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Weakly interacting massive particles (WIMPs) are part of the lepton-photon plasma in the early
universe until kinetic decoupling, after which time the particles behave like a collisionless gas with
nonzero temperature. The Boltzmann equation for WIMP-lepton collisions is reduced to a Fokker-Planck
equation for the evolution of the WIMP distribution including scalar density perturbations. This equation
and the Einstein and fluid equations for the plasma are solved numerically including the acoustic
oscillations of the plasma before and during kinetic decoupling, the frictional damping occurring during
kinetic decoupling, and the free-streaming damping occurring afterwards and throughout the radiation-
dominated era. An excellent approximation reduces the solution to quadratures for the cold dark matter
density and velocity perturbations. The subsequent evolution is followed through electron pair annihila-
tion and the radiation-matter transition; analytic solutions are provided for both large and small scales. For
a 100 GeV WIMP with bino-type interactions, kinetic decoupling occurs at a temperature Td � 23 MeV.
The transfer function in the matter-dominated era leads to an abundance of small cold dark matter halos;
with a smooth window function the Press-Schechter mass distribution is dn=d lnM / M�1=3 for M<
10�4�Td=10 MeV��3M�.
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I. INTRODUCTION

Weakly interacting massive particles (WIMPs) are per-
haps the leading candidate for the cold dark matter (CDM)
making up most of the nonrelativistic mass density of the
universe today [1]. Although candidate WIMPs are 10 to
1000 times more massive than nucleons and have no
electromagnetic or color charges, their cosmic histories
share many parallels with nucleons. After their abundances
froze out at �10�10 the number density of photons, both
WIMPs and nucleons remained thermally coupled to the
plasma by elastic scattering with abundant relativistic par-
ticles. Acoustic oscillations in the relativistic plasma im-
printed oscillations on both WIMPs and nucleons.
Eventually the plasma released its grip on both types of
particles. For WIMPs, this event is called kinetic decou-
pling; for nucleons, recombination.

During kinetic decoupling, friction between the WIMP
gas and relativistic plasma led to Silk damping of small-
scale waves similar to what happened much later for
atomic matter at recombination. After the respective de-
coupling periods ended, pressure forces (and in the case of
WIMPs, shear stress) inhibited gravitational instability on
small scales. Still later, both WIMPs and nucleons played a
major role in galaxy formation.

There are, of course, significant differences between the
cosmic evolution of WIMPs and nucleons. Most evident
are the quantitative differences: because their interactions
are so weak, WIMPs decoupled from the plasma less than
1 s after the big bang. Consequently the WIMP acoustic
oscillations appear only on a length scale vastly smaller
(� parsec scales) than the baryon acoustic oscillations. The
physics of nucleon decoupling, as imprinted in the galaxy
distribution [2] and in the cosmic microwave background

radiation [3] provides a powerful probe of cosmic parame-
ters and inflationary cosmology. If it were possible to
similarly measure fluctuations on the scale of WIMP
acoustic oscillations, we would have a dramatic consis-
tency test of the cosmological model as well as an astro-
physical measurement of WIMP properties.

One way to constrain the parameters of CDM decou-
pling is to measure the mass function of the smallest dark
matter clumps today [4–6]. Such clumps would be far too
diffuse to host observable concentrations of atomic matter.
However, they might be observable through the products of
the very rare WIMP-WIMP annihilations taking place in
the cores of these objects. Diemand et al. [7] proposed that
numerous Earth-mass clumps might survive to the present
day and provide a detectable gamma-ray signal. The mass
and abundance of these clumps depends on cosmic fluc-
tuation evolution during and after kinetic decoupling.

WIMPS and nucleons also differ in a qualitative manner
which has important consequences for the evolution of
fluctuations through kinetic decoupling. After recombina-
tion, elastic scattering is rapid enough for atoms (and the
residual free electrons) to behave as a nearly perfect gas on
cosmological scales. Baryons behave like a fluid. WIMPs,
however, collide too infrequently to thermalize after ki-
netic decoupling. WIMPs behave like a collisionless gas.
Different approximations to the evolution of this collision-
less gas have led to different results for the small-scale
transfer function of CDM fluctuations [6,8,9].

In the present paper, the transfer functions for CDM
fluctuations are calculated starting from the full Boltz-
mann equation describing elastic scattering between
WIMPs and the relativistic leptons present before neutrino
decoupling and electron-positron pair annihilation.
Because the momentum transfer per collision with non-
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relativistic WIMPs is small, the Boltzmann equation re-
duces to the Fokker-Planck equation describing diffusion
in velocity space caused by elastic scattering, combined
with advection and gravitational forces. The Fokker-
Planck equation fully describes kinetic decoupling and
the evolution of perturbations of any length scale without
approximating the WIMPs either as a perfect fluid or fully
collisionless gas. Although the solution of the perturbed
Fokker-Planck equation is more difficult than the solution
of coupled fluid and collisionless Boltzmann equations, it
is both numerically and analytically tractable (with an
excellent approximation) in the present case.

After kinetic decoupling, two additional events have an
effect on the CDM transfer function. The first is electron-
positron pair annihilation, which changes the equation of
state of the plasma thereby modifying the evolution of
fluctuations. Although the effects are small, they can be
analytically calculated. The more important event is the
transition from a radiation- to matter-dominated universe
occurring about 105 years after the big bang. If the photons
and neutrinos are treated as fluids, it is possible to get
analytic results for the linear evolution all the way to low
redshift which are accurate to a few percent. With these
results in place, using standard techniques it is straightfor-
ward to estimate the mass function of CDM clumps at high
redshift.

II. EVOLUTION OF WIMP PERTURBATIONS
THROUGH KINETIC DECOUPLING

Weakly interacting dark matter particles are described
by their phase space density, which obeys the Boltzmann
equation governing transport by collisions with leptons
(during kinetic decoupling these are just electrons, posi-
trons, and neutrinos). For definiteness we will take the
WIMP to be the lightest neutralino �0, however, the results
are easily applied to other WIMP candidates by modifying
the scattering matrix element below.

Let f��p� and fL�p� be the proper phase space densities
of neutralinos and ultrarelativistic leptons, respectively,
where p is the proper three-momentum in a local ortho-
normal frame. (The spacetime coordinates x and t are
suppressed for brevity.) The phase space densities are
normalized so that

R
f�p�d3p is the spatial number density,

summed over spin states (we assumed unpolarized spins).
One distribution function suffices for the relativistic lep-
tons because electroweak interactions maintain local ther-
mal equilibrium at a temperature TL. Elastic scattering of
neutralinos and leptons causes the neutralino distribution
to evolve according to the Boltzmann equation,
 

p�1 @�f1� �
Z d3p2

E2

Z d3p3

E3

Z d3p4

E4

��������M8�
��������2

� �4�p1 � p2 � p3 � p4�	f3�f4L�1� ~f2L�

� f1�f2L�1� ~f4L�
; (1)

where M is the Lorentz-invariant scattering amplitude,
f1� � f��p1� and similarly for the other distribution func-
tions, Ei is the energy of particle i, and ~fL � �2�@�

3fL=2
is the occupation number. Pauli blocking must be included
for the leptons but not for the neutralinos since the latter
have a low density after chemical decoupling. Equation (1)
is relativistically covariant but gives only the effects of
collisions; the effects of gravitational perturbations will
be added later. Assuming effectively massless leptons,
the matrix element for slepton exchange is given in
Appendix A of [4] and may be written

 jMj2 � C
p2

CM

m2
�

�
1�

tM
4p2

CM

�
; (2)

where

 C � 256
X
L

�b4
L � c

4
L�

�GFm2
Wm

2
�

m2
~L
�m2

�

�
2

(3)

is a dimensionless constant depending on the relevant
particle masses and couplings (GF is the Fermi constant,
bL and cL are left and right chiral vertices, and mW , m ~L,
and m� are, respectively, the masses of the W boson, the
slepton, and the neutralino; GFm2

W � 0:0754). Here we
assume following Ref. [4] that the neutralino is a pure
bino. Additionally, pCM is the momentum in the center of
momentum frame, and (using metric signature ���� )
tM � ��p2 � p4�

2 � �2p2
CM�1� cos�CM� is one of the

Mandelstam variables.
For pCM � TL � m�, pCM � m��	1� ��

3
2 �

2 �

O��3�
 where � � �p3 
 p4=m
2
�. In the lab frame, working

to first order in TL=m�, assuming p1 �
������������
m�TL

p
, the colli-

sion kinematics gives
 

1� cos�CM

1� n2 
 n4
� 1�

�n2 � n4� 
 �p1 � p2�

m�

�

�
p1

m�

�
2
��2

12 ��12�14 ��
2
14 � 1�; (4)

where �ij � ni 
 nj and ni � pi=pi. Another useful rela-
tion follows from energy conservation,
 

p4

p2
� 1�

p1

m�
��14 ��12�

�
1�

p1

m�
�14

�
�
p2

m�
��24 � 1�;

(5)

valid again to first order in TL=m�.
Frequent collisions among the leptons maintain thermal

equilibrium. Assuming negligible chemical potential, for
each species of massless lepton we have

 	~fL�p�
�1 � 1� exp
�
p
TL
�1� n 
 vL�

�
; (6)

where vL is the (very small) local lepton fluid velocity due
to cosmological perturbations. It is easy to check that an
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equilibrium solution of (1) is then the Maxwell-Boltzmann
distribution with mean velocity vL.

For TL � m� the f3� term may be Taylor-expanded in
(1). After a lengthy calculation using (4)–(6), one obtains
p�@�f � m��df=dt�c (dropping the subscript on f�)
where the Boltzmann collision integral becomes the
Fokker-Planck operator,

 

�
df
dt

�
c
� �

@
@p



�
�p�m�vL�f�m�TL

@f
@p

�
; (7)

where

 � �
155�3CT6

L

6048m5
�

(8)

is a rate coefficient (in units where @ � c � 1). Our exact
result for the rate coefficient is larger by a factor 9.9 than
the estimate obtained from Eqs. (9) and (12) of Ref. [4] and
by a factor 3.4 than Eq. (17) of Ref. [5]. The rate is greater
than the simple estimates made in previous work because
of the details of the kinematics and the near-cancellation of
forward and inverse rates in (1). A larger rate coefficient
leads to a lower temperature for kinetic decoupling than
previous estimates.

If we neglect spatial inhomogeneities, the unperturbed
phase space density f0�q; �� depends on both comoving
momentum q � ap and conformal time � according to

 

@f0

@�
� �a

@
@q



�
qf0 � a2m�TL

@f0

@q

�
: (9)

Amazingly, for any time-dependence of �, a, and TL an
exact solution to this Fokker-Planck equation is the
Maxwell-Boltzmann distribution

 f0�q; �� �
exp��q2=2	2

q�

�2�	2
q�

3=2
; 	q��� � a���

������������������
m�T����

q
;

(10)

where the WIMP temperature T� follows from integrating

 

d ln�a2T��

d�
� 2�a

�
TL
T�
� 1

�
: (11)

During adiabatic evolution in the early universe, TL /
a�1 / ��1 and the WIMP proper temperature is then given
in terms of the incomplete gamma function by

 T���� � TLs
1=4es�

�
3

4
; s
�
; s �

1

2
�a� �

�
2H

: (12)

Equation (10) may be multiplied by any constant, allowing
the comoving number density of WIMPs to be normalized
to its value after freeze-out.

Familiarity with Brownian motion makes it seem natural
that the solution to the Fokker-Planck equation is a
Maxwell-Boltzmann distribution. However, the lepton
temperature TL and the momentum transfer rate � are
falling with time and WIMP-WIMP elastic scattering is
far too slow to thermalize the distribution. Even so, colli-
sions with the leptons maintain the WIMPs in a thermal
distribution with a temperature that deviates increasingly
from the lepton temperature throughout kinetic decou-
pling. Once kinetic decoupling is complete the WIMP
momenta redshift as p / a�1 preserving the Maxwell-
Boltzmann distribution with T� / a�2.

Long before kinetic decoupling (s� 1), T�=TL � 1�
1=�4s� �O�s�2�. After kinetic decoupling (s < 1),
T�=TL ! ��34�s

1=4 / a�1. Defining the kinetic decoupling
time by s � 1 yields

 Td � TL�s � 1� � 1:430C�1=4g1=8
eff

�m5
�

mPl

�
1=4

� 7:650C�1=4g1=8
eff

� m�

100 GeV

�
5=4

MeV: (13)

For typical supersymmetry masses, kinetic decoupling
occurs after muon annihilation when the only abundant
leptons are electron pairs and neutrinos, for which (with
sin2�W � 0:223)

P
L�b

4
L � c

4
L� �

13
4 tan4�W � 0:268 and

geff � 43=4. With m� � 100 GeV and m ~L � 200 GeV,
C � 0:0433 yielding Td � 22:6 MeV. Profumo et al.
[10] show that Td can span the range from a few MeV to
a few GeV for reasonable WIMP models. Here we take the
supersymmetric bino as a candidate but will show how
numerical results scale with Td.

Next we examine the effect of density, velocity, and
gravitational potential fluctuations during kinetic decou-
pling. The perturbed phase space density is f�x;q; ��,
where x are comoving spatial coordinates, q � ap are
the conjugate momenta, and � is conformal time. The
perturbed line element in conformal Newtonian gauge is
written ds2 � a2	��1� 2��d�2 � �1� 2��dx 
 dx
.
Including the effects of the metric perturbations � and
�, the Boltzmann equation becomes

 

@f
@�
� v 


@f
@x
�

�
_�q� �

@�

@x

�


@f
@q
� a

�
df
dt

�
c
; (14)

where v � q=� is the proper velocity measured by a co-
moving observer, � � �q2 � a2m2

��
1=2 is the comoving

energy, and q � qn. With comoving variables, the
Fokker-Planck operator becomes

 a
�
df
dt

�
c
� �a

@
@q



�
�q� qL�f� a2m�TL

@f
@q

�
; (15)

where qL � am�vL � �am�ruL.
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Now we linearize (15) for first-order perturbations of the
lepton fluid by writing TL ! TL��� � T1�x; ��. The fields
T1�x; ��, ��x; ��, ��x; ��, and the lepton velocity potential
uL�x; �� are treated as first-order quantities. Assuming
v2 � 1 and performing a spatial Fourier transform, we
obtain the linear perturbation equation

 

1

f0

��
@f
@�

�
q
� i�k 
 v�f� �aLFPf

�

� _�
q2

	2
q
�
ik 
 q
aT�

��� �auL� � �a
�
q2

	2
q
� 3

�
T1

T�
;

(16)

where

 LFPf �
@
@q



�
qf� a2m�TL

@f
@q

�
: (17)

After WIMP freeze-out, the leptons dominate the gravita-
tional potentials so that _�, �, uL, and T1 are functions of
�k; �� given by the solution for a perfect relativistic fluid.
Equation (16) generalizes the collisionless Boltzmann
equation of Ref. [11] to include the effects of dark matter
collisions with relativistic leptons.

To integrate (16) for the phase space density f we will
expand the momentum dependence in eigenfunctions of
the Fokker-Planck operator LFP:

 

LFP
nlm � ��2n� l�
nlm; (18a)


nlm � e�yyl=2L�l�1=2�
n �y�Ylm�n�: (18b)

Here y � q2=�2a2m�TL� and L���n �y� is a generalized
Laguerre polynomial, also known as a Sonine polynomial.
It is defined by the following series expansion:

 L���n �x� �
Xn
k�0

��n� �� 1�

��k� �� 1�

��x�k

k!�n� k�!
: (19)

Generalized Laguerre polynomials have orthonormality
relation

 

Z 1
0

n!x�e�x

��n� �� 1�
L���n �x�L

���
n0 �x�dx � �nn0 (20)

and completeness relation

 

X1
n�0

n!�xx0��=2e��x�x
0�=2

��n� �� 1�
L���n �x�L

���
n �x0� � ��x� x0�:

(21)

We will expand the phase space density f�k;q; �� in the
complete set 
nlm. However, it is unnecessary to include
all �nlm� in this expansion. Prior to kinetic decoupling the
Fokker-Planck operator LFP rapidly damps all terms except

000 and those terms that are induced by the right-hand
side of (16). The rotational symmetry of this equation
implies that only the m � 0 terms are induced, where the
polar axis for the spherical harmonics is given by k̂ � k=k
[12]. Thus we may write

 

f�k;q; �� �
e�y

�2�a2m�TL�
3=2

�
X1
n;l�0

��i�l�2l� 1�Snl�y�Pl�k̂ 
 n�fnl�k; ��;

Snl � yl=2L�l�1=2�
n �y�: (22)

Before writing the perturbation equations, let us exam-
ine the unperturbed solution, f � f0�q; ���3�k�. The ex-
ponential factors differ in (10) and (22), implying that the
Laguerre expansion includes more than one term. Indeed,
one finds

 f � f0�q; �� ) fnl � �l0

�
1�

T�
TL

�
n
: (23)

Prior to kinetic decoupling, when collisions maintain T� �
TL, f00 � 1 and the other coefficients vanish. After kinetic
decoupling, fn0 ! 1 for all n. The Laguerre expansion
must be carried to high order in order to convert e�y to
exp��q2=2	2

q�. Similarly, we should expect the perturbed
phase space density also to require many terms in n after
kinetic decoupling.

Substituting (22) into (16) and using orthonormality and
several recurrence relations for the generalized Laguerre
polynomials, we obtain a system of coupled ordinary dif-
ferential equations for the evolution of the perturbed phase
space density,

 

_fnl� �2n� l���a�R�fnl� 2nRfn�1;l� k

��������
2TL
m�

s ��
l� 1

2l� 1

���
n� l�

3

2

�
fn;l�1� nfn�1;l�1

�
�

l
2l� 1

�fn�1;l�1� fn;l�1�

�

� �l0	3 _�An� 2� _���aT1=T��Bn
 � �l1
k
3

���������
2m�

T0

s
��� �auL�An; (24)
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where

 R �
d
d�

ln�aT1=2
L �; An��� �

�
1�

T�
TL

�
n
;

Bn��� � n
�T�
TL

��
1�

T�
TL

�
n�1

:

(25)

The density perturbation is ��k; �� � f00 for k � 0.
The source terms for Eq. (24) are provided by the

relativistic plasma. Their time-dependence changes during
lepton pair annihilation and neutrino decoupling. For rea-
sonable parameters, neutralino kinetic decoupling occurs
after muon annihilation but before electron annihilation
and neutrino decoupling. During this era, the isentropic
mode of perturbations has time-dependence given by the
relativistic perfect fluid transfer functions
 

� � � � �
3

�3 �sin�� � cos��; (26a)

HuL � �
3

2�

��
1�

2

�2

�
sin��

2

�
cos�

�
; (26b)

T1

TL
�
�L
3
� �

�2

2
��HuL; (26c)

where H � _a=a, � � k�=
���
3
p

, and the transfer functions
are normalized so that � � �1 for � � 0 [13]. The actual
perturbations are obtained by multiplying the transfer
functions with the scalar field �0�k� that gives the spatial
dependence of the initial (inflationary) curvature fluctua-
tions. As the inflationary curvature perturbations are well
known (a Gaussian random field with nearly scale-
invariant spectral density P / k�3), here we work with
transfer functions.

Initial conditions for Eq. (24) are obtained by examining
the solutions for s � 1

2�a� � ��=�d�
�4 � 1. Isentropic

initial conditions have f00 � � � �L. The only signifi-
cantly perturbed components of f for the strongly coupled
plasma are the thermal equilibrium values

 f00 � �L; f01 �
k
3

���������
2m�

TL

s
uL;

f10 � �
T1

TL
� �

1

3
�L:

(27)

All other components fnl are kept small by rapid WIMP-
lepton collisions. Eq. (24) with n � 1400 and l � 15 was
integrated to � � 72�d using the standard explicit ordinary
differential equation solver DVERK. Convergence testing
showed that higher-order terms in the Laguerre expansion
were negligible.

Figure 1 shows the results for the density transfer func-
tion expressed using the gauge-invariant variable �, de-
fined as the CDM number density perturbation in a
synchronous gauge for which the mean CDM velocity
vanishes in the coordinate frame (for a nonrelativistic
particle, � equals Bardeen’s variable �m). This variable,

which is used by CMBFAST [14], is related to the confor-
mal Newtonian gauge variables by

 � � �� 3Hu: (28)

For wavelengths longer than the radiation acoustic length
�=

���
3
p

, � � �L � 3HuL �
1
2 �k��

2. For wavelengths
shorter than the radiation acoustic length at � but longer
than the acoustic length at �d (i.e., 10��1 < k< ��1

d ), the
acoustic oscillations of the gravitational potential average
out leading to a suppression of growth induced in the
CDM. For these intermediate wavelengths the transfer
function is a logarithmic function of wave number. If the
dark matter were completely noninteracting, this logarithm
would continue to arbitrarily high wave numbers, as illus-
trated by the monotonically rising curve in Fig. 1.

Because WIMP dark matter was collisionally coupled to
the relativistic lepton plasma at early times, the CDM
transfer function in Fig. 1 shows remnant damped acoustic
oscillations at short wavelengths. For comparison a
Gaussian transfer function is shown, with no oscillations.
In this model, the effects of kinetic decoupling are de-
scribed by multiplying the transfer function for the
completely noninteracting case by exp��k2=2	2

k�. As
we will see, a simple model of free streaming predicts
that �	k�d��1 � 	��34�Td=m�


1=2	ln��=�d�
 during the
radiation-dominated era. For � � 72�d and
�2Td=m��

1=2 � 0:01 this model would predict 	k�d � 30
whereas the curve shown in Fig. 1 has 	k�d � 18. Free

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5  0  0.5  1  1.5  2

lo
g 1

0
ν

log10 kτd

(2Td /mχ)1/2 = 0, 0.01, 0.02(2Td /mχ)1/2 = 0, 0.01, 0.02

FIG. 1 (color online). CDM density transfer function versus
wave number at conformal time � � 72�d. The three oscillating
curves assume that kinetic decoupling occurred at �d for three
different values of the radiation temperature Td relative to the
CDM particle mass m�; the amplitude of the oscillations de-
creases with increasing Td=m�. The upper, monotonic curve
assumes that the CDM is always collisionless and was never
coupled to the radiation. The other nonoscillating curve shows a
crude model of kinetic decoupling described by a Gaussian
cutoff.
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streaming does not give a good approximation to the actual
transfer function.

The exact transfer functions shown in Fig. 1 decrease
less rapidly with wave number than the approximate trans-
fer functions of Ref. [9] which were computed using a fluid
approximation followed by free streaming. The following
section reviews the free-streaming solution and then devel-
ops a more accurate approximation based on moments of
the exact Fokker-Planck equation.

III. APPROXIMATE DESCRIPTIONS OF
PERTURBATION EVOLUTION THROUGH

KINETIC DECOUPLING

In this section we consider two different approximations
which provide analytical insight to the numerical solution
of the Fokker-Planck equation. The CDM behaves at early
times like a fluid and at late times like a free-streaming
collisionless gas, and in these limits we can develop useful
analytical approximations.

A. Free-streaming model

For �� �d, the terms proportional to �a may be
dropped in (16). The differential equation may then be
integrated to give f�k;q; �� in terms of the initial value
f�k;q; ��� for any �� � �d. Integrating over momenta
gives the conformal Newtonian gauge density perturbation,
 

��k; �� �
Z
d3qe�i
k
qf�k;q; ���

�
Z �

��
d�0e�M

0=2

�
�3�M0� _��k; �0�

� k2�0 ln
�
�
�0

�
��k; �0�

�
; (29)

where we have assumed evolution in the radiation-
dominated era with

 
 �
��
a�m�

ln
�
�
��

�
; M0 �

T0�
m�
�k�0�2ln2

�
�
�0

�
: (30)

For large spatial frequencies, k�� 1, the gravitational
potentials—which are dominated by relativistic parti-
cles—oscillate rapidly leading to a small net integral con-
tribution; ignoring this, ��k; �� is a momentum-space
Fourier transform of the distribution function at the initial
time ��.

Obtaining the exact solution still requires numerical
integration of (16) through kinetic decoupling, or equiv-
alently, integrating the system of Eq. (24). However, we
can get an idea of the effects of free-streaming by making
an instantaneous decoupling approximation, treating the
CDM as a fluid with a Maxwell-Boltzmann velocity dis-
tribution for � < �� and by (29) for � > ��, as was done in
Ref. [9]. Then, whether or not the CDM is strongly coupled
to the radiation, the perturbed distribution function is fully
specified by the perturbations of density, temperature, and

velocity v � �iku,

 �f � f0�q; ��
�
��
�
�

1

2

�
q2

	2
q
� 3

��T�
T�
�
iuk 
 q
aT�

�
: (31)

Carrying out the Fourier transform in (29) now yields

 ���� � e�M=2

��
��

M
2

�T�
T�

�
��

� k2��u���� ln
�
�
��

��
;

(32)

where wave number arguments have been dropped for
brevity, and

 M �
k2

k2
f

ln2

�
�
��

�
; k�2

f �
�2
�T�����

m�
� �

�
3

4

�
�2
dTd
m�

:

(33)

If �� � �d, then �T�=T� �
1
3�; if �� � �d and the fluid is

approximated as being adiabatic, �T�=T� �
2
3�.

Equation (32) corrects errors in the definition of kf of
Ref. [9] and adds the term proportional to �T�=T� to their
Eq. (20). This new term arises from the temperature per-
turbation of the CDM fluid, which modifies the distribution
function and, through free-streaming, modifies the density
for � > ��. In particular, if the CDM perturbations are
approximately adiabatic, the temperature perturbation
causes the transfer function to decrease more rapidly
with k.

The free-streaming solution predicts a Gaussian cutoff
of the transfer function, � / exp��k2=2	2

k�, with cutoff
distance equal to the free-streaming distance,

 	�1
k ��� �

Z �

��

�������
T�
m�

s
d� �

�
�
�
3

4

�
Td
m�

�
1=2 Z �

��

d�
a=ad

: (34)

During the radiation-dominated era, when a / �, the free-
streaming length grows logarithmically, but it saturates in
the matter-dominated era when a / �2. At first glance,
Fig. 1 appears to qualitatively support the free-streaming
model of a Gaussian cutoff. However, the free-streaming
model predicts no damping for a super-heavy particle with
Td=m� ! 0, while Fig. 1 shows that even in this case there
is damping. This damping arises from friction between the
lepton and CDM gases during decoupling (Silk damping).
This friction can be accounted for by treating the CDM as
an imperfect fluid.

B. Imperfect fluid model

To better describe an extended period of decoupling
while allowing for small deviations from a Maxwell-
Boltzmann distribution, we consider the evolution of the
lowest-order moments of the distribution function. We
work to first order in perturbed quantities and normalize
the unperturbed distribution function to

R
f0d

3q � 1. The
perturbations for k � 0 then define the lowest-order mo-
ments
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Z
fd3q � �;

Z
fvjd

3q � �ikju;

Z
fvivjd3q � �c2

��� 	��ij �
3

2

�
kikj �

1

3
k2�ij

�
�;

(35)

where the density perturbation �, velocity potential u,
shear stress potential �, and entropy perturbation 	 are
related to our expansion coefficients by

 � � f00; ku �

���������
9TL
2m�

s
f01; k2� �

5TL
m�

f02;

	 �
�
TL
m�
� c2

�

�
f00 �

TL
m�

f10:

(36)

The effective sound speed squared of the CDM fluid is

 c2
� �

T�
m�

�
1�

1

3

d lnT�
d lna

�
; (37)

which differs from the thermal speed squared TL=m�

appearing in (24). This difference arises because the
Laguerre expansion uses eigenfunctions of the Fokker-
Planck operator which depends on the relativistic lepton
temperature TL rather than the WIMP temperature T�.
After kinetic decoupling, T�=TL drops and the higher-
order expansion coefficients fnl will increase to compen-
sate for this difference, as we already found happening
with the unperturbed distribution function in (23).

The variables in (36) describe fluctuations of an imper-
fect fluid. The reader may wonder how a single component
fluid can have an entropy perturbation. A weakly imperfect
fluid is described by an equation of state p � p��; S�
where S is the entropy which may vary in space and
time. However, the WIMP gas is more complicated be-
cause it becomes fully collisionless after kinetic decou-
pling; it may be regarded as a superposition of many
noninteracting ideal gases.

The time evolution of the imperfect fluid variables fol-
lows from Eq. (24) [15]:

 

_�� k2u � 3 _�; (38a)

_u�H u � �� c2
��� 	� k

2�� �a�u� uL�; (38b)

_	� 2H	�
�
5

3

TL
m�
� c2

�

�
k2u�

5

4

�
2TL
m�

�
3=2
kf11 � �

1

a2

d
d�
�a2c2

���� 3 _�
�
5

3

T�
m�
� c2

�

�

� 2�a
�
	�

T1

m�
�

�
TL
m�
� c2

�

�
�
�
; (38c)

_�� 2H� �
4

3

TL
m�

u�
�
2TL
m�

�
3=2
�
21

4

f03

k
�
f11

k

�
� 2�a�: (38d)

These equations are similar to those of an imperfect gas
coupled to the lepton fluid. However, they differ signifi-
cantly from the Navier-Stokes equations assumed in
Ref. [4]. In place of a bulk viscosity term 
k2u and a shear
viscosity term 4

3�k
2u where 
 and � are the bulk and shear

viscosity coefficients (divided by the mass density), (38b)
has an entropy term 	 and a shear stress term�k2� where
	 and � are not proportional to u. The usual Chapman-
Enskog expansion does not apply to our Fokker-Planck
equation when the collision mean-free path becomes large.
Moreover, because of the f11 and f03 terms, Eqs. (38) do
not form a closed system. Nonetheless, these equations are
useful for providing insight and they will guide us to a very
good approximation to the full numerical solution of the
Fokker-Planck equation.

Prior to kinetic decoupling, when the damping terms
proportional to �a are large, the solutions to (38) have � �
�L, u � uL, 	 � � � 0, in agreement with (27). Entropy
and shear stress perturbations develop during decoupling
as the CDM gas becomes collisionless. These in turn
modify and damp the acoustic oscillations of the gas.

It is instructive to solve the imperfect fluid equations
with several different approximations, in order to deduce
which physical effects are responsible for the features of
the transfer functions shown in Fig. 1. The most extreme
approximation is to completely neglect the CDM tempera-
ture and coupling to other particles, so as to describe a
perfect cold, collisionless gas. This approximation consists
of setting c2

� � 	 � � � � � 0 retaining only the gravi-
tational interaction between the CDM and the relativistic
plasma. In this case the exact solution prior to neutrino
decoupling for isentropic initial conditions is
 

�
9
�

cos�� � sin�

�2 � Ci��� � ln��
1

�2 � C�
1

2
;

Hu �
3

�3 �sin�� ��; (39)

where � � k�=
���
3
p

, C � 0:5772 
 
 
 is the Euler-
Mascharoni constant, and Ci��� is the cosine integral.
This solution is shown by the monotonically increasing
curve in Fig. 1. We see that once the wavelength becomes
smaller than the relativistic acoustic horizon and the po-
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tentials oscillate faster than the CDM can respond, the
CDM density perturbation growth slows to logarithmic in
time. This suppression is responsible for the turnover of the
low-redshift CDM power spectrum from P�k� / k at long
wavelengths to P�k� / k�3ln2�k� at short wavelengths.
However, the approximation of a cold, collisionless fluid
includes none of the physical effects of kinetic decoupling.

The next simplest approximation is to treat the CDM as
being cold (c2

� � 	 � � � 0) but to include the friction
term ��a�u� uL� in the velocity equation. This approxi-
mation is exact in the limit Td=m� ! 0 hence it reproduces
the case Td=m� � 0 in Fig. 1. We can find the solution in
the limit �� �d by first noting that the general solution of
the second-order system _�� k2u � 3 _�, _u�Hu � � is
given by
 

�
9
�

cos�� � sin�

�2 � Ci��� � f1

�
ln��

1

�2

�
� f2;

Hu �
3

�3 �sin�� f1��; (40)

where f1 and f2 are independent of � but may depend on k.
Including the damping terms in (38b) promotes f1 and f2

to functions f1�k; �� and f2�k; �� obeying the differential
equations
 

_f1 � �af1 � �
�
cos��

1

2
� sin�

�
; (41a)

_f2 � _f1 ln� � 0: (41b)

In the strongly coupled limit �� �d the solution must
match Eqs. (26), which gives

 f1�k; �� ! cos��
1

2
� sin�;

f2�k; �� ! Ci��� �
�
cos��

1

2
� sin�

�
ln��

1

2
cos�:

(42)

The exact solution of (41) satisfying these initial condi-
tions is given by a pair of quadratures,

 f1�k; �� �
Z �

0
e�s�s

0�=2

�
cos�0 �

1

2
�0 sin�0

�
�0a0d�0;

f2�k; �� �
Z �

0
	f1�k; �0� � 1


d�0

�0
� �1� f1� ln�� C�

1

2
;

(43)

where s � 1
2�a� � ��=�d�

�4, � � k�=
���
3
p

, and primed
quantities are evaluated at �0.

The late-time solution is dominated by f1, which for
�� �d becomes the following function of wave number,
 

f1�x� �Re
Z
e�z�r�

�1� xre�i2�=5�

r5 � 1
dz;

x �
�
k�d
2
���
3
p

�
4=5
:

(44)

The complex function z�r� � xe�i2�=5�12 r
�4 � 2r�where r

itself is complex but cannot be used as the integration
variable because of the essential singularity at r � 0. The
contour used to evaluate f1 is shown in Fig. 2. Using the
steepest descent approximation to evaluate the contribu-
tions along the branch cut gives
 

f1�x� �
�
4�x

5

�
1=2

exp
�
�

5

2
x cos

�
2�
5

��

�

�
cos

�
’�

�
5

�
� x cos

�
’�

3�
5

��
� fres�x�;

’ �
5x
2

sin
�
2�
5

�
; (45)

where fres�x� is a correction to the steepest descent ap-
proximation, evaluated numerically and tabulated for in-
terpolation in Table I. For x� 1, 1� f1 goes to zero faster
than x4, with f1�0:2� � 0:9990.

Numerical integration yields an approximate fit to f2�x�
for x� 1 similar to (45):

 f2�x� � �3:45x0:75 exp
�
�

5

2
x cos

�
2�
5

��
�x sin’� cos’�:

(46)

Figure 3 shows the results for f1�x� and f2�x�. Although f2

has larger amplitude, f1 dominates the contribution to the
CDM transfer function for �� �d.

This calculation shows that, in the limit of large WIMP
mass m� � Td, the free-streaming suppression of the
transfer function is not Gaussian but instead is exponential
in x / k4=5.

FIG. 2. Contour used to evaluate the integral in Eq. (44). The
quarter-circle is actually taken to have a much larger radius than
shown so that its contributions to the contour integral vanish.
The desired path for the integral is along the lower left curve that
joins the quarter-circle.
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Allowing a nonzero Td=m� introduces a Gaussian sup-
pression, as follows. Including the c2

�� term in (38b) adds
the term �k2c2

���=9 to the right-hand side of (41a). With
the leading late-time behavior �=9 � f1 ln�, this gives an
approximate Gaussian suppression,

 ��k; �� � exp
�
�

1

2

k2

k2
s

�
�0�k; ��; k�1

s �
Z �

0
c���0�d�0;

(47)

where �0�k; �� is the solution for Td=m� � 0 given by (40)
and (43). While (47) is similar to (32) and (33), the
Gaussian cutoff distance differs from the free-streaming
distance (34) by a factor

��������
5=3

p
.

Eqs. (40) and (47) assume that the CDM behaves like a
perfect fluid [16]. By integrating (38) numerically with the
simplification f11 � f03 � 0, we can include effects of
nonzero shear stress � and entropy perturbation 	. The
results are shown in Fig. 4 in comparison with the exact
solution from Fig. 1. While the effects of nonzero tem-

perature, shear stress, and entropy perturbations qualita-
tively reproduce the suppression of the transfer function,
none of the fluid approximations gives a good match to the
exact solution of the Fokker-Planck equation. However, an
excellent fit (with maximum error about 1% of the oscil-
lation amplitude) is given by a modification of (47),
 

��k; �� � exp
�
�

1

2

k2

k2
fs

�
�0�k; ��;

k�1
fs �

���������
6Td
5m�

s Z �

��

d�
a=ad

:
(48)

This approximation, with �� � 1:05�d, is shown by the
plus signs in Fig. 4. The coefficient in front of the integral
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FIG. 4 (color online). CDM transfer function and several ap-
proximations plotted versus wave number at conformal time � �
72�d. In descending amplitude of the second peak, the curves are
(1) fluid approximation with � � 	 � 0, (2) exact solution of
the Fokker-Planck equation, (3) imperfect fluid approximation
with shear stress but no entropy perturbation; (4) imperfect fluid
approximation with both shear stress and entropy perturbations.
The plus signs superimposed on the exact solution curve are the
solution with Td=m� � 0, multiplied by a Gaussian damping
factor as described in the text.
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FIG. 3 (color online). The auxiliary functions f1�x� and f2�x�
(the curve with the higher amplitude of oscillation) appearing in
Eq. (40), where �� �d and x � �k�d=2

���
3
p
�4=5.

TABLE I. Residuals from the steepest descent approximation to f1�x�, defined in Eqs. (44) and
(45).

x fres x fres x fres x fres x fres

0.0 1.0000 1.0 �0:1637 2.0 0.0252 3.0 0.0099 4.0 �0:0101
0.1 0.5744 1.1 �0:1562 2.1 0.0345 3.1 0.0039 4.1 �0:0082
0.2 0.3791 1.2 �0:1409 2.2 0.0403 3.2 �0:0013 4.2 �0:0062
0.3 0.2275 1.3 �0:1202 2.3 0.0427 3.3 �0:0056 4.3 �0:0042
0.4 0.1063 1.4 �0:0965 2.4 0.0424 3.4 �0:0090 4.4 �0:0022
0.5 0.0109 1.5 �0:0716 2.5 0.0397 3.5 �0:0113 4.5 �0:0004
0.6 �0:0610 1.6 �0:0471 2.6 0.0352 3.6 �0:0126 4.6 0.0011
0.7 �0:1196 1.7 �0:0244 2.7 0.0295 3.7 �0:0130 4.7 0.0023
0.8 �0:1443 1.8 �0:0045 2.8 0.0231 3.8 �0:0126 4.8 0.0033
0.9 �0:1606 1.9 0.0122 2.9 0.0164 3.9 �0:0116 4.9 0.0039
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defining k�1
fs was found numerically; the value 6

5 � 1:200 is
numerically correct to 0.1% or better and clearly differs
from the coefficient ��34� � 1:2254 
 
 
 appearing in the
free-streaming prediction of (34) as well as the perfect
fluid prediction 5

3 ��43� � 2:0423 
 
 
 of (47).
The modified form of thermal damping suggests that on

small scales the WIMP gas might be described as a thermal
gas with ratio of specific heats 1:2=��43� � 0:979 
 
 
 in-
stead of 5

3 . However, numerical tests showed that no perfect
gas equation of state can reproduce the exact solution of
the Fokker-Planck equation as well as (48). We will there-
fore use (48) to calculate the effects of free-streaming
damping even though it is based on a numerical instead
of an analytic solution. Note that (48) is valid through pair
annihilation and radiation-matter equality because the free-

streaming distance is proportional to
R ���������������

T�=m�

q
d� and

T� / �a=ad��2 at all times after WIMP decoupling.
The physics of WIMP decoupling is similar but not

identical to the much later decoupling of atoms at a tem-
perature of 0.25 eV. In both cases the decoupled particles
bear the imprint of acoustic oscillations while they were
coupled to a relativistic gas. In both cases the acoustic
oscillations are damped by friction during decoupling (Silk
damping), although the damping is exponential in k4=5 for
WIMPs as opposed to k2 for atoms. In both cases short-
wavelength fluctuations are damped further by thermal
motions after decoupling. However, the last stage differs
for the two gases because the atomic gas remains colli-
sional (hence damping takes place for wavelengths shorter
than the Jeans length) while the CDM gas is collisionless
and the relevant scale is the free-streaming length. As a
result the CDM gas develops shear stress and entropy
perturbations in (38b) that are not present for a collisional
gas. Nonetheless these perturbations lead to free-streaming
damping that is qualitatively similar to the Jeans damping
of a collisional gas.

The physics of perturbation evolution can be simpler to
interpret in position space than in Fourier space [17].
Figure 5 shows the one-dimensional Green’s function de-
fined by

 ��1��x; �� �
1

2�

Z 1
�1

eik
x��k; ��dk: (49)

In real space the Green’s function is essentially a wave
packet of sound that started at x � 0 and propagated until
kinetic decoupling after which time it froze in place. The
oscillations in k-space arise solely because the wave packet
in real space has a rapid change in slope at its trailing edge.
In the absence of WIMP-lepton coupling, ��1� would have a
delta function singularity at x � 0 and a compensating
underdense tail at x > 0 due to the gravitational perturba-
tion caused by the outgoing acoustic wave in the relativis-
tic plasma [17].

Until now we have assumed that the photon-lepton
plasma is a perfect relativistic gas with p � 1

3�. This
approximation breaks down after neutrino decoupling
and during electron-positron pair annihilation. The effects
of neutrino free-streaming are small and are already in-
cluded in numerical codes such as CMBFAST and
COSMICS but pair annihilation is not. As we show next,
pair annihilation also results in a minor modification of the
CDM transfer function on small scales.

IV. EVOLUTION THROUGH PAIR ANNIHILATION

During electron-positron annihilation the equation of
state changes slightly, modifying the evolution of pertur-
bations. Neglecting the small amount of neutrino heating
that takes place during pair annihilation, after CDM kinetic
decoupling the energy density and pressure of the photons,
three flavors of neutrinos, and electron pairs is

 �� � 3p� �
�2T4

�

15
; �� � 3p� �

7�2T4
�0

40a4 ;

�� �
2T4

�

�2 R���; p� �
2T4

�

3�2 P���;

(50)

where � � me=T� and T�0 � aT� � constant. The pair
density and pressure are given in terms of the Fermi-
Dirac integrals
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FIG. 5 (color online). Real space CDM Green’s function
(Fourier transform of the transfer function) at conformal time
� � 107�d, approximately at the end of the radiation-dominated
era. An initial planar perturbation sends an acoustic wave
through the relativistic plasma. This wave travels through the
CDM until kinetic decoupling ends; thereafter the wave is frozen
in place but grows logarithmically in amplitude. The three
curves show the effect of diffusion with increasing CDM tem-
perature.
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 R��� �
Z 1

0

x2
����������������
x2 � �2

p
dx

e
����������
x2��2
p

� 1
;

P��� �
Z 1

0

x4dx����������������
x2 � �2

p
�e

����������
x2��2
p

� 1�
:

(51)

Energy conservation for the photon-pair plasma gives

 

d ln�
d lna

�
A
B
; (52)

where

 A � 1�
30R

�4 �
15

2�4 �P� R�;

B � 1�
30R

�4 �
15

2�4

dR
d lny

:
(53)

The photon-pair plasma has equation of state parameter

 w �
1

3
�

�10=�4��P� R�

1� �30=�4�R� �21=8��T�=T��4
(54)

and sound speed squared

 3c2
w � 1�

A�A� B�

B	A� �21=8��T�=T��
4

: (55)

These are plotted in Fig. 6. Pair annihilation makes a
10% dip in the equation of state.

The relation between expansion factor and conformal
time follows from integrating the Friedmann equation

 _a 2 �
4�3G�aT��4

45
geff ; (56)

where

 geff �
30

�2

��� � �� � ��
T4
�

�
� 2�

21

4

�
T�
T�

�
4
�

60

�4 R:

(57)

Neglecting the small neutrino shear stress arising from
free-streaming after neutrino decoupling at T � 2 MeV,
the conformal Newtonian gauge gravitational potentials
� � � obey the evolution equation

 

��� 3�1� c2
w�H _�� 3�c2

w � w�H
2�� k2c2

w� � 0:

(58)

Long after pair annihilation is completed, w � c2
w �

1
3 and

the solution is

 ��k; �� � �
3C

�3 	sin��� �� � � cos��� ��
; (59)

where C (not to be confused with the collisional coupling
constant of Eq. (3)) and � are independent of � but may
depend on k. Before pair annihilation, C � 1 and � � 0.
During pair annihilation, C and � change but after pair
annihilation they become independent of time.

We define a characteristic conformal time for pair anni-
hilation, �a, by scaling from the decoupling time:

 �a � �d

�
Td

0:511 MeV

�
: (60)

Pair annihilation imprints features on ��k; �� at wave
numbers k� ��1

a . After pair annihilation is completed,
we expect C and � in (59) to depend only on k�a.
Numerical integration of (58) yields the results shown in
Fig. 7. Pair annihilation leads to a small change in the
amplitude C of gravo-acoustic oscillations and a character-
istic phase shift � of order �a � k�a=

���
3
p

. Wavelengths

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

-5 -4 -3 -2 -1  0  1  2

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

log10 θa

C α/θa
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much longer than the acoustic horizon length (� �
k�=

���
3
p
� 1) are unmodified. Waves that enter the

Hubble length when the effective sound speed is reduced
by pair annihilation (Fig. 6) are amplified because with
decreasing sound speed, pressure forces are less able to
prevent gravitational growth. The diminished sound speed
also changes the distance traveled by acoustic waves,
leading to a phase shift for wavelengths smaller than the
acoustic horizon distance. The propagation of the acoustic
horizon is evident in the propagating steps in �=�a in
Fig. 7. Although these steps would appear to prevent �
from relaxing to (59) with time-independent C and �, for
�� �a, �� j�aj and one may set � � 0 with an error in
� of O��a=��. Wavelengths much longer than the Hubble
length during pair annihilation are essentially unmodified.

Still shorter waves are described by the WKB solution of
(58),

 ��k; �� /
�
�� p
cw

�
1=2

cos
Z �

0
kc0wd�0 for k�� 1:

(61)

The dip in the sound speed during pair annihilation leads to
a phase shift � � k

R
�
0�c
0
w � 1=

���
3
p
�d�0 � �0:405�a for

�a � 1 and �� �a. Pair annihilation effectively resets
the starting time for acoustic oscillations from � � 0 to
� � 0:405�a.

Similarly, the change in energy density and pressure
through pair annihilation leads to a change in amplitude.
In the WKB approximation, one finds that for k�a � 1 the
amplitude C of ��k; �� changes through pair annihilation
by a factor

 C�k� !
_a��1�

_a��2�
�

�
T�
T�

�
2

�2

�
geff��1�

geff��2�

�
1=2
� 0:911; (62)

where �1 � �a � �2. The WKB results for ��k� and C�k�
match the numerical results shown in Fig. 7.

The change in the gravitational potential caused by pair
annihilation induces changes in the CDM growth. The late-
time solution of (38a) and (38b) with T=m� � 0 is
 

�0

9C
�

cos~�� � sin~�

�2 � cos�Ci��� � sin�Si���

� f3

�
ln��

1

�2

�
� f4;

Hu0 �
3C

�3 	sin~�� f3�
;

(63)

where ~� � �� � and the subscript 0 indicates T=m� � 0.
After pair annihilation the transfer functions f3 and f4

depend on k but not on �.
Kinetic decoupling introduces a length scale �d. Pair

annihilation introduces a second scale, �a. When �a � �d
these two physical effects can be separated. Thus we con-
sider first the case of purely collisionless CDM, i.e., � � 0
in (38), in which case there is no kinetic decoupling. Now

there is only one timescale in the problem, �a, and we
denote the corresponding transfer functions in (63) by fpa

3
and fpa

4 . The results obtained by numerical integration are
shown in Fig. 8. For k�a � 1, fpa

3 � 1� 3:00�k�a�
4

(where the coefficient 3.00 was found by numerical inte-
gration) and fpa

4 � C� 1
2 . For k�a � 1, the WKB approxi-

mation yields

 fpa
3 � 1� 0:1067�k�a�

�2;

fpa
4 ! �

�
2

sin��
�

1

C�k�
� 1

�
ln�9:82k�a�;

(64)

where the coefficients 0.1067 and 9.82 were determined by
numerical integration. The errors made by assuming (64)
are less than 1% for k�a > 100.

For WIMP dark matter, the effects of kinetic decoupling
and pair annihilation combine to give transfer functions
fkd�pa

3 and fkd�pa
4 in (63). For T=m� � 0 and �d � �a �

� these are
 

fkd�pa
3 �k� � f1�k�f

pa
3 �k�;

fkd�pa
4 �k� � fpa

4 �k� �
1

C�k�

�
f2�k� � C�

1

2

�
� 	f1�k� � 1


�

��
1

C�k�
� 1

�
ln�1:589k�a� � lnC�k�

�
: (65)

The coefficient 1.589 was found numerically but otherwise
fkd�pa

3 and fkd�pa
4 were determined analytically. The gen-

eral transfer function is given in terms of separate transfer
functions for kinetic decoupling �f1; f2� and pair annihila-
tion �fpa

3 ; f
pa
4 �.

 0.95

 1
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 1.1

 1.15
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FIG. 8 (color online). Amplitude functions fpa
3 (solid curve)

and fpa
4 (dashed curve) for the gravitational CDM density

perturbation � of Eq. (63), for �� �a, plotted versus wave
number. For k�a � 1, fpa

3 � 1 and fpa
4 � C� 1

2 � 0:0772 
 
 
 .
This figure assumes that the CDM is always collisionless and
was never coupled to the radiation. The results show there is a
7% enhancement of growth for waves that enter the horizon
during pair annihilation.
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Pair annihilation modifies the CDM velocity and density
transfer functions at k� ��1

a due to the peak in fpa
3 �k�.

There is also a small modification of the density for k�a �
1. In the limit k�� k�a � 1,

 

�0

9
! f1�k�

�
ln�� 0:08909 ln

�
7:416�a

�

��
� f2�k�: (66)

Comparing this with (40), we see that the term proportional
to 1� C�1� � 0:08909 is induced by pair annihilation.
This effect arises from the reduction of the gravitational
potential by a factor C�1� � _a��1�= _a��2� at short wave-
lengths after pair annihilation. However, the correction to �
is always less than 9%.

The full density transfer function for nonzero CDM
temperature during the radiation-dominated era follows
from (48), (63), and (65). Numerical tables of the transfer
functions f1�k�d�, f2�k�d�, C�k�a�, ��k�a�, f

pa
4 �k�a�, and

fpa
4 �k�a� are available from the author.

V. EVOLUTION THROUGH RADIATION-MATTER
EQUALITY

Following kinetic decoupling and pair annihilation there
is one additional major life event for CDM density fluctu-
ations before they collapse to form nonlinear structures:
the transition to a matter-dominated universe occurring at
1� zeq � a�1

eq � 3200. The constituents include photons,
neutrinos, baryons, and CDM. The background equation of
state is modified by the presence of nonrelativistic baryons
and CDM,

 3w �
1

1� y
; y �

�b � �c
�geff=2���

�
a
aeq

: (67)

Assuming that dark energy and spatial curvature can be
neglected during the times of interest, the solution of the
Friedmann equation for �� �a is

 

������������
1� y

p
� 1�

�
2�e

; �e �

��������������
aeq

�mH2
0

s
: (68)

Here �m is the present-day density parameter for �m �
�b � �c.

Before recombination, Thomson scattering couples the
photons and baryons so that they behave as a single fluid
with sound speed given by

 3c2
�b �

�
1�

3

4

�b
��

�
�1
: (69)

We make two approximations which enable us to reduce
the dynamics to a fourth-order system in time, for which
we obtain limiting analytic solutions: Photons and baryons
behave like a single perfect fluid and neutrino shear stress
is neglected. (We also assume a flat background, K � 0,
but this is always a good approximation during the times of
interest.) These approximations introduce small errors in

the results which may be eliminated by integrating the full
system of equations for photons, neutrinos, baryons, and
CDM with CMBFAST [14] or equivalent starting after pair
annihilation from initial conditions obtained in the preced-
ing section. However, the simplified dynamics lead to
analytic results making it easy to distinguish the various
physical effects in the transfer functions.

With these assumptions and the further restrictions ��
�a and Td=m� � 1, the perturbed Einstein equations may
be combined to yield an equation of motion for the gravi-
tational potential � � �,
 

��� 3�1� c2
�b�H

_�� 3�c2
�b � w�H

2�� k2c2
�b�

� �Acc2
�b

�
�c �

�b��
�c��

��

�
; (70)

where �c and �� are, respectively, the CDM and neutrino
density perturbation in conformal Newtonian gauge, and
we have defined

 Ac � 4�Ga2�c �
3

2

�1� fb�y
1� y

H 2; (71)

where fb � �b=�m. Equation (70) is a modified form of
(58). The CDM fluid Eqs. (38) remain valid with � � �c,
u � uc.

The evolution of metric perturbations is coupled to the
evolution of both CDM and neutrino perturbations. To
simplify the presentation we avoid solving the collisionless
Boltzmann equation for neutrinos. Instead we make an
additional approximation for the neutrino dynamics: either
the neutrino fluid evolves like the photon-baryon fluid, or
neutrino perturbations are damped by Hubble expansion on
subhorizon scales in a manner consistent with their evolu-
tion on superhorizon scales. In the first case we set �� �
�� on all scales, which is equivalent to setting �� � 0 in
Eq. (70) and replacing c�b with crb defined by

 3c2
rb �

�
1�

3

4

�b
�geff=2���

�
�1
�

�
1�

3

4
fby

�
�1
: (72)

In the second case, we note that on scales much larger than
the Hubble length, for isentropic (curvature) perturbations
all species have the same number density perturbation,
�c � �� � ��. The evolution of isentropic perturbations
on large scales follows from Ref. [18]:

 �� � �
�

2

1� w

�
���H�1 _��: (73)

On scales much smaller than the Hubble (or neutrino free-
streaming) length, during the radiation-dominated era ��
undergoes damped oscillations while the amplitude of the
photon-baryon oscillations is constant. This qualitative
behavior is correctly reproduced if one applies (73) to the
neutrinos at all times while leaving (70) unchanged.

Thus, our two approximations for neutrino evolution
correspond to two different choices for the sound speed
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of the photon-baryon gas: either the sound speed is set to
crb with �� � 0 or the sound speed is c�b with �� given by
(73). Either way, when the CDM dynamics are added, the
evolution reduces to a fourth-order system in time. The
difference between the two treatments gives a measure of
the importance of massless neutrinos for CDM evolution.

Setting �� � 0 and writing the sound speed as cb which
may be set to either c�b or crb, differentiating (70) and
using the CDM continuity equation gives

 @3
t�� 5H ���

3

2
H 2 _�	3� 5w� 3c2

b�1� w�


� 3Acc2
b

_�� k2c2
b�

_��H��

� Ack
2c2
buc:

(74)

Differentiating this again and using the velocity equation
_uc �Huc � � gives

 

@4
t�� �8� 3c2

b�H@3
t��

�
17� 15�w� c2

b� �
6wc2

b

c2
rb

�
H 2 ���

9

2

�
�2� 3c2

b��1� 3w� �
4w
3

�
1�

c2
b

c2
rb

��
H 3 _�

� k2c2
b

�
��� 3H _��

�
2

c2
rb

� 3
�
wH 2�

�
� 0: (75)

For wavelengths longer than the Hubble length this equa-
tion is correct if cb � crb; for wavelengths much shorter
than the Hubble length it is approximately correct if cb �
c�b. We now present the analytic solution to the fourth-
order system in these two limits.

In the long-wavelength limit k2 �H 2, the four line-
arly independent solutions may be obtained as quadratures
using the methods of Ref. [18]:
 

�1 �
H �e
y2 �

������������
1� y
p

y3 ; (76a)

�2 �
3H

2y2

Z �
y2�1� w�d�; (76b)

�3 �
H

y2

Z �
y3wd�; (76c)

�4 �
H

y2

Z �
y2w	1� ��b=�m�y
d�: (76d)

These solutions give the time-dependence in the limit k!
0 valid in both the radiation- and matter-dominated eras.
The physical solution for isentropic curvature fluctuations
is
 

�� �
3

2
�2 �

8

5
�1

�
9

10

�
1�

2

9y
�

8

9y2 �
16

9y3 �
16

������������
1� y
p

9y3

�

� 1�
1

16
y for y� 1: (77)

Mode 1 is the decaying mode. Modes 3 and 4 are entropy
perturbations and (for k2 �H 2) are constants added to
the other solutions,

 �3 �
4

3
� 2�2; �4 � �1�

5

3
�2 �

�b
�m

�3: (78)

In the opposite limit, k2 �H 2, approximate solutions
to (75) may be found using the WKB method. The first-

order WKB approximation gives two oscillatory solutions,

 �� � �a2c3=2
b �

�1 exp�ik
Z �

cbd�; (79)

and two nonoscillatory solutions of the equation

 

��� 3H _��
�

2

c2
rb

� 3
�
wH 2� � 0: (80)

This equation is equivalent to the usual evolution equation
for CDM perturbations calculated assuming that the other
components are unperturbed:

 

�D�H _D � AcD; D / � / y�: (81)

For a��� given by (68), the exact solutions of this equation
are [8]
 

D���� � P��1� �=2�e�; D���� � Q��1� �=2�e�;

� � �
1

2
�

1

2

����������������������
25� 24fb

p
; (82)

where P� and Q� are Legendre functions of the first and
second kind. Early in the radiation-dominated era they give

 D� � 1�
���� 1�

4

�
�e
;

D� �
1

2
ln
�
4�e
�

�
for �� �e:

(83)

In the opposite limit,
 

D� �
���� 1

2�����
�
p

���� 1�

�
�
�e

�
�

�

��
��

1

2

�
�
�e
D�

�
�1

for �� �e: (84)

By matching the solutions found here to those in the
radiation-dominated era, (59) and (63), we obtain results
for the gravitational potential � and synchronous gauge
density perturbation � (not to be confused with the index of
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the Legendre functions) valid through the matter-radiation
transition. On large scales,

 � � ���; � �
2�k�e�

2y2��
4� 3y

; k2�2
e � 1;

(85)

where we have chosen the normalization � � �1 as k�!
0. On scales shorter than the Jeans length,
 

�
9Cf3

� D� �D� ln
�
4k�e���

3
p

�
;

� � �
3C�cb

���
3
p
�1=2

�kcb�e�2
cos��� ��

y2 �
3�1� fb��

2�k�e�2y
;

(86)

where C � C�k� and f3 � fkd�pa
3 �k� were given in the

previous section. For k� ��1
a , C � f3 � 1.

Figure 9 shows the results obtained from numerical
integration of (70) using (73) to approximate the neutrino
evolution. In order to illustrate the logarithmic wave
number-dependence of the growing mode in the matter-
dominated era, the potential is scaled by ��k�e�2 and is
plotted in a semilog fashion. If instead of using (73) the
neutrinos are assumed to evolve like the photon-baryon
fluid, the maximal change in � is about 4% occurring at
k�e � 2 with negligible differences at much higher and
lower frequencies. Thus the CDM transfer function is
relatively insensitive to the detailed dynamics of massless
neutrinos. For the CDM and baryon abundances used in the
calculations, D� � 11:34 at y � 10.

The WKB result helps explain how gravitational poten-
tial fluctuations with an rms amplitude 2� 10�5 on large
scales can generate nonlinear structures at high redshift.
Growth after the universe becomes matter-dominated con-
tributes a factor D� � 1� 3

2 y once the baryons are re-
leased and join the CDM potential wells. Evolution after
kinetic decoupling in the early universe contributes an
additional factor 9 ln�4k�e=

���
3
p
�. The logarithm is some-

times called the Meszaros effect [19]; it arises because
acoustic oscillations in the relativistic plasma gravitation-
ally induce velocity perturbations in the dark matter. Half
of the factor of 9 (i.e., a factor of 3) arises because the
comoving number density is affected by the cube of the
strain �1��� in three dimensions. Altogether, CDM den-
sity perturbations in the matter-dominated era are en-
hanced by a factor 27

2 y ln�4k�e=
���
3
p
� which is sufficient to

drive rms density perturbations nonlinear on scales below
10�5 M� by a redshift of 20.

These results neglect free-streaming of the CDM parti-
cles. As shown in Section III, during the radiation-
dominated era CDM free-streaming leads to a modified
Gaussian suppression, Eq. (48). Including the radiation-
matter transition, this gives

 �kfs�d�
�1 �

���������
6Td
5m�

s
ln
�
1� 4�e=��
1� 4�e=�

�
; (87)

where �� � �d. For the parameters of Fig. 9 with pair
annihilation, �e=�d � 3:894� 107.

VI. SMALLEST-SCALE CDM STRUCTURES

Having computed the evolution of the CDM transfer
function through kinetic decoupling, pair annihilation,
and radiation-matter equality, we can now make predic-
tions for the smallest-scale CDM structures. To be definite,
we adopt the standard flat �CDM model with �bh2 �
0:022, �ch2 � 0:109, h � 0:71, �� � 0:740. With these
assumptions, a�1

eq � 3160, �e � 147 Mpc, �d � 3:77 pc,
and k�1

fs � 1:17 pc.
The CDM density transfer function ��k; �� is normalized

so that the variance of ��=� in the usual synchronous
gauge is 	2 �

R
�2�k; ��Pi�k�d3k where Pi�k� is the spec-

tral density of the gravitational potential � early in the
radiation-dominated era. The radiation-era potential is re-
lated to the curvature perturbation in a flat universe 
 �
R � � [18] by � � 2

3�.
The treatment of this paper makes several approxima-

tions: neutrino shear stress is neglected; the Boltzmann
equations for neutrinos and photons after recombination
have not been integrated; and photons and baryons are
assumed to be tightly coupled until y � a=aeq � 10 (z �
315). To test this crude treatment of multiple fluids, we
compared the resulting transfer function with that com-
puted numerically from CMBFAST [14]. For k�e � 100
(small enough so that pair annihilation and kinetic decou-

-200
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 200

-2  0  2  4  6  8

-(
kτ

e)
2 Φ

log10 kτe

FIG. 9 (color online). Results for the gravitational potential
transfer function at y � a=aeq � 10 after the radiation-matter
transition, assuming Td � 22:6 MeV, �mh

2 � 0:131, �bh
2 �

0:022. The solid black curve shows the effects of pair annihila-
tion at T � 0:5 MeV as the bump at k�e � 105:8 and the effects
of kinetic decoupling (with Td=m� � 0) as the damped oscil-
lations at k�e > 107; the rapidly damped dotted curve includes
the effects of free-streaming damping assuming �2Td=m��

1=2 �

0:02. Other curves show the effect of eliminating either pair
annihilation or kinetic decoupling. The straight dotted line is the
WKB solution of Eq. (86), vertically offset for clarity.

EFFECTS OF COLD DARK MATTER DECOUPLING AND . . . PHYSICAL REVIEW D 74, 063509 (2006)

063509-15



pling are unimportant), our ��k� was too small by 7% (due
to the delay in baryons joining CDM until z � 315) while
for k�e < 0:1 our ��k� was too large by 3.6% (due to the
neglect of neutrino and photon shear stress). A more accu-
rate calculation would incorporate our transfer functions
for pair annihilation and kinetic decoupling into
CMBFAST or equivalent code, but this level of accuracy
is unnecessary for the present purposes.

Figure 10 shows the rms mass density perturbation in a
sphere containing mean mass M, which follows from

 	2�M� �
Z
�2�k; ��W2�kR�Pi�k�d

3k; (88)

where W�x� � 3j1�x�=x is the spherical tophat window
function and R � �3M=4��m�

1=3. The primordial spec-
trum has been normalized to �2

R � 2:40� 10�9 at k �
0:002=Mpc from the WMAP 3-year results [20]. The am-
plitude for the scale-invariant case ns � 1 is more than
50% greater than it is in the tilted model ns � 0:94 favored
by the data. With a neutralino mass of 100 GeVand kinetic
decoupling temperature 22.6 MeV, �2Td=m��

1=2 � 0:0212.
In this case, 3	 perturbations reach � � 1 by z � 46.

The Press-Schechter [21] mass function dn=dM obeys

 

M
�m

dn
d lnM

�
�c
	

�
2

�

�
1=2
��������d ln	
d lnM

��������e��2
c=2	2

; (89)

where �c � 1:686. The results, shown in Fig. 11, suggest
that the smallest CDM objects may have masses even
smaller than an earth mass, 3:0� 10�6 M�.

WIMP decoupling imprints two different length scales
on the spectrum: the comoving horizon size �d / T�1

d and
the comoving free-streaming distance �Td=m��

1=2�d; the
former scale is larger and more important. The character-

istic mass for the smallest objects is the CDM mass in the
horizon at decoupling,

 Md �
4�
3
�m�a � 1��c�d�3

� 2:05� 10�4�mh2

�Td ��������
geff
p

50 MeV

�
�3

M�

� 7:59� 10�3C3=4

�m�
��������
geff
p

100 GeV

�
�15=4

M�; (90)

where C was defined in (3). With the default values C �
0:0433 and geff � 10:75, Md � 8:29� 10�6 M�, or

 Md � 1:0� 10�4

�
Td

10 MeV

�
�3

M�; (91)

in agreement with Ref. [9]. Berezinsky et al. [5] derived a
different characteristic mass assuming that diffusion fol-
lowed by free-streaming damping sets the minimum object
mass. As we have shown, for �2Td=m��

1=2 � 1, the domi-
nant damping process is not diffusion or free streaming but
friction between WIMPs and relativistic leptons during
kinetic decoupling (Silk damping). That this is not a dif-
fusive process may be seen by its persistence in the limit
Td=m� � 0.

The evolution of the mass function requires computing
the density perturbations at smaller redshift. The baryons
present a slight complication because after recombination,
even though they are free to move apart from the photon
gas, they resist gravitational instabilities for k > kJb where
the baryon Jeans wave number is

 kJb �

�
3�m

2a

�
1=2 H0

cb
; (92)

FIG. 11. Press-Schechter mass fraction for the cases shown in
Fig. 10. The effects of increasing free-streaming damping are
apparent in the erasure of the smallest objects with increasing
�2Td=m��

1=2. The cases of no free-streaming damping have
bimodal distributions; however, this requires unreasonable as-
sumptions about the dark matter mass and couplings.

FIG. 10. RMS mass density perturbation in a sphere containing
mass M, at redshift z � 30:6 (a=aeq � 100). Two different
assumptions are made for the scalar spectral slope ns. For
each case, three different choices are shown for the neutralino
thermal speed at decoupling: �2Td=m��

1=2 2 f0; 0:01; 0:02g.
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with cb being the baryon sound speed. The small residual
ionization fraction persisting after the nominal recombina-
tion maintains the baryon temperature close to the micro-
wave background temperature until a � aTdec � 1=125
yielding (for the standard cosmological parameters) kJb �

252 Mpc�1 for a� aTdec and kJb � 252
����������������
a=aTdec

p
Mpc�1

for a� aTdec. Thus, even before reionization, baryon
perturbation growth is inhibited on scales k >
252 Mpc�1 or dark matter masses less than about 105

M�. Since we are mainly interested here in smaller scales,
we will assume that baryons do not participate in gravita-
tional instability. The CDM density perturbations therefore
grow with time according to the D���� solution (82) with
fb � �b=�m. For fb � 0:168, at a � 1 this results in an
almost 50% reduction in linear growth compared with
fb � 0. Dark energy plays a role only at very late times.
At z � 2:16, a cosmological constant with �� � 0:74
suppresses the growth of linear density perturbations by
2%.

Figure 12 shows the evolution of the mass fraction with
redshift for plausible WIMP parameters. At z � 31 the
peak ofMdn=d lnM occurs atM � 2:3Md (6 earth masses)
but there may be numerous smaller objects. Indeed, the
numerical results imply d	=d lnM / ��M=Md�

2=3 for
M� Md. This follows from W�kR� being an analytic
function of �kR�2 with W�0� � 1. For R � 0 the variance
integral (88) converges because of the small-scale damping
caused by kinetic decoupling. Thus, analyticity implies
	2 / C1 � C2�R=�d�

2 as R! 0 where C1 and C2 are
independent of filter radius R / M1=3, hence d	=d lnM /
��R=�d�2 as R! 0, or

 

dn
d lnM

/ M�1=3: (93)

Given a smooth, symmetric window function, the number
of small objects diverges but the mass contained in them
converges.

These results for M<Md are uncertain because there
are window functions W�kR� that give a different result.
For example, a sharp k-space filter, with W�kR� � 1 for
kR< � and zero otherwise, when combined with the free-
streaming damping of ��k; ��, leads to an exponential cut-
off instead of a power-law rise of dn=d lnM as M ! 0.
However, a sharp k-space window gives rise to long-range
oscillations in physical space, which seems unlikely to
properly describe the local physics of dark matter halo
formation.

The choice of window function represents an enormous
simplification of the nonlinear dynamics of dark matter
halo formation. N-body simulations are needed to deter-
mine the correct mass function for M<Md. Such simula-
tions must fully resolve scales below the free-streaming
damping length of 1.17 pc in the initial mass distribution.
CDM caustics [22] are also likely to be important in the
formation and dynamics of the smallest halos.

By redshift 9, rms density perturbations become non-
linear and the small-scale mass distribution is nearly scale-
invariant over 8 orders of magnitude of mass, 10�4:5 M� to
103:5 M�, reflecting the nearly scale-invariant (n � �3)
character of the small-scale CDM density field. At later
times larger objects build up by mergers of substructures as
the effective spectral slope n >�3 on larger scales. The
smallest-scale structure forms by almost sudden collapse
as opposed to hierarchical clustering.

The results presented here do not include tidal destruc-
tion of small objects formed at high redshift. The surviv-
ability of earth-mass halos remains an open question
[7,23,24]. The vast dynamic range of masses reflected in
Fig. 12 provides an enormous challenge to numerical
simulation methods attempting to determine the survival
of the first forming halos [25].

VII. CONCLUSIONS

The small-scale transfer function of CDM encodes rich
information about WIMP physics. Were it possible to
measure the power spectrum on scales below a solar
mass, with precision similar to cosmic microwave back-
ground measurements on degree angular scales, we could
hope to determine the WIMP mass and elastic scattering
cross section with leptons by astrophysical means. This
seems far-fetched because of the tremendous degree of
nonlinear processing that has occurred since the first
CDM structures formed at a redshift about 50. However,
if any of the smallest bound objects survive tidal stripping,
they may produce an observable WIMP annihilation signal
[7] which provides a window into particle physics.

FIG. 12. Press-Schechter mass fraction for ns � 0:94, m� �
100 GeV and Td � 15:7 MeV, for several redshifts. Constant
�M=�m�dn=d lnM indicates equal mass is contained in objects
whose masses span equal logarithmic mass intervals. The slight
bump at 50 M� is due to enhanced growth during electron pair
annihilation. The growth on scales M> 105 M� has been under-
estimated by ignoring the boost given by infalling baryons.
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Moreover, the nearly scale-invariant structure predicted
for dark matter fluctuations on mass scales below 104 M�
could affect the formation of larger-mass structures. This
mass range is very difficult to study with standard numeri-
cal simulation methods.

While the present work has answered the question of
how small-scale fluctuations in the WIMP distribution
evolve during the linear stage of evolution, it raises new
questions about nonlinear halo formation. If the Press-
Schechter formalism with a local spatial filter (or analytic
window function) correctly describes the formation of the
smallest halos, then there is no minimum mass for WIMP
microhalos; the mass function dn=d lnM / M�1=3 forM<
10�4�Td=10 MeV��3 M�. Most of the mass, however, is in
larger clumps. Nonlinear evolution is likely to strongly
modify the Press-Schechter distribution. Not only is tidal
stripping important, but the Press-Schechter model is based

on the assumption of hierarchical clustering, which breaks
down on the small scales considered here.

The present paper has considered dark matter only in the
form of a thermal relic, i.e., particles that were once in
thermal equilibrium with the relativistic plasma of the
early universe. The dark matter may be instead a non-
thermal relic—the axion—which began its life as a
Bose-Einstein condensate. The axion field begins oscillat-
ing after the QCD phase transition but is never collisionally
coupled to the plasma. It would be interesting to investigate
the smallest-scale structure in an axion dark matter model.
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