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On the basis of the general principles of a gauge field theory, the gauge theory for the Poincaŕe-Weyl
group is constructed. It is shown that tetrads are not true gauge fields, but represent functions of true gauge
fields: Lorentzian, translational, and dilatational ones. The equations for gauge fields are obtained.
Geometrical interpretation of the theory is developed demonstrating that as a result of localization of
the Poincaré-Weyl group the space-time becomes a Weyl-Cartan space. The geometrical interpretation of
a dilaton field as a component of the metric tensor of a tangent space in Weyl-Cartan geometry is also
proposed.
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I. INTRODUCTION

It is well known that the gauge treatment of physical
interactions underlies modern fundamental physics [1,2].
Application of the gauge approach to gravitational inter-
actions was developed in [3,4] for the Lorentz group and in
[5–9] for the Poincaré group (see also reviews [10–14], the
book [15], and the literature cited therein). Nevertheless,
up to the present time, the interest to the gauge treatment of
gravitational interaction [13–18] does not decrease. Recall
that the first gauge theory was proposed yet in 1918 by
Weyl (see [19]), who introduced a gauge field appropriate
to the group of variations of scales (calibres), which were
arbitrarily at each point of the space-time. Variation of
length scales, in the mathematical sense, is equivalent to
expansion or compression (dilatations) of the space.
Connection of the dilatations group with the Poincaré
group results in expansion of the Poincaré group to the
Poincaré-Weyl group.

The importance of consideration of the Poincaré-Weyl
group is related to the role the Weyl scale symmetry plays
in the quantum field theory. Violation of this symmetry at
the quantum level results in the appearance of the Weyl’s
anomaly connected with the following problems: the defi-
nition of the counterterms structure and asymptotic free-
dom in the quantum field theory, supersymmetry, cal-
culation of critical dimensions n � 26 and n � 10 in the
strings theory, gravitational instantons, Hawking’s phe-
nomenon of the black holes evaporation, the problems of
inflation, the cosmological constant, creation of particles
and black holes in the early universe [20], etc. In inves-
tigation of some of the above problems, the known tech-

niques of the Becchi-Rouet-Stora-Tyutin (BRST)-
symmetry [21,22] with application to Weyl gauge scale
transformations are employed [23].

The gauge theory for the Poincaré-Weyl group was
constructed in [24,25]. The main assumption of the authors
of these works is the idea (going back to Kibble’s work [5])
that, for the group of translations, tetrads ha� play the role
of gauge fields. In our opinion, this point of view obviously
contradicts the fact that gauge fields should not transform
as tensors under gauge transformations, while tetrads are
transformed as tensor components with both tetrad and
coordinate indices. We note that it was pointed out in
[11,13] that treatment of tetrads as gauge fields is
inadequate.

In the present work, the gauge theory for the Poincaré-
Weyl group [26] constructed without this inadequacy is
presented. Our consideration is based on the method of
introduction of gauge fields for the groups connected to
transformations of space-time coordinates, developed in
[6,7,15]. The first and the second Noether theorems are
used that allow to introduce the gauge fields, dynamically
realizing the appropriate conservation laws. In our ap-
proach, the quantities ha� are not the gauge fields, they
rather represent some functions of the true gauge fields.
The proper choice of potentials of the gravitational field as
true gauge fields is obviously important in view of the
realization of the quantization procedure for the gravita-
tional field understood as a gauge field for the Poincaré-
Weyl group. Moreover, within the framework of the gen-
eral gauge procedure, the Dirac’s scalar field [27] and the
Utiyama’s ‘‘measure’’ scalar field [28] are naturally intro-
duced. These scalar fields play an essential role in con-
structing the gravitational field Lagrangian.

The paper is organized as follows. In Sec. II, the
Poincaré-Weyl group and its action on physical fields are
discussed. In Sec. III, the Noether theorem for the
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Poincaré-Weyl group is formulated with appropriate laws
of conservation of an energy-momentum, spin and orbital
angular momenta, and also a dilatational current. In
Sec. IV, following [15], four initial postulates of the theory
are formulated: the principle of local invariance, the prin-
ciple of stationary action, the principle of minimality of
gauge interactions, and the postulate of the existence of a
free gauge field. In Sec. V, the gauge invariant Lagrangian
for the interaction of external and gauge fields is derived
from the main principles. In Sec. VI, the gauge invariant
Lagrangian of free gauge fields is derived. In Sec. VII,
interactions of gauge fields are analyzed with consideration
for the full group of symmetries that include the Poincaré-
Weyl group as a component of the direct product. In
Sec. VIII, geometrical interpretation of the theory is de-
veloped. It is found that, with localization of the Poincaré-
Weyl group, a space with the Weyl-Cartan geometry arises.
Finally, in Sec. IX, the equations for the gauge field are
derived in the geometrical form. In the conclusion, the
basic results of the work are discussed, the resulting
Lagrangian of the gravitational field is proposed, which
enables all the gauge fields of the gravitational field gauge
theory considered to be dynamically realized.

II. THE POINCARÉ-WEYL GROUP

Let space-time M with a metric tensor �g have the
structure of a flat space with the geometry defined accord-
ing to F. Klein’s Erlangen program by the global definition
of action of the Poincaré-Weyl group PW �!; "; a� as a
fundamental group (with E. Cartan’s terminology [29]) of
this geometry. The fundamental group determines geome-
try of the space as a system of invariants, i.e. relations and
geometrical images, which remain constant in space under
the action of the given group (see [30]). A similar geometry
arises in a space-time filled with radiation and ultra rela-
tivistic particles. We assume that curvature, torsion, and
nonmetricity of the space M are equal to zero all over the
space.

In M, a special coordinate system xi (i � 1, 2, 3, 4)
(analogues to the Cartesian coordinates in Minkowski
space) can be globally introduced with the metric tensor
components equal to

 gij � �2gMij ; � � const> 0; (2.1)

where gMij � diag�1; 1; 1;�1� are components of the metric
tensor of the Minkowski space.

We represent infinitesimal transformations of the group
PW as follows:
 

�xi �!mIm
i
jx
j� "xi�ai ���!m �Mm� " �D�akPk�x

i;

�Mm ��Im
l
jx
j @

@xl
; Im

ij � Im
�ij�;

�D� xl
@

@xl
; Pk ���lk

@

@xl
:

(2.2)

Operators �Mm and Pk are generators of 4-rotations
(Lorentz subgroup L4) and 4-shifts (a subgroup of trans-
lations T4), and the operator �D is a generator of dilatations
(a subgroup of dilatations D4) of the space M. These
operators satisfy the following commutation relations:

 � �Mm; �Mn� � cmqn �Mq; � �Mm; �D� � 0; � �D; �D� � 0;

�Pk; Pl� � 0; � �Mm;Pk� � Im
l
kPl; �Pk; �D; � � Pk;

(2.3)

where cmqn are structure constants of the subgroup of 4-
rotations L4.

Here three types of indices are introduced. The indices
of type m; n; p; q; . . . are numbered parameters of L4. The
indices of type i; j; k; l; a; b; c; . . . are numbered parameters
of the subgroup of 4-translations T4. The subgroup of
dilatations D4 has only one parameter ", and its index in
the corresponding generator I�

i
j � ��

i
j we shall often

mark as � (a symbol of an empty set). In order to simplify
formulas we shall introduce indices of type z; R; P;Q; . . . ,
which unify all types of indices. Introducing the general-
ized notations for parameters, f!zg � f!m; "; akg, we rep-
resent the transformations (2.2) as follows,
 

�xi � !zXiz; Xim � Im
i
jx
j;

Xi � �xi; Xik � �ik:
(2.4)

Let an arbitrary field  A be given in M, and its infini-
tesimal transformation under the action of the group
PW �!; "; a� looks like (IzAB � fIm

A
B; w�

A
B; 0g)

 � A � !mIm
A
B 

B � "w A � !zIz
A
B 

B; (2.5)

where w is a weight of  A under the action of the subgroup
of dilatations D4. Operators ImAB satisfy the commutation
relations: ImACIn

C
B � In

A
CIm

C
B � cmqnIqAB.

The action of group PW on the metric tensor is de-
scribed as follows:

 �gij � �!
zIz

l
iglj �!

zIz
l
jgil � 2"gij: (2.6)

Components gij are not invariant under the action of PW .
As a result of (2.1), under the action of PW the following
transformation holds, �2 ! �2 � 2", �� � "� �
!z��z �.

We introduce an arbitrary curvilinear system of coordi-
nates fx�g � fx��xi�g in M (@� � @=@x�):

 dxi � �h i�dx
�; �h i� � @�x

i; �h�k �hk� � ���

(2.7)

Then for the metric tensor we have:
 

ds2 � �g��dx�dx�; �g�� � �g� ~e�; ~e�� � gij �hi� �hj�;

�g � det� �g��� � det�gij�� �h�2; �h � det� �ha��: (2.8)
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In a flat manifold fibers attached to each point of the
manifold are identical to a base of the manifold.
Curvilinear coordinates x� of the points belonged to the
base M are transformed under the group of general trans-
formations of curvilinear coordinates. But the quantities xk

belong to fibers of M, which are transformed by the
Poincaré-Weyl group.

The curvilinear system of coordinates in the flat space is
introduced with the purpose to separate the problems
connected with the invariance of the theory under gauge
transformations, and the problems following from the re-
quirement of covariance of the theory with respect to the
group of the general transformations of coordinates. In
papers [5–7,24,25], the curvilinear system of coordinates
was not introduced before starting the localization proce-
dure. As a result, transformations of coordinates under the
action of gauge groups after localization became general
transformations of coordinates, and this broke the mathe-
matical structure of the gauge groups.

As a consequence of Eqs. (2.5) and (2.6), both  A�x� and
gij are not transformed as representations of the subgroup
of translations T4, but change under the action of T4 only as
a result of the transformation of the argument xk.
Therefore, the action of the operator of shift in M, for
example, on field  A�x� (when �xk � ak) is realized as
follows:
 

 A�x� �x� �  A�x� � �x�
@
@x�

 �x�

�  A�x� � akPk A�x�;

Pk � � �h�k@�:

(2.9)

Under the action of PW �!; "; a�, variation �� of the
form of a field  A� �� �  0A�x� �  A�x��:

 

�� A � � A � �x�@� A � � A � �xkPk A

� � A �!zXkzPk A � � A �!zXkz �h�k@� A;

commutes with the operator of differentiation. The follow-
ing commutation relations hold:

 � ��; Pk� � 0; ��; Pk� � �Pk�xl�Pl; (2.10)

and this is valid owing to an identity:
 

�� �hl��@��x
l� �hl�@��x

���x�@� �hl��2@�� �hl���x
��0:

III. NOETHER THEOREM FOR THE
POINCARÉ-WEYL GROUP

The field  A in M is described in curvilinear coordi-
nates by the action

 J �
Z

�
�dx�L; L �

������
j �gj

q
L� A; Pk A; �2gMij �: (3.1)

The variation of the action integral under the action of the
Poincaré-Weyl group (2.2) (the variation of the integration

volume � being taken into account) is equal to

 �J � �
Z

�
�dx�L

�
Z

�
�dx�

� ������
j �gj

q
�@��x

��L� �
������
j �gj

q
L�

������
j �gj

q
�L

�
� 0:

(3.2)

In the curvilinear system of coordinates, the equality
holds �

������
j �gj

p
� �

������
j �gj

p
�@��x

�� as the consequence of
Eq. (2.8). Therefore, by virtue of arbitrariness of the vol-
ume �, Eq. (3.2) yields �L � 0:

 �L �
@L

@ A
� A �

@L

@Pk 
A �Pk 

A �
@L
@�

�� � 0:

Calculating variations according to Eqs. (2.5), (2.6), (2.7),
(2.8), (2.9), and (2.10) and using equality PkXiz � �Izik,
we receive the following identity as the consequence of
randomness of !z:
 

@L

@ A
IzAB 

B �
@L

@Pk A
�IzABPk 

B � IzlkPl 
A�

�
@L
@�

���z � 0: (3.3)

The last term here arises only for the subgroup of dilata-
tions (when z � �). Independence of the Lagrangian den-
sity (3.1) of xk yields the identity:

 PkL �
@L

@ A
Pk A �

@L

@Pl A
PkPl A: (3.4)

Identities (3.3) and (3.4) are the ‘‘strong’’ identities, which
hold independently of whether the field equations for  A

are satisfied. When these equations are satisfied, the above
identities are equivalent to the existence of conservation
laws. Indeed, it is possible to represent the variation of the
action (3.2) as
 

�J �
Z

�
�dx�

�
�L

� A
�� A �

@L
@�

���

� @�

�
L �h�k�x

k � �h�k
@L

@Pk A
�� A

��
� 0; (3.5)

where the variational derivative has the standard structure.
If the field equations, �L=� A � 0, are satisfied, the
variation (3.5), with account of (2.1) and @��

������
j �gj

p
�h�a� �

0, is equal to
 

�J �
Z

�
�dx�

�
@L
@�

��

�
������
j �gj

q
�h�k@��altkl �!

mMk
m � "�k�

�
� 0; (3.6)

where notations for the energy-momentum tensor tkl, total
Mk

m, and spin Skm momenta, and also for the total dilata-
tion current �k and dilatation current Jk of the field  A are
introduced:
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 tkl � L�kl �
@L

@Pk 
A Pl 

A; (3.7)

 Mk
m � Skm � Imlix

itkl; Skm � �
@L

@Pk A
ImAB 

B;

(3.8)

 �k � Jk � xltkl; Jk � �
@L

@Pk A
w A: (3.9)

Parameters al, !m, and " are constant, though arbitrary,
and the integration volume � is also arbitrary. Therefore,
since variation (3.6) is identically equal to zero, and with
the account to Eq. (2.6), the following equalities follow in a
curvilinear system of coordinates:

 Pktkl � 0; PkMk
m � 0;

������
j �gj

q
Pk�k � �

@L
@�

:

(3.10)

Equalities (3.10) are the result of the first Noether theo-
rem. The first two equalities yield the conservation laws of
the energy-momentum tkl and the total momentum Mk

m of
the field  A. For the conservation of the dilatation current
�k, it is necessary that an additional condition @L=@� � 0
is fulfilled as a consequence of the equation of the field  A

(about the dilatational invariant Lagrangians with explicit
dependence on the parameter �, see [15,31]).

Using the field equations, it is possible to show that the
first equality (3.10) is equivalent to the identity (3.4), and
the second and the third equalities (3.10) are together
equivalent to the identity (3.3).

IV. THE PRINCIPLE OF LOCAL INVARIANCE

We suppose now that the group PW �!; "; a� is a local-
ized group PW �x�, that is we consider its parameters
f!zg � f!m; "; akg as arbitrary smooth enough (belonging
to class C2) functions of coordinates !z�x�.

Consider the invariance of action integral (3.1) under
PW �x�. Assuming the quantities !z�x� and @�!z�x� are
arbitrary and independent functions of coordinates, from
Eq. (3.6) we obtain conditions tkl � 0, Mk

m � 0, �k � 0.
Thus, the action integral (3.1) is locally invariant if and
only if the conservations laws are valid by virtue of the fact
that the appropriate currents (3.7), (3.8), and (3.9) are
identically equal to zero.

It is possible to avoid this physically unsatisfactory
result, if some additional fields named gauged (or compen-
sating) fields enter the Lagrangian density (3.1). They
should have the property that the additional terms, arising
in the action integral (3.1) owing to the transformation of
field  A under the action of the localized group PW �x�,
disappear being compensated by accordingly transformed
gauge fields. Therefore, the gauge fields should be trans-
formed under the action of PW �x� as nontensorial quan-

tities extracting under this transformation the terms
proportional to the derivative over parameters of the group
PW �x�. In the case of the group PW �x�, variation (2.6)
becomes equal to

 �gij � 2"�x�gij; (4.1)

where "�x� is an arbitrary function. Therefore the metric
tensor becomes a function of a space-time point and can be
represented as

 gij � �2�x�gMij ; (4.2)

hence, derivatives Pk��x� (��x�> 0) should be included in
the Lagrangian.

The requirement of gauge invariance in application to
the Poincaré group has been formulated in [6,7] in the form
of a variational principle, which for the case of the local-
ized Poincaré-Weyl group, can be generalized as follows:

Postulate 1 (The principle of local invariance)—The
action integral

 J �
Z

�
�dx�L� A; Pk A; ARa ; PkARa ; ��x�; Pk��x��;

(4.3)

where the Lagrangian density L describes a field  A,
interaction of a field  A with an additional gauge field
ARa , and a free field ARa , is invariant under the action of
the localized group PW �x�, the gauge field being trans-
formed as follows

 �ARa � UR
za!

z � SR�za @�!
z; (4.4)

where U and S are some matrix functions.
This variational principle allows to apply the first and

the second Noether theorems to gauge theories. Moreover,
though it is formulated in rather general terms, this prin-
ciple is sufficient to determine the structure of the
Lagrangian density L and to find the matrix functions U,
S. In the present work, the method of constructing gauge
theories, developed in [15–17] for the Poincaré group, is
generalized to the gauge theory of the localized Poincaré-
Weyl group.

The gauge field equations, as well as the equations of the
field  A, are derived basing upon the principle of stationary
action, and this should be understood as the second postu-
late.

Postulate 2 (The principle of stationary action)—The
equations of the field  A and the gauge fields ARa realize
an extremum of the action integral (4.3) that describes
the field  A, the gauge field ARa , and their interaction.
For physical reasons, it should be concluded that the full

Lagrangian density L consists of the Lagrangian density
L0 of free gauge fields and of the Lagrangian density L 

that describes the free matter field  A and the interaction of
the field  A with the gauge fields. Action integrals for each
of these Lagrangian densities should be separately locally
invariant, as it is natural to expect, that the gauge field can
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exist without the field  A. We formulate the given above
physical requirements as the third postulate of the theory of
gauge fields.

Postulate 3 (An independent existence of a free gauge
field)—The locally invariant Lagrangian density L0 of
free gauge fields is included as an additive term in the
full Lagrangian density L of a physical system: L �
L0 �L , where

 L 0 � L0�ARa ; PkARa ; ��x�; Pk��x��;
@L0

@ A
� 0;

@L0

@Pk A
� 0:

In what follows, we shall always assume that interaction
of the field  A with gauge fields does not involve their
derivatives. In other words, all derivatives of the gauge
fields are included only in the Lagrangian density L0. The
interaction satisfying this condition is called minimal. We
formulate this condition as the fourth postulate of the
gauge fields theory.

Postulate 4 (The principle of minimality of gauge inter-
action)—The Lagrangian density L that describes in-
teraction of the material field  A with the gauge fields
includes derivatives of the material field  A only. Thus
the following conditions are satisfied,

 

@L 

@PkARa
� 0;

@L 

@Pk�
� 0:

The variation of the action integral (4.3) under the action
of the localized Poincaré-Weyl group reads

 0 � �J �
Z

�
�dx���@��x

��L� �L�

�
Z

�
�dx�

�
�L

� A
�� A �

�L
�ARa

��ARa �
�L
��

���
�

�
Z

�
�dx�@�

�
L �h�k�xk � �h�k

@L

@Pk 
A

�� A

� �h�k
@L

@PkARa
��ARa � �h�k

@L
@Pk�

���
�
: (4.5)

According to Eq. (4.1), describing the action of the
localized subgroup of dilatations D4, the metric tensor
becomes a function and is itself subject to variation. The
principle of stationary action will be satisfied, if the varia-
tional equations are valid,

 

�L

� A
� 0;

�L
�ARa

� 0;
�L
���x�

� 0: (4.6)

It can be explicitly shown [15] that the last of these
variational field equations is a consequence of the others.
We assume that the equation of the field  A is always valid.
According to Postulate 3, the full Lagrangian density of

gauge fields consists of the free gauge field Lagrangian
density and of the Lagrangian density of interaction. The
action integral with the interaction Lagrangian density is
separately locally invariant, though the variational equa-
tion of the gauge field ARa is not satisfied. The equation of
the field ARa is valid only for the full Lagrangian density L.
In this last case, basing upon Eq. (4.5) and taking into
account Eqs. (4.4) and (4.6), with quantities !z�x�,
@�!

z�x�, @�@�!z�x� assumed to be arbitrary and indepen-
dent functions of the coordinates, we obtain a fundamental
set of identities on extremals of the fields  A, ARa , and��x�:
 

@�� �h
�
k�

k
z� � 0; (4.7a)

�h�k�
k
z � @�M

��
z � 0; (4.7b)

M����
z � 0; (4.7c)

where the following notations are introduced with regard to
Eqs. (2.4) and (4.4):
 

�k
z � LXkz �

@L

@Pk A
�Iz

A
B 

B � XlzPl 
A�

�
@L

@PkARa
�UR

za � XlzPlARa �

�
@L
@Pk�

����z � XlzPl��;

M��
z � �h�k

@L
@PkA

R
a
SR�za : (4.8)

The equalities (4.7a)–(4.7c) represent the relations fol-
lowing from the second Noether theorem written down in a
curvilinear system of coordinates. It can be easily under-
stood that the first of these relations (representing the
conservation law of the appropriate current) is a conse-
quence of two others. Thus it is shown, that introduction of
gauge fields leads to a dynamical realization of conserva-
tion laws. The quantity (4.8) represents a superpotential for
the appropriate conservation current.

V. STRUCTURE OF THE INTERACTION
LAGRANGIAN

Following the method developed in [15], we introduce
the differential operator MR (R � fm;�; kg):

 MR � fMm
A
B;M�

A
B;Mk

A
Bg; Mk

A
B � �ABPk; (5.1)

 Mm
A
B � ImAB � �

A
B

�Mm; M�
A
B � w�AB � �

A
B

�D;

(5.2)

uniting the operators of total momentum, total dilatation
current, and shift.

Let us represent the gauge field ARa as a set of three
components:

 ARa � fAma ; Aa; Akag;
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where Ama is the gauge field corresponding to the subgroup
of 4-rotations (r-field), Aa is the gauge field of the sub-
group of dilatations (d-field), and Aka is the gauge field of
the subgroup of translations (t-field) of the Poincaré-Weyl
group.

The following theorem about the structure of the
Lagrangian density L of interaction between the matter
field and the gauge fields represents generalization on the
Poincaré-Weyl group PW �x� of the appropriate theorem
proved in [15] for the case of the Poincaré group.

Theorem 1—There exists a gauge field ARa with trans-
formation structure (4.4) of Postulate 1 under the action
of the localized Poincaré-Weyl group PW �x� and there
are matrix functions Z, U, and S of the gauge field such
that the Lagrangian density
 

L �
������
j �gj

q
L � A;Da A;��x��; (5.3a)������

j �gj
q

� Z
������
j �gj

q
; (5.3b)

satisfies the principle of local invariance (Postulate 1)
concerning the localized group PW �x�, L being
formed from the invariant concerning the nonlocalized
group PW Lagrangian density L� A; Pk A� by re-
placement of the differential operator Pk by the gauge
derivative operator

 Da � �ARaMR; (5.4)

where the operator MR is given by Eq. (5.1). The follow-
ing representation of the gauge t-field is also valid:

 Aka � Daxk: (5.5)

Proof—Substituting the expression for the operator MR
in Eq. (5.4), we obtain, according to Eqs. (5.1) and (5.2),
the explicit form of the gauge derivative for the group
PW �x� (D� A � ha�Da A):

 Da 
A � h�a@� 

A � Ama Im
A
B 

B � wAa 
A; (5.6)

 D� 
A � @� 

A � Am�Im
A
B 

B � wA� 
A: (5.7)

Here, new quantities are introduced:

 

Yka � ARaXkR � Aka � Ama Imklx
l � Aaxk; (5.8a)

h�a � �h�kYka; ha� � �h�1�a� � Zak �hk�; (5.8b)

Zak � �Y
�1�ak; Am� � Ama ha�; A� � Aaha�:

(5.8c)

By analogy with Sec. III, we obtain the strong identities
expressing conditions of invariance of the action integral
for the Lagrangian density (5.3a) against transformations
of the localized group PW �x�. The variation of the action
integral is as follows

 

�
Z

�
�dx�L �

Z
�
�dx��

������
j �gj

q
�@��x

��L 

� ��
������
j �gj

q
�L �

������
j �gj

q
�L � � 0: (5.9)

We introduce a quantity �g�� (tensor gab has the same
components as the tensor gij (2.1)):

 

�g�� � gabha�hb� � gabZakZ
b
l

�hk� �hl�; (5.10a)

�g � det� �g��� � �gZ2; Z � det�Zak�; (5.10b)

and also demand that matrixes U and S in the gauge field
transformation law (4.4) are such that the following trans-
formation rule is satisfied for the quantity �g in Eq. (5.10b)
under the action of the localized group PW �x�:

 ��
������
j �gj

q
� � �

������
j �gj

q
�@��x

��: (5.11)

The proof of the existence of the quantity �g with the
specified property is given at the end of the section.

Then the equality (5.9) by virtue of arbitrariness of the
volume � means �L � 0:

 

�L �
�@L 
@ A

�
D �const

� A �
@L 
@Da 

A �Da A

�
@L 
@�

�� � 0: (5.12)

Using Eqs. (4.4), (5.6), (5.8a), and (5.8b), let us calculate
the variation �Da A and then substitute it as well as
Eqs. (2.5) and (4.1) into Eq. (5.12). In the identity received,
we collect factors in front of quantities !z�x� and @�!z�x�.
In view of arbitrariness of these quantities these factors
should be separately equal to zero identically. The factor in
front of @�!z�x� is equal to

 

@L 
@Da A

�IR
A
B 

B � XlRPl 
A��SR�za � �Rz h

�
a� � 0:

This equality is satisfied identically at

 SR�za � �Rz h
�
a: (5.13)

For various sets of indices, we find values of an unknown
matrix S:
 

Sn�ma � �nmh
�
a; Sn�ka � 0; Sk�ma � 0; (5.14a)

Sl�ka � �lkh
�
a; S�a � h�a; Sma� � 0; (5.14b)

Sn�a � 0; Sk�a � 0; Ska
� � 0: (5.14c)

Now we take into account that an algebraic structure of
the scalar L should satisfy identity (3.3), which upon
replacing Pa by Da takes the form
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 �@L 
@ A

�
D �const

IzAB 
B �

@L 
@Da A

�IzABDa B � IzbaDb A�

�
@L 
@�

���z � 0:

Considering the given identity, let us write out the factor at
!z�x� in identity (5.12). As a result, we obtain an expres-
sion, which is identically equal to zero for the following set
of matrixes U in the transformation law (4.4):
 

Un
ma � cm

n
qA

q
a � Im

b
aA

n
b; Un

a � Ana; (5.15a)

Uma � �Im
b
aAb; Ua � Aa; Uka � 0; (5.15b)

Uk
ma � ImklA

l
a � ImbaAkb; Un

ka � 0; (5.15c)

Uk
ia � �In

k
iA
n
a � �ki Aa; Uk

a � 0: (5.15d)

These formulas can be expressed in a short form as

 UR
za � czRQA

Q
a � IzbaARb ; (5.16)

where each of the indices R, Q, z can take the values each
of the indices m, k, �, and the commutation relations (2.3)
of the Poincaré-Weyl group PW should be taken into
account. The expressions (5.13) and (5.16) found for an
unknown function Z and unknown matrix functions U and
S, for which the Lagrangian density satisfies identity (5.9),
prove the basic statements of the Theorem 1.

Now we shall prove the formula (5.5). Because of
Eq. (2.2), the quantity xk is transformed according to the
vector representation of the group PW . Then, comparing
(2.2) and (2.5), we find that w�xk� � �1. In calculation of
the gauge derivative Daxk, we use the Eqs. (2.2), (2.7),
(5.6), (5.8a), and (5.8b):
 

Daxk � h�a@�xk � Ama Imklx
l � w�xk�Aaxk

� �h�i�A
i
a � A

m
a Im

i
lx
l � Aax

i�@�x
k � Ama Im

k
lx
l

� Aax
k � Aka:

Formula (5.5) makes clear the geometrical meaning of the
gauge field of the subgroup of translations. This formula is
the generalization to the Poincaré-Weyl group of the simi-
lar formula, which arises in the gauge approach for the
Poincaré group [15–17].

Let us find transformation laws for the components of
the gauge field under the action of the localized Poincaré-
Weyl group PW �!; "; a�. The general form of the trans-
formation law is determined on account of the principle of
local invariance by the expression (4.4). Let us put in this
expression, instead of general indices R and z, three ex-
plicit indices of the subgroups of 4-rotations, dilatations,
and translations and also substitute the concrete values of
the matrix functions U and S from the formulas (5.14a)–
(5.14c) and (5.15a)–(5.15d). As a result, we obtain the
general rules of transformations for the fields Ama , Aa, and
Aka:

 �Ama � !ncn
m
qA

q
a �!nIn

b
aA

m
b � "A

m
a � h

�
a@�!

m;

(5.17)

 �Aa � �!nInlaAl � "Aa � h�a@�"; (5.18)

 

�Aka � !n�InklA
l
a � InlaAkl � � a

l��AnaInkl � Aa�
k
l �

� h�a@�a
k: (5.19)

A variation of the quantity h�a is determined based upon
formulas (5.8b), the transformation law [32] of the quantity
Yka having been determined previously with the help of the
variations (5.17), (5.18), and (5.19):

 �Yka � �!nInlaYkl � "Y
k
a � h�a@��xk: (5.20)

As a result one finds

 �h�a � �!nInbah�b � "h
�
a � h�a@��x�: (5.21)

At last, from Eqs. (5.8b) and (5.8c) we find transformation
rules for the quantities ha�, Am�, and A�:

 

�ha� � !nIn
a
bh

b
� � "h

a
� � h

a
�@��x

�;

�Am� � !ncn
m
qA

q
� � @�!

m � Am�@��x
�;

�A� � @�"� A�@��x
�:

(5.22)

After the geometrical interpretation of the theory
(Sec. VIII), the quantity h�a will be interpreted as a tetrad
potential. We see, that with localization of the group PW
(as well as in the case of the Poincaré group [15]), the
quantity h�a is not a gauge field, because it is transformed
as a tensor (in agreement with Eqs. (5.21) and (5.22)), in
contrast to gauge fields Ama , Aa, and Aka, which are trans-
formed under the group PW �x� by nontensorial rules. We
note that in [11,13] the fact that tetrads are not true poten-
tials of a gravitational field was also emphasized.

We shall prove now the formula (5.11) for components
of the quantity �g determined by (5.10b). Expressions for
matrix functions S and U yield the transformation law
(5.22) for the quantity ha�. Because of the definition
(5.10a), we have

 ��
������
j �gj

q
� �

1

2
������
j �gj

p �j �gj �
1

2
������
j �gj

p j �gjg���g��

�
1

2

������
j �gj

q
g���ha�hb��gab � 2gabhb��ha��:

Substituting here the expressions for variations of the
quantities gab and ha� from (4.1) and (5.22), we find
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��
������
j �gj

q
� � 1

2

������
j �gj

q
g���2"�x�gabh

a
�h

b
�

� 2gabh
b
��!

n�x�In
a
ch

c
�

� "�x�ha� � h
a
�@��x

���

� 1
2

������
j �gj

q
�8"�x� �!n�x�In

a
a � 8"�x� � 2@��x

��

� �
������
j �gj

q
@��x

�:

Thus we have proved that such matrix functions S and U
exist, and they are defined by expressions (5.14a)–(5.14c)
and (5.15a)–(5.15d), for which the equality (5.11) holds.

VI. FREE GAUGE FIELD LAGRANGIAN

In order to define the structure of the free gauge field
Lagrangian for the group PW �x�, we need to find the
functions of the gauge fields such that they are transformed
with the group PW �x� as tensors. Since the gauge deriva-
tive Da 

A is a tensor, we calculate the commutator of
gauge derivatives of the field  A:

 2D
�aDb� 

A � �FmabIm
A
B 

B � wFab 
A � FcabDc 

A:

The quantities Fmab, Fab, and Fcab are tensors. They are
defined by the expressions

 Fmab � 2h�
�a@j�jA

m
b� � A

m
c C

c
ab � cn

m
qA

n
aA

q
b; (6.1)

 Fab � 2h�
�a@j�jAb� � AcC

c
ab; (6.2)

 Fcab � Ccab � 2Inc�aA
n
b� � 2A�a�

c
b�;

Ccab � �2hc�h��a@j�jh
�
b� � 2h�ah�b@��h

c
��:

(6.3)

Moreover, the following contraction of the gauge deriva-
tive is also a vector
 

Qa � �gbcDagbc � �h�agbc@�gbc � 2gbcAzaIzbc

� 8�Aa � h�a@� ln��x��: (6.4)

With the help of the variations of the gauge fields (5.17),
(5.18), and (5.19) and of the variation of the tetrads (5.21)
and (5.22), it is possible to show by direct calculations that
the expressions (6.1), (6.2), (6.3), and (6.4) are transformed
as covariant quantities under the action of the group
PW �x�:
 

�Fmab�!
n�cn

m
qF

q
ab� In

c
aF

m
cb� In

c
bF

m
ac��2"Fmab;

�Fab��!
n�In

c
dFcb� In

c
bFac��2"Fab;

�Fcab�!
n�In

c
dF

d
ab� In

d
aF

c
db� In

d
bF

c
ad��"F

c
ab;

�Qa��!
nIn

b
aQb�"Qa:

These tensor quantities contain derivatives of gauge fields
only of the first order, therefore it is natural to call them
gauge field strengths. In order to construct the free gauge
field Lagrangian density, it is necessary to use the scalars

formed from the gauge field strengths. As a result, we come
to the conclusion about the structure of the free gauge field
Lagrangian density.

Theorem 2—The Lagrangian density

 L 0 �
������
j �gj

q
L0�Fmab; Fab; F

c
ab; Qa; ��x��; (6.5)

where L0 is a scalar function formed from the gauge
field strengths (6.1), (6.2), (6.3), and (6.4), satisfies the
principle of local invariance.

VII. INTERACTIONS OF GAUGE FIELDS

Let us consider the full group of gauge symmetries ��x�,
into which the group PW �x� enters via direct product. As
an example, consider a group

 ��x� � PW �x�
O

SU3�x�
O

U1�x�;

where SU3�x� is the non-Abelian gauge color group of
quantum chromodynamics, and U1�x� is the gauge group
of electrodynamics. Then, applying the general theory of
gauge fields [15] to the group ��x�, we obtain, according to
Theorem 2, the strength tensor of the unified gauge field

 FMab � 2h��a@j�jA
M
b� � A

M
c C

c
ab � cN

M
QA

N
a A

Q
b ; (7.1)

where indices M, N, Q run over the values of indices of all
infinitesimal operators of all components of the direct
product. Further, it is necessary to take into account that
various infinitesimal operators of components of the direct
product commute. As a result, structural constants and the
metric tensor gMN of the group space, as well as the squares
of the tensor (7.1) break up into blocks corresponding to
components of the direct product.

Then the gauge field strength tensor (7.1) will be repre-
sented as a set of components FMab � fF

m
ab; F

i
ab; Fabg.

Here the tensor Fmab represents the group PW �x� and is
given by the expression (6.1). The tensor Fiab describes the
color gauge field, and the tensor Fab describes the electro-
magnetic field. These tensors are given by the expressions

 Fiab � 2h�
�a@j�jA

i
b� � A

i
cCcab � ck

i
lA
k
aAlb; (7.2)

 Fab � 2h�
�a@j�jAb� � AcC

c
ab; (7.3)

where ck
i
l are structural constants of the group SU3.

Formulas (7.2) and (7.3) describe interaction of color and
electromagnetic fields with the gauge field of the group
PW �x�.

With regard to what has been just stated, the often used
description of this interaction by replacing usual deriva-
tives by gauge covariant ones, such as, e.g.,
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Fiab � 2D�aA
i
b� � A

i
cC

c
ab � ck

i
lA
k
aA

l
b;

Fab � 2D�aAb� � AcC
c
ab;

seems to be incorrect.

VIII. GEOMETRICAL INTERPRETATION

It is well known that the theory of gauge fields can be
interpreted in terms of differential geometry and of fiber
bundles (see [1,11–13,33,34] and the literature therein).
Already in the book of Weyl [19], a generalization of the
Riemann geometry to the Weyl geometry was formulated
as a consequence of the requirement that the theory be
invariant against variation of scales. The fiber bundles
treatment of the Weyl geometry can be found in [35].

In [5–9,15] it was shown how, as a consequence of
localization of the Poincaré group, the Riemann-Cartan
geometry arose. Let us show that the results of the previous
sections can be interpreted as a realization of the Weyl-
Cartan differential geometry in the space-time manifold
M. Based upon the above mentioned geometrical inter-
pretation, there appears the identification of the gauge
derivative (5.7) and the covariant derivative in the space-
time manifold, as well as the interpretation of the frame ~ea
as an orthogonal frame of the space (tangent to the mani-
fold M), in which the localized Poincaré-Weyl group
operates: ~ea � ~e�h�a, f ~e�g � f@�g

 � ~ea; ~eb� � �Ccab ~ec; Ccab � 2h�ah�b@��h
c
��: (8.1)

Thus the basis ~ea is a nonholonomic basis, and quantity
Ccab is an object of nonholonomicity [30]. The shift op-
erator Pa is redefined: Pa � h�a@�, �Pa; Pb� � �CcabPc,
and represents the shift operator of the tangent space. The
metric tensor gab appears to be a metric tensor of the
tangent space with the element of length defined as dxa �
ha�dx

�. Then the square of an element of length of this
space will be equal

 ds2 � gabdxadxb � gabha�hb�dx�dx� � �g��dx�dx�;

and this allows one to interpret quantities �g��, calculated
with the use of the formula (5.10a), as components of the
Weyl-Cartan metric tensor of the space-time manifold M
in the coordinate holonomic basis:
 

�g�� � �g� ~e�; ~e�� � �g� ~ea; ~eb�h
a
�h

b
�

� gabh
a
�h

b
� � �2g��;

g�� � gMabh
a
�h

b
�:

(8.2)

 

������
j �gj

q
� �4h; h � det�ha��: (8.3)

With this interpretation of quantities �g��, the formula
(5.11) becomes obvious. Quantities g�� are the coordinate
holonomic components of the Riemann-Cartan metric ten-
sor of the space-time manifold M. Two types of indices,

arising in the theory, i.e., the tetrad a; b; . . . and coordinate
�; �; . . . , change each other by means of the quantities
ha�, which are interpreted as tetrads. It is generally ac-
cepted that contractions of quantities with Greek holo-
nomic indices are performed with the use of the
Riemann-Cartan metric tensor g��.

In the formula for the gauge derivative (5.7), expressions
for the generators ImAB of the vector representation  A �
va of the Poincaré-Weyl group,

 Iij
a
b � �ai gjb � �

a
jgib �m! fi; jg; i < j�;

should be used, the weight of the vector field being equal to
w�va� � �1. Then, equating the expression for the gauge
derivative of a vector

 D�v
a � @�v

a � Am�Im
a
bv

b � A�v
a;

to the expression for the covariant derivative of a vector in
differential geometry r�va � @�va � �ab�v

b, we find
the connection coefficients in the nonholonomic basis:

 �ab� � �A
m
�Imab � �

a
bA�: (8.4)

In order to define covariant derivative r� for quantities
with coordinate indices, one postulates that

 r�ha� � @�ha� � �ab�h
b
� � ����h

a
� � 0:

From this formula, we find the connection coefficients in
the holonomic coordinate basis:

 ���� � h�ahb��ab� � h
�
a@�ha�: (8.5)

According to (4.1), under the action of the group
PW �x�, the metric tensor of the tangent space is multi-
plied by an arbitrary function and can be represented as
(4.2) [36–38]. Calculating a variation of this expression
(4.2) and comparing it with the variation of the metric
tensor (4.1), we find that �� � �"�x�. Thus, the field
��x� has the weight w���x�� � 1. This field coincides
with the scalar field introduced by Dirac [27], and can be
represented as ��x� � exp��x�, where ��x� is the dilaton
field. The field ��x� is also similar to the ‘‘measure’’ scalar
field introduced by Utiyama [28]. In fact, the field ��x� is a
factor that multiplies the components of the tangent space
metric tensor in the Weyl-Cartan geometry.

It is known from differential geometry [30] that a non-
metricity tensor is equal to

 Qab� � �r�gab � �@�gab � 2��ab��:

Substituting expression (4.2) in the above formula, as well
as in (6.4), we obtain
 

Qab� �
1
4gabQ�; Q� � gabQab�; (8.6a)

Q� � 8�A� � @� ln��x�� � Qah
a
�: (8.6b)

If the nonmetricity tensor satisfies the equalities (8.6a),
then nonmetricity is the Weyl nonmetricity. In this case,
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the trace (8.6b) of the nonmetricity tensor is called the
Weyl vector, and it is expressed through the vector (6.4).

Let us introduce the quantities

 Fm�� � Fmabh
a
�hb� � 2@

��A
m
�� � cn

m
qAn�Aq�;

(8.7)

 F�� � Fabha�hb� � 2@
��A��; (8.8)

 Fc�� � Fcabh
a
�hb�

� 2@
��h

c
�� � 2In

c
ah

a
��A

n
�� � 2A

��h
c
��; (8.9)

representing (together with (8.6b)) the gauge field strengths
for a new set of dynamic variables fAm�, A�, ha�, ��x�g.

Substituting the expression for the connection coeffi-
cients (8.4) in the curvature of the space-time manifold
and using the commutation relations of the generators of
the Lorentz subgroup, as well as Eqs. (8.7) and (8.8), we
obtain a representation for the curvature tensor that corre-
sponds to the decomposition of the Weyl-Cartan curvature
tensor into symmetric and antisymmetric parts [30]:

 

�R a
b�� � 2@

���a
jbj�� � 2�ac���c

jbj��

� �Im
a
bF

m
�� � �

a
bF��: (8.10)

Using (8.5) and taking into account Eqs. (8.4) and (8.9),
we obtain the expression for the torsion tensor of the space-
time manifold:
 

T��� � 2��
���� � 2h�ahb���a

jbj�� � 2h�a@��h
a
��

� h�aF
a
��: (8.11)

Expressions (8.1), (8.4), (8.6b), (8.10), and (8.11) deter-
mine the relation between the geometrical quantities of the
space-time manifold and the formulas of the gauge fields
theory for the localized Poincaré-Weyl group.

IX. EQUATIONS OF GAUGE FIELDS

The total Lagrangian density of the set of the field  A

and the gauge field is

 L � L0 �L ; (9.1)

where L0 is given by expression (6.5), and L by expres-
sion (5.3a). For the total Lagrangian density (9.1) the varia-
tional gauge field equations (4.6) are satisfied:
 

�L0

�Ama
� �

@L 

@Ama
;

�L0

�Aa
� �

@L 

@Aa
; (9.2a)

�L0

�Aka
� �

@L 

@Aka
;

�L0

���x�
� �

�L 

���x�
: (9.2b)

As it has already been pointed out, the last of these varia-
tional field equations is a consequence of the others.

It is more convenient to pass from the variational field
equations for the set of independent fields fAma , Aa, Aka,
��x�g to the variational field equations with respect to
independent dynamical variables fAm�, A�, ha�, ��x�g:
 

�L
�Am�

� 0;
�L
�A�

� 0;
�L
�ha�

� 0;
�L
���x�

� 0:

(9.3)

By direct calculations it is possible to establish that the two
sets of field equations (9.2a), (9.2b), and (9.3) are equiva-
lent, provided that the tetrads ha� are represented by the
formulas (5.8a)–(5.8c).

The first of the field equations (9.3) can be represented as
 

@�
@L0

@Fm��
�

1

2

������
j �gj

q
�S�
�0�m � S

�
m�; (9.4a)

������
j �gj

q
S�m � �

@L 

@Am�
�

@L 

@D� A
Im

A
B 

B; (9.4b)

������
j �gj

q
S�
�0�m � �

@L0

@Am�
� 2

@L0

@Fn��
cm

n
qA

q
�

� 2
@L0

@Fc��
Im

c
ah

a
�: (9.4c)

The second of the field equations (9.3) can be written down
as follows
 

@�
@L0

@F��
�

1

2

������
j �gj

q
�J�
�0� � J

��; (9.5a)

������
j �gj

q
J� � �

@L 

@A�
�

@L 

@D� A
w A; (9.5b)

������
j �gj

q
J�
�0� � �

@L0

@A�
� �2

@L0

@Fa��
ha� � 8

@L0

@Q�
: (9.5c)

The third of the field equations (9.3) can be represented
as:
 

@�
@L0

@Fa��
� �

1

2

������
j �gj

q
�t�
�0�a � t

�
� �a�; (9.6a)

������
j �gj

q
t�
� �a �

@L 

@ha�
� h�aL �

@L 

@D� A
Da A; (9.6b)

������
j �gj

q
t�
�0�a �

@L0

@ha�
� h�aL0 � 2Fma�

@L0

@Fm��

� 2Fa�
@L0

@F��
� 2Fba�

@L0

@Fb��

� 2Am�Im
b
a
@L0

@Fb��
� 2A�

@L0

@Fa��
�Qa

@L0

@Q�
:

(9.6c)

The quantity (9.6b) represents the well-known expression
for the canonical energy-momentum of an external field
[9].
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The quantities (9.4c), (9.5c), and (9.6c) represent an
internal spin angular momentum, a proper dilatation cur-
rent, and an energy-momentum of free gauge fields, re-
spectively. The sums of these currents and the appropriate
currents of an external field  A are conserved. These
conservation laws are just consequences of the gauge field
equations (9.4a), (9.5a), and (9.6a):

 @��
������
j �gj

q
�S�
�0�m � S

�
m�� � 0;

@��
������
j �gj

q
�J�
�0� � J

��� � 0; @��
������
j �gj

q
�t�
�0�a � t

�
� �a�� � 0:

The field equations (9.4a), (9.5a), and (9.6a) can be
represented in a geometrical form with the help of the
gauge derivatives (5.7) that does not however act on the
Greek coordinate indices:

 

D�

�
@L0

@Fm��

�
�

1

2

������
j �gj

q
S�m �

@L0

@Fb��
Imbaha�; (9.7a)

D�

�
@L0

@F��

�
�

1

2

������
j �gj

q
J� �

@L0

@Fa��
ha� � 4

@L0

@Q�
; (9.7b)

D�

�
@L0

@Fa��

�
� Fma�

@L0

@Fm��
� Fba�

@L0

@Fb��

� Fa�
@L0

@F��
�

1

2
Qa

@L0

@Q�
�

1

2
h�aL0

� �
1

2

������
j �gj

q
t�
� �a: (9.7c)

The above equations generalize the field equations for the
Poincaré group [15,17], and the Eq. (9.7c) generalizes the
Einstein equation to the arbitrary Lagrangian.

X. CONCLUSION

In the present paper, based upon the general principles,
we constructed the gauge field theory for the Poincaré-
Weyl group. The formal expression for the gauge deriva-
tive was obtained: Da � �ARaMR. It was shown that, con-
trary to [24,25], the tetrads were not true gauge fields, but
represented some sufficiently complex functions of gauge
fields: Lorentzian Ama , translational Aka, and dilatational Aa,
the relation Aka � Dax

k being valid. It is possible to expect
that the knowledge of the true gauge potentials of a gravi-
tational field may become essential for constructing the
quantum theory of gravity.

The gauge field equations were obtained. The geomet-
rical interpretation of the theory was developed, and it was
shown that, as a result of localization of the Poincaré-Weyl
group, the space-time became the Weyl-Cartan space.
Moreover, the geometrical interpretation of the Dirac’s
scalar field � [27]) (and thereby that of the dilaton field,
as well as of the Utiyama measure scalar field [28]), as a
component of the metric tensor of a tangent space in the

Weyl-Cartan geometry was obtained. This field is essential
for constructing the field theory in the Weyl-Cartan space
[39,40].

We demonstrated that the gauge invariant Lagrangian of
the proper gauge fields was an arbitrary scalar function of
the gauge strengths of the theory containing derivatives of
the gauge fields of the order not higher than the first:

 L 0 �
������
j �gj

q
L0�Fmab; Fab; F

c
ab; Qa; ��x��:

The most simple Lagrangian of this kind, allowing the
gauge fields to be realized dynamically, can be constructed
as

 

L0 � 2hf0�
4

�
�� Im

a
bF

m
a
b �

X
k

	kF
�k�

cabF
�k�

cab

�
X
i

fi
�i��ImabF

m
cd�
�i��Im

abFmcd� � �FabF
ab

� 
QaQ
a � �FcacQ

a
�

� 2hf0

�
1

2
�2 �R� 2

X
i

fi �R
�i�

�ab�cd
�R
�i�
�ab�cd

� �2

�X
k

	kT
�k�

cabT
�k�

cab � 64
A�A� � 8�T�A�

�

� 4��@
��A���

2 � 8��T� � 16
A���@��

� 64
g���@����@��� ���4

�
: (10.1)

Here �Rab�� is the Weyl-Cartan curvature tensor, �R is the
Weyl-Cartan curvature scalar, and the indexes (i), (k)
numerate components of the irreducible decompositions
(with respect to the Lorentz group) of the curvature and
torsion tensors, respectively. Contraction of the Greek in-
dices is performed with the Riemann-Cartan metric tensor
g��.

The above given Lagrangian has some distinctive fea-
tures. First, it reproduces the quadratic Lagrangian of the
Poincaŕe-gauged theories of gravity [7,12,15]. Second, this
Lagrangian, despite the gauge invariance, allows for the
presence of a nonzero mass of the Weyl vector, and hence,
of the dilatation gauge field, in contrast to [24,25]. This
circumstance means that the gauge field, introduced by
means of localization of the group of scale transformations,
is not an electromagnetic field (contrary to the initial idea
of Weyl and to [39]), but rather a field of a different nature,
as it was pointed out in [36–38]. A nonzero mass of the
Weyl field can play a positive role in interpretations of the
modern observational data based upon the use of the post-
Riemannian cosmological models [41–43], as well as for
possible explanation of a smooth exit from the stage of
inflation. Moreover, the last terms with the field��x� in this
Lagrangian have the structure of the Higgs Lagrangian

GAUGE FIELD THEORY FOR THE POINCARÉ-WEYL GROUP PHYSICAL REVIEW D 74, 064012 (2006)

064012-11



[39], and hence they may play a decisive role in sponta-
neous violation of scale invariance and in formation of
mass of particles [31].
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