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We investigate the large scale anomalies in the angular distribution of the cosmic microwave
background radiation as measured by WMAP using several tests. These tests, based on the multipole
vector expansion, measure correlations between the phases of the multipoles as expressed by the
directions of the multipole vectors and their associated normal planes. We have computed the probability
distribution functions for 46 such tests, for the multipoles ‘ � 2� 5. We confirm earlier findings that
point to a high level of alignment between ‘ � 2 (quadrupole) and ‘ � 3 (octopole), but with our tests we
do not find significant planarity in the octopole. In addition, we have found other possible anomalies in the
alignment between the octopole and the ‘ � 4 (hexadecupole) components, as well as in the planarity of
‘ � 4 and ‘ � 5. We introduce the notion of a global anomaly statistic to estimate the relevance of the
low-multipoles tests of non-Gaussianity. We show that, as a result of these tests, the CMB maps which are
most widely used for cosmological analysis lie within the�10% of randomly generated maps with lowest
global anomaly statistics.
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I. INTRODUCTION

The cosmic microwave background (CMB) anisotropies
have been measured with exquisite accuracy by the
Wilkinson Microwave Anisotropies Probe (WMAP), and
the impact on cosmology has been profound [1– 4].
However, as the �CDM cosmological model becomes
standard lore and the parameter space becomes narrower,
the focus naturally drifts to the apparent anomalies. Among
sources of concern that have survived the WMAP 3-year
data are the lack of large-angle correlations [1,2,4], which
is mainly due to the low value of the cosmic quadrupole
[4–8], and the alignment between the quadrupole (‘ � 2)
and octopole (‘ � 3) [4,5,9–15].

The combined statistics of the low quadrupole and of the
quadrupole-octopole alignment, which were already in the
COBE data [16,17], can only be matched by 0.01% of
Gaussian random maps—see, for instance, [5]. However,
caution should be taken in the interpretation of that result
as an outright indication of violations of statistical isotropy,
since this tiny probability was in fact constructed a poste-
riori, by multiplying the probabilities of two statistical
tests which were previously thought to be unrelated.

Several recent works have reported anomalies in the
data: the low-order multipole values [1,2,4,6,15,18–20];
the alignment of some low-order multipoles [5,15,21–23];
an unexpected asymmetric distribution on the sky of the

large-scale power of CMB data [14,24–27]; indications for
a preferred direction of maximum asymmetry [9,25,27–
30]; as well as apparent non-Gaussian features detected via
the wavelet method or other analyses [31–36]. These
anomalies have motivated many explanations, such as
compact topologies [37,38], a broken or suppressed spec-
trum at large scales [39–44], oscillations superimposed on
the primordial spectrum of density fluctuations [45–47],
anisotropic cosmological models [48–50] and possible
extended foregrounds that could be affecting the CMB
[10,51–54].

In this article we examine the multipoles ‘ � 2� 5 and
search for anomalies in their phase correlations. We mea-
sure these correlations through alignments between the
multipole vectors or through their associated normal planes
[9]. We also look for evidence of planarity (or self-
alignments) in each individual multipole, and for evidence
of alignments between the multipole and normal vectors
with some specific directions in the sky, such as the dipole
axis, the ecliptic axis and the Galactic poles axis. In total
we have considered 38 tests of alignments between multi-
poles, plus 8 tests of alignments of the multipoles with a
priori directions. We have computed the probability distri-
bution functions (PDFs) for those tests using 300 000 mock
maps.

For the statistical analyses performed here, we need the
a‘m’s (‘ � 2� 5) of each CMB map under investigation.
The corresponding a‘m’s were extracted, after applying the
Kp2 WMAP mask (to minimize foreground contamina-
tions from the beginning), through the HEALPix routines
[55]. Our statistical tools were then used to analyze the
WMAP 1-year and 3-year data Internal Linear Com-

*Electronic address: abramo@fma.if.usp.br
†Electronic address: bernui@das.inpe.br
‡Electronic address: ivan@das.inpe.br
xElectronic address: thyrso@das.inpe.br
kElectronic address: alex@das.inpe.br

PHYSICAL REVIEW D 74, 063506 (2006)

1550-7998=2006=74(6)=063506(10) 063506-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.063506


bination maps [1,4] (henceforth ILC), the co-added
1-year and 3-year WMAP data, as well as the cleaned
CMB maps of Tegmark et al. [13,15] based on 1-year
WMAP data (henceforth TOH).

This paper is organized as follows. In Sec. II we sum-
marize the multipole vector formalism and the several
different statistics that can be used to test for alignments
and phase correlations within a given multipole. In Sec. III
we briefly describe the CMB maps used. Section IV
presents our statistical tests and the results of the PDF
computations for those tests. We also analyze the salient
features of the CMB maps and discuss which tests can be
considered anomalous, and of those, which are robust and
which are most sensitive to noise. The conclusions are
presented in Sec. V.

II. MULTIPOLE VECTORS, NORMAL VECTORS
AND STATISTICS OF PHASE CORRELATIONS

Multipole vectors were introduced in CMB data analysis
by Copi et al. [9], and Katz and Weeks [11,12] found an
elegant algebraic method to compute the multipole vectors
given the spherical harmonic components a‘m—see also
[56] for an alternative algebraic method and [5,10,14] for
purely numerical methods. The multipole vectors are es-
sentially eigenvectors—i.e., they are solutions of a set of
polynomial equations whose parameters are the multipole
components a‘m.

The idea of the multipole vector representation goes
back to J. C. Maxwell in the XIXth century: the multipole
decomposition of a field f��;�� on S2 implies that for each
multipole ‘ there are ‘ eigenvectors of norm unity, n̂�‘;p�.
Since there are only 2‘ phases for each multipole, the
spherical harmonic representation and the multipole vector
representation have the same number of degrees of free-
dom in each individual multipole:

 

�T‘��;’�
T

�
X‘

m��‘

a‘mY‘m��; ’�

� D‘

Y‘
p�1

n̂�‘;p� � n̂��;�� � Z‘�1��;’�; (1)

where Z‘�1 just subtracts the residual ‘0 < ‘ total angular
momentum parts of the product expansion, and is irrelevant
to our analysis—see [11] for an enhanced discussion of the
multipole vector expansion.

It can be seen from the product expansion above that,
whenever using the multipole vectors to test for align-
ments, it is irrelevant what the amplitudes of the multipoles
are—just their phases matter. This is the main feature of
the tests based on the multipole vectors that sets them apart
from other tests of non-Gaussianity.

Notice that, contrary to the C‘’s, which are always
positive-definite, the D‘’s of Eq. (1) can be either negative
or positive. Because of the product expansion in the right-

hand-side of Eq. (1), switching the sign of D‘ is equivalent
to switching the signs of an odd number of multipole
vectors, and switching the signs of an even number of
multipole vectors leaves the sign of D‘ invariant.
Therefore, the product expansion in Eq. (1) has a sign
degeneracy in the amplitudesD‘ as well as in the multipole
vectors n̂�‘;p�.

This ‘‘reflection symmetry’’ n̂�‘;p� $ �n̂�‘;p� implies
that the multipole vectors define only directions [11],
hence they are ‘‘vectors without arrowheads’’ living on
the half-sphere with antipodal points identified, or S2=Z2.
This space is also known in the literature as the real
projective space RP2, and is useful in the characterization
of nematic liquid crystals, where the orientation of the
molecules is an order parameter—but it makes no differ-
ence where heads and tails are [57].

It is extremely useful to represent these directions as
vectors, but for that we will need to cope with the degen-
eracy in representing these directions. For each multipole
order ‘ there is a 2‘�1-fold degeneracy in the signs (or
orientations) of the multipole vectors—corresponding to
the ‘ signs of the multipole vectors that can be switched
arbitrarily, divided by two to account for an irrelevant
overall sign which is determined by D‘. We can break
this degeneracy by always working in one particular hemi-
sphere, and any such choice will automatically determine
the signs (orientations) of all multipole vectors—as well as
the sign of the D‘’s. However, we should be aware that in
doing so we are necessarily picking one of the 2‘�1 pos-
sible sign conventions in the product expansion of Eq. (1).
As we will discuss below, this is not a problem as long as
we use invariant tools which are not sensitive to the signs of
each multipole vector.

Starting with the ‘ multipole vectors one can also con-
struct ‘�‘� 1�=2 � � normal vectors—or normal
planes—defined as:

 ~w ‘;q � n̂‘;p ^ n̂‘;p
0
; �p � p0; q � 1 . . .��: (2)

By construction, because the multipole vectors define
only directions, the normal vectors also possess reflection
symmetry, ~w�‘;q� $ � ~w�‘;q�. But the normal vectors need
not be (and generally are not) of norm unity, so instead of
living in S2=Z2 the normal vectors belong to the space
R3=Z2—which is isomorphic to SO(3), see [57]. We can
still break the degeneracies imposed by reflection symme-
try by defining all normal vectors so they lie in the same
hemisphere as the normal vectors. However, just as before,
we should be aware that in doing so we are choosing one of
many possible representations for the normal vectors.

To summarize, for ‘ � 2 there are 2 multipole vectors,
n̂�2;1� and n̂�2;2�, and only one normal vector, ~w�2;1� �
n̂�2;1� � n̂�2;2�; for ‘ � 3 there are 3 multipole vectors and
3 normal vectors; and so forth. These constitute the basis
for the statistical tests defined below.
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A. Properties of the tests under reflection symmetry

We will define below, in Sec. II C, a series of tests which
are manifestly invariant under the reflection symmetry n̂$
�n̂ which characterizes RP2 (where the multipole vectors
live) as well as R3=Z2 (where the associated normal vec-
tors live.)

Our motivation for this remark is that if a given test is not
invariant then its validity and usefulness is questionable. In
particular, one should be careful not to employ tests which
depend on the choice of hemisphere to represent the vec-
tors. This seems to be the case of some of the tests that have
been used to estimate the ‘‘planarity’’ of the CMB maps, if
these tests make use, in one way or another, of the notion of
‘‘average vectors’’. The reason there is no such thing as an
‘‘average multipole vector’’ or an ‘‘average normal vector’’
is simple: the ‘‘vector sum’’ operation does not yield a
singly valued result due to the reflection symmetry. In fact,
the result of ‘‘summing’’ two vectors of R3=Z2 would be a
degenerated pair of directions:

 �	 ~v1� 
 �	 ~v2� �

�
	 ~v1 	 ~v2

	 ~v1 � ~v2
: (3)

In general, by summing k vectors of R3=Z2 one obtains
2k�1 vectors, corresponding to the 2k possible permuta-
tions of the 	 signs of each vector, divided by two to
account for the symmetry ~v$ � ~v of the resulting vector.
This means, in particular, that the ‘‘average multipole
vector’’ is in fact an object 2‘�1-times degenerated,
and that the ‘‘average normal vector’’ is an object
2‘�‘�1�=2�1-times degenerated.

Obviously, by fixing a hemisphere to represent all vec-
tors one breaks this degeneracy, but this just hides the plain
fact that by doing so one is simply choosing (rather arbi-
trarily) one of many possible representations, and one of
many possible answers for the sums of those vectors.
Consequently, unless these degeneracies are properly taken
into account (by, e.g., symmetrizing over all possibilities or
ordering the results by norm), any test which is derived
from the notion of summing multipole or normal vectors is
flawed.

B. Global estimates of non-Gaussianity

We will investigate large-scale correlations in the CMB
maps within single multipoles and between different multi-
poles by measuring the alignments between either the
multipole vector themselves, or between their associated
normal planes. To be sure, there is no upper limit to the
number of tests we can devise to search for non-
Gaussianities, and in testing any fixed sample such as the
CMB one should bear in mind that there are always some
statistical tools which will yield a positive detection given
some arbitrary criteria.

In practical terms this means that if we perform a large
number N of independent tests on a fixed sample, then we
should treat the results of these tests themselves as random

numbers. Therefore, when performing many tests on a map
and searching for clues of non-Gaussianity one must al-
ways look at the complete set of results for those tests and
at the total probability (or some global statistic) that the
map is a realization of a Gaussian random process. If this
global statistic turns out to be very small compared to the
typical values for Gaussian maps, then one can look for the
particular test (or tests) that is likely responsible for that
anomaly. If, however, a certain test turns out to be ‘‘suspi-
cious’’ but the global statistic is not anomalously small,
then we cannot rule out the possibility that the result for
that particular test was just a fluke.

Assuming that random processes are indeed behind the
mechanism that generated the sample, we can define a
global anomaly statistic in the following sense. Suppose
we have N statistical tests such that each test Ti (i �
1 . . .N ) is a random number in the interval 0 � Ti � 1,
with normalized probability distribution functions Pi�Ti�.
Given a sample (a map M) with Ti � TMi , the probability
that a random sample has a value of Ti higher than TMi is

 Pi
�TMi � �
Z 1

TMi

dTPi�T�; (4)

and the probability that a random sample has a value of Ti
lower than TMi is

 Pi��T
M
i � �

Z TMi

0
dTPi�T� � 1� Pi
�T

M
i �: (5)

Evidently, for the median value �Ti we have Pi
� �Ti� �
Pi�� �Ti� � 1=2. We will define the global median statistic
of the map M, given the N tests, to be

 LN �M� �
YN
i�1

2Pi
�TMi � � 2Pi��TMi �

� 4N
YN
i�1

Pi
�T
M
i ��1� Pi
�T

M
i ��; (6)

where the factors of 2 have been inserted for normalization
purposes, in order to make LN � �M� � 1 for a map �M
whose tests are all exactly equal to their median values.

This global anomaly statistic estimates the total proba-
bility that the map M does not have too low and too high
values of the tests Ti. Evidently, any deviation of the tests
from the medians will decrease LN . So, the global anom-
aly statistic is an unbiased estimator of the degree of
anomalies of a given map, in the sense that both too high
and too low correlations would be considered anomalous.

Of course, Eq. (6) is itself an arbitrary definition, and we
might as well have used the expectation values instead of
the medians to define the global statistic. Indeed, one could
switch the roles of the medians with the expectation values
in the procedure above and still our results would be very
similar. Ideally, we would have computed the Likelihood
function, but it turns out that for the numerical strategy we
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pursued in this particular work, it would have been im-
practical to do so.

It should be stressed that the global statistic defined in
the sense above should not be interpreted as the probability
that a particular map was generated by a Gaussian mecha-
nism—it is merely an estimator of how much that particu-
lar map deviates from a typical one, given the N statistical
tests of non-Gaussianity. In Sec. II D we construct such
tests, and compute their distributions assuming random
phases.

C. Statistical tests of isotropy

We now define the statistical tests which will be em-
ployed in our analysis of CMB data. We have ensured that
all tests are invariant under reflection symmetry, so it

makes no difference which hemisphere one chooses to
represent the multipole and normal vectors.

The tests have been normalized so that they always fall
in the interval 0 � Ti � 1. We have generated 3� 105
simulated (mock) maps by taking Gaussianly distributed
random spherical harmonic components. The resulting
PDF’s for the tests, assuming Gaussianity, are shown in
Figs. 1–4.

1. S statistic

The S statistic is a widely used tool [9,11,14,27], and it
measures the alignment between normal planes of different
multipoles. It is defined as

 S‘‘0 �
1

��0
X�
q�1

X�0
q0�1

j ~w�‘;q� � ~w�‘
0;q0�j; ‘ � ‘0; (7)

where, as defined above, � � ‘�‘� 1�=2. We can also use
S in just one multipole, in which case the normalization is a
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FIG. 1 (color online). Normalized PDF’s for the S statistic
found by simulating 3� 105 mock maps, binned in intervals
of 0.01. From left to right, top to bottom: S22, S23, S24, S25, S33,
S34, S35, S44, S45 and S55. In all panels, the horizontal axis
correspond to the value of each individual test, and the vertical
axis to its normalized PDF.
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FIG. 2 (color online). Normalized PDF’s for the D statistic.
From left to right, top to bottom: D23, D24, D25, D33, D34, D35,
D44, D45 and D55.
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bit different:

 S‘‘ �
2

���� 1�

X�
q;q0>q

j ~w�‘;q� � ~w�‘;q
0�j: (8)

The statistic S‘‘ measures the ‘‘self-alignment’’ of the
normal vectors, and is related to the planarity tests [5,14].

2. D statistic

This is analogous to the S statistic, but the D test
disregards the norm of the normal vectors [9,11,14,27]:

 D‘‘0 �
1

��0
X�
q�1

X�0
q0�1

jŵ�‘;q� � ŵ�‘
0;q0�j; ‘ � ‘0: (9)

We can also use theD statistic within a single multipole, as
was done for S. However, this test only gives nontrivial
information for ‘ � 3. With the proper normalization we
have

 D‘‘ �
2

���� 1�

X�
q;q0>q

jŵ�‘;q� � ŵ�‘;q
0�j; ‘ � 3: (10)

3. R statistic

A similar tool is the R statistic, which measures align-
ments in essentially the same way as the S statistic, but it
uses the multipole vectors instead of the normal vectors:

 R‘‘0 �
1

‘‘0
X‘
p�1

X‘0
p0�1

jn̂�‘;p� � n̂�‘
0;p0�j; ‘ � ‘0: (11)

Within a single multipole, the R statistic is suitably defined
as
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FIG. 3 (color online). Normalized PDF’s for the R statistic.
From left to right, top to bottom: R22, R23, R24, R25, R33, R34,
R35, R44, R45 and R55.
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W5.

ALIGNMENT TESTS FOR LOW CMB MULTIPOLES PHYSICAL REVIEW D 74, 063506 (2006)

063506-5



 R‘‘ �
2

‘�‘� 1�

X‘
p;p0>p

jn̂�‘;p� � n̂�‘;p
0�j: (12)

4. B statistic

We can also test if the multipole vectors align with the
normal vectors. Hence we define the B statistic:

 B‘‘0 �
1

�‘0
X�
q�1

X‘0
p0�1

j ~w�‘;q� � n̂�‘
0;p0�j; ‘ � ‘0: (13)

Within a single multipole, the B statistic only gives non-
trivial information for ‘ � 3, and we have

 B‘‘ �
1

��‘� 2�

X�
q

X‘
p

j ~w�‘;q� � n̂�‘;p�j; ‘ � 3: (14)

Notice that, as opposed to the S, D and R statistics, the B
statistic for ‘ � ‘0 is not symmetric, B‘‘0 � B‘0‘. For
simplicity, in the present approach we have only consid-
ered the cases B‘‘0 where ‘ � ‘0.

5. N statistic

We can test if the multipole vectors align in a particular
direction Ẑ by using the N statistic:

 N‘ �
1

‘

X‘
p�1

jn̂�‘;p� � Ẑj: (15)

6. W statistic

We can also test if the normal vectors align in a particu-
lar direction Ẑ by using the W statistic:

 W‘ �
1

�

X‘
q�1

j ~w�‘;q� � Ẑj: (16)

Note that the test S�4;4� of Ref. [14] is a combination of W2

and W3, namely, S�4;4� � �W2 
 3W3�=4.

D. Likelihoods

With the tests defined above we can now compute global
statistic as in Eq. (6). However, we have decided not to
include the alignment testsN andW in the analysis, as they
test correlations with an a priori direction, which we find
rather arbitrary compared to the other tests. Nevertheless, it
should be noted that there are significant correlations be-
tween the quadrupole and the octopole with both the
ecliptic plane and the direction of the cosmic dipole.
Although these correlations appear to be too strong or
too weak only at >95% C.L. as measured by our tests N‘
and W�, when combined in the statistic S�4;4� of Copi et al.
[27], we obtain a result which is >99:5% C.L. These

correlations have been treated in much greater detail in
Refs. [9,14,21,27].

Using the 38 tests S, D, R and B above, we can define a
global anomaly statistic, L38�S;D; R; B�, as in Eq. (6). We
have computed L38 for 25 000 random maps, and we show
a normalized histogram for log10L38 in Fig. 5 (left panel.)

Since we have 38 tests but only 28 independent random
degrees of freedom in the ‘ � 2� 5 multipoles, we have
found useful to define global anomaly statistic using a
subset of the complete set of tests. We have thus defined
the statistic L29�S;D; R� using the tests S, D and R, and
L29�S; R;B�, using the S, R and B tests. Their normalized
histograms are also shown in Fig. 5 (center and right
panels.)

III. CMB MAPS

In this work, we use five WMAP CMB maps (three
derived from the 1-year data [1] and two derived from
the 3-year data [58]): the 1-year and 3-year co-added
maps [59]; the 1-year and 3-year ILC maps [3,58]; and
the TOH map [15].

The co-added WMAP map results from the combination
of the eight differential assemblies (DA) [59] in the Q-, V-,
and W-bands, listed above, using the following inverse-
variance noise weights method. Thus, for any co-added
map, the temperature of pixel n is given by

 T�n� �

P8
i�1 Ti�n�=�

2
i �n�P8

i�1 1=�2
i �n�

; (17)

where Ti�n� is the sky map for the DA iwith the foreground
galactic signal subtracted, and where

 �2
i �n� � �2

0;i=Nobsi�n� (18)

is the pixel-noise per observation for DA i.The eight values
of �2

0;i are the pixel-noise for DA i, and can be found for
each set of released maps in [60].
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FIG. 5 (color online). Normalized histograms of
log10L38�S;D; R; B� (left panel), log10L29�S;D; R� (center) and
log10L29�S; R; B� (right), obtained by simulating 25 000 mock
maps.
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The WMAP 1-year Internal Linear Combination map
(ILC-1 yr) [3] has been built mostly to convey a visual
information of CMB anisotropies. It is composed by the
five WMAP temperature intensity maps, through a
weighted linear combination, to minimize Galactic fore-
ground contamination in 12 regions of the sky, eleven of
which lie within the Galactic plane and one which lies
outside it. The ILC-1 yr map is not reliable for quantitative
CMB analysis, but in this work we use it only for the
completeness of our analysis. The 3-year WMAP ILC
map (ILC-3 yr) [58], however, brings some improvements
over the ILC-1 yr, mainly by dealing with the regions
selected for Galactic foreground estimates, which make it
a reliable estimator of the CMB signal for large angular
scales (> 10�) and, therefore, suitable for our analysis
since we are interested in ‘ � 2� 5.

The 1- and 3-yr ILC maps are described, respectively, in
[3,58], but it is worth mentioning here the differences
between them. The 1-yr and 3-yr ILC maps are both
weighted combinations of the maps, band-averaged within
each of the five WMAP frequency bands. They corrected
the bias due to the foreground removal method by dividing
the sky into 12 regions, minimizing the variance of the
linear combination of the 5 frequencies for each region and
then weighting the final combined map according to the
region. There was an additional bias correction, in the 3-yr
ILC map, that was done after using 100 Monte Carlo
simulations with a variable spectrum Galaxy model as
input [58]. The WMAP team claims the residual error in
the 3-year ILC map is less than 5 �K in angular scales
greater than 10�, being a reliable estimate of the CMB
signal, with negligible instrument noise, over the full sky.

The TOH map [15] was constructed with no assumption
about the CMB power spectrum, foregrounds or noise
properties. The only consideration was the Planckian na-
ture of the CMB temperature spectrum. This map is formed
by the combination of the five WMAP bands considering
weights that depend both on angular scale and distance to
the Galactic plane. The cleaning process is done in multi-
pole space alm, weighted also by the beam function of each
channel (W-band has four channels, Q- and V-band have
two channels each, and K- and Ka-band have one channel
each). They obtain weighting coefficients similar to those
used by the WMAP team on large scales.

IV. STATISTICS OF LARGE-ANGLE
ANISOTROPIES

Given a CMB map, the harmonic components a‘m can
be extracted using HEALPix [55], and the multipole vec-
tors and their statistics can be easily computed. In this
analysis we will use the five maps described above, plus
the TOH map cleaned with the mask ‘‘M6’’ given in
[13,15]. For all maps we have used the Kp2 mask based
on 3-year WMAP data [3,4], then we remove their residual

monopole and dipole components. It should also be noted
that the relativistic Doppler correction to the quadrupole is
an important factor that must be subtracted from the maps,
since it corresponds to a nonprimary source of the quad-
rupole [14,27].

In Table I we present an abridged version of the tests that
were defined in Sec. II C. For an easier interpretation of the
results, we show the probabilities P
�Ti� that a random
map would have higher values for the test Ti than the value
for that test in the actual CMB maps. So, for instance, for
the test S22 and for the co-added 1-yr map we quote the
value P
�S22� � 0:294. This means that the probability
that a random map has a value of S22 which is higher
than the value obtained for the map co-added 1-yr is
29.4%. Therefore, in Table I, any values which are too
close to either zero or one should be viewed with suspicion.

It can be immediately seen from Table I that the
quadrupole-octopole alignment (revealed by S23, D23 and
B23) is robust in all maps, as has been noted by
[5,9,13,14,20,21,27]. Our results confirm that the proba-
bility that a random map has higher quadrupole-octopole
alignment, as measured by S23, is approximately 1–2%.

Table I also reveals (through the self-alignments S33,
D33, R33 and B33) that, at least for our set of invariant tests,
there is no evidence that the octopole is significantly
‘‘planar,’’ in the sense defined by these tests.

There are other anomalies for ‘ � 3 as well: we find that
the octopole and hexadecupole (‘ � 4) are misaligned to a
very significant degree, with a probability in the range 1%–
4% for the test S34 and 5%–20% for the tests D34 and R34.
The triandabipole (‘ � 5) also seems substantially mis-
aligned with the octopole ‘ � 3, with a probability in the
range 4%–8% for the test S35. These results, plus the fact
that the octopole is significantly aligned with the dipole
axis, give further support to the conjecture known as the
‘‘axis of evil’’ [21].

Another apparent anomaly that is revealed by Table I is
the self-alignment of the multipoles ‘ � 4 and ‘ � 5,
indicated by the values of P
 for S44, D55, R44 and R55.

Not shown in Table I are the results for the tests N and
W, using as a priori directions to be tested against the
dipole axis, the ecliptic plane and the galactic plane. The
results for these 24 tests indicate that there are significant
alignments of the quadrupole and octopole with the direc-
tion defined by the cosmic dipole [5,9,13,14,20,21,27]:
WDipole

2 � 0:10� 0:01 and WDipole
3 � 0:03–0:05 depending

on the choice of map. We also confirm the results of Copi
et al. [9,14,20,27], who found strong correlations of the
quadrupole and octopole with the ecliptic plane: we get
WEcliptic

2 � 0:83–0:98 and WDipole
3 � 0:93–0:98 depending

on the choice of map. If combined into a single test, the
tests W2 and W3 give rise to very significant correlations,
both with the cosmic dipole and with the ecliptic plane. For
all other multipoles and directions we have found no
significant alignments using our tests.
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TABLE II. Total likelihoods L38�S;D; R; B�, L38�S;D; R� and L29�S; R; B�. The normalized histograms for the global anomaly
statistics found by simulating 25 000 maps are shown in Fig. 5.

Global Statistics Co-added 1-yr Co-added 3-yr ILC 1-yr ILC 3-yr TOHMask6 TOHKp2

L38�S;D; R; B� 3:2� 10�13 2:0� 10�14 7:7� 10�18 3:6� 10�14 3:7� 10�16 4:8� 10�12

L29�S;D; R� 1:7� 10�11 4:3� 10�13 5:2� 10�15 5:1� 10�13 3:0� 10�13 1:3� 10�10

L29�S; R; B� 5:1� 10�10 4:3� 10�11 3:0� 10�12 8:8� 10�11 3:9� 10�12 3:6� 10�9

TABLE I. Probabilities P
 for the tests S,D, R and B. These are the probabilites that a random
map would have values for the tests S, D, R and B which are higher than the map’s values. The
probability that a random map has a value lower than the map’s is simply P� � 1� P
.

Statistic Co-added 1-yr Co-added 3-yr ILC 1-yr ILC 3-yr TOHMask6 TOHKp2

S22 0.294 0.242 0.242 0.437 0.437 0.294
S23 0.011 0.011 0.007 0.021 0.006 0.017
S24 0.519 0.637 0.519 0.803 0.774 0.519
S25 0.922 0.903 0.937 0.903 0.864 0.913
S33 0.457 0.530 0.457 0.549 0.270 0.586
S34 0.965 0.973 0.978 0.978 0.990 0.965
S35 0.957 0.943 0.957 0.921 0.921 0.921
S44 0.960 0.960 0.975 0.985 0.905 0.960
S45 0.750 0.750 0.750 0.750 0.750 0.750
S55 0.714 0.714 0.714 0.714 0.664 0.689

D23 0.034 0.046 0.031 0.056 0.019 0.051
D24 0.771 0.884 0.771 0.922 0.937 0.085
D25 0.854 0.786 0.907 0.744 0.550 0.786
D33 0.268 0.333 0.276 0.351 0.187 0.361
D34 0.802 0.888 0.916 0.916 0.965 0.850
D35 0.711 0.711 0.797 0.607 0.375 0.607
D44 0.913 0.913 0.913 0.913 0.623 0.913
D45 0.342 0.342 0.342 0.342 0.786 0.499
D55 0.970 0.970 0.989 0.970 0.970 0.970

R22 0.828 0.931 0.880 0.647 0.647 0.811
R23 0.071 0.030 0.091 0.091 0.176 0.115
R24 0.576 0.767 0.710 0.896 0.817 0.576
R25 0.823 0.759 0.914 0.759 0.598 0.759
R33 0.424 0.506 0.424 0.533 0.294 0.533
R34 0.706 0.902 0.937 0.937 0.986 0.902
R35 0.834 0.834 0.899 0.834 0.834 0.834
R44 0.892 0.939 0.968 0.968 0.485 0.939
R45 0.338 0.198 0.198 0.198 0.670 0.338
R55 0.977 0.977 0.977 0.977 0.945 0.945

B23 0.940 0.920 0.920 0.920 0.968 0.883
B24 0.139 0.192 0.065 0.192 0.033 0.117
B25 0.344 0.256 0.392 0.256 0.806 0.298
B33 0.696 0.582 0.644 0.540 0.749 0.554
B34 0.651 0.426 0.344 0.262 0.189 0.506
B35 0.591 0.414 0.506 0.414 0.784 0.414
B44 0.079 0.116 0.201 0.249 0.300 0.116
B45 0.336 0.336 0.497 0.497 0.497 0.336
B55 0.444 0.444 0.338 0.338 0.136 0.233
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We can estimate the global statistics for the CMB maps
of Table I. This is shown in Table II for the statistics
L38�S;D; R; B�, L29�S;D; R� and L29�S; R; B�. Comparing
the values of Table II with the normalized histograms of
Fig. 5, we can see that, apart from the TOH map with the
Kp2 mask applied, which lies within the �30% of random
maps with lowest global anomaly statistics, all remaining
maps fall within the �10% of random maps with lowest
global anomaly statistics. The global statistics are particu-
larly small for the 1-year ILC map, which, as discussed, is
probably contaminated by residual foregrounds.

V. CONCLUSIONS

We have applied 38 tests of non-Gaussianity, as well as 8
tests of alignments with 3 distinct preferred directions, on
the most widely used CMB maps based on 1-year and 3-
year WMAP data. In order to properly analyze the set of
tests performed in the WMAP maps, we have introduced
the notion of a global anomaly statistic to estimate the
relevance of the low-multipoles tests of non-Gaussianity
for each map. A cautionary note is sounded by the global
anomaly statistic: this criterium shows that the CMB maps
we studied have rather low statistics, but they still lie
within the �10% of random maps with lowest global
anomaly statistics, meaning that 90% of the Gaussian
mock maps have higher global anomaly statistics than
the CMB maps.

We confirm the well-known alignment between the
quadrupole and the octopole, and we found other signifi-
cant levels of alignment between the octopole and the
hexadecupole. Moreover, we detected that the hexadecu-

pole and the ‘ � 5 multipole have significantly low levels
of self-alignments (see Table I). Taken individually, these
tests show non-Gaussian features at more than 95% C.L.
On the other hand, no significant evidence of self-
alignment (which is related to the planarity) was found
for the octopole.

Regarding correlations with the directions of the cosmic
dipole, the ecliptic plane or the galactic plane, we have
confirmed the correlations of the quadrupole and octopole
with the cosmic dipole, as well as the correlation of the
octopole with the ecliptic plane. For all other multipoles
and directions we have found no significant alignments.

In conclusion, we have found intriguing evidence of
nonrandom alignments in the multipoles ‘ � 2� 5, which
have not only survived, but have indeed been strengthened
by the recently released 3-year WMAP data.
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