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Continuing work initiated in an earlier publication [Phys. Rev. D 69, 084007 (2004)], we construct a
system of light-cone coordinates based at a geodesic world line of an arbitrary curved spacetime. The
construction involves (i) an advanced-time or a retarded-time coordinate that labels past or future light
cones centered on the world line, (ii) a radial coordinate that is an affine parameter on the null generators
of these light cones, and (iii) angular coordinates that are constant on each generator. The spacetime
metric is calculated in the light-cone coordinates, and it is expressed as an expansion in powers of the
radial coordinate in terms of the irreducible components of the Riemann tensor evaluated on the world
line. The formalism is illustrated in two simple applications, the first involving a comoving world line of a
spatially flat cosmology, the other featuring an observer placed on the axis of symmetry of Melvin’s
magnetic universe.
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I. INTRODUCTION

We continue a research program initiated in Ref. [1],
which aims to construct and exploit light-cone coordinates
based at an arbitrary world line � of an arbitrary curved
spacetime. The retarded coordinates introduced in Ref. [1]
are denoted �u; r; �;�� and are adapted to the future light
cone of each point z on the selected world line. In this
paper we construct advanced coordinates �v; r; �; ��
which are instead adapted to the past light cone of each
point z on the world line; for simplicity we take the world
line to be a geodesic of the spacetime. (The advanced
coordinates were introduced briefly in Ref. [2]; this paper
provides details that were not given in the earlier work.)
We collectively denote the light-cone coordinates by
�w; r; �;��, with w standing for either u or v depending
on the context. In both cases the null coordinate w is
constant on each light cone, and it agrees with proper
time � at the cone’s apex. The radial coordinate r is an
affine parameter on the cone’s null generators, and it
measures the distance away from the world line. The
angular coordinates �A � ��;�� are constant on each one
of these generators. The geometrical meaning of the light-
cone coordinates is clear, and this is one of their main
virtues.

The formalism developed in Ref. [1] and in this paper
incorporates ideas formulated many years ago by Bondi
and his collaborators [3,4], and it complements a line of
research that was initiated by Synge [5] and pursued by
Ellis and his collaborators [6–11] in their work on obser-
vational cosmology. While the central ideas exploited here
are the same as with Synge and Ellis, our implementation is
substantially different: While Synge and Ellis sought defi-
nitions for their optical or observational coordinates that
apply to large regions of the spacetime, our considerations
are limited to a small neighborhood of the world line.

The introduction of retarded coordinates was motivated
by the desire to construct solutions to wave equations for

massless fields that are produced by a pointlike source
moving on the world line. The retarded coordinates natu-
rally incorporate the causal relation that exists between the
source and the field, and for this reason the solution takes a
simple explicit form (in the neighborhood in which the
coordinates are defined). The introduction of advanced
coordinates is motivated instead by the desire to construct
solutions to the Einstein field equations that describe black
holes placed in a distribution of matter or in a tidal environ-
ment. Such an application was described in Ref. [2], in
which the metric of a tidally distorted black hole was
presented in advanced coordinates. In a companion paper
[12] we use the guidance offered by the advanced coordi-
nates to formulate a light-cone gauge for black-hole per-
turbation theory, and to calculate the metric of a black hole
immersed in a uniform magnetic field.

A quasi-Cartesian version of the advanced coordinates is
introduced first in Sec. II B, after reviewing some
necessary geometrical elements in Sec. II A. The metric
tensor in advanced coordinates is constructed gradually in
Secs. II C, II D, II E, and II F, and its quasi-Cartesian form
is displayed in Eqs. (2.27)–(2.29).

In Sec. III A we combine the results obtained in Sec. II
with the earlier results of Ref. [1] and present the metric in
a general form suitable for both advanced and retarded
coordinates. At this stage the metric is expressed in terms
of the Riemann tensor evaluated on the world line �. In
Sec. III B we begin to refine the form of the metric by
decomposing the Riemann tensor into its Weyl and Ricci
parts, and by further decompositing the Weyl and energy-
momentum tensors into their irreducible components. This
leads us, in Sec. III C, to introduce tidal and matter poten-
tials that make the basic building blocks of the metric
tensor. The potentials are displayed in Table I, and the
refined form of the metric is displayed in Eqs. (3.14)–
(3.16).

In Sec. IV we carry out a transformation of the metric
from the quasi-Cartesian coordinates x̂a to the quasispher-
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ical coordinates �r; �A�. The transformation, introduced in
Sec. IVA, is the familiar one from flat spacetime: x̂a �
r�a��A� or, more explicitly, x̂ � r sin� cos�, ŷ �
r sin� sin�, and ẑ � r cos�. This final expression for the
metric tensor, in the coordinates �w; r; �A�, is displayed in
Eqs. (4.9)–(4.12). It involves the angular components of
the tidal and matter potentials introduced in Sec. III. As
shown in Table IV (with the results derived in Secs. IV B
and IV C), these are naturally expressed as expansions in
scalar, vector, and tensor harmonics. The required
spherical-harmonic functions are listed in Tables II and III.

In Sec. V we present two simple applications of the
light-cone coordinates. In Sec. VA we apply the formalism
to a comoving world line of a spatially flat cosmology. In
Sec. V B we examine the metric near the axis of symmetry
of Melvin’s magnetic universe [13–15].

Throughout the paper we work in geometrized units
(G � c � 1) and adhere to the conventions of Misner,
Thorne, and Wheeler [16].

II. ADVANCED COORDINATES

The presentation in this section follows very closely
Sec. II of Ref. [1]. The material is very similar but, because
of important differences of sign that occur in various
places, we present here the details that are specific to the
advanced coordinates. Other details are omitted and can be
obtained from Ref. [1].

A. Geometrical elements

We first introduce some geometrical elements on the
world line � at which the advanced coordinates are based.
The world line is described by parametric relations z���� in
which � denotes proper time. Its normalized tangent vector
is u� � dz�=d�, and we assume that this satisfies the
geodesic equation Du�=d� � 0. The world line is there-
fore a geodesic of the curved spacetime, and this assump-
tion represents a loss of generality relative to the
construction of retarded coordinates presented in
Ref. [1]. While it would be a simple matter to restore this
level of generality, we refrain from doing so in this work.
Throughout we use Greek indices�, �, �, �, etc. to refer to
tensor fields defined, or evaluated, on the world line.

We install on � an orthonormal tetrad that consists of the
tangent vector u� and three spatial vectors e�a . These are
parallel transported on the world line, so thatDe�a =d� � 0.
It is easy to check that this is compatible with the require-
ment that the tetrad �u�; e�a � be orthonormal everywhere
on �.

TABLE III. Scalar, vectorial, and tensorial harmonics of degree l � 2, labeled by the abstract index m � f0; 1c; 1s; 2c; 2sg.

m 0 1c 1s 2c 2s

Y2m ��3cos2�� 1� 2 sin� cos� cos� 2 sin� cos� sin� sin2� cos2� sin2� sin2�
Y2m
� 6 sin� cos� 2�2cos2�� 1� cos� 2�2cos2�� 1� sin� 2 sin� cos� cos2� 2 sin� cos� sin2�
Y2m
� 0 �2 sin� cos� sin� 2 sin� cos� cos� �2sin2� sin2� 2sin2� cos2�
Y2m
�� �3sin2� �2 sin� cos� cos� �2 sin� cos� sin� �cos2�� 1� cos2� �cos2�� 1� sin2�
Y2m
�� 0 2sin2� sin� �2sin2� cos� �2 sin� cos� sin2� 2 sin� cos� cos2�
Y2m
�� 3sin4� 2sin3� cos� cos� 2sin3� cos� sin� �sin2��cos2�� 1� cos2� �sin2��cos2�� 1� sin2�
X2m
� 0 2 cos� sin� �2 cos� cos� 2 sin� sin2� �2 sin� cos2�
X2m
� 6sin2� cos� 2 sin��2cos2�� 1� cos� 2 sin��2cos2�� 1� sin� 2sin2� cos� cos2� 2sin2� cos� sin2�
X2m
�� 0 �2 sin� sin� 2 sin� cos� 2 cos� sin2� �2 cos� cos2�
X2m
�� �3sin3� �2sin2� cos� cos� �2sin2� cos� sin� sin��cos2�� 1� cos2� sin��cos2�� 1� sin2�
X2m
�� 0 2sin3� sin� �2sin3� cos� �2sin2� cos� sin2� 2sin2� cos� cos2�

TABLE II. Scalar and vectorial harmonics of degree l � 1,
labeled by the abstract index m � f0; 1c; 1sg. The odd-parity
vectorial harmonics X1m

A are not required, and the tensorial
harmonics Y1m

AB and X1m
AB vanish identically.

m 0 1c 1s

Y1m cos� sin� cos� sin� sin�
Y1m
� � sin� cos� cos� cos� sin�
Y1m
� 0 � sin� sin� sin� cos�

TABLE I. Tidal and matter potentials. Each potential is iden-
tified with a sans-serif superscript that specifies its multipole
content. A potential labeled with a ‘‘q’’ is a quadrupole field, and
one labeled with a ‘‘d’’ is a dipole field. The vector and tensor
potentials are all orthogonal to �a, and all tensors are symmetric
and trace-free.

qE � Ecd�c�d

qEa � �	a
c ��a�c�Ecd�d

qEab � 2�	a
c ��a�c��	b

d ��b�d�Ecd � �	ab ��a�b�
qE

qBa � "apq�pBq
c�

c

qBab � "apq�pBq
c�	

c
b��c�b� � "bpq�pBq

c�	
c
a��c�a�

dj � jc�
c

dja � �	a
c ��a�c�jc

qS � Scd�c�d

qSa � �	ac ��a�c�Scd�d
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From the tetrad on � we define a dual tetrad �e0
�; e

a
��

with the relations e0
� � �u� and ea� � 	abg��e�b. The

dual vectors ea� also are parallel transported on the world
line. The tetrad and its dual give rise to the completeness
relations

 g�� � �u�u� � 	abe�a e�b;

g�� � �e0
�e0

� � 	abea�eb�
(2.1)

for the metric and its inverse evaluated on the world line.
The advanced coordinates are constructed with the help

of a null geodesic segment that links a given point x to the
world line. This geodesic segment must be unique, and we
thus restrict x to be within the normal convex neighbor-
hood of �. We denote by 
 the unique, future-directed null
geodesic segment that goes from x to the world line, and
x0 � z�v� is 
’s point of arrival on the world line; v is the
value of the proper-time parameter at this point. To tensors
at x we assign the Greek indices �, 
, �, 	, etc.; to tensors
at x0 we assign the indices �0, 
0, �0, 	0, and so on.

From the tetrad �u�
0
; e�

0

a � at x0 we obtain another tetrad
�e�0 ; e

�
a � at x by parallel transport on 
. By raising the

frame index and lowering the vectorial index, we obtain
also a dual tetrad at x: e0

� � �g�
e


0 and ea� � 	abg�
e



b .

The metric at x can then be expressed as

 g�
 � �e
0
�e

0

 � 	abe

a
�e

b

; (2.2)

and the parallel propagator [5] (also known as the bivector
of geodetic parallel displacement [17]) from x0 to x is given
by

 g��0 �x; x
0� � �e�0 u�0 � e

�
a e

a
�0 ;

g�
0

��x0; x� � u�
0
e0
� � e�

0

a ea�:
(2.3)

This is defined such that, if A� is a vector that is parallel
transported on 
, then A��x� � g��0 �x; x

0�A�
0
�x0� and

A�
0
�x0� � g�

0

��x0; x�A��x�. Similarly, if p� is a dual vector
that is parallel transported on 
, then p��x� �
g�

0

��x0; x�p�0 �x0� and p�0 �x0� � g��0 �x; x
0�p��x�.

The last ingredient we shall need is Synge’s world
function ��z; x� [5] (also known as the biscalar of geodetic
interval [17]). This is defined as half the squared geodesic
distance between the world-line point z��� and a neighbor-
ing point x. The derivative of the world function with
respect to z� is denoted ���z; x�; this is a vector at z
(and a scalar at x) that is known to be tangent to the
geodesic linking z and x. The derivative of ��z; x� with
respect to x� is denoted ���z; x�; this vector at x (and
scalar at z) is also tangent to the geodesic. We use a similar
notation for multiple derivatives; for example, ��� �
r�r�� and ��
 � r
r��, where r� denotes a cova-
riant derivative at x while r� indicates covariant differen-
tiation at z.

The vector ����z; x� can be thought of as a separation
vector between x and z, pointing from the world line to x.
When x is close to �,����z; x� is small and can be used to
express bitensors in terms of ordinary tensors at z [5,17].
For example,

 ��� � g�� �
1
3R�����

��� � � � � ; (2.4)

 ��� � �g
�
��g�� �

1
6R�����

��� � � � ��; (2.5)

where g�� � g���z; x� is the parallel propagator and
R���� is the Riemann tensor evaluated on the world line.

B. Definition of the advanced coordinates

In their quasi-Cartesian version, the retarded coordinates
are defined by

 x̂ 0 :� v; x̂a :� �ea�0 �x
0���

0
�x; x0�; ��x; x0� � 0:

(2.6)

The last statement indicates that x0 � z�v� and x are linked
by the null geodesic segment
, and we demand that this be
future-directed from x to x0.

From the fact that ��
0

is a null vector, we obtain

 r :� �	abx̂ax̂b�1=2 � �u�0��
0
; (2.7)

and r is a positive quantity because ��
0
is a future-directed

TABLE IV. Spherical-harmonic decomposition of the tidal and matter potentials. In the first part of the table we list the definitions of
djm�w�, qEm�w�, qBm�w�, and qSm�w� in terms of ja�w�, Eab�w�, Bab�w�, and Sab�w�. In the second part of the table we display the
spherical-harmonic decompositions of the tidal and matter potentials.

dj0 � j3
qE0 �

1
2 �E11 � E22�

qB0 �
1
2 �B11 �B22�

qS0 �
1
2 �S11 � S22�

dj1c � j1
qE1c � E13

qB1c � B13
qS1c � S13

dj1s � j2
qE1s � E23

qB1s � B23
qS1s � S23

qE2c �
1
2 �E11 � E22�

qB2c �
1
2 �B11 �B22�

qS2c �
1
2 �S11 � S22�

qE2s � E12
qB2s � B12

qS2s � S12

dj �
P

m
djmY

1m qE �
P

m
qEmY

2m qS �
P

m
qSmY

2m

djA �
P

m
djmY

1m
A

qEA �
1
2

P
m
qEmY

2m
A

qBA �
1
2

P
m
qBmX

2m
A

qSA �
1
2

P
m
qSmY

2m
A

qEAB �
P

m
qEmY2m

AB
qBAB �

P
m
qBmX2m

AB
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vector. We will see in Sec. II C that �r is an affine
parameter on 
; this property adds credibility to the idea
that r is a meaningful measure of the distance from x to
x0 � z�v�.

Another consequence of Eq. (2.6) is that

 ��
0
� r�u�

0
��ae�

0

a �; (2.8)

where �a :� x̂a=r is a frame vector that satisfies
	ab�a�b � 1.

A straightforward calculation reveals that, under a dis-
placement of the point x (which induces a displacement of
x0), the advanced coordinates change according to

 dv � �l�dx�; (2.9)

 dx̂a � �ea�0�
�0

0u


0dv� ea�0�
�0

dx


; (2.10)

where l� :� ���=r is a future-directed null vector at x
that is tangent to 
.

C. Advanced distance; null vector field

If we keep x0 linked to x by the relation ��x; x0� � 0,
then

 r�x� � ���0 �x; x0�u�
0
�x0� (2.11)

can be viewed as an ordinary scalar field defined in a
neighborhood of �. We can compute the gradient of r by
finding how r changes under a displacement of x (which
induces a displacement of x0). The result is

 r
r � ���0
0u�
0
u


0
�l
 � ��0
u�

0
: (2.12)

Similarly, we can view

 l��x� � �
���x; x0�
r�x�

(2.13)

as an ordinary vector field, which is tangent to the con-
gruence of null geodesics that converge to x0. It is easy to
check that Eqs. (2.12) and (2.13) imply

 l�r�r � �1: (2.14)

In addition, combining the general statement �� �
�g��0�

�0 with Eq. (2.8) gives

 l� � g��0 �u
�0 ��ae�

0

a �; (2.15)

the vector at x is therefore obtained by parallel transport of
u�

0
��ae�

0

a on 
. From this and Eq. (2.3) we get the
alternative expression

 l� � e�0 ��ae�a ; (2.16)

which confirms that l� is a future-directed null vector field
(recall that �a � x̂a=r is a unit frame vector).

The covariant derivative of l� can be computed by
finding how the vector changes under a displacement of
x. This calculation reveals that l� satisfies the geodesic

equation in affine-parameter form, l
r
l
� � 0, and

Eq. (2.14) informs us that the affine parameter is in fact
�r. A displacement along a member of the congruence is
therefore described by dx� � �l�dr. Specializing to the
advanced coordinates, and using Eqs. (2.9), (2.10), and
(2.13), we find that this statement becomes dv � 0 and
dx̂a � �x̂a=r�dr, which integrate to v � constant and x̂a �
r�a, respectively, with �a representing a constant unit
vector. We have found that the congruence of null geo-
desics that converge to x0 is described by

 v � constant; x̂a � r�a��A� (2.17)

in the advanced coordinates. Here, the two angles �A (A �
1, 2) serve to parametrize the unit vector �a, which is
independent of r.

Finally, we state without proof that l� is hypersurface
orthogonal (the proof is contained in Ref. [1]). This, to-
gether with the property that l� satisfies the geodesic
equation in affine-parameter form, implies that there exists
a scalar field v�x� such that

 l� � �r�v: (2.18)

This scalar field was already identified in Eq. (2.9): it is
numerically equal to the proper-time parameter of the
world line at x0. We conclude that the geodesics to which
l� is tangent are the generators of the light cone v �
constant. As Eq. (2.17) indicates, a specific generator is
selected by choosing a direction �a (which can be parame-

x

z(v)

γ

r

Ωa

FIG. 1 (color online). Advanced coordinates of a point x
relative to a world line �. The advanced time v selects a
particular light cone, the unit vector �a :� x̂a=r selects a
particular generator of this light cone, and the advanced distance
r selects a particular point on this generator.
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trized by two angles �A), and �r is an affine parameter on
each generator. The geometrical meaning of the advanced
coordinates is now completely clear; the construction is
illustrated in Fig. 1.

D. Frame components of tensors on the world line

The metric at x in the advanced coordinates will be
expressed in terms of frame components of tensors eval-
uated on �. We shall need, in particular,

 Ra0b0�v� :� R�0�0
0	0e�
0

a u�
0
e


0

b u
	0 ;

Rabc0�v� :� R�0�0
0	0e�
0

a e
�0

b e

0
c u	

0
;

Racbd�v� :� R�0�0
0	0e
�0
a e

�0
c e


0

b e
	0
d :

(2.19)

These are the frame components of the Riemann tensor
evaluated on �; these quantities depend on v only (recall
that v is numerically equal to the proper-time parameter on
the world line). We next form the useful combinations
 

Pab :� Ra0b0 � Racb0�c � Rbca0�c � Racbd�c�d � Pba;

(2.20)

 Pa :� Pab�b � Ra0b0�b � Rabc0�b�c; (2.21)

 P :� Pa�a � Ra0b0�a�b; (2.22)

in which the quantities �a :� x̂a=r depend on the angles
�A only—they are independent of v and r.

E. Coordinate displacements near �

The changes in the quasi-Cartesian advanced coordi-
nates under a displacement of x are given by Eqs. (2.9)
and (2.10). In these, we substitute the expansions for ��0
0
and ��0
 that appear in Eqs. (2.4) and (2.5), as well as
Eqs. (2.8) and (2.16). After a straightforward calculation,
we obtain the following expressions for the coordinate
displacements:

 dv � �e0
�dx�� ��a�eb�dx��; (2.23)

 

dx̂a � �12r
2Pa �O�r3�	�e0

�dx��

� �	ab �
1
6r

2�Pab � 2Pa�b� �O�r3�	�eb�dx��:

(2.24)

Notice that the result for dv is exact, but that dx̂a is
expressed as an expansion in powers of r.

F. Metric near �

It is straightforward to invert the relations of Eqs. (2.23)
and (2.24) and solve for e0

�dx
� and ea�dx�. The results are

 

e0
�dx

� � �1� 1
2r

2P�O�r3�	dv

� ��a �
1
6r

2�Pa � P�a� �O�r3�	dx̂a; (2.25)

 

ea�dx
� � ��1

2r
2Pa �O�r3�	dv

� �	ab �
1
6r

2�Pab � P
a�b� �O�r3�	dx̂b: (2.26)

These relations, when specialized to the advanced coordi-
nates, give us the components of the dual tetrad �e0

�; ea�� at
x. The metric is then computed by involving the complete-
ness relations of Eq. (2.1). We find

 gvv � �1� r2P�O�r3�; (2.27)

 gva � �a �
2
3r

2�Pa � P�a� �O�r
3�; (2.28)

 gab � 	ab ��a�b �
1
3r

2�Pab � Pa�b ��aPb

� P�a�b� �O�r3�: (2.29)

We see that the metric possesses a directional ambiguity on
the world line: The metric at r � 0 still depends on the
vector �a :� x̂a=r that specifies the direction to the point
x. The advanced coordinates are therefore singular on the
world line, and tensor components cannot be defined on �.
This poses no particular difficulty because we can always
work, as we have been doing, with frame components of
tensors instead of tensorial components.

III. LIGHT-CONE COORDINATES;
DECOMPOSITION OF THE RIEMANN TENSOR

A. Retarded and advanced coordinates

The developments of Sec. II parallel very closely the
construction of retarded coordinates described in Ref. [1].
The combined set of results is a coordinate system �w; x̂a�
that refers either to past light cones (advanced coordinates,
w � v,  � �1) or to future light cones (retarded coor-
dinates, w � u,  � �1) centered on a geodesic world
line. In either case the metric is expressed as

 gww � �1� r2P�O�r3�; (3.1)

 gwa � �a �
2
3r

2�Pa � P�a� �O�r3�; (3.2)

 gab � 	ab ��a�b �
1
3r

2�Pab � Pa�b ��aPb

� P�a�b� �O�r
3�; (3.3)

with

 Pab :� Ra0b0 � Racb0�c � Rbca0�c � Racbd�c�d

(3.4)

 Pa :� Ra0b0�b � Rabc0�b�c; (3.5)

 P :� Ra0b0�a�b: (3.6)

The Riemann tensor is evaluated at the advanced/retarded
point x0 � z�w�, and its frame components are defined as in
Eqs. (2.19). Our subsequent developments will apply to the
general metric of Eqs. (3.1)–(3.3). They will not distin-
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guish between the advanced and retarded coordinates, and
we will collectively refer to them as light-cone coordi-
nates. As was stated previously, w stands for either v or
u, and  is an indicator that takes the value �1 for the
advanced coordinates and the value �1 for the retarded
coordinates.

B. Decomposition of the Riemann tensor

To bring the metric to a more explicit form, we decom-
pose the Riemann tensor into its Weyl and Ricci parts, and
we involve the Einstein field equations to relate the Ricci
tensor to the energy-momentum tensor of the matter dis-
tribution. This gives
 

R�0
0�0	0 � C�0
0�0	0 � 8��g�0��0T	0	
0 � g
0��0T	0	�0 �

�
16�

3
g�0��0g	0	
0

4T; (3.7)

where C�0
0�0	0 is the Weyl tensor, T�0
0 is the energy-
momentum tensor, 4T :� T�

0

�0 is its four-dimensional
trace, and the square brackets indicate antisymmetrization
of the enclosed indices.

We next project the Weyl tensor onto the tetrad �u�
0
; e�

0

a �
and decompose the projections into irreducible compo-
nents, according to [18]

 Ca0b0 � Eab; Cabc0 � "abpBp
c;

Cabcd � 	acEbd � 	bcEad � 	adEbc � 	bdEac;
(3.8)

where "abc is the flat-space permutation symbol. The elec-
tric components of the Weyl tensor are denoted Eab, while
the magnetic components are denoted Bab. These tensors
are symmetric and trace-free, so that, for example, Eba �
Eab and Ba

a � 0. Because the Weyl tensor is evaluated on
the world line, Eab and Bab are functions of the null
coordinate w only.

We perform similar operations on the energy-
momentum tensor, and introduce the notation

 T00 � �; T0a � �ja; Tab � Sab �
1
3	abT;

(3.9)

where Sab is symmetric and trace-free, and T :� 	abTab �

T�0
0 �	abe�
0

a e

0

b � � T�0
0 �g�
0
0 � u�

0
u


0
� � 4T � � is the

spatial trace of the energy-momentum tensor. The quantity
� represents the mass-energy density measured by an
observer moving on the world line �, ja is the flux of
mass-energy traveling in the direction of the base vector
e�

0

a , Sab is the trace-free part of the stress tensor, and 1
3T is

an isotropic pressure. These quantities also are functions of
w only.

Substituting Eqs. (3.8) and (3.9) into Eq. (3.7), and then
this into Eq. (3.4), produces a decomposition of Pab into its
irreducible pieces. We obtain

 

Pab � 2Eab ��aEbc�
c ��bEac�

c � 	abEcd�c�d

� �"apq�pBp
b � "bpq�pBp

a�

�
4�
3
�3	ab � 2�a�b��� 4��ja�b � jb�a

� 2	abjc�
c� � 4���aSbc�

c ��bSac�
c

� 	abScd�c�d� �
4�
3
	abT: (3.10)

C. Tidal and matter potentials

At this stage it is useful to involve the irreducible
quantities Eab�w� and Bab�w� in the definition of a number
of tidal potentials. We also involve ja�w� and Sab�w� in the
definition of matter potentials. These potentials, which are
displayed in Table I, form the elementary building blocks
of the metric tensor. Each potential is identified by its
multipole content. For example, qE :� Eab�a�b is a
quadrupolar potential by virtue of the fact that Eab is
symmetric and trace-free. As another example, dj :�
ja�a is a dipolar potential. Table I also introduces vecto-
rial and tensorial potentials that possess the property of
being transverse, meaning that each vector or tensor is
orthogonal to the unit frame vector �a. Finally, the tensor
potentials qEab and qBab have the additional property of
being symmetric and trace-free.

It is easy to check that Pab is expressed in terms of the
tidal and matter potentials as
 

Pab�
qEab�2��a

qEb� ��a�b
qE��qBab�2��a

qBb��

�4��	ab��a�b���
4�
3

�a�b�

�8���	ab��ab�
dj���a

djb�	

�4��	ab��a�b�
qS�8���a

qSb� �4��a�b
qS

�
4�
3
�	ab��a�b�T�

4�
3

�a�bT: (3.11)

We observe that Pab is now decomposed into transverse-
transverse components that are fully orthogonal to �a,
transverse-longitudinal components that are partly or-
thogonal to and partly aligned with �a, and longitudinal-
longitudinal components that are proportional to �a�b.
Contracting Eq. (3.11) with �b produces
 

Pa �
qEa ��a

qE � qBa �
4�
3

�a�� 4�dja

� 4�qSa � 4��a
qS�

4�
3

�aT; (3.12)

and contracting this with �a gives

 P � qE �
4�
3
�� 4�qS�

4�
3
T: (3.13)

Substituting Eqs. (3.11)–(3.13) into Eqs. (3.1)–(3.3)
produces our final expression for the metric tensor in the
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quasi-Cartesian version of the light-cone coordinates. We
obtain, after simplification,

 gww � �1� r2qE �
4�
3
r2��� 3qS� T� �O�r3�;

(3.14)

 

gwa � �a �
2

3
r2�qEa � qBa� �

8�
3
r2�qSa � dja�

�O�r3�; (3.15)

 

gab � 	ab ��a�b �
1

3
r2�qEab � 

qBab�

�
4�
3
r2�	ab ��a�b�

�
�� 2dj� qS�

1

3
T
�

�O�r3�: (3.16)

We observe that the metric is neatly expressed in terms of
the monopolar ‘‘potentials’’ � and T, the dipolar potentials
dj and dja, the quadrupolar tidal potentials qE, qEa, qEab,
qBa, qBab, and the quadrupolar matter potentials qS and
qSa. We also observe that gwa contains both longitudinal
and transverse pieces, while gab is fully transverse. We
recall that the coordinates are advanced when  � �1
(then w � v) and that they are retarded when  � �1
(then w � u).

IV. ANGULAR COORDINATES

A. Transformation to angular coordinates

Because the frame vector �a :� x̂a=r satisfies
	ab�a�b � 1, it can be parametrized by two angles �A.
A canonical choice for the parametrization is

 �a � �sin� cos�; sin� sin�; cos��: (4.1)

It is then convenient to perform a coordinate transforma-
tion from x̂a to �r; �A� using the relations x̂a � r�a��A�.
(Recall from Sec. III C that the angles �A are constant on
the generators of the light cones w � constant, and that
r
is an affine parameter on these generators. The relations
x̂a � r�a therefore describe the behavior of the genera-
tors.) The differential form of the coordinate transforma-
tion is

 dx̂a � �adr� r�a
Ad�

A; (4.2)

where the transformation matrix

 �a
A :�

@�a

@�A
(4.3)

satisfies the identity �a�a
A � 0.

We introduce the quantities

 �AB :� 	ab�a
A�b

B; (4.4)

which act as a (nonphysical) metric on the submanifold
spanned by the angular coordinates. In the canonical pa-

rametrization of Eq. (4.1), �AB � diag�1; sin2��, and the
metric is that of a round two-sphere of unit radius. We use
the inverse of �AB, denoted �AB, to raise uppercase Latin
indices. We then define the new object

 �A
a :� 	ab�AB�b

B (4.5)

which satisfies the identities

 �A
a�a

B � 	AB; �a
A�A

b � 	ab ��a�b: (4.6)

The first result is a direct consequence of the definition, and
the second result follows from the fact that both sides are
symmetric in a and b, orthogonal to �a and �b, and have
the same trace.

The Levi-Civita tensor on S2 is constructed as

 "AB :� "abc�a
A�b

B�c; (4.7)

where "abc is the Cartesian permutation symbol; in the
canonical coordinates we have "�� � sin�.

We let DA denote the covariant derivative operator com-
patible with �AB, so that DA�BC � 0. It is easy to show
that DA"BC � 0 and

 �a
AB :� DB�a

A � ��a�AB: (4.8)

When we apply the coordinate transformation of
Eq. (4.2) to the metric of Eqs. (3.14)–(3.16), we find that
the only nonvanishing components of the metric tensor are
now given by

 gww � �1� r2qE �
4�
3
r2��� 3qS� T� �O�r3�;

(4.9)

 gwr � ; (4.10)

 

gwA � �
2

3
r3�qEA � 

qBA� �
8�
3
r3�qSA � 

djA�

�O�r4�; (4.11)

 

gAB � r2�AB �
1

3
r4�qEAB � 

qBAB�

�
4�
3
r4�AB

�
�� 2dj� qS�

1

3
T
�
�O�r5�;

(4.12)

where qEA :� qEa�a
A, qEAB :� qEab�a

A�b
B, and so on. The

results gwr � , grr � 0, and grA � 0 are exact, and they
follow from the light-cone nature of the coordinates. [For
example, for the advanced coordinates we have l� �
��1; 0; 0; 0� and l� � �0;�1; 0; 0�, where we use the order-
ing �v; r; �; ��; these relations imply that gvr � 1 and
grr � gr� � gr� � 0.] Once more we recall that the coor-
dinates are advanced when  � �1 (then w � v), and that
they are retarded when  � �1 (then w � u).
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B. Tidal and matter potentials in spherical coordinates

According to Table I, the tidal potential qE is defined
by qE � Ecd�c�d. Differentiating this with respect to
�A gives DA

qE � 2�c
AEcd�d. In view of the identity

�c�
c
A � 0, we may write this as DA

qE � 2�a
A�	a

c �
�a�c�Ecd�d. Referring once more to Table I, we see
that this is DA

qE � 2�a
A
qEa and we conclude that

 

qEA �
1
2DA

qE: (4.13)

Acting on qE with two derivative operators gives
DADB

qE � 2Ecd�c
A�d

B � 2Ecd�c�d
AB. Using Eq. (4.8)

produces DADB
qE � 2Ecd�c

A�d
B� 2Ecd�c�d�AB �

2Ecd�c
A�d

B� 2�AB
qE. We write this in the form �DADB �

3�AB�
qE � 2Ecd�c

A�d
B � �AB

qE � 2Ecd�a
A�b

B�	a
c �

�a�c��	b
d ��b�d�Ecd ��a

A�b
B�	ab ��a�b�

qE, after
involving Eq. (4.4). Consulting Table I once more, we see
that the right-hand side is equal to �a

A�b
B
qEab �: qEAB and

we conclude that

 

qEAB � �DADB � 3�AB�
qE: (4.14)

We observe that this tensor is trace-free, because
�ABqEAB � �AB�a

A�b
B
qEab � �	

ab � �a�b�qEab � 0,
after involving Eq. (4.6), and due to the fact that qEab is
transverse and trace-free (in the Cartesian sense). The
equation ��ABDADB � 6�qE � 0, which we obtain from
Eq. (4.14), reveals that qE�w; �A� is a spherical-harmonic
function of degree l � 2.

We define a magnetic potential qB :� Bcd�c�d and
differentiate it with respect to �B, giving DB

qB �
2�c

BBcd�d. We next multiply this by the Levi-Civita
tensor of Eq. (4.7) and get �"A

BDB
qB �

�2"apq�a
A�pB�q�c

BBcd�d. Using Eq. (4.6) and the anti-
symmetry property of the permutation symbol, this is
�"A

BDB
qB � �2�a

A"apq�qBp
d�d � 2�a

A
qBa, and we

conclude that

 

qBA � �
1
2"A

BDB
qB; qB :� Bcd�c�d: (4.15)

Acting on qB with two derivative operators and multi-
plying by the Levi-Civita tensor gives �"A

CDBDC
qB �

2�a
A"apq�pBq

b�b
B � 2"AB

qB. Symmetrizing with re-
spect to A and B and consulting Table I yields��"A

CDB �
"B

CDA�DC
qB � 2�a

A�b
B
qBab, and we conclude that

 

qBAB � �
1
2�"A

CDB � "B
CDA�DC

qB: (4.16)

This tensor is trace-free, because �ABqBAB �
�"BCDBDC

qB � 0 by virtue of the symmetry of
DBDC

qB and the antisymmetry of the Levi-Civita tensor.
Similar results can be obtained for the matter potentials.

Differentiating dj :� ja�a produces DA
dj � ja�a

A �
jc�	a

c ��a�c��a
A � �a

A
dja, and we conclude that

 

djA � DA
dj: (4.17)

Finally,

 

qSA �
1
2DA

qS (4.18)

follows after a calculation similar to the one leading to
Eq. (4.13).

C. Decomposition in spherical harmonics

The results obtained in the preceding subsection indicate
that the tidal and matter potentials that appear in the metric
of Eqs. (4.9)–(4.12) can all be obtained by covariant dif-
ferentiation of the scalar potentials qE, qB, dj, and qS.
These are functions of the null coordinate w and the
dependence on the angles �A appears in the factors �a��A�.

This angular dependence can be made more explicit by
involving spherical-harmonic functions. Let

 Y1m � fY1;0; Y1;1c; Y1;1sg (4.19)

be a set of real, unnormalized, spherical-harmonic func-
tions of degree l � 1. And let

 Y2m � fY2;0; Y2;1c; Y2;1s; Y2;2c; Y2;2sg (4.20)

be a set of real, unnormalized, spherical-harmonic func-
tions of degree l � 2. The abstract index m describes the
dependence of the spherical harmonics on the angle �; the
numerical part of the label refers to the azimuthal index m,
and the letter indicates whether the function is proportional
to cos�m�� or sin�m��. Explicit expressions are listed in
Tables II and III.

We decompose the scalar potentials according to

 

qE�w; �A� �
X
m

qEm�w�Y2m��A�; (4.21)

 

qB�w; �A� �
X
m

qBm�w�Y
2m��A�; (4.22)

 

dj�w; �A� �
X
m

djm�w�Y1m��A�; (4.23)

 

qS�w; �A� �
X
m

qSm�w�Y
2m��A�; (4.24)

in terms of their harmonic components qEm, qBm, djm, and
qSm. These are in a one-to-one correspondence with the
frame tensors Eab�w�, Bab�w�, ja�w�, and Sab�w�; the
relationships are displayed in Table IV.

The derivatives of the scalar potentials will be expressed
in terms of derivatives of the spherical-harmonic functions.
The vectorial harmonics are

 YlmA � DAY
lm; XlmA � �"A

BDBY
lm; (4.25)

and the tensorial harmonics are

 Ylm�AB; YlmAB � �DADB �
1
2l�l� 1��AB	Ylm (4.26)

and

 XlmAB � �
1
2�"A

CDB � "B
CDA�DCYlm: (4.27)
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Apart from notation and normalization, these definitions
agree with those of Regge and Wheeler [19]. We note that
the tensorial harmonics YlmAB and XlmAB are symmetric and
trace-free.

The decompositions of the vectorial and tensorial poten-
tials in terms of vectorial and tensorial harmonics are
displayed in Table IV. They are obtained by substituting
Eqs. (4.21)–(4.24) into Eqs. (4.13)–(4.18).

The most explicit form for the metric tensor is obtained
after substituting the spherical-harmonic decompositions
of Table IV, along with the spherical-harmonic functions
listed in Tables II and III, into Eqs. (4.9)–(4.12). This leads
to long expressions, but in practical applications it may
happen that only a few frame components among Eab, Bab,
�, ja, Sab, and T are nonzero; in such cases only a few
harmonic components among qEm, qBm, djm, and qSm will
contribute to the metric, and the expressions will simplify.
We shall encounter such cases in the next section.

V. APPLICATIONS

A. Comoving observer in a spatially flat cosmology

To illustrate how the formalism works, we first consider
the world line of a comoving observer in a cosmological
spacetime. The global metric is

 ds2 � �dt2 � a2�t��dx2 � dy2 � dz2�; (5.1)

where a�t� is an arbitrary scale factor; for simplicity we
take the cosmology to be spatially flat. This application
was already presented in Ref. [1], but we generalize it here
from the retarded coordinates considered there to light-
cone coordinates of both types (retarded and advanced).
Furthermore, the decomposition of the energy-momentum
tensor into irreducible parts was not accomplished in the
earlier paper, and this decomposition adds insight to our
earlier results.

Without loss of generality we take our observer to be at
the spatial origin of the global coordinate system (x � y �
z � 0), and his velocity vector is given by

 u� � �1; 0; 0; 0� (5.2)

in the ordering �t; x; y; z� of the cosmological coordinates.
This vector satisfies the geodesic equation, and t is proper
time for the observer. We wish to transform the metric of
Eq. (5.1) to light-cone coordinates �w; r; �A� centered on
the world line of this observer.

To do so we must first construct a triad of orthonormal
spatial vectors e�a . A simple choice is

 e�1 � �0; a
�1; 0; 0�; e�2 � �0; 0; a

�1; 0�;

e�3 � �0; 0; 0; a
�1�;

(5.3)

these vectors are all parallel transported on �.
According to Eq. (3.8) and the fact that the Weyl tensor

of the spacetime vanishes, we have

 E ab � Bab � 0: (5.4)

And according to Eq. (3.9) and a simple computation, we
have ja � Sab � 0 and

 � �
3

8�
� _a=a�2; T � �

3

8�
�2 �a=a� � _a=a�2	: (5.5)

Here the scale factor is expressed in terms of w �
�proper time on �	 by simply making the functional sub-
stitution a�t� ! a�w�; overdots indicate differentiation
with respect to w. Recall that � is the mass-energy density
measured by the observer, and that 1

3T is the measured
pressure of the cosmological fluid.

The vanishing of Eab, Bab, ja, and Sab implies that the
metric is spherically symmetric around � (this does not
come as a surprise). After substituting Eqs. (5.4) and (5.5)
into Eqs. (4.9)–(4.12), a short calculation reveals that the
metric components are given by

 gww � �1� r2� �a=a� �O�r3�; (5.6)

 gwr � ; (5.7)

 gwA � O�r4�; (5.8)

 gAB � r2�ABf1�
1
3r

2� �a=a� � _a=a�2	 �O�r3�g: (5.9)

We recall that the scale factor and its derivatives are
functions of the null coordinate w. When the scale factor
behaves as a power law, a�t� / t� with � a constant, we
have �a=a � ���1� ��=w2 and �a=a� � _a=a�2 �
��=w2. When instead the scale factor behaves as an
exponential, a�t� / eHt with H a constant, we have �a=a �
H2 and �a=a� � _a=a�2 � 0.

B. Static observer in Melvin’s magnetic universe

Melvin’s magnetic universe [13–15] is a static, cylin-
drically symmetric spacetime that is filled with a magnetic
field held together by gravity. The exact solution to the
Einstein-Maxwell equations that describes this situation
consists of the metric

 ds2 � �2��dt2 � d ��2 � dz2� ���2 ��2d’2 (5.10)

and the vector potential

 A� � 1
2B�’�; (5.11)

where ’� � @x�=@’ is the spacetime’s azimuthal Killing
vector. We have introduced

 � :� 1� 1
4B

2 ��2; (5.12)

and the constant B measures the strength of the magnetic
field. The metric and the vector potential are expressed in
cylindrical coordinates �t; ��; z; ’�.

The metric of Eq. (5.10) can be decomposed in terms
of a tetrad of orthonormal vectors. We introduce a
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‘‘Cartesian’’ frame described by

 e�0 :� ���1; 0; 0; 0�; (5.13)

 e�1 :� �0;��1 cos’; 0;�� ���1 sin’�; (5.14)

 e�2 :� �0;��1 sin’; 0;� ���1 cos’�; (5.15)

 e�3 :� �0; 0;��1; 0�: (5.16)

It is easy to check that the inverse metric can be expressed
as g�
 � �e�0 e



0 � e

�
1 e



1 � e

�
2 e



2 � e

�
3 e



3 . It is also easy

to check that, in this tetrad, the electromagnetic field tensor
has

 B3 :� F12 :� F�
e�1 e


2 �

B

�2 (5.17)

as its only nonvanishing component.
We wish to consider a static observer in Melvin’s mag-

netic universe. To ensure that this observer moves on a
world line � that is a geodesic of the spacetime, we place
him on the axis of symmetry at �� � 0. The observer has a
velocity vector given by u� � e�0 � �� � 0�, and e�a � �� � 0�
is a triad of parallel-transported vectors on �.

A straightforward computation reveals that the metric of
Eq. (5.10) comes with a Weyl tensor whose nonvanishing
electric components are

 E 11 � E22 �
1
2B

2; E33 � �B2: (5.18)

The magnetic part of the Weyl tensor vanishes: Bab � 0. A
computation of the energy-momentum tensor (either from
the metric or from the electromagnetic field tensor) reveals
that

 � �
B2

8�
; (5.19)

 S11 � S22 �
B2

12�
; S33 � �

B2

6�
; (5.20)

and

 T �
B2

8�
; (5.21)

while ja � 0. (Recall that T :� 	abTab is the three-
dimensional trace of the energy-momentum tensor; the
four-dimensional trace is 4T � T � �, and it vanishes by
virtue of the conformal invariance of Maxwell’s equa-
tions.) These relations imply that qE0 �

1
2B

2 and qS0 �

B2=�12�� are the only nonvanishing harmonic components
of the tidal and matter potentials.

Making the substitutions from Eqs. (5.18)–(5.21),
Table III and IV into Eqs. (4.9)–(4.12), we find that the
metric components in light-cone coordinates are

 gww � �1� 1
2B

2r2sin2��O�r3�; (5.22)

 gwr � ; (5.23)

 gw� � �
1
3B

2r3 sin� cos��O�r4�; (5.24)

 g�� � r2 � 1
6B

2r4sin2��O�r5�; (5.25)

 g�� � r2sin2�� 5
6B

2r4sin4��O�r5�: (5.26)

As expected, the metric is axially symmetric, but the full
cylindrical symmetry of the spacetime is not revealed by
the light-cone coordinates.
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