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2Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton Didcot, Oxfordshire, OX11 0QX, United Kingdom
3Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie,

Ruhr-Universität Bochum, D-44780 Bochum, Germany
4Department of Physics and Astronomy, University of Rochester, Bausch & Lomb Hall, P.O. Box 270171,

600 Wilson Boulevard, Rochester, New York 14627-0171, USA
(Received 15 June 2006; published 11 September 2006)

We present an investigation of nonlinear interactions between gravitational radiation and modified
Alfvén modes in astrophysical dusty plasmas. Assuming that stationary charged dust grains form
neutralizing background in an electron-ion-dust plasma, we obtain the three-wave coupling coefficients
and calculate the growth rates for parametrically coupled gravitational radiation and modified Alfvén-Rao
modes. The threshold value of the gravitational wave amplitude associated with convective stabilization is
particularly small if the gravitational frequency is close to twice the modified Alfvén wave frequency. The
implication of our results to astrophysical dusty plasmas is discussed.
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I. INTRODUCTION

There exist several mechanisms for conversion between
gravitational waves (GWs) and electromagnetic waves [1–
18] in plasmas. One of the most basic processes occurs
when GWs propagate across an external magnetic field,
which gives rise to a linear coupling to the electromagnetic
field [1], leading to the excitation of magnetohydrody-
namic (MHD) waves in a plasma [3–5]. In order to excite
perturbations with frequencies different from that of the
GW, naturally nonlinear couplings must be considered.
There exist numerous examples of such mechanisms in
plasmas, giving rise to, e.g. three-wave couplings between
GWs and electromagnetic waves. Wave coupling mecha-
nisms involving GWs are studied for several different
reasons. In some cases, the emphasis is on the basic theory
[6–9]. In other works, the focus is on GW detectors [10–
12], on cosmology [13–15], or on astrophysical applica-
tions such as binary mergers [16], gamma ray bursts [17],
pulsars [18], or supernovas [19].

In the present paper, we will consider gravitational wave
propagation in plasmas containing charged dust particles
[20]. The latter are prominent components in many astro-
physical systems and may contribute significantly to the
dynamical properties of such systems [21–23]. It also has
been claimed that supernovae can be significant sources of
dust particles [24], although this claim is debated [25].
Previous work involving dusty plasma-gravitational wave
interactions [19] have considered general relativistic ver-
sions of the dust MHD equations [20,26]. However, in
cases where the dynamics is not dominated by the charged
dust particles, other approximations are more useful [27].
In order to describe the modified Alfvén mode (MAM) (or
the Alfvén-Rao mode [27]) that can propagate in a mag-
netized dusty plasma, we will apply the infinite mass

approximation for immobile charged dust grains. Thus,
the only force felt by the charged dust particles will be
the gravitational force, which is an appropriate approxima-
tion for a broad range of Alfvén wave frequencies. Using
the standard mode coupling theory [28], we then obtain the
coupling coefficient describing the nonlinear interaction
between two MAMs and one GW. Using these results, we
consider the parametric excitation of the Rao mode in the
vicinity of binary mergers. Provided that the gravitational
wave frequency is close to twice the Rao cutoff frequency
[27], the threshold value for the GW amplitude for the
parametric interaction is much reduced compared to the
ideal MHD theory [29], assuming that the limiting ampli-
tude is determined by nondissipative stabilization.

II. BASIC EQUATIONS

The metric describing a linearized gravitational wave of
arbitrary polarization propagating in the z direction on a
flat background can be written as
 

ds2 � �dt2 � �1� h��dx
2 � �1� h��dy

2 � 2h�dxdy

� dz2: (1)

A convenient choice is to introduce an orthonormal tetrad
ei, where e0 � @t and the spatial part is written as r �
�e1; e2; e3� � r0 �rg, where r and rg are given by

 r0 � �@x; @y; @z�; (2)

 rg � �
1
2�h�@x � h�@y; h�@x � h�@y; 0�; (3)

and e1 � �e1; 0; 0�, e2 � �0; e2; 0�, e3 � �0; 0; e3�.
Below we will derive the evolution equations for the

matter and fields in the low-frequency MHD limit, in the
presence of a gravitational wave. We consider a cold
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plasma composed of the electrons, ions, and micron-sized
charged dust particles. The momentum equation for the
ions, when neglecting pressure and considering the elec-
trons as massless fluid, reduces to

 �@t � vi � r�vi �
qi
mic
�vi � ve� � B� gi; (4)

where
 

gi � �
1

2

�
1�

viz
c

�
��vix _h� � viy _h��e1

� �vix _h� � viy _h��e2	 �
1

2c
��v2

ix � v
2
iy�

_h�

� 2vixviy _h�	e3;

is the gravitational acceleration of the ions [30]. For low
phase speed (in comparison with the speed of light) the
displacement currents are neglected, and Maxwell’s equa-
tions are written as

 qinivi � eneve �
c

4�
r� B� jE; (5)

 @tB � r� �ve � B� � jB; (6)

where
 

jE � �1
2��Ex � By�

_h� � �Ey � Bx� _h�	e1

� 1
2��Ey � Bx�

_h� � �Ex � By� _h�	e2;

jB � �1
2��Ey � Bx�

_h� � �Ex � By� _h�	e1

� 1
2��Ex � By�

_h� � �Ey � Bx� _h�	e2;

are effective currents due to the GWs, see e.g. Ref. [7].
Combining Eqs. (4) and (5) and assuming the plasma to

be quasineutral with negatively charged dust, that is qini �
ene � qdnd � 0 where qd > 0, we obtain
 

�@t � vi � r�vi �
qi

enemic

�
�ndqdvi �

c
4�
r� B� jE

�

� B� gi: (7)

By using Eq. (5) we can eliminate ve in (6) to obtain
 

@tB � r�
��
qini
ene

vi �
c

4�ene
r�B�

jE
ene

�
�B

�
� jB:

(8)

Finally, the ion continuity equation is

 @tni �r � �nivi� � 0: (9)

For later use it will be convenient to collect the gravita-
tional terms on the right-hand side of the equations.
Furthermore, we let the ions to be of charge qi � e.
Equations (7)–(9) are then written as

 

minec�@t � vi � r0�vi � ndqdvi � B�
c

4�
�r0 � B� �B

�
c

4�
�rg � B� � B� necmigi � jE � B; (10)

 

@tB�r0 �

�
nivi � B

ne
�
c�r0 � B� � B

4�ene

�

� rg �

�
nivi � B

ne
�
c�r0 �B� � B

4�ene

�
�r

�
jE �B
ene

� jB; (11)

and

 @tni �r0 � �nivi� � �rg � �nivi�; (12)

where the dust charge is defined by qd � Zde. We note that
in the absence of the GW-source terms, Eqs. (10)–(12) are
MHD equations modified by the presence of infinitely
heavy dust particles. Because of the dust charges in the
quasineutrality condition, the relative contributions to the
currents are modified as compared to ideal MHD. As a
consequence, a characteristic frequency �R called the Rao
cutoff frequency [27] enters in the linear wave modes.
Wave modes propagating almost perpendicular to the ex-
ternal magnetic will be denoted as Alfvén-Rao modes. In
what follows we will be particularly interested in these
modes, as they give the simplest way to introduce a char-
acteristic time scale (��1

R ), which is longer than the ion
Larmor period, into the MHD equations. Furthermore, as
we will demonstrate, these modes are particularly easy to
excite when the condition !g � 2�R is met, where !g is
the gravitational wave frequency.

III. DERIVATIONS OF THE COUPLED MODE
EQUATIONS

In general a monochromatic wave of sufficient ampli-
tude is subject to a number of instabilities, which can
transfer the wave energy into other modes. If energy-
momentum conservation allows for resonant three-wave
interaction, typically this mechanism gives rise to the most
rapid instability [28]. Thus, in order to study this process, a
system of three weakly interacting waves will be consid-
ered: two dust MHD waves with frequencies and wave
numbers �!1;2;k1;2�, and a GW with arbitrary polarization
propagating parallel to the background magnetic field with
the frequency and the wave number �!g;kg�. We note here
that a gravitational wave propagating in a finite angle to the
magnetic field produces a linear coupling to the electro-
magnetic field [1]. In the next step of the calculations, such
linearly induced fields will complicate the description of
the nonlinear mode coupling to a large extent. Thus our
motive to let kg be parallel to the external magnetic field is
to avoid a linear coupling between the GW and the MHD
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modes and be able to focus on the nonlinear phenomena.
As a prerequisite to obtain the nonlinear coupling, we first
study the linear modes of the system (10)–(12), omitting
the gravitational contributions. Considering the plasma
waves to be plane wave perturbations on background
quantities such that B � B0ẑ� B0, ni � n0 � n0, and vi �
v0, where B0 and n0 are constant and the primed quantities
denote the perturbations, allows us to write the linear part
of (10)–(12) as

 v 0 � �i
�R

!
v0 � ẑ�

CA�����������������
4�n0mi
p

�kzB0 � B0zk	
!

; (13)

 B 0 �
�����������������
4�n0mi

p
CA
��k � v0�ẑ� kzv0	

!
�

imicCA
e
�����������������
4�n0mi
p

�
kzk�B0

!
; (14)

 n0 �
n0

!
k � v0; (15)

where �R � ndqdB0=mi�n0 � Zdnd�c is the Rao cutoff
frequency and CA � n0B0=�n0 � Zdnd�

�����������������
4�n0mi
p

is the
Alfvén speed. The frequency matching is

 !g � !1 �!2; (16)

and since the gravitational dispersion relation reads !g �

ckg and CA 
 c, the wave number matching can be ap-
proximated by

 k g � k1 � k2 ) k1 � �k2: (17)

Thus we may consider the excitation of MHD wave modes
with wave vectors that are almost perpendicular to the GW
(or the external magnetic field). In particular we choose a
coordinate system such that ky � 0 and let jk1;2zj 


jk1;2xj, which allows the linear eigenmodes of the system
to be represented by the following eigenvector

 

v0x
v0y
B0z
n0

0
BBB@

1
CCCA � v0x

1
i�R
!

CA
������������
4�n0mi

p

! kx
n0

! kx

0
BBBB@

1
CCCCA: (18)

The dispersion relation is now readily obtained and can be
expressed as

 !2 � �2
R � C

2
Ak

2; (19)

which is the Alfvén-Rao mode [27], that reduces to the
compressional Alfvén (or fast magnetosonic) wave in the
limit of zero dust density. We note that the dispersion
relation (19), together with (16) and (17), implies !g �

2!1 � 2!2.
Next, assuming the dust MHD waves and the GWs

to be plane waves with weakly varying amplitudes, we
write h�;� � ~h�;��t�ei�kg�z�!gt� � c:c: and  0 �

~ �t�ei�k1;2�r�!1;2t� � c:c:, where c.c. stands for complex con-
jugate, and  0 represents any component of B0, v0, and n0.
Making use of the linear eigenvector (18) as approxima-
tions in the nonlinear terms in the system (10)–(12), and
keeping only the resonant part to second order in the
amplitudes, we obtain the coupled mode equations [28]

 @t~v1;2x � i
!g

4

�
1�

4�2
R

!2
g

�
~v�2;1x ~h� � 2�R~v�2;1x ~h�: (20)

For the GWs we obtain, by using Einstein’s equations
linearized in h�, h�, and keeping only the resonant part
of the energy-momentum tensor,

 @t ~h� � i
�
!g

min0

�
1�

4�2
R

!2
g

�
~v1x~v2x; (21)

and

 @t ~h� � �4�min0
�R

!2
g

~v1x~v2x; (22)

for the � and � polarization, respectively.
Noting that the gravitational wave energy density can be

written as

 Eg  Wg�jh�j2 � jh�j2� �
!2
g

2�
�jh�j2 � jh�j2�; (23)

and the Alfvén-Rao wave energy density as
 

E1;2  W1;2jv1;2xj
2 �

1

2
min0�jv1;2xj

2 � jv1;2yj
2� �

jB1;2zj
2

8�
� min0jv1;2xj

2; (24)

we can deduce three independent conservation laws from
the coupled mode equations (22), (21), and (22). For the
total wave energy, i.e.

 

d�Eg � E1 � E2�

dt
� 0; (25)

the difference in Alfvén-Rao wave quanta, i.e.

 

d�N1 � N2�

dt
� 0; (26)

and the sum of wave quanta, i.e.

 

d�2Ng � N1 � N2� � 0

dt
; (27)

where we have introduced the number density of gravita-
tional wave quanta Ng � Eg=@!g and of the Alfvén-Rao
wave quanta N1;2 � E1;2=@!1;2. The existence of these
conservation laws are equivalent to the Manley-Rowe re-
lations [28].

For simplicity, we have made the derivation of the
coupled mode equations considering only time-dependent
amplitudes. However, we note that a generalization to
allow for weakly space-dependent amplitudes can be
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made by the simple substitution @t ! @t � vg � r for each
mode [28], i.e. for a general slowly varying amplitude the
coupled mode equations reads

 �@t � vg1;2@x�~v1;2x � i
!g

4

�
1�

4�2
R

!2
g

�
~v�2;1x ~h�

� 2�R~v�2;1x ~h�; (28)

 �@t � c@z�~h� � i
�
!g

min0

�
1�

4�2
R

!2
g

�
~v1x~v2x; (29)

and

 �@t � c@z�~h� � �4�min0
�R

!2
g

~v1x~v2x; (30)

where vg1;2 � k1;2xC
2
A=!1;2, where k1;2x is the x compo-

nent of the wave vector for modes 1 and 2, respectively
[31].

IV. SUMMARY AND DISCUSSION

We have considered the nonlinear interaction between
the modified Alfvén (or the Alfvén-Rao) mode and gravi-
tational waves in a magnetized dusty plasma. In order to
describe this process, dust MHD equations incorporating
the effects of the gravitational waves have been derived. In
particular, we have focused on the case where a gravita-
tional wave of arbitrary polarization propagates parallel to
the magnetic field. We have then calculated the three-wave
coupling coefficients for MHD waves propagating almost
perpendicular to the magnetic field, in which case the latter
wave modes obey the Alfvén-Rao dispersion relation (19).
From the coupled mode equations we note that the GW can
parametrically excite Alfvén-Rao modes, which grow as
exp��t�, where � depends on �R, !g, ~h�;� etc. Fur-
thermore, it can be seen that � is roughly independent of
the GW polarization, and of the order �� j~h�;�j!g. This
estimate is the same as for the decay into high-frequency
waves, see Ref. [2], or MHD waves, see e.g. Refs. [3,29].
The highest growth rate may be reached for approximately
monochromatic gravitational waves, which could be pro-
duced by compact binaries close to merging, see e.g. [29],
or during the black-hole ringdown [32].

However, we note that the high gravitational amplitudes
only exist during a limited time, and that the finite group
velocity of the decay products has a stabilizing effect on
the parametric process. To study this effect we consider the
decay of a homogeneous intense gravitational wave
which for definiteness has the polarization ~h � ~h�. The
amplitudes of the Alfvén-Rao modes are assumed to
have the form ~v1x � v̂1x exp�iKx� i�t� and ~v�2x �
v̂�2x exp�iKx� i�t�. Inserting this ansatz latter into
Eq. (28), we immediately obtain the nonlinear dispersion
relation

 ��� vg1K���� vg2K� � �
!2
g

16

�
1�

4�2
R

!2
g

�
2
j~h�j

2:

(31)

Next, introducing vg � jvg1j � jvg2j, we deduce from
(31) that the growth rate of the Alfvén-Rao modes is

 � �
1

4

�����������������������������������������������������������������
!2
g

�
1�

4�2
R

!2
g

�
2
j~h�j

2 � 16K2v2
g

vuut ; (32)

provided that the second term under the root sign is smaller
than the first one. While Eq. (32) formally shows that
sufficiently long wavelength amplitude perturbations al-
ways are unstable, in reality there is a minimum wave
number possible. This wave number Kmin is set by the
shortest nonoscillatory scale of the problem, which may
be either the inverse inhomogeneity scale length rn0=n0,
R�1

curv, or �ctp��1, where Rcurv is the background curvature
and tp is the pulse duration time. Note that the pulse
duration here refers to the time during which the pulse
has a sufficiently constant frequency, such as not to break
the frequency matching condition. The threshold value on
the gravitational wave amplitude for the parametric exci-
tation now becomes

 

~h�tre �
8Kminvg
!g

: (33)

Since the group velocity of the Alfvén-Rao mode ap-
proaches zero when !! �R, we note that ~h�tre ! 0
when !g ! 2�R. Introducing the frequency mismatch
�! � !g � 2�R, and using Eq. (33), we find that the
threshold value is

 

~h�tre �
8�!
!g

KminCA: (34)

Thus, we conclude that provided the gravitational spectrum
contains twice the Rao frequency, parametric excitation of
MHD waves occur more easily in a dusty plasma, that may
exist in astrophysical systems, see e.g. Refs. [21–24], as
compared to a plasma without dust particles. As a conse-
quence of the low threshold, GW-induced Alfvén-Rao
modes may be excited at a comparatively large distance
from the gravitational wave source. The aim of this study
has been to shed further light on the gravitational-MHD
interactions that take place in the vicinity of gravitational
wave sources, such as collapsing compact binaries, quak-
ing neutron stars, black holes during ringdown, or super-
novas [33].
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