations between
gravity and gauge theory (which, in the BF formalism, are
distinguished precisely by the above-mentioned 4-uple B ver-
tex).

such features are rather manifest; in particular, the pres-
ence of a Lagrange multiplier field ¢,, which, in the
double-line notation, is represented by four internal lines
leads directly to amplitudes fulfilling the generalized KLT
relations. The reason is that in the BF formulation of
gravity the propagators and vertices can be chosen to be
equal to the propagators and vertices appearing in the BF
formulation of Yang-Mills theory: the only, crucial, differ-
ence is the higher spin Lagrange multiplier field. Such a
field gives rise, quite generically, to gravitational ampli-
tudes which are manifestly factorized into pieces in which
only “YM fields” (that is, fields which are also present in
the BF Yang-Mills Lagrangian) appear (see, for instance,
Fig. 9). In other words, ¢, “allows” us to attach ampli-
tudes of the BF Yang-Mills theory to obtain amplitudes of
the BF formulation of gravity; for this reason, the present
scheme seems to be suitable to fully exploit and, hopefully,
establish, in general, the KLT relations.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper an analysis of the renormalizability of
gravity at the large N expansion for general relativity has
been carried out. It is based on the BF formulation of
general relativity in which the Einstein-Hilbert action is
split into a topological term plus a constraint. It has been
shown that the large N expansion dictates resummations of
a suitable class of planar diagrams which lead to a great
improvement of the UV behavior of gravity: only a finite
number of superficially divergent diagrams are present at
large N. This is an important step in proving renormaliz-
ability. The next steps are the analysis of the infinities and
their fulfillment of the symmetry constraints such as the
Slavnov-Taylor identities and the Zinn-Justin equation.
The analysis of the KLT relations in this scheme is also
worth being further investigated.
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