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An electrically charged black hole solution with scalar hair in four dimensions is presented. The self-
interacting scalar field is real and it is minimally coupled to gravity and electromagnetism. The event
horizon is a surface of negative constant curvature and the asymptotic region is locally an AdS spacetime.
The asymptotic falloff of the fields is slower than the standard one. The scalar field is regular everywhere
except at the origin and is supported by the presence of electric charge which is bounded from above by
the AdS radius. In turn, the presence of the real scalar field smooths the electromagnetic potential
everywhere. Regardless the value of the electric charge, the black hole is massless and has a fixed
temperature. The entropy follows the usual area law. It is shown that there is a nonvanishing probability
for the decay of the hairy black hole into a charged black hole without scalar field. Furthermore, it is found
that an extremal black hole without scalar field is likely to undergo a spontaneous dressing up with a
nontrivial scalar field, provided the electric charge is below a critical value.
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I. INTRODUCTION

It has been recently shown that general relativity with a
minimally coupled self-interacting real scalar field, in four
dimensions, admits an exact hairy black hole solution [1].
This result is somehow unexpected since it circumvents the
so called no-hair conjecture, which originally stated that a
black hole should be characterized only in terms of its
mass, angular momentum, and electric charge [2–4] (for
recent discussions see e.g., [5]). The thermodynamical
analysis of the hairy black hole reveals the existence of a
second order phase transition, so that below a critical
temperature, a black hole in vacuum undergoes a sponta-
neous dressing up with a nontrivial scalar field. According
to the analysis of Ref. [6] the solution is expected to be
stable against linear perturbations, and progress towards
the proof of nonlinear stability for solutions with the same
asymptotic behavior has been performed in [7]. It can be
seen also that below the critical temperature, these hairy
black holes curiously admit only a finite number of quasi-
normal modes [8]. Furthermore, this black hole can be
uplifted as a solution of 11-dimensional supergravity [9].
The black hole solution in [1] can be seen as the neutral
case of the electrically charged hairy black hole found in
[10].

Numerical hairy black hole solutions of this sort also
have been found in Refs. [11–14], and another exact solu-
tion was found in [15]. In the case of conformally coupled
scalar fields, exact black hole solutions were known to
exist since the 70s [16]; however, the scalar field in this
case diverges at the horizon. This last obstacle can be
avoided considering a cosmological constant and a quartic
self-interaction term for the scalar field [1,10,17]. The
thermodynamics and the stability for the black hole with

positive cosmological constant have been discussed in
Refs. [18,19], respectively. Further aspects of this class
of solutions have been studied in [20], and numerical black
hole solutions for nonminimally coupled scalar fields have
been found in Refs. [6,12,21]. In three dimensions, black
holes dressed with conformally and minimally coupled
scalar fields were found in [22,23], and some of their
properties were analyzed in Refs. [24,25].

In this paper, an electrically charged black hole solution
of gravity minimally coupled to a real self-interacting
scalar field and electromagnetism in four dimensions is
presented. The self-interacting potential induces a negative
cosmological constant which allows the event horizon to
be a surface of negative constant curvature which sur-
rounds the singularity at the origin, and the asymptotic
region is locally an AdS spacetime. The self-interacting
potential considered here differs from the one considered
in [1], but it has the same mass term.1

The effect of having asymptotically AdS black holes
solutions whose horizons have a nontrivial topology is
known to occur in vacuum [26,27], as well as in the
presence of the electromagnetic field [28,29]. For the black
hole solution presented here, the asymptotic falloff of the
fields at the asymptotic region is slower than the standard
one, as in [30], for a localized distribution of matter. The
scalar field is regular everywhere except at the origin, and
is supported by the presence of electric charge which is
bounded from above by the AdS radius. In turn, the pres-
ence of the real scalar field smooths the electromagnetic
potential everywhere. The thermodynamics is discussed in
Sec. III, where it is found that regardless the value of the
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1The comparison can be seen precisely in the conformal
frame. In this case the action is mapped to gravity with a
negative cosmological constant and a conformally coupled scalar
field without self-interaction, while in Ref. [1], a quartic self-
interaction term with a fixed coupling constant was considered.
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electric charge, the black hole is massless and it has a fixed
temperature. The entropy follows the usual area law, as
expected. In Sec. IV, it is shown that there is a nonvanish-
ing probability for the decay of the hairy black hole into a
black hole without scalar field. Possible decays including
the extremal bare black hole are also analyzed, and it is
found that an extremal black hole without scalar field is
likely to undergo a spontaneous dressing up with a non-
trivial scalar field, provided the electric charge is below
certain critical value. Section V is devoted to some con-
cluding remarks.

II. BLACK HOLE SOLUTION

Let us consider gravity minimally coupled to a real self-
interacting scalar field and electromagnetism in four di-
mensions. The action is given by
 

I�g��;�; A�� �
Z
d4x

�������
�g
p

�
1

16�G
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�
; (1)

where G is the Newton constant, and the self-interaction
potential is chosen as

 V��� � �
3

8�Gl2
cosh4

� ����������
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3

s
�
�
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This potential has a global maximum at � � 0, giving rise
to a negative cosmological constant, which can be written
in terms of the AdS radius as � � �3l�2. Its mass term,
m2 � V 00j��0 � �2l�2, satisfies the Breitenlohner-
Freedman bound, which ensures the perturbative stability
of AdS spacetime [31].

The field equations are given by
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energy tensor are
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respectively.
The field equations are solved by the following static

metric:
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provided the scalar field and the electromagnetic potential
are given by
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r2 �Gq2
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respectively. In (8), d�2 is the line element of the base
manifold �, which has negative constant curvature (re-
scaled to �1), so that it is locally isometric to the hyper-
bolic manifold H2. Thus, a smooth base manifold � can be
obtained through a quotient of the form � � H2=�, where
� is a freely acting discrete subgroup ofO�2; 1�. The metric
(8) describes an asymptotically locally AdS spacetime, and
if � is assumed to be compact without boundary, it has a
single timelike Killing vector given by @t.

The integration constant q, corresponds to the electric
charge which is given by

 Q �
�

4�
q; (11)

where� denotes the area of �, and as it is shown below, the
mass of this solution vanishes for any value of q.

The curvature and the scalar field are singular at the
origin r � 0, but the electromagnetic potential is regular
everywhere.

The metric (8) describes a black hole solution with
topology R2 ��, with an event horizon located at

 r� �
�������������������
l2 �Gq2

q
; (12)

provided the electric charge is bounded from above by

 q2 <
l2

G
: (13)

For q2 � l2=G, the spacetime has a nut on the null curve
r � 0, which coincides with the singularity.

This black hole has the same causal structure as the
Schwarzschild-AdS black hole, where at each point of
the Penrose diagram the sphere is replaced by �. The
horizon radius satisfies the bound r� 	 l, which is satu-
rated for q � 0. Note that the scalar field cannot be
switched off keeping the electric charge fixed. This means
that the scalar field can be switched off only if the electric
charge vanishes, and then the metric reduces to

 d �s2 � �

�
r2

l2
� 1

�
dt2 �

�
r2

l2
� 1

�
�1
dr2 � r2d�2; (14)
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which corresponds to a negative constant curvature
spacetime.2

The electromagnetic potential at the origin has a fixed
value that only depends on the sign of the electric charge
and the Newton constant

 Atjr�0 � �
sgn�q�����
G
p ;

and at the horizon is given by Atjr�r� � �q=l. It is re-
markable that the presence of the real scalar field produces
a backreaction on the metric that regularizes the Maxwell
field everywhere. The field strength two-form reads

 F � q
r

�r2 �Gq2�3=2
dr ^ dt;

which at the origin grows linearly as sgn�q�q�2G�3=2r, has
an extremum at r � jqj

���������
G=2

p
given by 2�3

���
3
p
Gq��1, and

asymptotically decays as q=r2 �GO�r�4�. Note that in an
orthonormal frame the electric field, however, has the usual
form, F01 � q=r2.

The scalar field at the horizon is given by

 �jr�r� �

����������
3

4�G

s
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� ����
G
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l

�
;

and asymptotically behaves as

 � �

�������
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s
jqj
r
�O�r�3�: (15)

As discussed in [23], and further developed in [34–36], the
presence of scalar fields with a slow falloff as in Eq. (15)
has generically two effects: It gives rise to a strong back-
reaction that relaxes the standard asymptotic form of the
geometry, and it generates additional contributions to the
charges that depend explicitly on the scalar fields at infinity
which are not already present in the gravitational part.
These effects have also been discussed recently following
the covariant phase space method [37]. The asymptotic
form of the metric (8) reads

 gtt � �
�
r2

l2
� 1

�
�O�r�2�;
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l2
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�
1� 3G

q2

l2

�
l4
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which manifestly deviates from the standard behavior [30].
The mass of the black hole under consideration can be

computed explicitly from a surface integral as in [36]. For a
scalar field satisfying m2 � V 00j��0 � �2l�2, the mass is

given by

 M � QG�@t� �Q��@t�; (16)

where QG�@t� stands for the standard formula [30,38], and
the contribution from the scalar field is

 Q��@t� �
1

6

Z
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3
V 000j��0�

3

�
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For the potential (2), the coefficient V 000j��0 of the cubic
term in (17) vanishes, and as expected, evaluating (16) for
the black hole, the divergences coming from QG and Q�

are cancelled. Thus the mass, which is given by the re-
maining finite term, is found to vanish. This also can be
seen from the asymptotic form of the fields, since the terms
coming from the metric that contribute to mass, which are
the ones of order r�1 in gtt, and order r�5 in grr, are absent.
Moreover, the contribution to the mass coming from the
scalar field requires that both leading orders in the scalar
field, i.e., the orders r�1 and r�2, must be simultaneously
present. Therefore, the contribution to the mass coming
from the scalar field also vanishes since the term of order
r�2 does not appear in the asymptotic form of � given by
Eq. (15). These results also could be discussed following
different covariant approaches as in [39,40].

III. THERMODYNAMICS

The thermodynamics for the electrically charged black
hole with scalar hair is discussed using the Euclidean
approach. For this purpose it is useful to consider a min-
isuperspace of static Euclidean metrics given by

 ds2 � N�r�2f�r�2dt2 � f�r��2dr2 � r2d�2; (18)

where the Euclidean time has period �, and the radius
ranges as r 
 r�. The scalar and electromagnetic fields are
assumed to be of the form � � ��r�, and A � At�r�dt,
respectively. The temperature T corresponds to the inverse
of �, and it is fixed requiring that the allowed class of the
geometries (18) should contain no conical singularities at
the horizon. This condition implies that

 ��N�r��f2�r��0�jr�r� � 4�; (19)

which for the black hole solution (8), yields the following
temperature:

 T � ��1 �
1

2�l
: (20)

Note that the temperature is determined only by the AdS
radius and it is independent of the horizon size.

The Euclidean path integral in the saddle point approxi-
mation around the Euclidean solution is identified with the
partition function of a thermodynamical ensemble [41].
Here we consider the Euclidean continuation of the action

2Spacetimes of the form (14) admit Killing spinors provided �
is a noncompact surface [32]. In this case, the metric describes
the supersymmetric ground state of a warped black string. Its
stability under gravitational perturbations has been explicitly
proved in [33].
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(1) in Hamiltonian form. Following the analysis performed
in Ref. [1], and including electric charge, one obtains that
the reduced Hamiltonian action is

 I � �
��
4�

Z 1
r�
�N�r�H �r� � Atp0�dr� B; (21)

where B is a surface term, and � is the area of the base
manifold �. The reduced Hamiltonian is given by

 H �
r2

2G

��
�f2�0

r
�
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r2 �1� f
2�

�
� 4�G�f2��0�2

� 2V���� �
Gp2

r4

�
;

and p is defined in terms of electric field as

 p �
r2

N
A0t:

The Euclidean black hole solution is static and satisfies the
constraints H � 0, p0 � 0. Therefore, the action (21)
evaluated on the classical solution is just given by the
boundary term B. The boundary term is fixed by requiring
the action (21) to attain an extremum for the minisuper-
space considered here [42].

In what follows, we work in the grand canonical en-
semble, so that we consider variations of the action keeping
fixed the temperature and the ‘‘voltage’’, i.e., � and � �
At�1� � At�r�� are constants.

The variation of the required boundary term is

 �B � �BG � �B� � �Bem; (22)

where

 �BG �
��

8�G
�Nr�f2�1r� ; (23)

and the contribution from the matter sector is given by

 �B� � ��Nr2f2�0��j1r� : (24)

 �Bem �
��
4�

��p: (25)

The variation of the fields at infinity for the black hole
solution (8)–(10) reads

 �f2j1 �
3G

l2
�q2 �O�r�2�; (26)

 ��j1 �

����
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�

s
1
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�q2 �O�r�3�; (27)

 �pj1 � �q (28)

and thus, one obtains

 �BGj1 �
3��

8�l2
r�q2 �O�r�1�: (29)

The variation of the purely gravitational contribution to the
boundary term �BGj1 has a linearly divergent term and is
devoid of a finite piece. As discussed above, this reflects
the fact that the scalar field produces a slow decay for the
metric as compared with that of pure gravity with a stan-
dard localized distribution of matter [30]. This divergence
is cancelled by the contribution coming from the scalar
field

 �B�j1 � �
3��

8�l2
r�q2 �O�r�1�: (30)

Choosing Aj1 to vanish, the total boundary term at infinity
then vanishes

 Bj1 � 0: (31)

The variation of the boundary term at the horizon, is
obtained using

 �f2jr� � ��f
2�0jr��r�;

and Eqs. (19) and (23)–(25). Since, �B�jr� vanishes, the
variation of the total boundary term is
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2
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where the last term in (32) is the contribution from the
electric field. Hence, the boundary term at the horizon can
be integrated as

 Bjr� � �
�

4G
r2
� �

��
4�

�q: (33)

The value of the Euclidean action on shell is then given
by the boundary terms in Eqs. (31) and (33), which reads

 I �
�

4G
r2
� �

��
4�

�q; (34)

up to an arbitrary additive constant. The Euclidean action
is related to the free energy (in units where @ � kB � 1) as
I � ��F, which in the grand canonical ensemble is given
by

 I � S� �M� ��Q: (35)

Here M, Q, and S stand for the mass, electric charge and
entropy, respectively. Thus, once the free energy is identi-
fied with the Euclidean action, these quantities must satisfy
the first law of thermodynamics. Expressions (34) and (35),
allow one to obtain the mass, the electric charge, and the
entropy from the standard thermodynamical relations

 M �
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��1�

@
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�
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Thus, as expected, the entropy follows the area law since
the horizon area is given by �r2

�, and the mass is shown to
vanish from an independent method.

IV. THERMAL DECAY

For a fixed temperature and electromagnetic potential,
the action principle (1) also admits an electrically charged
solution for the same boundary conditions but without hair,
i.e. with � � 0. This solution [29] is described by
 

ds2 � �

�
	2

l2
� 1�

2G�0
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Gq2

0

	2

�
dt2
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�
�1
d	2 � 	2d�2; (36)

with

 A � �
q0

	
dt; (37)

for which the mass and the electric charge by M0 �
��0=4�, and Q0 � �q0=4�.

Since the hairy black hole (8) has a fixed temperature
given by (20), the matching of this temperature with the
one for the black hole in Eq. (36) reads3

 �0 �
4�	�

3
	2
�

l2
�

q2
0G
	2
�

� 1
� � � 2�l;

where �0 stands for the Euclidean period of the black hole
without scalar hair. This condition is fulfilled when the
mass and the electric charge of the black hole without
scalar hair relate with the horizon radius 	� in the follow-
ing way:

 G�0l � 	2
�

�
2	�
l
�

l
	�
� 1

�
;

Gq2
0 �

	3
�

l

�
3	�
l
�

l
	�
� 2

�
:

(38)

Analogously, matching the voltages amounts to match the
electromagnetic potentials (10) and (37) at the horizon,
which leads to

 

q
l
�
q0

	�
: (39)

Note that since q2
0 
 0, both black holes can have the same

temperature4 provided 	� 
 l. This raises the question of

whether one black hole can decay into the other. Since the
partition function is given by Z � exp�I�, this can be
examined evaluating the difference between the corre-
sponding Euclidean actions.

The Euclidean action evaluated on the hairy black hole
(8)–(10) reads

 I� �
�l2

4G

�
1�G

q2

l2

�
; (40)

which by virtue of the matching conditions (38) and (39),
can be expressed as

 I� �
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2G
	2
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�
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2
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l
	�

�
:

For the black hole without scalar hair the Euclidean action
is given by

 I0 �
�

2G
	2
�

�
	�
l
�

1

2

�
:

Therefore, the difference between both Euclidean actions
is

 �I � I0 � I� �
�l
2G

	�

�
	�
l
� 1

�
2
; (41)

which is always positive. This means that there is a non-
vanishing probability for the decay of the hairy black hole
into the black hole without scalar field, so that the black
hole without scalar hair is thermodynamically favored.

For a fixed temperature and voltage, by virtue of (38),
the difference between the black hole masses under the
decay is always positive for the allowed range, 	� > l.
Analogously, the difference between the absolute values of
the electric charges is

 �jqj � jq0j � jqj � jq0j

�
1�

l
	�

�
> 0:

Similarly, since the entropy for the black hole without
scalar field is S0 � �	2

��4G�
�1, the entropies for the

allowed range are found to obey

 �S � S0 � S� �
�l2

2

�0

	�
> 0:

In sum, as �I in Eq. (41) is positive, there is a nonvanishing
probability for the decay of the black hole dressed with the
scalar field into the bare black hole. Since the process takes
place for black holes in a vacuum with 	� > l, which has
positive mass, in the decay process, the scalar black hole
absorbs energy and electric charge from the thermal bath,
increasing its horizon radius an consequently its entropy.
This suggests that in this process the scalar field is at least
partially absorbed by the black hole.

3Note that, since the base manifold is locally hyperbolic, at
fixed temperature and voltage, there is only one black hole
without scalar hair. For spherical symmetry there are two pos-
sible black holes without scalar hair satisfying these
requirements.

4This bound is saturated for �0 � q0 � 0, but in this case, the
matching of the voltages implies that q � 0 and r� � l. This
means that when the bound is saturated, matter fields are
switched off and both metrics coincide.
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A. Transitions involving the extremal charged black
hole without hair

The black hole without scalar hair described by Eqs. (36)
and (37) admits an extremal case, for which the mass and
the electric charge are fine tuned such that its temperature
vanishes, and thus the Euclidean time period �e is arbi-
trary. This opens two additional possible decay channels to
be explored.

1. Stability of the nonextremal charged black hole
without scalar hair

Let us begin analyzing the transition between the ex-
treme and nonextreme charged black holes without scalar
hair. Following the same procedure as in Sec. III, but taking
into account that the Euclidean period is arbitrary, it is
found that the entropy vanishes, as in Ref. [43] (see also
[44,45]), and the Euclidean action is given by

 Ie � �e
�

4�Gl2
	3
e; (42)

where 	e is the horizon radius of the extremal black hole.
For the nonextremal black hole without scalar field the

Euclidean action can be expressed q0 and 	� as

 I0 �
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3
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�
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	2
�

� 1

�
:

For the decay process, the Euclidean time period of the
extremal black hole is then fixed as�e � �0, and matching
the voltages leads to

 

q0

	�
�
qe
	e
:

This allows one to express the Euclidean action for the
extremal black hole (42) in terms of the horizon radius and
the electric charge of the nonextremal black hole as

 Ie �
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:

Thus, the difference between both Euclidean actions is

 �I � I0 � Ie
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3
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�
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q2

0G
	2
�

� 1
;

which can be shown to be positive for the allowed range of
the parameters. This ensures the stability of the nonext-
reme black hole, and one then concludes that there is a
nonvanishing probability for the decay of the extremal into
the nonextremal solution. This result is qualitatively simi-
lar with what was found in Ref. [46].

2. Spontaneous scalar field dressing up of the extremal
black hole

Consider now the transition between the hairy and the
extreme case. The Euclidean action for the hairy black hole
I� is given by Eq. (40), and the one for the extremal
solution without scalar field Ie is given by (42). In this
case, according to Eq. (20), the Euclidean period of the
extremal solution must be fixed as �e � �� � 2�l, and
the matching voltages reads

 

q
r�
�
qe
	e
: (43)

Since the Euclidean action I� in (40) depends only on the
electric charge it is convenient to make use of (12) and (43)
in order to express the Euclidean action Ie in (42) as

 Ie �
�l2

2G

�
1

3

�
l2

l2 �Gq2

��
3=2
:

Therefore, the difference between the Euclidean action of
the hairy black hole and the one for the extremal case
without scalar hair is given by

 �I � I� � Ie �
�l2

2G

�
1

2
�
Gq2

2l2
�

�
1

3

�
l2

l2 �Gq2

��
3=2
�
;

(44)

which changes of sign for a critical value of the electric
charge qc satisfying

 

Gq2
c

l2
� 0:615 713:

Remarkably, for q2 < q2
c, the difference of Euclidean ac-

tions (44) is positive, and hence the extremal bare black
hole is likely to undergo a spontaneous dressing up with a
nontrivial scalar field. For q2 > q2

c, it turns out that �I < 0,
and then there is a nonvanishing probability for the decay
of hairy black hole decay into the extremal bare solution.
For the critical point, q2 � q2

c, both solutions can coexist.

V. CONCLUDING REMARKS

It was shown that gravity minimally coupled to a real
self-interacting scalar field and electromagnetism in four
dimensions admits a charged hairy black hole solution. The
event horizon is a surface of negative constant curvature
and the asymptotic region has negative constant curvature.
The self-interacting potential (2) is negative and un-
bounded from below, possessing a global maximum at
� � 0, and it has a mass term satisfying the
Breitenlohner-Freedman bound that guarantees the pertur-
bative stability of global AdS spacetime [31]. For the
topology considered here, it was shown that the stability
of the locally AdS spacetime (14) under scalar perturba-
tions, holds provided the mass satisfies the same
Breitenlohner-Freedman bound [47]. The asymptotic fall-
off of the fields is slower than the standard one, and for the
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scalar field, only the branch with the slower falloff is
switched on. In spite of this, the mass is still well defined
and it is shown to vanish. The scalar field is regular every-
where except at the origin and is supported by the presence
of electric charge which is bounded from above by the AdS
radius. An upper bound for the electric charge also exists
for the massless bare black hole with the same topology.

The presence of the real scalar field smooths the elec-
tromagnetic potential everywhere. The hairy black hole has
a fixed temperature T � �2�l��1 regardless of the value of
the electric charge, and the entropy follows the usual area
law. It is also shown that there is a nonvanishing probability
for the decay of the hairy black hole into a black hole
without scalar field, where in the decay process, the hairy
black hole absorbs energy and electric charge from the
thermal bath, increasing its horizon radius and conse-
quently its entropy. A similar behavior has been previously
observed for black holes with scalar hair in Refs. [14,24]. It
is worth pointing out that, although the boundary condi-
tions considered here coincide with the ones for the hairy
black hole found in [1], there is no phase transition where
the bare nonextremal black hole spontaneously dresses up
with a scalar field. Furthermore, since the bare black hole
admits an extremal case, for which the Euclidean time
period is arbitrary, two additional decay channels open
up. Noteworthy, it is found that an extremal black hole
without scalar field is likely to undergo a spontaneous
dressing up with a nontrivial scalar field, provided the
electric charge satisfies q2 < q2

c; while for q2 > q2
c there

is a nonvanishing probability for the decay of hairy black
hole decay into the extremal bare solution.

In summary, for a fixed voltage and temperature � �
2�l, one obtains that if the electric charge of the hairy
black hole satisfies q2 < q2

c, then the Euclidean actions
satisfy:

 I0 > I� > Ie;

which means that the nonextremal bare black hole is stable.
Consequently, the hairy black hole is likely to decay into a
nonextremal one, and moreover, the extremal black hole is
able to decay into the hairy or into the nonextremal black

hole, with different branching ratios. For q2 > q2
c, the

Euclidean actions fulfill:

 I0 > Ie > I�;

which means that for this range, the scalar black hole can
decay into the extreme or into the nonextreme black hole
with different probabilities. In the case q2 � q2

c, both the
hairy and the extremal black hole can coexist, but they can
decay into the nonextremal solution without a scalar field.

It would be interesting to explore the possible decays in
different ensembles, as well as the regions where there is
overlap between thermal and mechanical stability. It is
worth pointing out that the analysis performed in
Ref. [6], suggests that the hairy black hole solution found
here should be stable against linear perturbations. The
nonlinear stability for this solution also could be studied
following the approach of Ref. [7].

As a final remark, it is worth pointing out that in the
conformal frame, the potential (2) is mapped to a negative
cosmological constant, and the scalar field becomes con-
formally coupled without self-interaction. Following [10],
it can be seen also that in the conformal frame, the black
hole solves the vacuum field equations since the stress-
energy tensor for the scalar field cancels with the one for
the electromagnetic field. The effect of having nontrivial
matter fields with a vanishing total energy momentum
tensor also have been discussed for flat spacetime in
[48,49] and for three-dimensional gravity with negative
cosmological constant in Refs. [23,24,50]. This effect
also has been discussed for different setups in Refs. [51].
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