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We consider solutions of the four-dimensional Einstein-Yang-Mills (EYM) system with a negative
cosmological constant � � �3g2, where g is the non-Abelian gauge coupling constant. This theory
corresponds to a consistent truncation of N � 4 gauged supergravity and may be uplifted to d � 11
supergravity. A systematic study of all known solutions is presented as well as new configurations
corresponding to rotating regular dyons and rotating non-Abelian black holes. The thermodynamics of the
static black hole solutions is also discussed. The generic EYM solutions present a nonvanishing magnetic
flux at infinity and should give us information about the structure of a conformal field theory (CFT) in a
background SU(2) field. We argue that the existence of these configurations violating the no-hair
conjecture is puzzling from the anti-de Sitter (AdS)/CFT point of view.
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I. INTRODUCTION

Recently a tremendous amount of interest has been
focused on anti-de Sitter (AdS) spacetime. This interest
is mainly motivated by the proposed correspondence be-
tween physical effects associated with gravitating fields
propagating in AdS spacetime and those of a conformal
field theory (CFT) on the boundary of AdS spacetime [1,2].

A precise formulation of the AdS/CFT correspondence
is made in equating the generating function of the correla-
tion functions in the CFT with the string/gravity partition
function on the AdS space [1,3]
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The induced boundary metric and matter fields are, respec-
tively, denoted by h and �0 symbolically, with O a con-
formal operator defined on the boundary of AdSd�1. The
integration is over configurations [g, �] of metric and
matter fields that approach [h, �0] when one goes from
the bulk of AdSd�1 to its boundary. This conjecture has
been verified for several important examples, encouraging
the expectation that an understanding of quantum gravity
in an asymptotically AdS spacetime (AAdS) can be ob-
tained by studying its holographic CFT dual, defined on the
boundary of spacetime at infinity.

In this context, various AAdS solutions of the Einstein
equations coupled with matter fields have been studied in
the literature. However, although the gauged supergravity
AdS theories generically contain Yang-Mills (YM) fields,
most of the studies in the literature have been restricted to
the case of Abelian matter content in the bulk. At the same

time, a number of results obtained for an asymptotically
flat (AF) spacetime clearly indicate that a variety of well-
known, and rather intuitive, features of self-gravitating
Maxwell fields are not shared by non-Abelian gauge fields.
In particular, and in contrast to the Abelian situation, self-
gravitating YM fields can form particlelike configurations
[4]. Moreover, the Einstein-Yang-Mills (EYM) equations
also admit black hole solutions that are not uniquely char-
acterized by their mass, angular momentum, and YM
charges [5]. Therefore the uniqueness theorem for electro-
vacuum black hole spacetimes ceases to exist for EYM
systems.

As proven by some authors [6,7], even the simple spheri-
cally symmetric EYM-SU(2) system with a negative cos-
mological constant � in four spacetime dimensions
presents a number of surprising results. A variety of well-
known features of AF self-gravitating non-Abelian solu-
tions are not shared by their AAdS regular and black hole
counterparts.

Although the picture one finds is very much
�-dependent, it is still possible to identify some general
features. For example, there is always a continuum of
regular and black hole solutions in terms of the adjustable
shooting parameters that specifies the initial conditions at
the origin or at the event horizon, rather then discrete
points. Depending on the value of �, the spectrum has a
finite number of continuous branches. Furthermore, there
exist nontrivial solutions that are stable against spherically
symmetric linear perturbations, corresponding to stable
configurations with nonvanishing non-Abelian charges.
The solutions are classified by non-Abelian electric and
magnetic charges and the Arnowitt-Deser-Misner (ADM)
mass. When the parameter � approaches zero, an already-
existing branch of monopoles and dyon solutions collapses
to a single point in the moduli space [8]. At the same time
new branches of solutions emerge. A general study of these
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configurations together with a stability analysis is pre-
sented in [9,10].

These spherically symmetric solutions have been gener-
alized in various directions. Axially symmetric solutions
are discussed in [11–13], Newman-Unti-Tamburino
(NUT)-charged configurations and topological black holes
with non-Abelian fields were considered in [14,15].
Spherically symmetric, five-dimensional solutions of the
EYM system with negative cosmological constant were
examined in [16], this result being extended recently to
d > 5 [17].

Although further research is clearly necessary, at least
some of the EYM-SU(2) solutions, emerging as consistent
reduction of d � 11 supergravity on a seventh-dimensional
sphere [18,19], have relevance in AdS/CFT context. In this
case, the ratio between the four-dimensional cosmological
constant and the gauge coupling constant g is fixed by
�=g2 � �3. Apparently the bulk/boundary correspon-
dence for AAdS EYM configurations has not received
much attention in the literature. Although all such solutions
containing non-Abelian fields are classical they may have a
role to play in the full quantum theory. If the AdS/CFT
correspondence conjecture is indeed correct, it should
either be able to account for solutions to the EYM system
from the CFT viewpoint or be able to demonstrate why the
conjecture does not apply to them.

The lack of attention given to AAdS EYM solutions is
presumably due to the notorious absence of closed form
solutions in the presence of non-Abelian matter fields in
the bulk. (Very few such exact solutions exist e.g. [20],
which features an effective negative cosmological constant
but is not AAdS, and, [21] for � � 0.) However, one can
analyze their properties by using a combination of analyti-
cal and numerical methods, which is enough for most
purposes. Euclidean solutions of the � � �3g2 EYM
model have been discussed in [22], in a different context,
however. The authors of Ref. [22] considered Euclidean
wormhole solutions, with an S3 conformal infinity.

The Lorentzian solutions we consider here are very
different. Their conformal infinity is the product of time
and a two-dimensional sphere, plane, or hyperboloid. In
the black hole case, these are the non-Abelian counterparts
of the well-known AdS4 Einstein-Maxwell solutions. For a
R� S2 boundary structure, there are also globally regular,
particlelike solutions. The existence of configurations vio-
lating the no-hair conjecture is puzzling from the AdS/CFT
point of view. Since several distinct solutions with the
same set of boundary at infinity data may exist, it is not
clear how the dual CFT distinguishes between them.

In the first part of this paper we discuss the features of
the AAdS non-Abelian solutions with � � �3g2.
Although some of these solutions are already known in
literature, their properties have not been discussed for this
particular value of the cosmological constant. New types of
EYM configurations with a nonvanishing angular momen-

tum are presented as well. All these configurations have a
higher dimensional interpretation, solving the equations of
motion of d � 11 supergravity.

The second part of this paper attempts a discussion of
these solutions in an AdS/CFT context. The boundary
stress tensor and the associated conserved charges are
computed in Sec. IV, where we also present a discussion
of black hole thermodynamics. We further argue that
studying the � � �3g2 EYM-AdS system should give
us information about the structure of the CFT in a back-
ground SU(2) field. We conclude with Sec. V. The appen-
dices contain a discussion of technical aspects of solutions’
construction.

II. GENERAL FRAMEWORK

We start by discussing the embedding of the EYM
solutions in M theory. It is known that the standard N �
4 SO(4) gauged supergravity in d � 4 can be viewed as a
reduction of d � 11 supergravity on S7 [18]. The bosonic
sector of this theory contains two SU(2) fields F��, ~F��, a
dilaton �, and an axion � with the Lagrangian density
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where the potential V��;�� is

 V��;�� � �2g2�4� 2 cosh�� �2e��: (3)

It can easily be seen that � � � � 0 is a consistent trun-
cation of this theory for F�� � ~F�� and, as a result one
finds the action

 I � 1
4

Z
d4x

�������
�g
p

�R� 2�� 2 Tr�F��F����; (4)

where the field strength tensor F�� �
1
2 	

aFa�� is

 F�� � @�A� � @�A� � i�A�; A��; (5)

and the gauge field A� �
1
2 	

aAa�, with 	a an SU(2) basis
written in terms of Pauli matrices (the value of the gauge
coupling g has been set to one without loss of generality).
The gauge field transforms as A0� � UA�Uy � i�@�U�Uy

under a SU(2) gauge transformations U.
The value of the cosmological constant as read from

V�� � 0; � � 0� is � � �3.
As usual, to ensure well-defined Euler-Lagrange field

equations, one adds to the action principle (4) the
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Hawking-Gibbons surface term [23], Isurf � �
1
2 �R

@M d3x
�������
�h
p

K where K is the trace of the extrinsic
curvature for the boundary @M and h is the induced metric
of the boundary. This term does not affect the equations of
motion but it is relevant in the discussion of solutions’
mass and boundary stress tensor.

Variation of the action (4) with respect to the metric g��

leads to the Einstein equations

 R�� �
1
2g��R��g�� � 2T��; (6)

where the YM stress-energy tensor is

 T�� � 2 Tr�F�
F��g
� �
1
4g��F
�F


��: (7)

Variation with respect to the gauge field A� leads to the
YM equations

 D�F
�� � 0; (8)

where D� � @� � i�A�; 	�.
In this paper we will consider solutions of the EYM

equations possessing at least two Killing vectors � � @t,
 � @’, corresponding to a stationary, axially symmetric
spacetime. For the time translation symmetry, we choose a
natural gauge such that the matter fields have no time
dependence, @A=@t � 0. However, a rotation around the
z-axis can be compensated by a gauge rotation L’A �
D� [24], with � being a Lie-algebra valued gauge func-
tion. This introduces an integer n in the matter ansatz
(which is a constant of motion) and implies the existence
of a potential W with

 F�’ � D�W; (9)

where W � A’ ��. The integer n represents the winding
number with respect to the azimuthal angle ’. While ’
covers the trigonometric circle once, the fields wind n
times around. The qualitative features of the solutions
obtained in the Abelian sector of the theory are insensitive
to n; however, the winding number determines to some
extent the properties of the non-Abelian solutions.

Using the formulas in [18] with the two equal gauge
fields, Aa � ~Aa, we can uplift any configuration that ex-
tremizes the action principle (4) to d � 11 supergravity.
The 11-dimensional metric ansatz reads

 ds2
11 � ds2

4 � 4d�2 � cos2�
X
a

��a � Aa�dx��2

� sin2�
X
a

� ~�a � Aa�dx��2: (10)

The antisymmetric tensor field F̂�4�, which appears in the
action principle of the d � 11 supergravity, can be read
from [18,19]
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where �a, ~�a are SU(2) right invariant one forms on two
3-spheres S3, ~S3.

III. � � �3 EYM SOLUTIONS

The field equations (6) and (8) contain a large variety of
solutions. First, any solution (g��, A�) of the Einstein-
Maxwell (EM) theory with � � �3 can be viewed as a
solution of the EYM Eqs. (6) and (8) by taking A� �
A�T where T belongs to the Lie algebra of the non-
Abelian gauge group [25]. The properties of these AAdS
Abelian solutions have been discussed by various authors
(for generic �), as well as their relevance in AdS/CFT
context.

Here we restrict ourselves to the pure non-Abelian case.
As expected, a number of EYM configurations with � � 0
are found to possess AAdS counterparts, with very differ-
ent properties, however. For �< 0, there are also rotating
regular EYM solutions, which do not survive in the AF
limit.

In this section we present a discussion of the EYM
solutions which arise as a truncation of N � 4 SO(4)
gauged supergravity, both regular and black hole configu-
rations being considered. Some of these solutions have
been already presented in the literature, however, without
discussing the case of interest � � �3. Also, to simplify
the general picture we will not consider dyon solutions,
except for the rotating case where Einstein equations re-
quire the presence of a YM electric field.

The mass-energy of these solutions is computed by
using the formalism presented in Sec. IV. Also, we will
present here general features of these solutions, without
entering into technical details, which are the subject of
Appendices A, B, C, and D.

A. Regular configurations

1. The � � �3 Bjoraker-Hosotani monopole solutions

We start with the simplest case, corresponding to spheri-
cally symmetric solutions. These are the AdS generaliza-
tions of the Bartnik-McKinnon configurations found in [7]
by Bjoraker and Hosotani, within a metric ansatz

 ds2 �
dr2

H�r�
� r2�d�2 � sin2�d’2� �

H�r�

p2�r�
dt2; (12)

where

 H�r� � 1�
2m�r�
r
�

�

3
r2;

m�r� corresponding to the local mass-energy density.
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The static, spherically symmetric SU(2) YM ansatz is
obtained for a winding number n � 1 and can be parame-
trized by one real function !�r�

 A � 1
2fw�r�	1d�� �cot�	3 � w�r�	2� sin�d’g; (13)

which implies the field strength tensor expression

 F � 1
2fw

0dr ^ �	1d�� 	2 sin�d’� � �1� w2�	3d�

^ sin�d’g; (14)

where a prime denotes a derivative with respect to r. For
this purely magnetic ansatz, the EYM equations take the
form
 

m0 � !02H �
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2r2 ;
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H

�
2�r
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�

2m
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�w2 � 1�2

r3

�
�
w�w2 � 1�

r2H
;

(15)

the equation for p decoupling from the rest, p0=p �
�2w02=r.

No exact solutions of this system are known yet, so the
equations must be solved numerically. The solutions with a
regular origin have the following behavior at r � 0
 

w�r� � 1� br2 �O�r4�; m�r� � 2b2r3 �O�r4�;

p�r� � p0�1� 4b2r2� �O�r4�; (16)

where b, p0 are real constants. We are here interested in
solutions with AdS asymptotics, which implies the follow-
ing expansion at large r
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where !0, M, and C1 are constants determined by numeri-
cal calculations. M corresponds to the ADM mass of the
solutions, while !0 determines the value of the magnetic
charge, Qm � j1�!

2
0j (see Appendix C). For � � 0,

!0 � �1 are the only allowed values, (M, b) being re-
stricted to a discrete family indexed by the node number of
the gauge function !�r� [4].

As found in [7], the AAdS solutions are much less
restricted. By varying the parameter b which enters the
expansion at the origin (16), a continuum of monopole
solutions are found. These configurations are regular in
the entire space. The overall picture depends on the value
of the cosmological constant; for � � �3, solutions with
AAdS asymptotics are found for only one branch with
�0:557< b< 1:31. In Fig. 1, we plot the asymptotic
quantities M and !0 as well as the value of the metric
function p at the origin as a function of the parameter b.
One can see that p�0� diverges as b! bmax (i.e. gtt�0� !

0), while M�bmax�, !�bmax� remain finite, while all these
parameters appear to diverge as b! bmin. The critical
solutions have been studied in [10] and are not of interest
here.

A configuration is uniquely characterized by the asymp-
totic parameters M, !0. As a characteristic feature of � �
�3 globally regular configurations, we notice the existence
of zero- and one-node monopole solutions only. The node-
less solutions are of particular interest because, as dis-
cussed in [7], they are stable against linear perturbations.
The solution with b ’ 0:619 has!0 � 0 and, similar to the
’t Hooft-Polyakov monopole, has magnetic charge Qm �
1. In this case the AdS boundary conditions play a role
similar to the Higgs field in the AF case. As seen in Fig. 1,
for values of b in the interval 0:62< b< 1:31 the gauge
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FIG. 1. The mass-parameter M, the asymptotic value of the
gauge function !0, and the value of the metric function p�r� at
the origin are represented as a function of the parameter b for
spherically symmetric, globally regular monopole solutions.

 0

0.5

 1

1.5

 2

2.5

-2 -1  0  1  2  3
log10(r)

b=-0.25

b= 0.5

b= 1.3

ω(r)

ω(r)

m(r)

p(r)

FIG. 2. The profiles of typical spherically symmetric globally
regular monopole solutions are plotted for several values of the
parameter b which enters the expansion at the origin of the gauge
potential.
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function! crosses the r-axis, approaching a negative value
at infinity. Although for 0:635 � b � 1:309 there are two
configurations with the same asymptotic value of the gauge
function, these are distinguished by the value of M, with
M�b2�<M�b1� if b2 < b1.

Typical configurations are displayed in Fig. 2 for three
different values of the parameter b. The solution with b �
1:3 has !0 � �0:045, corresponding to a near critical
configuration with gtt�0� � �0:0032.

2. Axially symmetric monopoles

It is well known that, for � � 0, an SU(2) YM theory
coupled to gravity also possesses AF static axially sym-
metric globally regular solutions [26], labeled by a winding
number n > 1. The AAdS generalizations of these configu-
rations were reported in [11], featuring very different
properties, as expected. Here we present a discussion of
these solutions for the special case � � �3.

As discussed in Appendix A, the minimal axially sym-
metric YM ansatz is parametrized by four functions
Hi�r; ��. These magnetic potentials satisfy a suitable set
of boundary conditions at the origin, at infinity, and on the
symmetry axis imposed by finite energy, regularity, and
symmetry requirements. The spherically symmetric YM
ansatz is recovered for a unit winding number n � 1, two
vanishing gauge potentials H1 � H3 � 0 while the other
two are equal H2 � H4 � !�r�.

For large r, the configuration becomes spherically sym-
metric, with H2 � H4 � !0, the asymptotic value of the
other two functions being zero. The magnetic charge of
these solutions is QM � nj1�!2

0j. The expression of the
gauge ansatz and the boundary conditions are presented in
Appendices A and B; see also Appendix D for a discussion
of the numerical procedure we used to find these solutions.

The static axially symmetric EYM solutions are ob-
tained within a metric ansatz
 

ds2 �
m
f

�
dr2

1� �
3 r

2
� r2d�2

�
�
l
f
r2sin2�d’2

� f
�
1�

�

3
r2

�
dt2; (18)

where the metric functions f,m, and l are only functions of
r and �. Here r is the radial coordinate, t is a global time
coordinate, (�, ’) being the usual coordinates on the
sphere, with 0 � � � �, 0 � ’< 2�. The expansion of
the metric functions as r! 1 is
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�

1
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(19)

which leads to AAdS solutions. Here f1, f2 are undeter-
mined constants, while l1 � m1 � 2f1=3, l2 � 6f2=17,
m2 � 14f2=17. As discussed in Sec. IV, the mass M of
these configurations is encoded in the parameters f1, f2

 M �
�

3

�
2f1

3
�

8f2

17

�
: (20)

A spherically symmetric spacetime is recovered for l � m
and f2 � m2 � l2 � 0 (i.e. no angular dependence). The
coordinate transformation between the resulting line ele-
ment and the more familiar Schwarzschild-like form (12)
is discussed in Ref. [11].

The results of the numerical integration indicate that
every � � �3 spherically symmetric regular solution ap-
pears to present axially symmetric generalizations. For any
given winding number, we find only one branch of solu-
tions classified by the mass and the value of the parameter
!0 (we have studied solutions up to n � 4). Similar to the
n � 1 case, the functions H2 and H4 are nodeless or
present one node only. The gauge potentials H1,H3 always
present a complicated �-dependence, while one finds usu-
ally a small angular dependence for H2, H4. The metric
functions f, m, and l do not exhibit a strong angular
dependence, while m and l have a rather similar shape.
As expected, the angular dependence of the metric and
matter functions increases with n. Also, the values at the
origin of the metric functions decreases with n. The typical
profiles of the metric and gauge functions are similar to
those exhibited in [11] and we will not present them here.

In Fig. 3 we plot the mass M as a function of the !0 for
various winding numbers. We see that the n > 1 branches
generally follow the picture found for n � 1 (with higher
values of mass, however).

The energy density of the matter fields �, shows a
pronounced peak along the �-axis and decreases mono-
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FIG. 3. Mass M is plotted as a function of !0 for globally
regular gravitating monopole static solutions. The winding num-
ber n is also marked. The configurations with n � 2, 3 are
axially symmetric.
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tonically along the z-axis (with z � r cos�, � � r sin�).
The contours of equal energy density � � �Ttt are two-
torii and squashed two-spheres. The peak of the energy
density along the �-axis slightly shifts outward with in-
creasing n and increases in height. For a fixed value of !0,
the mass of the solutions, M�n�, increases with n. For
example, for !0 � 0:05, one has M�1� � 1:014, M�2� �
2:467, M�3� � 4:747, and so on. As a general feature, the
particlelike non-Abelian solitons are less massive than the
extremal Reissner-Nordström-AdS (RNAdS) solutions
with the same magnetic charge.

We have found it difficult to obtain axially symmetric
generalizations of the spherically symmetric solutions near
limits of the b-interval, with large errors for the functions.
A different metric parametrization appears to be necessary.

3. Rotating regular solutions

An interesting physical question is whether these static
non-Abelian regular solutions can be generalized to in-
clude an angular momentum. For the AF case, contrary
to results from perturbation theory [27], no rotating gen-
eralizations of the BK solutions seem to exist. In this case,
the At components of the gauge field act like an isotriplet
Higgs field with negative metric, and by themselves would
cause the other components of the gauge field to oscillate
as r!1 [28], which would imply an infinite mass.
Rotating solutions are found by including in the theory a
triplet Higgs field with a vacuum expectation value greater
than the asymptotic value of At [29].

For �< 0, there are no boundary conditions to exclude
a non-Abelian solution with nonzero electric potential;
dyon EYM solutions already exist in the spherically sym-
metric case [7]. The existence of dyon solutions without a
Higgs field is a feature for AdS spacetime; if �  0 the
electric part of the gauge fields is forbidden [7,30]. This
makes possible the existence of rotating regular configu-
rations, too. A discussion of these solutions in a fixed AdS
background is presented in [13], where it is argued that
they survive in the presence of gravity. However, the
general picture appears to be very complicated, crucially
depending on the value of the cosmological constant. Here
we analyze the solutions’ properties for � � �3.

These rotating EYM solutions are found for a metric
form generalizing (18) for an extradiagonal metric compo-
nent g’t, which satisfies also the circularity condition [31]
 

ds2 �
m
f
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dr2

1� �
3 r

2
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r2sin2�

�
d��
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r
dt
�
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�
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�

3
r2

�
dt2; (21)

where the four metric functions f,m, l, and � depend only
on the coordinates r and �. At infinity, the asymptotic form
of the metric functions f, l, m is still given by (19) while
the metric function associated with rotation decays as

 � �
j1 � j2sin2�

r3 �O
�

1

r4

�
; (22)

j1, j2 being two real constants. As discussed in Sec. IV, the
mass-energy M of the rotating solutions is still given by
(20), while their angular momentum is

 J �
�

3

�
j1

2
�

2j2

5

�
: (23)

The YM ansatz contains in this case six functions: four
magnetic potentials Hi (i � 1; . . . ; 4) and two electric po-
tentials H5, H6. The boundary conditions satisfied by the
magnetic potentials are similar to static case. For the
electric potentials we impose at infinity H5 � V cos�,
H6 � V sin�. The parameter V corresponds to the asymp-
totic magnitude of the electric potential At�1� and deter-
mines the properties of these solutions. In the Abelian case,
by using a suitable gauge transformation one can set V � 0
(or any other value) without any loss of generality. In the
non-Abelian theory, however, such a gauge transformation
would render the whole configuration time dependent. In
this case, V enters the asymptotic expansion for the non-
Abelian field strength and has a physical relevance
(although it does not contribute to the electric YM charge).
As discussed in Appendix C, the value V � 0 implies a
purely magnetic, static configuration At � � � 0.
Technical details on these solutions, including the bound-
ary conditions are presented in Appendices B and D.

Globally regular rotating solutions are found by starting
with a purely magnetic EYM configuration with a given!0

and increasing the value of V. Here we consider only
rotating solutions with the lowest winding number n � 1,
although we obtained a number of configurations with n �
2 also.

The branch structure of the spherically symmetric solu-
tions is preserved in the presence of rotation. The rotating
configurations depend on two continuous parameters: the
value !0 of the magnetic potentials H2, H4 at infinity
(which fixed the magnetic charge Qm � nj1�!2

0j) and
the magnitude of the electric potential at infinity V.

For a given value of the magnetic charge, a branch of
rotating dyon solutions emerges smoothly from every
spherically monopole solution and extends up to some
maximal value of V beyond which gravity becomes too
strong for regular dyons to persist. We notice that the value
at the origin of the metric function f decreases with
increasing V and tends to zero as V approaches the critical
value Vmax (which is !0 dependent), corresponding to the
formation of a horizon. With increasing V, the dyon be-
comes more and more deformed. The mass, angular mo-
mentum, and electric charge increase with V and we find
again a maximal value for the magnitude of the electric
potential at infinity Vmax. Alternatively, we may keep fixed
the magnitude of the electric potential at infinity and vary
the parameter !0. Again, it has proven difficult to obtain
rotating generalizations of the spherically symmetric solu-
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tions near the limits of the b-interval. In Fig. 4 we present
the properties of typical branches of solutions for a fixed
value of !0 [Fig. 4(a)] and for a fixed V [Fig. 4(b)].

All solutions we have found present nonvanishing non-
Abelian electric and magnetic charges, representing rotat-
ing dyons. A vanishing Qe implies a nonrotating, purely
magnetic configuration. However, we find dyon solutions
with vanishing total angular momentum (e.g. J � 0 for
!0 � 0:895, V � 2) that are not static (locally Tt’ � 0).

Similar to the static case, the functions H2 and H4 are
nodeless or present one node only, although they have a
small � dependence, while H1, H3 and the electric poten-
tials depend on � in a complicated way. The metric func-
tions f, l, m present a rather small angular dependence.

For all configurations, the energy density of the solutions
has a strong peak along the � axis, and it decreases

monotonically along the symmetry axis, without being
possible to clearly distinguish any individual component.

B. Black hole configurations

The spherically symmetric black holes found by
Winstanley in [6] were the first non-Abelian solutions
with AdS asymptotics presented in the literature. More
details on these configurations have been presented in
[7], including dyonic black holes. These solutions obvi-
ously violate the no-hair conjecture and present static
axially symmetric generalizations that are absent in the
Abelian sector.

Also, it is well known that for �< 0, the EM theory has
black hole solutions for which the topology of the horizon
is an arbitrary genus Riemann surface. The EYM-SU(2)
counterparts of these solutions with a nonspherical event
horizon topology have been discussed in [15].

The properties of the AAdS non-Abelian solutions are
strikingly different from those valid in the AF case. For
example, black holes with �< 0 exist for continuous
intervals of the parameter space (the value of the gauge
field on the event horizon), rather than discrete points.
Also, there are configurations for which the gauge field
has no zeros. Moreover, some of these configurations are
stable within a perturbation theory approach.

Since the features of these configurations depend on the
value of the cosmological constant, we present in this
section an analysis of their properties for � � �3. Apart
from some classes of configurations already known in the
literature, we present here numerical arguments for the
existence of rotating black holes with non-Abelian hair,
generalizing for an SU(2) field the Kerr-Newman-AdS
solution.

1. n � 1 static solutions

We start by discussing the better known spherically
symmetric solutions and their topological black hole
counterparts.

These solutions are obtained within a metric ansatz
generalizing (12) for a nonspherically symmetric topology
of the event horizon

 ds2 �
dr2

H�r�
� r2d�2

k �
H�r�

p2�r�
dt2; (24)

where

 H�r� � k�
2m�r�
r
�

�r2

3
: (25)

Here d�2
k � d�2 � f2

k���d’
2 is the metric on a two-

dimensional surface � of constant curvature 2k. r is the
radial coordinate for which r! 1 defines the asymptotic
region. The discrete parameter k takes the values 1, 0, and
�1 and implies the form of the function fk���
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FIG. 4. The mass M and the angular momentum J of non-
Abelian globally regular rotating solutions are shown as a
function on the parameter V [Fig. 4(a), for !0 � 0:262) and
the parameter !0 [Fig. 4(b), V � 2). Also shown are the electric
charge Qe and the contribution Me of the non-Abelian electric
field to the total energy of the system.
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 fk��� �

8><>:
sin�; for k � 1
�; for k � 0
sinh�; for k � �1:

(26)

The topology of a constant (t, r) slice isH2
g. When k � �1,

the universe takes on the familiar spherically symmetric
form, and the (�, ’) sector has constant positive curvature.
When k � 0, the � is a flat surface, while for k � �1, the
(�, ’) sector is a space with constant negative curvature,
also known as a hyperbolic plane. When � is closed, we
denote its area by Vk. Also, we set Vk=4� � 1 in all
numerical data we present in this paper.

The construction of the SU(2) connection is presented in
[15]. Taking into account the symmetries of the line ele-
ment (24) we find

 A �
1

2

�
!�r�	1d��

�
d lnfk
d�

	3 �!�r�	2

�
fkd’

�
; (27)

which reduces to (13) for k � 1.
As a result, we obtain a simplified YM curvature

 

F � 1
2f!

0	1dr ^ d�� fk!0	2dr ^ d’

� �w2 � k�fk	3d� ^ d’g: (28)

The EYM equations reduce to
 

m0 � !02H �
�!2 � k�2

2r2 ;
�
H!0

p

�
0
�
!�!2 � k�

pr2 ;

p0

p
� �

2

r
!02: (29)

We find the following expansion near the event horizon
which is located at r � rh > 0,
 

m�r� �
rh
2

�
k�

�r2
h

3

�
�m0�rh��r� rh�;

!�r� � !h �!0�rh��r� rh�;
(30)

where

 m0�rh� �
�!2

h � k�
2

2r2
h

;

!0�rh� �
rh!h�!2

h � k�

�k��r2
h�r

2
h � �!

2
h � k�

2 ;

(31)

(since Eqs. (29) are invariant under the transformation
!! �!, it is enough to consider only values of !h >
0). For k � 1, w�r� � �1 corresponds to vacuum
Schwarzschild-AdS solution, while w�r� � 0 is the
Abelian RNAdS solution, with unit magnetic charge.
Note that, apart from embedded Abelian configurations,
no extremal solutions with reasonable asymptotics exist in
this case.

The condition for a regular event horizon is H0�rh�> 0
and places a bound on !h

 2m0�rh� �
�!2

h � k�
2

r2
h

< k��r2
h; (32)

and implies positiveness of the quantity !0�rh�. For � �
�3, this relation implies !h <!h�max�, with

 !2
h�max� � k� rh

����������������
3r2

h � k
q

; (33)

(with a minimal event horizon radius rh � 1=
���
3
p

for k �
�1). The asymptotics as r! 1 are still given by (17) for
any value of k. As argued in Sec. IV, the configurations’
mass is given by MVk=4�, with M the asymptotic value of
the metric function m�r�.

The Hawking temperature of the solutions is evaluated
from the surface gravity � as given by TH � �=�2��, with

 �2 � ��1=4�gttgij�@igtt��@jgtt�jr�rh : (34)

This implies

 TH �
k� 2m0�rh� ��r2

h

4�rhp�rh�
: (35)

For every considered value of rh, we find regular black hole
solutions with wh taking values in only one interval 0<
!h <!c

h, where !c
h is always smaller than !h�max�. There

are also solutions for which !0 > 1 although !h < 1. The
behavior of the metric functions m and p are qualitatively
similar for any value of k. However the gauge field behav-
ior depends on the topology of the event horizon. For k �
0, �1, in contrast to the spherically symmetric case, we
find only nodeless solutions. This can be analytically
proven by integrating the equation for !, �H!0=p�0 �
!�!2 � k�=pr2 between rh and r; thus we obtain !0 > 0
for every r > rh. For k � 1, solutions where ! crosses the
axis can exist for small enough values of rh. For large
values of rh (e.g. rh � 1), only nodeless solutions are
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FIG. 5. Typical profiles of n � 1 black hole monopole solu-
tions. The solutions with k � 0;�1 correspond to topological
black holes with non-Abelian hair.
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found in this case too. In this case, for sufficiently small
!h, all field variables remain close to their values for the
Abelian configuration with the same rh. Significant differ-
ences occur for large enough values of !h and the effect of

the non-Abelian field on the geometry becomes more and
more pronounced.

In contrast to the picture found in [15], the k � �1, � �
�3 configurations always have m> 0. The black holes
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FIG. 6. The mass-parameter M, the asymptotic value of the
gauge function !0, the value of the metric function p�r� at the
event horizon, and the Hawking temperature are represented as a
function of the value of the gauge function! at the event horizon
for typical monopole black hole solutions.
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FIG. 7. The value of the non-Abelian gauge potential at the
event horizon wh is plotted as a function of the event horizon
radius rh for spherically symmetric and topological black hole
monopole solutions and several values of the magnetic potential
at infinity.
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therefore only occur with positive values of the mass.
Typical solutions in this case are presented in Fig. 5. In
Fig. 6, M, !0, the value of the metric function p�r� on the
event horizon and the Hawking temperature are plotted as a
function of !h for k � 0, �1 black holes and several
values of rh. Note that as the temperature approaches

zero (i.e. as the solutions approach extremality), these
physical quantities all diverge.

In Figs. 7 and 8 we plot the mass M and the value of the
gauge potential at the event horizon wh for several values
of the asymptotic value of the magnetic gauge potential as
a function of the event horizon radius. For k � 1, the
corresponding solution with a regular origin is approached
as rh ! 0. For topological black holes, we noticed the
existence of a minimal event horizon radius rc, for any
given w0. The Hawking temperature vanishes as rh ! rc
and a naked singularity develops, while the mass stays
finite.

The discussion in [6,15] on the stability of these black
hole solutions within the perturbation theory can easily be
applied to � � �3. It follows that all k � 0 solutions are
stable; the k � �1 solutions with!0 > 1 are also stable as
well as the nodeless spherically symmetric solutions.

2. Static, axially symmetric black holes

Similar to the regular case, the k � 1, n � 1 solutions
discussed above admit static axially symmetric general-
izations. (Static k � 0, �1 topological black holes with a
winding number n > 1 are also likely to exist but the
corresponding EYM ansatz has not yet been considered
in the literature.)

The situation for a non-Abelian field is very different
from the EM theory, where the static black hole solution is
spherically symmetric (or, for �< 0 belongs to one of the
three cases (26), with the same amount of symmetry).

The properties of the AAdS axially symmetric EYM
black holes were addressed in [12], however without con-
sideration of the case � � �3. The metric ansatz in this
case is given again by (18), with a gauge potential Ai
written in terms of four functions Hi. We require the
horizon of the black hole to reside at a surface of constant
radial coordinate r � rh, where gtt�rh� � 0. Similar to the
procedure in the regular case, axially symmetric solutions
are obtained by extending the n � 1 configurations to
higher values of the winding number. These solutions are
AAdS and have a regular event horizon but for n > 1 they
are not spherically symmetric and the event horizon gets
deformed away from spherical symmetry.

The boundary conditions at infinity and on the symmetry
axis are similar to those used in the regular case; in
particular, the asymptotic expansion (19) is still valid
(see also Appendix B).

The surface gravity � turns out to be constant at the
horizon, as required by the zeroth law of black hole ther-
modynamics. To derive its expression we use the asymp-
totic expansion near the event horizon in � � �r� rh�=rh

 

f�r; �� � f2����
2 �O���3;

m�r; �� � m2����
2 �O���3;

l�r; �� � l2����2 �O���3:
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FIG. 8. The black hole mass M is plotted as a function of event
horizon radius rh for k � 1, 0, �1 black hole monopole solu-
tions with n � 1 and several values of the magnetic potential at
infinity.
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From TH � �=�2��, we find for the Hawking temperature

 TH �
f2����1��r2

h=3�

2�rh
�������������
m2���

p ; (36)

which is constant as a consequence of the (r, �) Einstein
equation implying f2m2;� � 2m2f2;�.

For the line element (24), the area A of the event horizon
is given by

 A � 2�
Z �

0
d� sin�

����������������������
l2���m2���

p
f2���

r2
h; (37)

which allows a computation of the black hole entropy S �
A=4.

The axially symmetric black hole solutions depend on
two continuous parameters (rh, !0) as well as the winding
number n > 1.

The behavior of the solutions is in many ways similar to
that of the axially symmetric solitons. Again, starting from
a spherically symmetric black hole configuration with
given !0 we obtain higher winding number generaliza-
tions. Axially symmetric generalizations seem to exist for
every spherically symmetric black hole solution. For a
fixed winding number, the solutions form a branch, which
can be indexed by the mass and the non-Abelian magnetic
charge Qm � nj1�!2

0j. This branch follows the picture
found for n � 1 (with higher values of mass, however).
This is in sharp contrast to the � � 0 case, where only a
discrete set of solutions is found [32]. Also, the
Kretschman scalar K � RijklR

ijkl remains finite for every
(r  rh; �). One finds that the deviation from spherical
symmetry increases with growing n.

Once we have a solution, the horizon variables such as
TH, A are calculated in a straightforward way from (36)
and (37). The mass of the solution is computed by using the
relation (20), extracting the values of the coefficients f1, f2

from the asymptotics of the metric functions. In Fig. 9 we
plot the massM, the Hawking temperature, and the entropy
as a function of !0 for black hole monopole solutions with
rh � 1 and n � 1, 2, 3.

The gauge functions H2, H3, H4 start always at (angle
dependent) nonzero values on the event horizon. For rh �
1, we find only solutions where H2, H4 do not cross the r
axis. The gauge function H2 is always almost spherically
symmetric, while the gauge functions H1 and H3 are much
smaller than the functions H2 and H4.

For the considered solutions, the metric functionsm, f, l
do not exhibit a strong angular dependence. These func-
tions start with a zero value on the event horizon and
approach rapidly the asymptotic values. The functions m
and l have a rather similar shape, while the ratio m=l
indicating the deviation from spherical symmetry is typi-
cally close to 1, except in a region near the horizon. The
typical profiles of the metric and gauge functions we find

for � � �3 are similar to those presented in [12] for other
values of the cosmological constant.

The horizon has S2 topology, but geometrically is not a
sphere, since its circumference along the equator Le turns
out to be different from that along a meridian Lp

 Le �
Z 2�

0
d’

���
l
f

s
r sin�

��������r�rh;���=2
� 2�rh

�����������
l2���
f2���

s �����������=2
;

(38)

 Lp � 2
Z �

0
d�

����
m
f

s
r
��������r�rh;’�const

� 2rh
Z �

0
d�

�������������
m2���
f2���

s
:

(39)

However, for these static solutions, one finds a small
deviation from spherical symmetry (as measured by the
ratio Le=Lp), at the level of few percent.
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FIG. 9. The mass M [Fig. 9(a)] and the Hawking temperature
and the entropy [Fig. 9(b)] are plotted as a function of !0 for
static black hole monopole solutions with rh � 1. The winding
number n is also marked. The configurations with n � 2, 3 are
axially symmetric.
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3. Rotating black holes

AF rotating hairy black holes in EYM theory were
obtained in [33], within the standard Lewis-Papapetrou
parametrization of the metric and a gauge field ansatz
consistent with the circularity and Froebenius conditions.
These solutions possess three global charges: mass, angu-
lar momentum, and non-Abelian electric charge. Although
they possess nontrivial magnetic gauge fields outside the
event horizon, they do not carry a non-Abelian magnetic
charge.

Obviously, the static AAdS solutions should also possess
rotating counterparts, representing non-Abelian general-
izations of the Kerr-Newman-AdS solution. However, the
construction of such hairy rotating solutions represents a
very difficult task since it involves the solution of a large
number of coupled nonlinear partial differential equations
for the metric and gauge field functions and a much richer
set of possible boundary conditions as compared to the AF
case.

Here we present the first set of rotating black hole
configurations with � � �3. The ansatz we used in this
case is similar to that employed for the regular rotating
solitons, with the same asymptotic expansion as r! 1. In
particular, the expressions (19) and (22) are valid in this
case too, as well as the expressions (20) and (23) of the
mass-energy and angular momentum. The boundary con-
ditions and details on the numerical integration are pre-
sented in Appendices B and D.

For a given winding number, the rotating non-Abelian
black hole solutions depend on four continuous parame-
ters: two geometric parameters—(rh, �h) representing the
event horizon radius and the value of the metric function �
at the horizon, respectively, and two parameters associated
with the gauge field: !0 which gives the magnetic charge
and V which is the asymptotic value of the electric non-
Abelian potential At�1�. Not surprisingly, different from
the AF case, rotating black holes are found also for V � 0.

The complete classification of the solutions in the space
of these four physical parameters is a considerable task,
whose scope is beyond the aim of this paper. We have
studied mainly rotating configurations with rh � 1 and
several values of w0, although a number of solutions
have been found for other values of rh. Although rotating
black hole solutions should exist for any value of n, we
restrict here to a unit value of the winding number.

The properties of the horizon can be computed similar to
the static case. The surface gravity is obtained from

 �2 � �1=4�D�����D����; (40)

where the Killing vector � � �� ��h=rh� (� � @t,  �
@’) is orthogonal to and null on the horizon. It can be
proven that the expansion near the event horizon (36)
remains valid in the rotating case, which implies the ex-
pression (36) for the Hawking temperature. We further
consider the area A of the black hole horizon computed

according to (37), and the deformation of the horizon,
quantified by the ratio Le=Lp of the circumferences along
the equator and the poles.

To construct a rotating solution, we start from the cor-
responding static black hole configuration with �h � 0,
V � 0. As we increase (�h, V) from zero via the boundary
conditions, while keeping rh fixed, a first branch of solu-
tions forms. For a given V, this branch ends at a critical
value �h, which depends on the value of (!0, rh), and the
numerical errors increase dramatically for �h >�h�cr�

rendering the solutions increasingly less reliable. As �h !

�h�cr�, the geometry remains regular with no event horizon
appearing for r > rh, and, the mass and angular momen-
tum approach finite values. As found in [33] for � � 0, a
second branch of solutions bends backward toward �h �
0; there the mass and angular momentum diverge with ��1

h
in the limit �h ! 0. Therefore we expect a similar picture
in the AAdS case. However the numerical construction of
such configurations presents a considerable numerical
challenge beyond the scope of the present work. Also,
the existence of other branches of AAdS rotating solutions,
not necessarily connected to the static configurations,
might be possible.

The picture gets simpler if we study the dependence of
the solutions as a function of V (the magnitude of the
electric YM potential at infinity) for fixed (!0, rh, �h).
In this case the solutions share a number of common
properties with the rotating regular counterparts. In
Fig. 10 we plot the mass, angular momentum, electric
charge, and the contribution of the electric field to the total
mass as a function of V for a fixed value of !0. As seen in
this picture, the mass, angular momentum, and electric

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2

V

M

J

Me

Qe

rh=1 ω0=1.31 Ωh=0.01

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0  0.5  1  1.5  2

T

S

FIG. 10. The mass M, the angular momentum J, the electric
charge Qe, and the contribution Me of the electric field to the
total energy of the system of non-Abelian black hole rotating
solutions are shown as a function on the parameter V for fixed
values of rh, !0, and �h. Also shown are the entropy and the
Hawking temperature.
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charges increase with V and we find again a maximal value
for the magnitude of the electric potential at infinity.

The functions H2 and H4 are always nodeless, although
they have a small � dependence, while H1, H3, and the
electric potentials depend on �-angle in a complicated way.
The metric functions f, l, m present a rather small angular
dependence, the metric function � presenting a strong
dependence of � for small values of V.

For all configurations, the energy density of the solutions
has a strong peak along the � axis, and it decreases
monotonically along the symmetry axis. In contrast to
the rotating regular case, we found no locally rotating
solutions with vanishing total angular momentum,
although such configurations are likely to exist.

Further details on these rotating black hole solutions, as
well as a discussion of the dependence of the solutions on
the value of the cosmological constant, will be presented
elsewhere.

IV. A COMPUTATION OF PHYSICAL QUANTITIES

A. The counterterm formalism

The mass, angular momentum, and action of the solu-
tions discussed in Sec. III is found by using the counter-
term formalism proposed by Balasubramanian and Kraus
[34] to compute conserved quantities for a spacetime with
a negative cosmological constant. This technique was in-
spired by AdS/CFT correspondence and consists in adding
suitable counterterms Ict to the action. These counterterms
are built up with curvature invariants of a boundary @M
(which is sent to infinity after the integration) and thus
obviously they do not alter the bulk equations of motion.

The following counterterms are sufficient to cancel di-
vergences in four dimensions [35], for vacuum solutions
with a negative cosmological constant (to agree with the
standard conventions in literature, we set the usual factors
1=16�G in the action principle (4) and 1=8�G for the
Gibbons-Hawking boundary term)

 Ict � �
1

8�G

Z
@M

d3x
�������
�h
p 	

2

‘
�
‘
2
R


: (41)

Here R is the Ricci scalar for the boundary metric h, while
‘2 � �3=� � 1.

Using these counterterms one can construct a
divergence-free stress tensor from the total action I �
Ibulk � Isurf � Ict by defining

 T�� �
2�������
�h
p

�I
�h��

�
1

8�G

�
K�� � Kh�� �

2

‘
h�� � ‘E��

�
; (42)

where Eab is the Einstein tensor of the intrinsic metric hab.
The efficiency of this approach has been demonstrated in a
broad range of examples, the counterterm subtraction
method being developed for its own interest and applica-

tions. If there are matter fields on M additional counter-
terms may be needed to regulate the action (see e.g. [36]
for such an example in EYM-dilaton theory). However, we
find that for a pure SU(2) non-Abelian matter content in
four dimensions, the prescription (41) removes all diver-
gences (a different situation is found for the five-
dimensional AAdS non-Abelian solutions where the coun-
terterm method fails and logarithmic divergences are pre-
sented in the total action and the expression of mass [16]).

Having obtained the boundary energy-momentum ten-
sor, one can determine the conserved charges correspond-
ing to the Killing vectors as explained in [34,35]. The usual
prescription is to first pick a spacelike surface � on the
boundary with metric �ab. The boundary metric is written
in the following form [34]
 

h��dx�dx� � �N2
�dt

2 � �ab�dxa � Na
�dt��dxb � Nb

�dt�:

(43)

The conserved charge associated to a symmetry generated
by the Killing vector �� is

 Q� �
Z

�
d2x

����
�
p

T��n���; (44)

where n� is a timelike unit normal to �.
The conserved charge associated with time translation is

the mass, the angular momentum being the charge associ-
ated with the Killing vector @’.

B. n � 1 static configurations

We consider first the case of n � 1 spherically symmet-
ric and topological black hole static configurations. The
results we find by using the asymptotic expressions (17) for
the boundary stress tensor at large r are
 

T�� �
1

8�G
‘M
r
�

1

32�G
‘�‘2 � 4�w2

0 � k�
2�

r2 �O
�

1

r3

�
;

T’’ �
1

8�G
‘M
r
f2
k��� �

1

32�G
‘�‘2 � 4�w2

0 � k�
2�

r2 f2
k���

�O
�

1

r3

�
;

Ttt �
1

8�G
2M
‘r
�

1

32�G
‘4 � 4‘2�w2

0 � k�
2 � 8C2

1

r2

�O
�

1

r3

�
: (45)

Thus the leading order terms in this expression boundary
stress tensor are similar to the (topological-)
Schwarzschild-AdS4 black holes. The presence of non-
Abelian matter is manifest in the second order of this
expansion only.

It can easily be verified that the mass of these solutions
computed from (44) is given byMVk=4�G, where Vk is the
area of the surface �. Obviously, these solutions have a
vanishing angular momentum.
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C. Axially symmetric configurations

We consider now the general case of an axially sym-
metric, rotating spacetime described by the line element
(21). All relevant expressions can easily be derived by
using the asymptotic form of the metric functions (19)
and (22). The boundary metric in this case is the Einstein
universe, ds2 � ‘2�d�2 � sin2�d’2� � dt2.

One finds in this way the large-r expansion
 

T�� � �
1

8�G‘r

�
2f1

3
�

6f2

17
sin2�

�
�O

�
1

r2

�
;

T’’ � �
sin2�

8�G‘r

�
2f1

3
�

18f2

17
sin2�

�
�O

�
1

r2

�
;

Ttt � �
1

8�G‘3r

�
4f1

3
�

24f2

17
sin2�

�
�O

�
1

r2

�
;

Tt’ � �
3

16�G‘r
��j1 � j2sin2��sin2�� �O

�
1

r2

�
:

(46)

Direct computation shows that this stress tensor is trace-
less. This result is expected from the AdS/CFT correspon-
dence, since even dimensional bulk theories with �< 0
are dual to odd dimensional CFTs that have a vanishing
trace anomaly. The corresponding expressions for the static
case are found by taking j1 � j2 � 0 in the above rela-
tions. For spherically symmetric configuration found
within the metric ansatz (19), f2 � 0 and the angular
dependence vanishes, as expected.

By using this relation, we find that the mass and angular
momenta of the solutions are given by the relations (20)
and (23), respectively. For static solutions, the parameter
f2 describes the deviation of the solutions from the spheri-
cal symmetry.

D. Euclidean action and entropy

One can use the counterterm expression (41) to compute
the regularized gravitational action and to prove that the
entropy of the AAdS hairy black holes is one quarter of the
event horizon area.

Here we start by constructing the path integral [23]

 Z �
Z
D�g�D���e�iI�g;��; (47)

integrating over all metrics and matter fields between some
given initial and final hypersurfaces, � corresponding to
the SU(2) potentials. By analytically continuing the time
coordinate t! i	, the path integral formally converges,
and in the leading order one obtains

 Z ’ e�Icl ; (48)

where Icl is the classical action evaluated on the equations
of motion of the gravity/matter system. Since the
Euclidean approach becomes problematic for non-
Abelian solutions with an electric potential [37], we restrict
here to compute the action of static, purely magnetic
solutions. We should also remark that the variation of the

action (4) gives the correct equations of motion only if the
gauge potential A� is held fixed on the boundary @M. This
imposes the boundary condition �A� � 0 on @M, which
for purely magnetic solutions fixes the value of magnetic
charge.

The globally regular solutions have an arbitrary period-
icity � of the Euclidean time coordinate. In the black hole
case, the value of� is found by demanding regularity of the
Euclideanized manifold as r! rh. It can easily be verified
that the Hawking temperature expression TH � 1=� found
in this way coincides with that given by the surface gravity
computation.

The physical interpretation of this formalism is that the
class of regular stationary metrics forms an ensemble of
thermodynamic systems at equilibrium temperature TH
[38]. Z has the interpretation of partition function and we
can define the free energy of the system F � ���1 logZ.

Therefore

 logZ � ��F � S� �M; (49)

or

 S � �M� Icl; (50)

straightforwardly follows, with S the entropy of the
system.

To compute Icl, we make use of the Einstein equations,
replacing the R� 2� volume term with 2Rtt � 16�GTtt .
For a purely magnetic ansatz (At � 0), the term Ttt exactly
cancels the matter field Lagrangian in the bulk action
Lm � �1=2 Tr�F��F

���. The Ricci component Rtt is com-
puted by integrating the Killing identity rarbKa �
RbcKc, for the Killing vector Ka � �at . The divergent
contribution given by the surface integral term at infinity
in Rtt is also canceled by Isurface � Ict, yielding a finite
expression of the action. For the metric ansatz (24) describ-
ing spherically symmetric and topological black holes
static configurations one finds

 Icl � �
MVk
4�
�

r2
hVk

16�G
(51)

while the corresponding expression for static axially sym-
metric configurations described by the metric ansatz (18) is

 Icl � �
�

�

3G

�
2f1

3
�

8f2

17

�
�
rh
4G

�
1�

�r2
h

3

�

�
Z �

0
d� sin�

����������
l2���

q �
: (52)

The corresponding expressions in the globally regular case
are found by taking rh ! 0 in the above relations.

Replacing now in (50) (where M is the mass-energy
computed in Section III B 2 and III B 3, we find S � 0 in
the absence of an event horizon, while the entropy of the
black hole solutions is one quarter of the event horizon
area, as expected.
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E. The thermodynamics of n � 1 static black holes

Based on the numerical results presented in Sec. III, we
attempt here a discussion of the thermodynamic properties
the � � �3 EYM black solutions. To our knowledge these
have not been previously considered.

For simplicity, we will restrict our considerations to n �
1 static configurations (i.e. spherically symmetric or topo-
logical black holes). Thus we shall analyze black hole
thermodynamics in a canonical ensemble, holding the
temperature T and the magnetic potential at the boundary
at infinity (i.e. the magnetic charge) fixed. The associated
potential is the Helmholz free energy F.

The response function whose sign determines the ther-
modynamic stability is the heat capacity

 C � T
�
@S
@T

�
Qm

: (53)

Stability follows fromC  0 given the fact that black holes
radiate at higher temperatures when they are smaller.

The behavior of the specific heat C can be easily under-
stood from the state equation S � S�T� at fixed magnetic
charge Qm. In Fig. 11 we plot these curves for several
values of Qm for k � 1, 0, and �1 black holes with unit
winding number.

For k � 1, the usual Schwarzschild-AdS behavior is
reproduced: the curves first decrease toward a minimum,
corresponding to the branch of small unstable black holes,
then increase along the branch of large stable black holes.
This is in strong contrast with the behavior of the Abelian
RNAdS solutions, which present only one branch and
approach the extremal limit as T ! 0 [see Fig. 11(a)].
Note that the k � 1 solutions with small values around
zero of the gauge potential at infinity appear to present a
complicated thermodynamic structure. However these so-
lutions are unstable to small perturbations and we will not
consider them here.

As seen in Fig. 11(b) and 11(c), the heat capacity (53) is
always positive for hairy black holes with zero or negative
curvature horizon, (this appears to be valid for any w0). As
a result, the k � 0, 1 topological black hole solutions are
always thermodynamically locally stable.

It is instructive to plot also the free energy F � I=� as a
function of temperature and various values of the magnetic
charge (Fig. 12). One can see again that for k � 1 there are
always two black hole radii associated with each tempera-
ture, for any value of Qm. Correspondingly, the smaller
branch is unstable having negative specific heat. However,
the action of the k � 1 solutions becomes positive for some
critical value of the event horizon radius, for any value of
the non-Abelian magnetic charge.

In the vacuum case, this indicates the existence of a
phase transition. When the free energy is negative, the
Schwarzschild-AdS black hole phase is dominant over
the thermal AdS background phase. When the free energy
changes its sign, the Hawking-Page phase transition be-

tween the AdS black hole and the thermal AdS background
takes place [39].

As seen in Fig. 8, for k � 1 monopole configurations the
globally regular solution has minimal energy in its asymp-
totic class of solutions (with a given Qm) and so is the
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FIG. 11. The entropy is plotted as a function of temperature for
k � 1, 0, �1 black hole monopole solutions and several values
of the magnetic potential at infinity. Here and in Fig. 12(a), the
k � 1 curve with w0 � 0 corresponds to RNAdS Abelian black
holes with unit magnetic charge.
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thermal background. Thus a phase transition should exist
between the large black hole solutions and the correspond-
ing globally regular configurations.

In the absence of matter fields, the action of k � 0, �1
black holes is always negative. Therefore these configura-
tions can also be globally stable and there is no phase

transition. The inclusion of YM fields changes this behav-
ior and the low temperature solutions have a positive
action.

F. On the boundary CFT

Restricting to static solutions, we find from ��� �

limr!1
‘2

r2 h�� the following background metric upon
which the dual field theory resides

 ���dx�dx� � ‘2�d�2 � f2
k���d’

2� � dt2: (54)

For k � 1 this describes a 2� 1-dimensional Einstein
universe; for k � 0 it is 2� 1 flat space, while k � �1
describes the three-dimensional open static universe.

It would be desirable to compute some quantities in this
background and to compare the results with the bulk
predictions. The main problem is that, even in the vacuum
case, the AdS4=CFT3 correspondence is much less under-
stood that the AdS5=CFT4 case. For example, in [40],
Klebanov and Polyakov proposed a duality between a
theory of massless higher spin gauge fields in AdS4 space-
time on the one hand and the O�N� vector model at large N
in three dimensions on the other. However, although the
details of the boundary CFT will depend on the details of
the bulk supergravity theory, the generic properties are
expected to be independent of the precise features of the
theory.

Here we should remark that as found in Sec. III, the non-
Abelian matter field in the bulk does not approach asymp-
totically a pure gauge configuration. For static solutions,
the boundary form of the unit winding number non-
Abelian potential is

 A�0� �
1

2

�
!0	1d��

�
d lnfk���
d�

	3 �!0	2

�
fk���d’

�
;

(55)

with w0 a real constant. The corresponding boundary
gauge field expression for k � 1 and a winding number
n > 1 is

 A�0� � 1
2�1� w0�f	

n
’d�� n sin�	n�d’g; (56)

where 	n’��; ’�, 	n���;’� are suitable combinations of the
Pauli matrices, whose form in given in Appendix A. One
can see that the winding number enters the boundary gauge
field expression.

From the AdS/CFT correspondence, we expect the non-
Abelian hairy black holes to be described by some thermal
states in a dual theory formulated in a background given by
(54). The spherically and axially symmetric solitons will
correspond to zero-temperature states in the same theory.
This CFT will interact with a background SU(2) field given
by (55) and (56).

As conjectured in Ref. [22], the dual field theory is the
field theory of a stack of N coincident M2 branes with a
background external field coupled to the R-symmetry cur-
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FIG. 12. The free energy F � M� TS is plotted as a function
of temperature for k � 1, 0, �1 black hole monopole solutions
and several values of the magnetic potential at infinity.
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rent. The bosonic sector of the Lagrangian for a single M2
brane is [22]

 I �
Z
d3x

��������
��
p

�Da�Da�� 1
8R�2�; (57)

where D � @� iA�0� is the gauge covariant derivative, and
R is the Ricci scalar of the boundary CFT metric �ab.

Computing quantum effects for a generic SU(2) back-
ground field is a difficult task. Simpler results are found
only for the case w0 � 0. For spherical symmetry, the
expressions (55) and (56) describe the field of a Dirac
monopole with n units of magnetic charge

 A�0� �
	3

2
n cos�d’: (58)

(For n > 1 this is proven by transforming the gauge con-
nection (A5) to a special gauge such that A’ has only a 	3

component.)
A computation of the effective action Ieff for a charged

singlet scalar field propagating in a zero-temperature
Euclideanized d � 3 Einstein-universe background and
interacting with the U(1) field given by (58) is presented
in Appendix E, based on a zeta-function approach. From
the basic relation (1), we expect Ieff to present a qualitative
agreement with the corresponding bulk computation. First
we note that a straightforward evaluation of (E3) and (E14)
gives positive values for Ieff�n�, as expected from the bulk
results (with the bulk action of globally regular solutions
IB � �M). It is also interesting to compute the ratio
Ieff�n�=Ieff�1� and to compare with the bulk results. One
finds e.g. Ieff�2�=Ieff�1� ’ 3:89, Ieff�3�=Ieff�1� ’ 8:52 while
IB�2�=IB�1� ’ 2:46, IB�3�=IB�1� ’ 4:72. The discrepancy
between the bulk and boundary results increases with n.

However, on the AdS side, there are two distinct bulk
configurations with zero temperature and magnetic charge
n. First, there is the non-Abelian soliton solution with
charge n discussed in the previous section. The second
solution is an extremal RNAdS black hole with zero tem-
perature and the same value of magnetic charge. It is not
clear how the CFT knows to distinguish between these
different bulk solutions. In any case, this is not possible
within the model (57).

There is also another problem with the action principle
(57). Since the d � 4 Einstein-Maxwell system has
electric-magnetic duality [41], one expects this duality to
also be manifest on the CFT side. However, its realization
in d � 3 is a rather subtle question (see e.g. the discussion
in [42]). For example, the U(1) dual of (58) is a A�0� �

	3cdt=2 with c2 � n
���������������������������������������������
��1�

�������������������
1� 12n2
p

�=6
q

for an ex-
tremal RNAdS solution. We can also perform a computa-
tion similar to that in Appendix E, for an electric A�0�. One
can see that, in the zero-temperature limit, the parameter c
will not enter the final results, which are similar to the
vacuum case. Thus we conclude that the model (57) is too

simple to mimic the expected features of the boundary
CFT.

However, we can use the AdS/CFT ‘‘dictionary’’ to
predict qualitative features of a quantum field theory in
the background (54). For example, the expectation value of
the dual CFT stress tensor can be calculated using the
relation [43]

 

��������
��
p

�abh	bci � lim
r!1

�������
�h
p

habTbc: (59)

Applying this prescription to the n � 1 static solutions, we
find the standard form for the stress tensor of a (2� 1)-
dimensional CFT

 h	abi �
M

8�‘2 �3u
aub � �ab�; (60)

where ua � �at .
A similar computation can be done for an axially sym-

metric configuration in the bulk. Considering the more
general rotating case, we find the field theory stress tensor

 h	abi � h	
a
bi
�st� � h	abi

�rot�; (61)

where h	abi
�st� is a contribution which survives in the static

limit

 h	abi
�st� � A

1 0 0
0 1 0
0 0 �2

0@ 1A� B 1 0 0
0 3 0
0 0 �4

0@ 1A; (62)

where

 A �
1

8�‘2

�
M�

8f2

17

1

G‘2

�
;

B � �
1

8�G‘4

6f2

17
sin2�;

(63)

and x1 � �, x2 � ’, x3 � t. Here M, f2 are continuous
variables which encode the bulk parameters. h	abi

�rot� is the
part of the CFT induced by the rotation in the bulk and has
the expression
 

h	abi
�rot� � C

0 0 0

0 0 1

0 1 0

0BB@
1CCA; with

C �
1

8�G
3‘2

2
�j1 � j2sin2��sin2�:

(64)

The CFT stress tensor is covariantly conserved and man-
ifestly traceless. Even for static configurations in the bulk,
a winding number n > 1 of the bulk configurations implies
f2 � 0 and thus a �-dependence of the dual theory stress
tensor (although the boundary metric is spherically sym-
metric). This is a unique property of AAdS gravitating non-
Abelian configurations, since the boundary stress tensor of
an Abelian solution with the same global charges has f2 �
0. This also suggests the dual theory should also be sensi-
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tive to the integer n, and is much more complex than the
simple model (57).

The form (61) of the dual CFT stress tensor is puzzling
from yet another point of view, since there is no global
charge associated with the parameter f2. However, the
expression (61) means that the dual CFT is able to discern
between n > 1 non-Abelian and embedded Abelian bulk
solutions with the same set of boundary data.

V. CONCLUSIONS

In this paper we have discussed the basic features of the
non-Abelian solutions of an EYM-SU(2) theory with a
negative cosmological constant � � �3g2 (where g is
the gauge coupling constant of the YM theory). This theory
corresponds to a consistent truncation of d � 4N � 4
SO(4) gauged supergravity. Except for the NUT-charged
solutions, we have considered the � � �3g2 version of all
monopole configurations previously discussed in the lit-
erature for a generic value of the cosmological constant.
This includes both particlelike globally regular and black
hole solutions. These configurations are asymptotically
AdS, possessing a regular origin or a regular event horizon.
Apart from spherically symmetric solutions (or topological
black holes) we presented arguments for the existence of
� � �3g2 static, axially symmetric solutions. These con-
figurations have no counterparts in the Abelian theory.
They generalize to higher winding number the known
spherically symmetric solutions, presenting a nontrivial
angle-dependence of matter fields and metric functions.

The main feature of the EYM AAdS configurations is
the existence of a nonvanishing non-Abelian magnetic flux
on the sphere at infinity. The thermodynamics of the static
black hole solutions has been also discussed to some ex-
tent. Apart from static solutions, we discussed AAdS con-
figurations with a nonvanishing angular momentum which
have not been presented before in the literature.

All known EYM asymptotically flat configurations are
likely to present � � �3g2 generalizations. Thus we ex-
pect the existence AAdS counterparts of the EYM configu-
rations discussed in [44], satisfying a complicated angle-
dependent set of boundary conditions at infinity. It would
be interesting to construct AAdS non-Abelian solutions
which possess only discrete symmetries [45] and to find
the corresponding boundary stress tensor.

One should remark that all solutions discussed here may
be uplifted to d � 11 supergravity. However, the solutions
we discussed here are generically not supersymmetric.
Supersymmetric solutions are likely to exist, but we expect
them to present naked singularities (this is the case of the
Abelian counterparts with the same amount of symmetry).
Note that the planar Bogomol’nyi-Prasad-Sommerfield
(BPS) solution of the � � �3g2 EYM model found in
closed form in [12] has a naked singularity.

Apart from a discussion of the physical properties of
various bulk EYM configurations, we attempted a prelimi-

nary discussion of these solutions in an AdS/CFT context.
The � � �3g2 EYM configurations should give us infor-
mation about the structure of a dual CFT in a background
SU(2) field. However, a naive computation of the effective
action of a charged scalar field in a U(1) magnetic back-
ground field gave some inconclusive results. Further
progress in this direction would require a better knowledge
of the structure of the dual theory defined on the 2�
1-dimensional boundary metric. The results we discussed
in Sec. IV appear to indicate that the dual CFT is able to
distinguish between various bulk solutions with the same
set of boundary data at infinity.

We think that these issues deserve further study, which
should lead to a deeper understanding of the AdS/CFT
correspondence.
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APPENDIX A: THE AXIALLY SYMMETRIC
GAUGE FIELD ANSATZ

The construction of an axially symmetric YM ansatz has
been discussed by many authors starting with Manton [46]
and Rebbi and Rossi [47]. The most general axially sym-
metric YM-SU(2) ansatz contains nine magnetic and three
electric potentials and can be easily obtained in cylindrical
coordinates x� � ��;’; z�

 A� �
1
2A
���
� ��; z�	n� �

1
2A
�’�
� ��; z�	n’ �

1
2A
�z�
� ��; z�	nz ;

(A1)

where the only ’-dependent terms are the SU(2) matrices
(composed of the standard (	1, 	2, 	3) Pauli matrices)

 	n� � cosn’	1 � sinn’	2;

	n’ � � sinn’	1 � cosn’	2; 	nz � 	3:
(A2)

This ansatz contains an integer n, representing the winding
number with respect to the azimuthal angle ’.

Transforming to spherical coordinates r, �,’, with (� �
r sin�, z � r cos�), it proves convenient to introduce, with-
out any loss of generality, a new SU(2) basis (	nr , 	n�, 	n’),
with

 	nr � sin�	n� � cos�	nz ; 	n� � cos�	n� � sin�	nz :

(A3)

The general expression (A1) takes the following form in
spherical coordinates
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 A� �
1
2A
�r�
� �r; ��	nr �

1
2A
���
� �r; ��	n� �

1
2A
�’�
� �r; ��	n’; (A4)

where Aa�dx� � Aardr� Aa�d�� A
a
’d’� Aat dt. This an-

satz is axially symmetric in the sense that a rotation around
the z-axis can be compensated by a gauge rotation L’A �
D� [24], with � being a Lie-algebra valued gauge func-
tion. For the ansatz (A4), � � n cos�	nr=2� n sin�	n�=2.
Therefore we find F�’ � D�W, where W � A’ ��.

We use in this paper a reduced YM ansatz, employed
also in all previous studies on EYM solutions, with five of
the gauge potentials taken identically zero

 A�r�r � A���r � A�r�� � A���� � A�’�’ � A�’�t � 0:

The consistency of this reduction can easily be proven at
the level of the YM field equations. A suitable parametri-
zation of the six nonzero components of Aa� which factor-
izes the trivial �-dependence is [33]

 

A�dx
� �

	
H1

r
dr� �1�H2�d�


 	n’
2

� n sin�
	
H3

	nr
2
� �1�H4�

	n�
2


�
d’�

�

r
dt
�

�

	
H5

	nr
2
�H6

	n�
2



dt: (A5)

One may consistently take � � 0 in this ansatz; however
the inclusion of this metric function simplifies the set of
boundary conditions for the rotating configurations. For
� � H5 � H6 � 0, the static axially symmetric ansatz
used in previous studies on AAdS static EYM solutions
is recovered; further, by taking n � 1, H1 � H3 � 0,
H2 � H4 � w�r� one finds a spherically symmetric static
ansatz which reduces to (13) after a suitable gauge
transformation.

The ansatz (A5) satisfies also some additional discrete
symmetries [47,48] (in particular the parity reflection sym-
metry) and it is also invariant under Abelian gauge trans-
formations U

 U � exp
�
i
2
	n’��r; ��

�
: (A6)

To fix this residual gauge degree of freedom we choose the
usual gauge condition [32,33]

 r@rH1 � @�H2 � 0:

The nonvanishing components of the field strength tensor
are given by

 

F’r� � �
1

r
�H1;� � rH2;r�;

Frr’ � �
sin�
r
�rH3;r �H1H4�;

F�r’ �
sin�
r
�rH4;r �H1�H3 � cot���;

Fr�’ � � sin��H3;� �H3 cot��H2H4 � 1�;

F��’ � sin��H4;� � cot��H4 �H2� �H2H3�;

Frtr � �
1

r

	
rH5;r �H1H6 �

�

r
sin��H1�1�H4� �H3

� rH3;r� ��;r sin�H3



;

F�rt �
1

r

	
rH6;r �H1H5 �

�

r
sin��H1H3 � �1�H4�

� rH4;r� ��;r sin��1�H4�



;

Fr�t �
	
H5;� �H2H6 �

�

r
sin��H2�1�H4� � cot�H3

�H3;�� �
�;�

r
sin�H3



;

F��t �
	
H6;� �H2H5 �

�

r
sin��H2H3 � cot��1�H4�

�H4;�� �
�;�

r
sin��1�H4�



;

F’’t � sin�
	
H5H4 �H6�H3 � cot��

�
�

r
sin��cot��1�H4� �H3�



: (A7)

One can easily verify the matter ansatz is compatible with
the metric form (21), since the energy-momentum tensor
(7) satisfies Ttr � Tt� � T’r � T’� � 0.

APPENDIX B: BOUNDARY CONDITIONS

1. Static axially symmetric solutions

These solutions are obtained for a truncation At � 0 of
the ansatz (A5) and a metric given by (18).

To obtain AAdS axially symmetric configurations with a
regular origin or event horizon and with the proper sym-
metries, we must impose the appropriate boundary con-
ditions. The boundaries of the system are the origin/event
horizon and spacelike infinity, the z-axis and, because of
parity reflection symmetry satisfied by the matter fields, the
�-axis. The boundary conditions at infinity and along the z-
and the �-axis (i.e. for � � 0, �=2) are similar for both
globally regular and black hole solutions.

We start by setting the boundary conditions at infinity
compatible with the AAdS assumption. For the metric
functions one imposes
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 fjr�1 � mjr�1 � ljr�1 � 1; (B1)

while the boundary conditions for the matter part are

 H2jr�1 � H4jr�1 � !0; H1jr�1 � H3jr�1 � 0;

(B2)

where there are no obvious conditions on the value of !0.
For a solution with parity reflection symmetry (the only
type we consider in this paper), the boundary conditions
along the axes are
 

H1j��0;�=2 � H3j��0;�=2 � 0;

@�H2j��0;�=2 � @�H4j��0;�=2 � 0;

@�fj��0;�=2 � @�mj��0;�=2 � @�lj��0;�=2 � 0:

(B3)

Therefore we need to consider the solutions only in the
region 0 � � � �=2. Regularity on the z-axis requires also

 H2j��0 � H4j��0; mj��0 � lj��0: (B4)

For globally regular solutions, the boundary conditions
imposed at the origin are

 @rfjr�0 � @rmjr�0 � @rljr�0 � 0;

H2jr�0 � H4jr�0 � 1; H1jr�0 � H3jr�0 � 0:
(B5)

The boundary conditions satisfied by the black hole solu-
tions at the event horizon are

 fjr�rh � mjr�rh � ljr�rh � 0; H1jr�rh � 0;

@rH2jr�rh � @rH3jr�rh � @rH4jr�rh � 0:
(B6)

2. Rotating solutions

These solution are found for metric form (21) and the
YM ansatz (A5). Similar to the static case, we consider
solutions with parity reflection symmetry i.e. 0 � � �
�=2.

A systematic analysis reveals that the boundary condi-
tions for the magnetic potentials H1; . . . ; H4 and the metric
functions f, l,m presented in the static case remain valid in
the presence of rotation. For the supplementary functions
H5, H6, � we imposed

 �jr�1 � 0; H5jr�1 � V cos�;

H6jr�1 � V sin�
(B7)

at infinity, and

 @��j��0;�=2 � 0; @�H5j��0 � H5j���=2 � 0;

H6j��0 � @�H6j���=2 � 0
(B8)

on the axis. For globally regular solutions, the following set
of boundary conditions is imposed at the origin

 H5jr�0 sin��H6jr�0 cos� � 0;

@rH5jr�0 cos�� @rH6jr�0 sin� � 0; �jr�0 � 0:

(B9)

The black hole solutions are found imposing at the event
horizon
 

rhH5jr�rh � cos��h � 0; rhH6jr�rh � sin��h � 0;

�jr�rh � �h: (B10)

APPENDIX C: GENERAL RELATIONS

Solutions of the field equations are also classified by the
non-Abelian electric and magnetic charges Qe and Qm.
The definition of conserved currents and charges in a non-
Abelian Yang-Mills theory is a problem approached by
different authors in the last decades (see e.g. [49–52]),
with various solutions. A gauge invariant definition for the
non-Abelian charges was proposed in [51] (see also [33])

 Qe �
1

4�

I
d�d’j ~F�’j; Qm �

1

4�

I
d�d’jF�’j;

(C1)

where the vertical bars denote the Lie-algebra norm and the
integrals are evaluated as r! 1. The expression for the
magnetic charge implied by this definition is Qm � jk�
!2

0jVk=4� for spherically symmetric and topological black
hole solutions and Qm � nj1�!2

0j for axially symmetric
configurations.

The magnetic charge defined in this way is equal (up to a
sign) to the expression found by using the usual (gauge
dependent) definition

 Qm �
1

4�

Z
dSk

�������
�g
p

Trf ~FktTg; (C2)

(with T � 	3 for the gauge ansatz (27) and T � 	r for the
axially symmetric generalization (A5)).

In evaluating the electric charge expression one uses the
asymptotic expansion of the electric potential

 H5 � cos��V � �c1sin2�� c2�=r�;

H6 � sin��V � �c3sin2�� c4�=r�;
(C3)

(with ci real constants).
The energy density of the solutions is given by the

tt-component of the energy-momentum tensor T��. Of in-
terest here is the electric part of this component,
TrfF�tF�tg and its integral

 �Me �
Z

TrfF�tF
�tg

�������
�g
p

d3x; (C4)

which measures the contribution of the non-Abelian elec-
tric field to the mass/energy of the system. Similar to the
purely Abelian part, by using the YM Eqs. (8) this integral
can be expressed as a total divergence
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 �Me �
Z

TrfF�tF
�tg

�������
�g
p

d3x

�
I
1

TrfAtF
�tgdS� �

I
eh

TrfAtF
�tgdS�: (C5)

Thus, for globally regular configurations, a vanishing mag-
nitude of the electric potentials at infinity implies a purely
magnetic solution. In contrast, one finds rotating black hole
solutions with V � 0 which are supported by the event
horizon contribution.

Here we remark that the angular momentum of any
solution admits also an expression in terms of surface
integrals of the matter fields [28]. This can easily be proven
by using the existence of a potential W (9) and the YM
equation
 

J �
Z
Tt’

�������
�g
p

d3x �
Z

2 TrfFr’F
rt � F�’F

�tg
�������
�g
p

d3x

�
I
1

2 TrfWF�tgdS� �
I
eh

2 TrfWF�tgdS�: (C6)

The above relation takes a particularly simple form for
globally regular configurations. By using the gauge field
asymptotics, the total angular momentum in terms of mat-
ter field coefficients is

 J �
4�n

3

�
�

2

5
c1 � c2 �!0

�
8

5
c3 � 2c4

��
: (C7)

In the black hole case, (C7) should be supplemented with
the event horizon contribution. This relation can also be
used to test the accuracy of the numerical results.

APPENDIX D: NUMERICAL ALGORITHM

The spherically symmetric and topological black hole
solutions can easily be found by using a standard differen-
tial equations solver. Starting with a suitable set of bound-
ary conditions at the origin/event horizon the equations are
integrated towards r! 1 using an automatic step proce-
dure and accuracy 10�12. The integration stops when the
AdS spacetime asymptotics are reached with a prescribed
accuracy.

The situation is much more complicated for axially
symmetric configurations, which requires the solving of
seven (in the static case) or ten nonlinear partial differential
equations. All axially symmetric solutions presented in this
paper have been found by using a similar approach to that
employed by Kleihaus and Kunz in their studies of AF non-
Abelian configurations. We use in the numerical procedure
a suitable combination of the EYM equations such that the
differential equations for the metric and gauge functions
are diagonal in the second derivatives with respect to r.
These equations are then discretized on a (r, �) grid with
Nr � N� points. The angular coordinate � runs from 0 to
�=2 and the radial coordinate goes from rh to some large
enough value rmax (typically rmax ’ 2� 103 � 5� 103).
For any type of solution, we tested that the relevant quan-

tities are insensitive to the cutoff value rmax. The grid
spacing in the r-direction is nonuniform, while the values
of the grid points in the angular direction are given by �k �
�k� 1��=�2�N� � 1��. Typical grids have sizes 150� 30
points. We monitored also the remaining Einstein equa-
tions which are not directly solved, assuring that they are
satisfied with a reasonable accuracy.

In this scheme, a new radial variable is introduced which
maps the semi infinite region �rc;1� to the closed region
[0, 1] (with rc � 0 or rh). For the globally regular solu-
tions, our choice for this transformation was x � r=�r�
1�. For the derivatives this leads to the substitutions
 

rF;r ! x�1� x�F;x;

r2F;r;r ! x2��1� x�2F;x;x � 2�1� x�F;x�
(D1)

for any function F in the differential equations. For the
black hole solutions, we employed a new coordinate x
defined as x � 1� rh=r, which leads to the following
substitutions in the differential equations
 

rF;r ! �1� x�F;x;

r2F;r;r ! �1� x�
2F;x;x � 2�1� x�F;x

(D2)

for any function F.
The resulting system is solved iteratively until conver-

gence is achieved. All numerical calculations for axially
symmetric configurations are performed by using the pro-
gram FIDISOL (written in Fortran), based on the iterative
Newton-Raphson method. A detailed presentation of the
FIDISOL code is presented in [53]. This code requests the
system of nonlinear partial differential equations to be
written in the form P�r; �; u; ur; u�; ur�; urr; u��� � 0,
(where u denotes the unknown functions) subject to a set
of boundary conditions on a rectangular domain. The user
must deliver to FIDISOL the equations, the boundary
conditions, the Jacobian matrices for the equations and
the boundary conditions, and some initial guess functions.
The numerical procedure works as follows: for an approxi-
mate solution u�1�, P�u�1�� does not vanish. Next step is to
consider an improved solution u�2� � u�1� � �u, suppos-
ing that P�u�1� � �u� � 0. The expansion in the small
parameter �u gives in the first order 0 � P�u�1� ��u� �
P�u�1�� � @P

@u �u
�1���u. This equation can be used to deter-

mine the correction �u�1� � �u. Repeating the calcula-
tions iteratively (u�3� � u�3� � �u�2� etc.), the approximate
solutions will converge, provided the initial guess solution
is close enough to the exact solution. The iteration stops
after i steps if the Newton residual P�u�i�� is smaller than a
prescribed tolerance. Therefore it is essential to have a
good first guess, to start the iteration procedure. Our strat-
egy therefore is to use a known solution as guess and then
vary some parameter to produce the next solution.

To obtain axially symmetric solutions, we start always
with the n � 1 solution as initial guess and increase the
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value of the relevant parameters slowly. For static solu-
tions, the parameter we vary is the winding number n. The
physical values of n are integers. Rotating configurations
are found e.g. by increasing the magnitude of the electric
potential at infinity (for black holes, we vary also �h). The
iteration is done in small steps and eventually converges
with a good enough accuracy. Repeating the procedure one
obtains in this way solutions for requested values of the
relevant parameters. For some of the configurations, we
interpolate the resulting configurations and use them as a
starting guess on a finer grid.

FIDISOL automatically provides also an error estimate
for each function, which is the maximum of the discretiza-
tion error divided by the maximum of the function [53].
For the solutions discussed in this paper, the typical nu-
merical error for the functions is estimated to be on the
order of 10�3. The output of the code was analyzed and
visualized mainly with MATHEMATICA.

APPENDIX E: CHARGED SCALAR FIELD IN AN
EINSTEIN UNIVERSE WITH A U(1) DIRAC

MONOPOLE BACKGROUND

We consider the following action principle for a non-
minimally coupled scalar field interacting with a back-
ground U(1)-field A�0�

 I��� � �
Z
�D��D��
 �M2��
 � �R��
�

�
���������
g�x�

q
d3x; (E1)

where D � @� iA�0�, M is the scalar field mass, and �
determines the coupling with the scalar curvature R �
2k=‘2.

The zeta-function approach implies the computation of
the eigenfunctions �N and the eigenvalues �N of the
differential second-order self-adjoint operator A �
�D�D� �M2 � �R. Thus we consider the series with
s 2 C (the prime on the sum means that any possible
null eigenvalues are omitted)

 ��sjA� �
X
N

0��sN : (E2)

As is well known, this series converges provided Re s >
D=2. It is possible to continue the above sum into a
meromorphic function of s that is regular at s � 0 [54].
In a path-integral approach, the effective action for a scalar
field can be formally expressed as the functional determi-
nant of the operator A as

 Ieff � �
1
2 ln det�A=�2�; (E3)

where � is an arbitrary renormalization mass scale coming
from the path-integral measure. This determinant however
is a formally divergent quantity and needs to be
regularized.

In a zeta-function renormalization framework, the regu-
larized determinant reads

 ln det�A=�2� � �� 0�0jA� � ��0jA� ln�2: (E4)

We note that since ��0jA� � 0 in odd dimensions (which is
our case), the dependence on the renormalization scale
drops out.

The eigenvalue equation A�N � �N�N can be solved
by using the ansatz

 �N � ei�m’�!t�F���; (E5)

where F��� is a solution of the equation
 

1

‘2fk���

d
d�

�
fk���

dF
d�

�
�

m2

‘2f2
k���
�m�Qmf0k����

2F

� �!2 �M2 � �R�F � �NF; (E6)

satisfying certain boundary conditions at the limits of the �
interval. Here we will restrict to the k � 1 case of a zero-
temperature 2� 1-dimensional Einstein universe back-
ground and a U(1) field A�0� � Qm cos�d’. Note that m
should be an integer for k � 1.

The substitution F � g=
���������
sin�
p

, � � 2x transforms (E6)
into the quantum mechanical problem of the Schrödinger
equation with a Pöschl-Teller potential
 

�
d2g

dx2�

�
�m�Qm�

2�
1

4

�
g

sin2x
�

�
�m�Qm�

2�
1

4

�
g

cos2x

� �4Q2
m� 1� 4‘2�!2�M2��R��N��g� 0;

(E7)

whose solutions are well known, see e.g. [55]. This leads to
an eigenvalue expression
 

�N � !2 � 1
4�1� jm�Qmj � jm�Qmj � 2n�2 �M2

� �R�Q2
m � 1=4; (E8)

where (N � m; n;!). The corresponding eigenfunctions
are

 �N�x� �
�
cos

�
2

�
jm�Qmj�1=2

�

�
sin
�
2

�
jm�Qmj

P�jm�Qmj;jm�Qmj��cos��ei�m’�!t�;

(E9)

with P�a;b��x� the Jacobi polynomials.
After integrating over !, we arrive at a sum on the form

 

��s� �
����
�
p ��s� 1

2�

��s�

X1
n�0

X1
m��1

�
1

2
�1� jm�Qmj

� jm�Qmj� � n�2 �M2 � �R�Q2
m �

1

4

�
�s�1=2

:

(E10)
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Restricting to the case of a massless, conformally coupled field, the resulting zeta function can be written as

 ��s� �
����
�
p ‘2s�1

��s�

X1
k�0

��s� k� 1
2�

k!
Q2k
m

X1
n�0

X1
m��1

�
n�

1

2
�1� jm�Qmj � jm�Qmj�

�
�2s�2k�1

: (E11)

Neglecting an additional contribution arising as a result of interchanging the order of summation, one performs first the
sum over (m, n), finding the simple approximate expression
 

��s� �
����
�
p ‘2s�1

��s�

X1
k�0

��s� k� 1
2�

k!
Q2k
m

�
2�H

�
2s� 2k� 2; Qm �

3

2

�

� �2Qm � 1�
�
�H

�
2s� 2k� 1; Qm �

1

2

�
� �H

�
2s� 2k� 1; Qm �

3

2

���
(E12)

with �H�s; a� the Hurwitz zeta functions, which are meromorphic functions with a unique simple pole at s � 1. In deriving
this relation we used also [56]

 

X1
m;n�0

�m� n� a��s � �H�s� 1; a� � �a� 1��H�s; a�: (E13)

The zeta function (E12) is analytic throughout the complex s-plane except for s � 3=2� n (with n � 0; 1; . . . ) where
simple poles appear, while ��0� � 0. The derivative of this function evaluated at s � 0 is

 

� 0�0� �

����
�
p

‘

�
�2

����
�
p

	
�H

�
�2; Qm �

3

2

�
� �2Qm � 1�

�
�H

�
�1; Qm �

1

2

�
� �H

�
�1; Qm �

3

2

��


�
����
�
p

Q2
m

	
2�H

�
0; Qm �

3

2

�
� �2Qm � 1�

�
�
�
Qm �

3

2

�
��

�
Qm �

1

2

��


�
X1
k�0

��k� 3
2�

�k� 2�!
Q2k�4
m

	
2�H

�
2k� 2; Qm �

3

2

�
� �2Qm � 1�

�
�H

�
2k� 3; Qm �

1

2

�
� �H

�
2k� 3; Qm �

3

2

��
�
;

(E14)

where ��x� � d log��x�=dx.
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