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The geometrical meaning of the Eddington-Finkelstein coordinates of Schwarzschild spacetime is well
understood: (i) the advanced-time coordinate v is constant on incoming light cones that converge toward
r � 0, (ii) the angles � and � are constant on the null generators of each light cone, (iii) the radial
coordinate r is an affine-parameter distance along each generator, and (iv) r is an areal radius, in the sense
that 4�r2 is the area of each two-surface �v; r� � constant. The light-cone gauge of black-hole
perturbation theory, which is formulated in this paper, places conditions on a perturbation of the
Schwarzschild metric that ensure that properties (i)–(iii) of the coordinates are preserved in the perturbed
spacetime. Property (iv) is lost, in general, but it is retained in exceptional situations that are identified in
this paper. Unlike other popular choices of gauge, the light-cone gauge produces a perturbed metric that is
expressed in a meaningful coordinate system; this is a considerable asset that greatly facilitates the task of
extracting physical consequences. We illustrate the use of the light-cone gauge by calculating the metric of
a black hole immersed in a uniform magnetic field. We construct a three-parameter family of solutions to
the perturbative Einstein-Maxwell equations and argue that it is applicable to a broader range of physical
situations than the exact, two-parameter Schwarzschild-Melvin family.
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I. INTRODUCTION

The theory of perturbations of the Schwarzschild space-
time is a well-developed one [1], and it may seem surpris-
ing that authors are still writing on this venerable topic
almost 50 years after its inception in the work of Regge and
Wheeler [2] (see also Refs. [3,4]). This is (at least partially)
explained by the fact that the field has witnessed a resur-
gence of sorts in the last several years, motivated by new
applications that include the gravitational self-force prob-
lem [5–8], the ‘‘close-limit’’ collision of two black holes
[9], and the study of the dynamics of black holes placed in
tidal environments [10–14]. The theory has been presented
in various sophisticated packages [15–21], and it has
reached what is likely to be its definitive form.

We wish to make an additional contribution to this body
of literature by formulating a useful, attractive, and simple
gauge condition for black-hole perturbation theory. We
believe that this gauge, which we call the light-cone gauge,
is preferable in many ways to most popular gauges, includ-
ing the oft-used Regge-Wheeler gauge. We believe that the
use of the light-cone gauge will be a great benefit to any
researcher faced with the task of computing and interpret-
ing a perturbation of the Schwarzschild spacetime.

The idea is simple. The difficulties of the Schwarzschild
coordinates �t; r; �; �� across the black-hole horizon are
well documented, and it is well known that the transfor-
mation v � t� r� 2M lnjr=2M� 1j brings the metric to
a form that is well behaved on the event horizon. The
Eddington-Finkelstein coordinates �v; r; �;�� have a clear
geometrical meaning. The null coordinate v (called ad-
vanced time) is constant on incoming light cones that
converge toward r � 0, the angles � and � are constant
on the null generators of each light cone v � constant, and

r is an affine-parameter distance along each generator. In
addition, r doubles as an areal radius, in the sense that 4�r2

is the area of each two-sphere �v; r� � constant.
The light-cone gauge places conditions on the metric

perturbation that ensure that the geometrical meaning of
the coordinates is preserved in the perturbed spacetime.
The advanced-time coordinate v therefore continues to
label incoming light cones that converge toward r � 0,
the angles � and � continue to label the generators of
each light cone, and r continues to be an affine-parameter
distance along each generator. One geometrical aspect of
the coordinates that must generally be given up is the role
of r as an areal radius; we shall show, however, that this
property also can be preserved in special circumstances.
The light-cone gauge therefore produces a perturbed met-
ric that is expressed in a meaningful coordinate system.
This is a considerable asset that greatly facilitates the task
of extracting the physical properties of the spacetime.

The light-cone gauge is developed in Sec. II of this
paper. The gauge conditions are introduced in Sec. II B,
after we present in Sec. II A a brief review of the
Schwarzschild metric in Eddington-Finkelstein coordi-
nates. In Secs. II C and II D we decompose the metric
perturbation in spherical harmonics and explore the space
of gauge transformations that keep the perturbation within
the light-cone gauge. This remaining gauge freedom is
convenient, as it can be exploited to simplify the form of
the perturbed metric to the fullest extent possible. In
Sec. II E we determine the conditions under which r retains
its interpretation as an areal radius. The answer turns out to
be simple: This is possible whenever the component Tvv �
Trr of the perturbing energy-momentum tensor vanishes. In
Sec. II F we summarize our construction and discuss its
merits; in particular, we compare our light-cone gauge to
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the very widely used, but far less compelling, Regge-
Wheeler gauge.

In Sec. III we present an illustrating application of the
light-cone gauge for black-hole perturbation theory: We
examine a black hole immersed in a uniform magnetic
field, and calculate its metric accurately through second
order in the strength of the magnetic field. The physical
situation is described in Sec. III A. The magnetic field and
its energy-momentum tensor are computed in Sec. III B. In
Sec. III C and III D we integrate the equations of black-hole
perturbation theory for this situation. The solution is pre-
sented in Sec. III E, and in Sec. III F we examine the
structure of the perturbed horizon. Finally, in Sec. III G
we compare our perturbative solution to the exact
Schwarzschild-Melvin solution [22–24], which also de-
scribes a magnetized black hole. We conclude that the
perturbative solution is applicable to a broader range of
physical situations.

In the Appendix we provide a complete listing of the
linearized field equations in the light-cone gauge.

Our developments in this paper rely heavily on the
recent work of Martel and Poisson [21], which presents a
covariant and gauge-invariant formalism for black-hole
perturbation theory. They also incorporate key ideas from
a companion paper [25] devoted to the construction of
light-cone coordinates centered on a geodesic world line
of an arbitrary curved spacetime.

We point out that the light-cone gauge constructed here
is adapted specifically to incoming light cones v �
constant that converge toward r � 0. It would be exceed-
ingly straightforward to adapt the construction to outgoing
light cones u � constant that expand toward r � 1. (In
Schwarzschild spacetime, the retarded time coordinate u is
defined by u � t� r� 2M lnjr=2M� 1j.) While the in-
coming light-cone gauge is well suited to study the prop-
erties of the perturbed event horizon, the outgoing light-
cone gauge would be well suited to study the gravitational
radiation escaping toward future null infinity. We suggest
this adaptation as an exercise for the reader.

Throughout the paper we work in geometrized units
�c � G � 1� and adhere to the conventions of Misner,
Thorne, and Wheeler [26].

II. LIGHT-CONE GAUGE: DEFINITION AND
PROPERTIES

A. Schwarzschild metric in light-cone coordinates

The transformation v � t� r� 2M lnjr=2M� 1j
brings the Schwarzschild metric from its usual form to
the Eddington-Finkelstein form

 ds2 � �fdv2 � 2dvdr� r2d�2; (2.1)

where

 f :� 1�
2M
r

(2.2)

and

 d�2 :� �ABd�Ad�B :� d�2 � sin2�d�: (2.3)

The parameter M is the black-hole mass and �A �
��2; �3� � ��;�� are angles that span the two-spheres
�v; r� � constant.

The coordinates �v; r; �; �� are well behaved across the
event horizon, and they possess a clear geometrical mean-
ing. We note first that the vector

 l� :� �r�v � ��1; 0; 0; 0� (2.4)

is null, which implies that each surface v � constant is a
null hypersurface of the Schwarzschild spacetime; these
are, in fact, incoming light cones that converge toward the
black-hole singularity. The fact that l� is a gradient implies
that l� is everywhere tangent to a congruence of null geo-
desics; these are affinely parameterized, and they are the
generators of each light cone v � constant. Using the
metric of Eq. (2.1) to raise indices, we find that

 l� � �0;�1; 0; 0�: (2.5)

This relation implies that �A � constant on the generators,
so that the angles �A can be used as generator labels.
Furthermore, Eq. (2.5) reveals that the affine parameter
on each generator is �r. The geometrical meaning of the
coordinates is therefore the following: The null coordinate
v (called advanced time) is constant on incoming light
cones that converge toward r � 0, �A labels the generators
of each light cone, and r is an affine-parameter distance
along each generator. The radial coordinate r also doubles
as an areal radius, meaning that 4�r2 is the area of each
two-sphere �v; r� � constant.

B. Perturbed metric in light-cone coordinates

We introduce a perturbation p�� of the Schwarzschild
metric, defined by the statement

 gperturbed
�� � g�� � p��; (2.6)

where gperturbed
�� is the metric of the perturbed spacetime,

while g�� represents the Schwarzschild solution, which we
express in the light-cone coordinates of Eq. (2.1). We wish
to place conditions on the metric perturbation that ensure
that the meaning of the light-cone coordinates will be
preserved in the perturbed spacetime. Specifically, we
demand that, in the perturbed spacetime, v continues to
be constant on incoming light cones that converge toward
r � 0, �A continue to be constant on the null generators of
each light cone, and r continues to be an affine-parameter
distance along each generator. In exceptional circumstan-
ces that will be identified in Sec. II E below, r also reprises
its role as an areal radius, but, in general, this property will
not be preserved in the perturbed spacetime.

The geometrical meaning of the coordinates will be
preserved if Eqs. (2.4) and (2.5) continue to hold in the
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perturbed spacetime. We now have l� � �g�� � p���l�,
and we infer that the perturbation must satisfy the gauge
conditions

 p��l� � 0 ) pvr � prr � prA � 0: (2.7)

There are four conditions, which we refer to as the light-
cone gauge conditions. A metric perturbation p�� that
satisfies Eqs. (2.7) will be said to be in a light-cone gauge.
As we shall see below, Eqs. (2.7) do not completely fix the
gauge, and the remaining gauge freedom can be exploited
to simplify the form of the perturbed metric.

The gauge conditions leave pvv, pvA, and pAB as non-
vanishing components of the metric perturbation. The trace
of the perturbation is

 p :� g��p�� � r�2�ABpAB; (2.8)

where �AB is the matrix inverse of �AB, defined by
Eq. (2.3). The determinant of the perturbed metric is given
by

 

���������������������
�gperturbed

q
� r2 sin�

�
1�

1

2
p
�
; (2.9)

and r will retain its role as an areal radius whenever the
metric perturbation has a vanishing trace. In Sec. II E we
will determine under what conditions this happens.

C. Even-parity sector

The even-parity sector refers to those components of the
metric perturbation that can be expanded in terms of even-
parity spherical harmonics Ylm, YlmA , �ABYlm, and YlmAB.
(Throughout the paper we use the notation of Martel and
Poisson [21].) The scalar harmonics Ylm are the usual
spherical-harmonic functions, the vectorial harmonics are
defined by YlmA :� DAYlm (where DA is the covariant de-
rivative operator compatible with �AB), and the tensorial
harmonics are defined by YlmAB :� �DADB �

1
2 l�l�

1��AB�Y
lm; these are trace-free by virtue of the eigenvalue

equation for the spherical harmonics: �ABYlmAB �
��ABDADB � l�l� 1��Ylm � 0.

The even-parity sector is

 pab �
X
lm

hlmab�x
a�Ylm��A�; (2.10)

 paB �
X
lm

jlma �x
a�YlmB ��

A�; (2.11)

 pAB � r2
X
lm

�Klm�xa��ABY
lm��A� �Glm�xa�YlmAB��

A��;

(2.12)

where xa � �x0; x1� � �v; r�. The sums over the integer l
begin at l � 0 in the case of Eq. (2.10) and the Klm term in
Eq. (2.12), at l � 1 in the case of Eq. (2.11), and at l � 2 in
the case of the Glm term in Eq. (2.12). The sums over the

integer m go from �l to �l. The light-cone gauge con-
ditions are

 hlmvr � hlmrr � jlmr � 0: (2.13)

The components hlmvv, jlmv , Klm, and Glm are nonzero in the
light-cone gauge.

Even-parity gauge transformations are generated by a
dual vector field �� � ��a;�A� that can be expanded as

 �a �
X
lm

�lma �xa�Ylm��A�; (2.14)

 �A �
X
lm

�lm�xa�YlmA ��
A�: (2.15)

According to Eqs. (4.6)–(4.9) of Martel and Poisson [21],
such a transformation will preserve the conditions of
Eq. (2.13) provided that �v, �r, and � satisfy the equations

 0 �
@�v
@r
�
@�r
@v
�

2M

r2 �r; 0 �
@�r
@r

;

0 �
@�
@r
� �r �

2

r
�:

(We henceforth omit the spherical-harmonic indices for
brevity. Our considerations momentarily exclude the spe-
cial cases l � 0 and l � 1, which will be handled sepa-
rately below.) This means that a gauge transformation
generated by

 �v � � _a�v�r� fa�v� � b�v�; (2.16)

 �r � a�v�; (2.17)

 � � a�v�r� c�v�r2 (2.18)

will keep a perturbation within the light-cone gauge. The
remaining gauge freedom is therefore characterized by
three arbitrary functions a�v�, b�v�, c�v�, and the overdot
in Eq. (2.16) indicates differentiation with respect to v. The
gauge transformation changes the nonvanishing compo-
nents of the perturbation field according to

 hvv ! h0vv � hvv � 2 �ar� 2
�
1�

3M
r

�
_a� 2 _b�

2M

r2 b;

(2.19)

 jv ! j0v � jv � fa� b� _cr2; (2.20)

 K ! K0 � K � 2 _a�
l�l� 1�

r
a�

2

r
b� l�l� 1�c;

(2.21)

 G! G0 � G�
2

r
a� 2c: (2.22)

The lower multipoles l � 0 and l � 1 must be consid-
ered separately. For l � 0 the spherical harmonics YA and
YAB are identically zero, and the only relevant perturbation
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fields are hab and K; ja and G are not defined. A gauge
transformation is then generated by �a � �aY

00, �A � 0,
and � is not defined. It is easy to check that the light-cone
gauge will be preserved with a �a that is still given by
Eqs. (2.16) and (2.17). In this case the remaining gauge
freedom is characterized by two arbitrary functions, a�v�
and b�v�. The corresponding change in hvv is still given by
Eq. (2.19), while K0 is obtained by setting l � 0 in
Eq. (2.21). For l � 1 the tensorial harmonics YAB are
identically zero, and only G is not defined. The gauge
transformation of Eqs. (2.16), (2.17), and (2.18) is still
seen to preserve the light-cone gauge, and the changes in
the perturbation fields are still described by Eqs. (2.19),
(2.20), and (2.21), in which we must set l�l� 1� � 2;
Eq. (2.22) is irrelevant when l � 1.

It is easy to verify that the dual vector field of
Eqs. (2.14), (2.15), (2.16), (2.17), and (2.18) generates the
(small) coordinate transformation

 v! v0 � v� a�v; �A�; (2.23)

 r! r0 �
�

1�
@a
@v

�
r� b�v; �A�; (2.24)

 �A ! �0A � �A ��AB @
@�B

�
a
r
� c�v; �A�

�
; (2.25)

where a�v; �A� :�
P
lma

lm�v�Ylm��A�, with similar equa-
tions defining b�v; �A� and c�v; �A�. This transformation
leaves the conditions of Eq. (2.7) intact.

D. Odd-parity sector

The odd-parity sector refers to those components of the
metric perturbation that can be expanded in terms of odd-
parity spherical harmonics XlmA and XlmAB. The vectorial
harmonics are defined by XlmA :� �"A

BDBYlm, where
"AB is the Levi-Civita tensor on the unit two-sphere (with
the independent component "�� � sin�), and where
"A

B :� �BC"AC. The tensorial harmonics are XlmAB :�
� 1

2 �"A
CDB � "B

CDA�DCYlm; these are trace-free by vir-
tue of the antisymmetry of the Levi-Civita tensor:
�ABXlmAB � �"

ABDADBYlm � 0.
The odd-parity sector is

 pab � 0; (2.26)

 paB �
X
lm

hlma �xa�XlmB ��
A�; (2.27)

 pAB �
X
lm

hlm2 �x
a�XlmAB��

A�: (2.28)

The sums over the integer l begin at l � 1 in the case of
Eq. (2.27), and at l � 2 in the case of Eq. (2.28). The light-
cone gauge conditions are

 hlmr � 0: (2.29)

The components hlmv and hlm2 are nonzero in the light-cone
gauge.

Odd-parity gauge transformations are generated by a
dual vector field �� � ��a;�A� that can be expanded as

 �a � 0; (2.30)

 �A �
X
lm

�lm�xa�XlmA ��
A�: (2.31)

According to Eqs. (5.5) of Martel and Poisson [21], such a
transformation will preserve the conditions of Eq. (2.29)
provided that � satisfies @�=@r� 2�=r � 0. (We hence-
forth omit the spherical-harmonic indices for brevity. Our
considerations momentarily exclude the special case l � 1,
which will be handled separately below.) This means that a
gauge transformation generated by

 � � ��v�r2 (2.32)

will keep a perturbation within the light-cone gauge. The
remaining gauge freedom is therefore characterized by a
single arbitrary function ��v�. The gauge transformation
changes the nonvanishing components of the perturbation
field according to

 hv ! h0v � hv � _�r2; (2.33)

 h2 ! h02 � h2 � 2�r2; (2.34)

where an overdot indicates differentiation with respect to
v.

The situation is the same for the special case l � 1,
except that XAB is then identically zero and h2 is not
defined. The gauge transformation of Eq. (2.32) is still
seen to preserve the light-cone gauge, and it still changes
hv according to Eq. (2.33); Eq. (2.34) is then irrelevant.

It is easy to verify that the dual vector field of
Eqs. (2.30), (2.31), and (2.32) generates the (small) coor-
dinate transformation

 �A ! �0A � �A � "AB
@
@�B

��v; �A�; (2.35)

where ��v; �A� :�
P
lm�

lm�v�Ylm��A� and "AB :�
�AC�BD"CD. This transformation leaves the conditions
of Eq. (2.7) intact.

E. When is r an areal radius?

According to Eqs. (2.8) and (2.9), r keeps its interpreta-
tion as an areal radius whenever �ABpAB � 0. And, ac-
cording to Eq. (2.12), this happens when Klm�v; r� � 0 for
all values of l andm. In this subsection we determine under
what circumstances it is possible to impose this condition.

The light-cone gauge produces a very convenient decou-
pling of the equation that governs the behavior ofKlm from
the equations that determine the remaining perturbation
fields. According to the field equations listed in the
Appendix, we have
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 Qvv
lm � Qlm

rr � �
@2

@r2 K
lm �

2

r
@
@r
Klm; (2.36)

where, for example, Qlm
rr :� 8�

R
Trr �Ylmd�, with d� �

sin�d�d�, are the spherical-harmonic projections of the rr
component of the energy-momentum tensor. When Tvv �
Trr � 0, Eq. (2.36) reveals that Klm must be of the form
plm�v� � qlm�v�=r, where plm and qlm are arbitrary func-
tions of v. But it is possible to exploit the remaining gauge
freedom contained in Eqs. (2.16), (2.17), and (2.18) to set
K0lm � 0. As can be seen from Eq. (2.23), this condition
constrains the functions blm�v� and clm�v�, which must
now be related to alm�v�. The remaining gauge freedom
is therefore restricted to transformations characterized by a
single arbitrary function, alm�v�. Our conclusion is that
Klm can be set equal to zero whenever Tvv � Trr � 0, and
that this operation still does not fully exhaust the gauge
freedom.

We have established the following theorem: When the
energy-momentum tensor responsible for the metric per-
turbation is such that

 T��l�l� � 0; (2.37)

the light-cone gauge can be refined to include the trace-free
condition

 p :� g��p�� � 0 (2.38)

in addition to the four conditions of Eq. (2.7). In such

circumstances,
���������������������
�gperturbed

p
� r2 sin� and r retains its in-

terpretation as an areal radius. In these circumstances the
light-cone gauge becomes the ‘‘incoming radiation gauge’’
of Chrzanowski [27–30].

The theorem relating the trace-free condition of
Eq. (2.38) to the vanishing of T��l�l� is a new result.
The theorem was established independently by Price,
Shankar, and Whiting [31,32] in work that has not yet
been published, except for a statement of the result made
in Sec. 4.1 of Ref. [33]. Remarkably, these authors were
able to extend the theorem from Schwarzschild spacetime
to all Petrov type-II spacetimes.

F. Discussion; comparison with the Regge-Wheeler
gauge

The light-cone gauge possesses two main virtues. The
first is that it involves simple algebraic conditions on the
metric perturbation; these were stated in covariant form in
Eq. (2.7), p��l� � 0, and they were stated in expanded
form in Eqs. (2.13) and (2.29), hlmvr � hlmrr � jlmr � hlmr �
0. The second is that the gauge conditions preserve the
geometrical meaning of the original coordinate system
�v; r; �A�; as was shown in Sec. II B, the advanced-time
coordinate v continues to label incoming light cones that
converge toward r � 0, the angles �A continue to label the
generators of each light cone, and the radial coordinate r
continues to be an affine-parameter distance along each

generator. The task of extracting the physical properties of
a perturbed spacetime will be greatly facilitated by the use
of such meaningful coordinates.

Most of the literature on black-hole perturbation theory
employs an alternative gauge known as the ‘‘Regge-
Wheeler gauge’’ [2]. The gauge conditions in this case
are jlmv � jlmr � Glm � hlm2 � 0. The Regge-Wheeler
gauge also has the advantage of involving simple algebraic
conditions on the metric perturbation. But unlike the light-
cone gauge, the Regge-Wheeler gauge produces a coordi-
nate system that does not possess a clear geometrical
meaning; this is a disadvantage. And, indeed, the coordi-
nates can sometimes be pathological. For example, the
Regge-Wheeler gauge produces metric components that
do not display asymptotically flat behavior near future
null infinity, even when the source of the perturbation is
spatially bounded [9]. This problem is associated with the
fact that, by imposing Glm � hlm2 � 0, the Regge-Wheeler
gauge is actually setting to zero the transverse–trace-
free part of the metric perturbation, thereby effectively
‘‘gauging away’’ its gravitational-wave content. (The
gravitational-wave modes are still present in the metric
perturbation, but in the Regge-Wheeler gauge they are
encoded in unnatural places.) The end result is a mean-
ingless coordinate system, a metric perturbation that fails
to be asymptotically flat, and a spacetime that does not
easily reveal its radiation content. These problems are not
present in the light-cone gauge.

Another approach that has been followed in the literature
on black-hole perturbation theory is to avoid fixing the
gauge, and to work instead with a gauge-invariant formal-
ism [15–21]. Such an approach can be very useful, espe-
cially when an application calls for a switch from one
gauge to another. We would argue, however, that a good
choice of gauge can be even more useful in concrete
applications. After all, most relativists would begin an
investigation of the Schwarzschild spacetime by making
a specific choice of coordinate system; few relativists
would insist on staying coordinate-free. And most relativ-
ists would agree that the Eddington-Finkelstein system
�v; r; �A� is more convenient to work with than the
Schwarzschild coordinates �t; r; �A�when one is concerned
with the event horizon; these relativists would say that the
Eddington-Finkelstein coordinates are good coordinates.
These attitudes need not change when one goes slightly
away from the Schwarzschild spacetime, and the light-
cone gauge provides a good coordinate system to inves-
tigate the perturbed spacetimes.

III. BLACK HOLES IN A MAGNETIC FIELD

A. Physical situation

To illustrate the use of the light-cone gauge in black-hole
perturbation theory, we work through a model problem
involving a black hole immersed in a uniform magnetic
field. We have in mind a situation in which a large me-
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chanical structure, such as a giant solenoid, is set up in
outer space and made to produce a uniform magnetic field
of strength B. The structure has a mass M0 and its linear
extension is of the order of the length scale1 a; the mag-
netic field is imagined to be uniform over a region of this
size. A black hole of mass M, initially isolated, is then
brought to the structure and inserted within the magnetic
field. This process is quasistatic, and, as we shall justify in
Sec. III F below, the black hole’s surface area stays con-
stant during the immersion. We wish to study how the
black hole distorts the magnetic field within the structure,
and how the magnetic field distorts the geometry of the
black hole.

We suppose that the perturbation created by the mag-
netic field is small and that its effects can be adequately
calculated with the equations of black-hole perturbation
theory. We shall see below that the criterion for this is
r2B2 � 1, where r is the distance from the black hole. If
we restrict our attention to the interior of the mechanical
structure and impose the inequality r < a, then the pertur-
bative criterion is

 a2B2 � 1: (3.1)

In addition to Eq. (3.1) we assume that the structure is
situated in the black hole’s weak-field region, so that

 

M
a
� 1: (3.2)

While a2B2 and M=a must both be small, their relative
sizes are not constrained. We may imagine that M=a is
either much smaller than, comparable to, or much larger
than a2B2; black-hole perturbation theory can handle all
these situations. Below we will be particularly (but not
exclusively) interested in the first possibility,M=a� a2B2

or M=a3 � B2. In this situation there exists an asymptotic
region (described by M� r < a) in which the gravita-
tional effects of the magnetic field, though small, are larger
than those of the black hole.

Another aspect of our model problem is the tidal gravity
exerted by the mechanical structure. Because the structure
has a massM0 and is situated at a distance a from the black
hole, the tidal field (or Weyl-curvature) it produces near the
black hole is E 	M0=a3. This quantity E, which will be
formally introduced below, is an additional parameter that

characterizes the physical situation. Below we will imagine
that E is of the same order of magnitude as B2, so that
M0=a3 	 B2. Our results, however, will not be tied to this
assumption; they will be just as valid when E is much
smaller than (or indeed much larger than) B2.

The perturbed black-hole solution that we construct
below is, in fact, a three-parameter family of solutions;
each solution is characterized by the black-hole mass M,
the magnetic field strength B, and the tidal gravity E. The
solution is obtained perturbatively through order �B2; E�.

B. Magnetic field

We first calculate the electromagnetic field F�� that
surrounds the black hole. Because we seek to determine
the perturbed metric accurately through order B2, it is
sufficient to calculate F�� to order B. And because the
metric corrections of order B2 do not enter this calculation,
we may let the spacetime have an unperturbed
Schwarzschild metric.

To find the electromagnetic field, we rely on Wald’s
observation [34] that, in a vacuum spacetime, any Killing
vector can be identified with the vector potential of a test
electromagnetic field. The fact that the vector satisfies
Killing’s equation ensures that the resulting F�� satisfies
the source-free Maxwell equations. To produce a magnetic
field that is asymptotically uniform when r
 M, we set

 A� � 1
2B�

�; (3.3)

where �� :� �0; 0; 0; 1� is the rotational Killing vector of
the unperturbed Schwarzschild spacetime; we use the or-
dering �v; r; �; �� of the unperturbed light-cone
coordinates.

The vector potential gives rise to an electromagnetic
field tensor F�� � r�A� �r�A�. To display its compo-
nents it is useful to decompose it in an orthonormal tetrad
e�� that is oriented along the ‘‘Cartesian directions’’ asso-
ciated with the ‘‘spherical coordinates’’ �r; �;��; here the
superscript � is the usual vectorial index, and the subscript
� is a frame index that identifies each member of the
tetrad. We thus introduce the tetrad

 e�0 � �f
�1=2; 0; 0; 0�; (3.4)

 

e�1 � �f
�1=2 sin� cos�; f1=2 sin� cos�; r�1 cos� cos�;�r�1 sin�= sin��; (3.5)

 e�2 � �f
�1=2 sin� sin�; f1=2 sin� sin�; r�1 cos� sin�; r�1 cos�= sin��; (3.6)

1The constant a is not to be confused with the functions alm�v� introduced in Sec. II C.
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 e�3 � �f
�1=2 cos�; f1=2 cos�;�r�1 sin�; 0�: (3.7)

We may think of e�1 as pointing in the ‘‘x direction,’’ e�2 as
pointing in the ‘‘y direction,’’ and e�3 as pointing in the ‘‘z
direction.’’ In this tetrad, the nonvanishing frame compo-
nents of the electromagnetic field tensor are

 B1 :� F23 :� F��e�2 e
�
3 � B�1�

���
f

p
� sin� cos� cos�;

(3.8)

 B2 :� F31 :� F��e�3 e
�
1 � B�1�

���
f

p
� sin� cos� sin�;

(3.9)

 B3 :� F12 :� F��e�1 e
�
2 � B�

���
f

p
� �1�

���
f

p
�cos2��;

(3.10)

where f :� 1� 2M=r. The field is purely magnetic.
Asymptotically, when r
 M, B1 	 0, B2 	 0, B3 	 B;
the magnetic field is uniform and aligned with the z
direction. Closer to the black hole the magnetic field is
distorted; as r! 2M we have jBj2 :� B2

1 � B
2
2 � B

3
3 !

B2cos2�, which indicates that the field is strongest at the
poles. We note that the tetrad is defined outside the event
horizon only; as a consequence, Eqs. (3.8), (3.9), and (3.10)
are valid for r > 2M only. The electromagnetic field, how-
ever, extends below the event horizon, and its components
in the coordinates �v; r; �; �� are well behaved across r �
2M.

The electromagnetic field produces an energy-
momentum tensor given by

 T�� �
1

4�

�
F��F�� �

1

4
g��F�	F�	

�
: (3.11)

Its nonvanishing components are

 Tvv �
B2

4�
sin2�; (3.12)

 Tvr �
B2

8�
1

r
�r� 2M� 2�r�M�cos2��; (3.13)

 Trr �
B2

8�
r� 2M

r2 �r� 2M� 2�r�M�cos2��; (3.14)

 Tv� �
B2

4�
1

r
sin� cos�; (3.15)

 Tr� �
B2

4�
r� 2M

r2 sin� cos�; (3.16)

 T�� � �
B2

8�
1

r3 �r� 2M� 2�r�M�cos2��; (3.17)

 T�� �
B2

8�
1

r3sin2�
�r� 2M� 2Mcos2��: (3.18)

These equations are valid both above and below the hori-
zon. This energy-momentum tensor is the source of the
metric perturbation that will be calculated in the following
subsections.

It is easy to see from Eqs. (3.12), (3.13), (3.14), (3.15),
(3.16), (3.17), and (3.18) that the angular dependence of the
energy-momentum tensor is contained entirely in
spherical-harmonic functions of degrees l � 0 and l � 2;
and, because there is no dependence on �, only functions
with an azimuthal index m � 0 are involved. It can also be
seen that the angular dependence of the energy-momentum
tensor has an even parity. Our solution to the equations of
black-hole perturbation theory will therefore have the fol-
lowing properties: (i) it will be axially symmetric; (ii) it
will contain even-parity spherical-harmonic modes with
�l;m� � f�0; 0�; �2; 0�g only; and (iii) it will be stationary.
The metric perturbation will contain a term of magnetic
origin, and it will also contain a homogeneous term asso-
ciated with the ambient Weyl curvature.

C. Integrating the perturbation equation: l � 0

As discussed in Sec. IV D of Martel and Poisson [21]
(see also the Appendix of this paper), the relevant projec-
tions of the energy-momentum tensor when l � 0 are Qab

and Q[, which are defined in the Appendix. Using Y00 �

1=
�������
4�
p

and the energy-momentum tensor of Eqs. (3.12),
(3.13), (3.14), (3.15), (3.16), (3.17), and (3.18), we obtain

 Qvv � 4b2; (3.19)

 Qvr � b2 r� 4M
r

; (3.20)

 Qrr � b2 �r� 2M��r� 4M�

r2 ; (3.21)

 Q[ � 2b2; (3.22)

where2 b2 :� 2
����
�
p

B2=3.
We now integrate the perturbation equations for the two

relevant functions K�r� and hvv�r�—please refer to the
listing of field equations in the Appendix. We first sub-
stitute Eq. (3.19) into Eq. (2.36) and solve for K. The
general solution is K�r� � � 2

3b
2r2 � p� q=r, where p

and q are arbitrary constants. As discussed in Secs. II C and
II E, we may exploit the remaining gauge freedom to set
them equal to zero. We have, therefore,

 K � �2
3b

2r2: (3.23)

The remaining field equations provide a number of equiva-
lent differential equations for hvv. The general solution is
hvv�r� � �

1
3 b

2r�3r� 8M� � 2	M=r. It involves an arbi-

2The constant b is not to be confused with the functions blm�v�
introduced in Sec. II C.
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trary constant 	M that can be interpreted as a shift in M,
the black-hole mass parameter. To reflect the fact that we
wish our perturbed black hole to have the same surface area
as our original, unperturbed black hole (this was motivated
back in Sec. III A), we set 	M � 0. We will verify in
Sec. III F that this condition does indeed lead to a preser-
vation of the horizon area. We have, therefore,

 hvv � �
1
3b

2r�3r� 8M�: (3.24)

Substituting Eqs. (3.23) and (3.24) into Eqs. (2.10),
(2.11), and (2.12) yields

 pvv � �
1
9B

2r�3r� 8M�; (3.25)

 p�� � �
2
9B

2r4; (3.26)

 p�� � �
2
9B

2r4sin2� (3.27)

for the l � 0 sector of the metric perturbation.

D. Integrating the perturbation equation: l � 2

The relevant spherical-harmonic functions are Y20 �
1
4

���������
5=�

p
�3cos2�� 1�, Y20

� � �
3
2

���������
5=�

p
sin� cos�, Y20

� � 0,

Y20
�� �

3
4

���������
5=�

p
sin2�, Y20

�� � 0, and Y20
�� � �

3
4

���������
5=�

p
sin4�.

The required projections of the energy-momentum tensor
are defined in Eqs. (4.17)–(4.20) of Martel and Poisson
[21] (see also the Appendix of this paper); they are

 Qvv � �b2; (3.28)

 Qvr � �b2 r�M
r

; (3.29)

 Qrr � �b2 �r� 2M��r�M�

r2 ; (3.30)

 Qv � �b2r; (3.31)

 Qr � �b2�r� 2M�; (3.32)

 Q[ � b2; (3.33)

 Q] � �b2r�r� 2M�; (3.34)

where the constant3 b2 has been reassigned to b2 :� 8
3 ����������

�=5
p

B2.
We now integrate the field equations for the four func-

tions hvv�r�, jv�r�, K�r�, and G�r�. The equation for K
decouples, as was shown in Eq. (2.36), and it involves the
source term Qvv. Exploiting the remaining gauge freedom
to set all integration constants to zero, we take the solution

to be

 K � 1
6b

2r2: (3.35)

The remaining field equations form a set of coupled ordi-
nary differential equations for the remaining quantities
hvv, jv, and G. These equations are easily decoupled by
taking additional derivatives, and we easily obtain general
solutions to the higher-order equations. These would-be
solutions involve a number of integration constants that are
not part of the true solution space; these are determined by
substituting the would-be solutions into the original system
of second-order equations, and making sure that the solu-
tions stay valid. At the end of this process we obtain hvv �
�c1M=r

2 � 3c2�r� 2M�2 � 1
3 b

2M�r� 3M�, jv �
1
3 c1�r�M�=r� c2r

2�r� 2M� � 1
6 b

2Mr2, and G �
1
3 c1=r� c2�r

2 � 2M2� � 1
6b

2�r2 �M2�, where c1 and c2

are the remaining constants of integration. As we shall
show below, the gauge freedom that is still at our disposal
can be exploited to set c1 � 0. Setting also c2 �

1
6b

2 � 1
3"

for later convenience (thus discarding c2 in favor of the
new constant "), our solutions are

 hvv � �
1
6b

2�3r2 � 14Mr� 18M2� � "�r� 2M�2;

(3.36)

 jv � �
1
6b

2r2�r� 3M� � 1
3"r

2�r� 2M�; (3.37)

 G � 1
2b

2M2 � 1
3"�r

2 � 2M2�: (3.38)

Substituting Eqs. (3.35), (3.36), (3.37), and (3.38) into
Eqs. (2.10), (2.11), and (2.12) yields
 

pvv � �
1
9B

2�3r2 � 14Mr� 18M2��3cos2�� 1�

� E�r� 2M�2�3cos2�� 1�; (3.39)

 pv� �
2
3B

2r2�r� 3M� sin� cos�� 2Er2�r� 2M�

� sin� cos�; (3.40)

 

p�� �
1
9B

2r4�3cos2�� 1� � B2M2r2sin2�

� Er2�r2 � 2M2�sin2�; (3.41)

 

p�� �
1
9B

2r4sin2��3cos2�� 1� � B2M2r2sin4�

� Er2�r2 � 2M2�sin4� (3.42)

for the l � 2 sector of the metric perturbation. We have
introduced the constant E :� 1

4

���������
5=�

p
"; its interpretation as

a tidal gravitational field will be examined below.
We must now explain why it was admissible to set c1 �

0 in our solutions. We go back to Eqs. (2.19), (2.20), (2.21),
and (2.22) and consider the subclass of gauge transforma-
tions that leave K unchanged (in addition to hvr, hrr, and
jr, which are all zero in the light-cone gauge). We see that,
when l � 2, the subclass is characterized by a single

3The constant b is not to be confused with the functions blm�v�
introduced in Sec. II C.
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function a�v�, with the other functions related to it by
b�v� � 3a and c�v� � � 1

3 _a. Taking a to be a constant
produces c � 0, and we observe that, under such a gauge
transformation, hvv changes by a term 6aM=r2, jv changes
by a term�2a�r�M�=r, andG changes by a term�2a=r.
We then see that selecting a � 1

6 c1 produces a gauge trans-
formation that effectively sets c1 to zero. There is therefore
no loss of generality in making this assignment.

E. Perturbed metric

Combining Eqs. (3.25), (3.26), and (3.27) from Sec. III C
and Eqs. (3.39), (3.40), (3.41), and (3.42) from Sec. III D
gives us the metric of our perturbed black hole. Its non-
vanishing components are
 

gvv � �f�
1
9B

2r�3r� 8M� � 1
9B

2�3r2 � 14Mr� 18M2�

� �3cos2�� 1� � E�r� 2M�2�3cos2�� 1�; (3.43)

 gvr � 1; (3.44)

 gv� �
2
3B

2r2�r� 3M� sin� cos�� 2Er2�r� 2M�

� sin� cos�; (3.45)

 

g�� � r2 � 2
9B

2r4 � 1
9B

2r4�3cos2�� 1� � B2M2r2sin2�

� Er2�r2 � 2M2�sin2�; (3.46)

 

g�� � r2sin2�� 2
9B

2r4sin2�� 1
9B

2r4sin2��3cos2�� 1�

� B2M2r2sin4�� Er2�r2 � 2M2�sin4�; (3.47)

and we observe that the perturbation is small whenever
r2B2 � 1 and r2E � 1, as was anticipated in Sec. III A.
This is a three-parameter family of solutions to the
Einstein-Maxwell equations, accurate through order
�B2; E�. The electromagnetic field is generated by the
vector potential of Eq. (3.3); it is accurate through order
B. The parameters of the family are the black-hole massM,
the magnetic field strength B, and the tidal gravitational
field E.

The interpretation of E as a tidal-gravity (Weyl-
curvature) parameter comes from an examination of the
asymptotic behavior of the metric when r
 M (keeping
r� 1=B, as was discussed in Sec. III A). In this regime
Eqs. (3.43), (3.44), (3.45), (3.46), and (3.47) reduce to

 

gvv	�1� 1
3B

2r2� 1
3B

2r2�3cos2�� 1�� Er2�3cos2�� 1�;

(3.48)

 gvr � 1; (3.49)

 gv� 	
2
3B

2r3 sin� cos�� 2Er3 sin� cos�; (3.50)

 g�� 	 r
2 � 2

9B
2r4 � 1

9B
2r4�3cos2�� 1� � Er4sin2�;

(3.51)

 

g�� 	 r
2sin2�� 2

9B
2r4sin2�� 1

9B
2r4sin2��3cos2�� 1�

� Er4sin4�: (3.52)

The asymptotic metric no longer refers to the central black
hole. It is the metric of a spacetime that contains only a
uniform magnetic field, expressed in an advanced coordi-
nate system that is adapted to the incoming light cones of
an observer situated at r � 0; the metric is limited to a
domain r < a, where a is a length scale such that a2B2 �
1. The observer, of course, is fictitious, as r � 0 is actually
occupied by the black-hole singularity; nevertheless, the
observer may be thought to exist in an unphysical exten-
sion of the asymptotic spacetime beyond its domain of
validity, r
 M.

The metric of an arbitrary spacetime in light-cone coor-
dinates was thoroughly investigated in our companion
paper [25]. By comparing our Eqs. (3.48), (3.49), (3.50),
(3.51), and (3.52) to Eqs. (4.9)–(4.12) of the companion
paper, we infer that the asymptotic spacetime is character-
ized by the following irreducible quantities: 
 :� B2=�8��
is the mass-energy density of the magnetic field as mea-
sured by the observer at r � 0, S11 � S22 � �

1
2S33 :�

B2=�12�� are the nonvanishing components of the trace-
free part of the field’s stress tensor, and T :� B2=�8�� is
the trace of the stress tensor; these assignments are pre-
cisely what should be expected for a uniform magnetic
field. The comparison reveals also that E11 � E22 �

� 1
2 E33 :� E are the nonvanishing components of the

spacetime’s Weyl curvature tensor. (The irreducible quan-
tities are all defined in our companion paper.) The com-
parison therefore gives us an operational meaning for the
parameter E: As was already anticipated, it is the Weyl
curvature (the tidal gravitational field) of the asymptotic
spacetime as measured by an observer comoving with the
black hole in the region M� r� 1=B.

F. Perturbed event horizon

The perturbed black-hole spacetime retains �� as a
rotational Killing vector, and it retains t� � �1; 0; 0; 0� as
a time-translation Killing vector. This vector is timelike
outside the black hole, but it becomes null on the event
horizon (which is therefore a Killing horizon). Setting
g��t

�t� � gvv � 0 and involving Eq. (3.43) informs us
that the event horizon is now described by

 r � rhorizon��� :� 2M�1� 2
3M

2B2sin2��: (3.53)

It is interesting to note that rhorizon��� involves B2 but not E.
The horizon’s intrinsic geometry is obtained by inserting

Eq. (3.53) into the perturbed metric. It is described by the
two-dimensional line element
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 ds2
horizon � 4M2�1�M2�B2 � 2E�sin2��d�2

� 4M2sin2��1�M2�B2 � 2E�sin2��d�2:

(3.54)

The element of surface area on the horizon is
4M2 sin�d�d�, and the integrated area is

 Ahorizon � 16�M2: (3.55)

As was anticipated in Sec. III A, the perturbed black hole
has the same surface area as the original Schwarzschild
black hole.

To see that the horizon area cannot change during the
quasistatic immersion of the black hole within the mag-
netic field, we recall the Hawking-Hartle formula [35],
which states that, during a quasistatic process in which a
black hole is perturbed by an energy-momentum tensor
T��, its area changes according to

 

dAhorizon

dv
�

8�
�

I
T��t�t�dS;

where � is the horizon’s surface gravity (see below), and
where the integration is over a two-dimensional cross-
section of the event horizon. The component T��t�t� �
Tvv � Trr of the energy-momentum tensor measures the
flux of energy that crosses the horizon, and, in general, this
flux will produce an increase in area. But according to
Eq. (3.14), in the present case of a magnetic perturbation,
Trr vanishes on the event horizon (apart from corrections
of order B4 which are not under our control). It follows that
dAhorizon=dv vanishes (to order B2) during the quasistatic
immersion of our black hole within the magnetic field. This
conclusion was anticipated back in Sec. III C, when we set
	M � 0; it is this choice that produced the result of
Eq. (3.55).

The distortion of the event horizon can be measured by
the Ricci scalar associated with the two-dimensional met-
ric of Eq. (3.54). This is

 R �
1

2M2 �1� 2M2�B2 � 2E��3cos2�� 1��: (3.56)

The distortion has a quadrupolar structure. The larger
concentration of curvature at the poles reflects the greater
strength of the magnetic field there; as was observed back
in Sec. III B, the square of the magnetic field is given by
jBj2 � B2cos2�.

It is interesting to note that, in accordance with the
zeroth law of black-hole mechanics, the horizon’s surface
gravity displays no trace of this distortion. The surface
gravity � is defined by the statement that, on the horizon,
t� satisfies the generalized form of the geodesic equation:
t�r�t� � �t�. A short calculation based on this equation
reveals that � � 1=�4M� plus terms of order B4, B2E, and
E2. The surface gravity is uniform on the horizon, and it
keeps its unperturbed, Schwarzschild value.

G. Comparison with the Schwarzschild-Melvin solution

There exists an exact solution to the Einstein-Maxwell
equations that describes a nonrotating black hole immersed
in Melvin’s magnetic universe [36–38]. Known as the
Schwarzschild-Melvin solution [22–24], it has a metric
given by

 ds2 � �2��fdt2 � f�1d�r2 � �r2d�2� ���2 �r2sin2�d�2

(3.57)

and a vector potential given by

 A� � 1
2B���; (3.58)

where �� :� �0; 0; 0; 1� is the spacetime’s rotational
Killing vector. We have f :� 1� 2M=�r as before, and
we introduced the function

 � :� 1� 1
4B

2 �r2sin2�: (3.59)

This is a two-parameter family of black-hole solutions; the
first parameter is the black-hole mass M, and the second is
the magnetic field strength B.

The solution of Eqs. (3.57), (3.58), and (3.59) is exact,
and we wish to compare it with the perturbative solution of
Eqs. (3.43), (3.44), (3.45), (3.46), and (3.47). We must first
linearize the exact solution with respect to B2 and trans-
form the coordinates from the original system �t; �r; �; �� to
the light-cone system �v; r; �;��. The transformation from
t to v is the same as for the Schwarzschild spacetime:

 v � t� �r� 2M lnj�r=2M� 1j: (3.60)

The transformation from �r to r is designed to change the
gvr component of the metric tensor from its current value
�2 ’ 1� 1

2B
2 �r2sin2� to the new value of 1. It is given by

 r � �r�1� 1
6B

2 �r2sin2��O�B4��: (3.61)

The angular coordinates ��;�� are not affected by the
transformation.

These manipulations bring the Schwarzschild-Melvin
metric to the new form

 gvv � �f�
1
6B

2r�3r� 8M�sin2��O�B4�; (3.62)

 gvr � 1�O�B4�; (3.63)

 gv� � �
1
3B

2r3 sin� cos��O�B4�; (3.64)

 g�� � r2 � 1
6B

2r4sin2��O�B4�; (3.65)

 g�� � r2sin2�� 5
6B

2r4sin4��O�B4�: (3.66)

Comparison with Eqs. (3.43), (3.44), (3.45), (3.46), and
(3.47) reveals that the solutions are identical provided
that we restrict the parameter freedom of the perturbative
solution. Indeed, to get a match we must set
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 E � 1
2B

2: (3.67)

The Weyl curvature of the Schwarzschild-Melvin solution
is intimately related to its magnetic field. This feature is, in
fact, inherited from Melvin’s pure magnetic universe, as
can be inferred from reading Sec. V B of our companion
paper [25].

We conclude with the following statement: While the
Schwarzschild-Melvin solution has the advantage of being
an exact solution to the Einstein-Maxwell equations, the
perturbative solution of Eqs. (3.43), (3.44), (3.45), (3.46),
and (3.47) has the advantage of possessing a larger number
of parameters. The perturbative solution can therefore
represent a wider class of physical situations. In particular,
it provides the description of a magnetized black-hole
spacetime in which the tidal gravity is not directly tied to
the magnetic field.
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APPENDIX: PERTURBATION EQUATIONS IN THE
LIGHT-CONE GAUGE

In the even-parity sector, the nonvanishing perturbation
fields are hvv�v; r�, jv�v; r�, K�v; r�, and G�v; r�.
According to Eqs. (4.13)–(4.16) of Martel and Poisson
[21], they satisfy the field equations

 

Qvv � �
@2

@r2 K �
2

r
@
@r
K;

Qvr �
@2

@v@r
K �

2

r
@
@v
K �

1

r
@
@r
hvv �

�

2r2

@
@r
jv �

r�M

r2

@
@r
K �

1

r2 hvv �
�

r3 jv �
�

2r2 K �
��

4r2 G;

Qrr � �
@2

@v2 K �
r�M

r2

@
@v
K �

1

r
@
@v
hvv �

�

r2

@
@v
jv �

f
r
@
@r
hvv �

�r�M�f

r2

@
@r
K �

�r� 4M

2r3 hvv �
��r�M�

r4 jv

�
�f

2r2 K �
��f

4r2 G;

Qv �
@2

@r2 jv �
@
@r
K �

�
2

@
@r
G�

2

r2 jv;

Qr � �
@2

@v@r
jv �

2

r
@
@v
jv �

@
@v
K �

�
2

@
@v
G�

�f
2

@
@r
G� f

@
@r
K �

@
@r
hvv �

2

r2 jv;

Q[ � 2
@2

@v@r
K �

2

r
@
@v
K � f

@2

@r2 K �
@2

@r2 hvv �
2

r
@
@r
hvv �

�

r2

@
@r
jv �

2�r�M�

r2

@
@r
K;

Q] � �2r2 @2

@v@r
G� 2r

@
@v
G� r2f

@2

@r2 G� 2�r�M�
@
@r
G� 2

@
@r
jv;

where � :� l�l� 1� � �� 2 and � :� �l� 1��l� 2� �
�� 2. According to Eqs. (4.17)–(4.20) of Martel and
Poisson [21], the source terms are

 

Qab � 8�
Z
Tab �Ylmd�;

Qa �
16�r2

l�l� 1�

Z
TaB �YlmB d�;

Q[ � 8�r2
Z
TAB�AB

�Ylmd�;

Q] �
32�r4

�l� 1�l�l� 1��l� 2�

Z
TAB �YlmABd�;

where xa � �v; r�. The perturbation equations are not all
independent; they are linked by the Bianchi identities

 

0 �
@
@v
Qvv �

@
@r
Qvr �

M

r2 Q
vv �

2

r
Qvr �

�

2r2 Q
v �

1

r
Q[;

0 �
@
@v
Qvr �

@
@r
Qrr �

Mf

r2 Qvv �
2M

r2 Q
vr �

2

r
Qrr

�
�

2r2 Q
r �

f
r
Q[;

0 �
@
@v
Qv �

@
@r
Qr �

2

r
Qr �Q[ �

�

2r2 Q
]:

When l � 0 the only nonvanishing perturbation fields are
hvv and K, and the only relevant equations are those
involving Qab and Q[. When l � 1 the only nonvanishing
perturbation fields are hvv, jv, and K, and the only relevant
equations are those involving Qab, Qa, and Q[.

In the odd-parity sector the nonvanishing perturbation
fields are hv�v; r� and h2�v; r�. According to Eqs. (5.8) and
(5.9) of Martel and Poisson [21], they satisfy the field
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equations
 

Pv �
@2

@r2 hv �
�

2r2

@
@r
h2 �

2

r2 hv �
�

r3 h2;

Pr � �
@2

@v@r
hv �

2

r
@
@v
hv �

�

2r2

@
@v
h2 �

�f

2r2

@
@r
h2

�
�

r2 hv �
�f

r3 h2;

P � �
@2

@v@r
h2 �

1

r
@
@v
h2 �

f
2

@2

@r2 h2 �
r� 3M

r2

@
@r
h2

�
@
@r
hv �

r� 4M

r3 h2;

where � :� l�l� 1� � �� 2 and � :� �l� 1��l� 2� �
�� 2. According to Eqs. (5.10) and (5.11) of Martel and

Poisson [21], the source terms are

 

Pa �
16�r2

l�l� 1�

Z
TaB �XlmB d�;

P �
16�r4

�l� 1�l�l� 1��l� 2�

Z
TAB �XlmABd�:

The perturbation equations are not all independent; they
are linked by the Bianchi identity

 0 �
@
@v
Pv �

@
@r
Pr �

2

r
Pr �

�

r2 P:

When l � 1 the only nonvanishing perturbation field is hv,
and the only relevant equations are those involving Pa.
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