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We explore the impact of Lorentz violation on the inflationary scenario. More precisely, we study the
inflationary scenario in the scalar-vector-tensor theory where the Lorentz violating vector is constrained to
be unit and timelike. It turns out that the Lorentz violating vector affects the dynamics of the chaotic
inflationary model and divides the inflationary stage into two parts: the Lorentz violating stage and the
standard slow roll stage. We show that the universe is expanding as a de Sitter space-time in the Lorentz
violating stage although the inflaton field is rolling down the potential. More interestingly, we find the
exact Lorentz violating inflationary solutions in the absence of the inflaton potential. In this case, the
inflation is completely associated with the Lorentz violation.
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I. INTRODUCTION

Lorentz invariance has been considered as the most
fundamental symmetry of physics. However, as far as we
know, any symmetry is not realized exactly or can be
spontaneously broken. Hence, it is important to investigate
the possibility of Lorentz invariance violation. In fact, the
observation of high energy cosmic rays reports super
Greisen-Zatsepin-Kuzmin events although further confir-
mation is needed [1–3]. As argued in [4,5], this may
suggest a Lorentz violation. Theoretically, any quantum
theory of gravity requires drastic modification of the pic-
ture of space-time at the Planck scale [6]. In particular, the
string theory may yield a Lorentz violation [7].

The impact of Lorentz violation on physics should be
broad. Even in cosmology, many subjects should then be
reconsidered. For example, the dark matter can be ex-
plained by the Lorentz violating gravity [8], it is shown
that the Lorentz breaking is relevant to the dark energy
problem [9,10], baryogenesis may be related to Lorentz
violation [11,12], Lorentz violation affects the interpreta-
tion of cosmic rays [13,14], and we should study the impact
of Lorentz violation on other phenomena such as nucleo-
synthesis [15] and primordial magnetic field [16]. Here, we
shall concentrate on the role of Lorentz violation in the
inflationary scenario.

Typically, Lorentz violation yields a preferred frame. In
the case of the standard model of particles, there are strong
constraints on the existence of a preferred frame (see the
recent review [17]). In contrast, there is no reason to refuse
any preferred frame in cosmology. Rather, there is a natural
preferred frame which is defined by the cosmic microwave

background radiation (CMB). Therefore, there is room to
consider a gravitational theory which allows a preferred
frame. The purpose of the present work is to clarify what
occurs in the inflationary stage when we allow a preferred
frame from the beginning. It turns out that there is a chance
to detect the evidence of the Lorentz violation through the
observation of the cosmic microwave background radia-
tion and of the primordial gravitational waves.

When we talk about Lorentz violation, we have to
specify the model somehow. Recently, various types of
theories of gravity with Lorentz violation have been pro-
posed. One is the ghost condensation model which has an
unconventional kinetic term [18–20]. In the stable vac-
uum, the kinetic term has the expectation value. Hence,
the Lorentz invariance is violated spontaneously. This
violation mechanism is an interesting possibility. The infla-
tionary scenario in the ghost condensation was also inves-
tigated in [21]. Another interesting one is a brane model of
Lorentz violation [22–24]. From the string theoretical
point of view, the braneworld picture seems to be natural.
Hence, it is important to examine the Lorentz violation in
the braneworld context. Of course, there are other interest-
ing models. In particular, we should refer to the very
interesting paper by Gasperini [25] where the relation
between Lorentz violation and inflation is investigated
using a frame dependent model of gravity.

In this paper, we will consider the spontaneous breaking
of Lorentz symmetry due to a vector field [7,26–28]. When
this vector field couples to gravity, we obtain a Lorentz
violating theory of gravity, the so-called Einstein-Ather
theory [29]. Interestingly, this theory has a wide parameter
region where all of current experiments and observations
can be explained [30–33]. When we consider the cosmol-
ogy, parameters could depend on time. The time evolution
of parameters can be regarded as a consequence of the
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dynamics of a scalar field. Thus, a natural generalization of
the Einstein-Ather theory is the scalar-vector-tensor theory
of gravity with a timelike unit vector field.

Recently, Lim has studied the inflationary scenario in the
context of the Einstein-Ather theory [34]. In this paper, we
will reconsider the inflationary scenario based on a Lorentz
violating scalar-vector-tensor theory of gravity. In particu-
lar, the coupling between the inflaton and the Lorentz
violating vector is incorporated in our model. Our primary
concern is how the Lorentz violation can affect the infla-
tionary scenario when we include this coupling. First, we
show how the chaotic inflationary scenario is affected by
the Lorentz violation. In the conventional theory of gravity,
there is a power law inflation model which is an exact
solution with the exponential potential. Hence, it is legiti-
mate to seek for exact solutions also in the Lorentz violat-
ing scalar-vector-tensor theory of gravity. Indeed, we find
three kinds of exact solutions in the absence of the inflaton
potential. We also discuss the observability of Lorentz
violation.

The organization of this paper is the following: in
Sec. II, we introduce the scalar-vector-tensor theory where
the Lorentz symmetry is spontaneously broken due to the
unit-norm vector field. In Sec. III, we study the Lorentz
violating chaotic inflation. In Sec. IV, we examine the
model without the inflaton potential and find the exact
inflationary solutions. In Sec. V, the cosmological tensor
perturbations are discussed. The final section is devoted to
the conclusion. In the appendix, we demonstrate the align-
ment of two preferred frames, namely, the cosmological
and the vector frame.

II. LORENTZ VIOLATING SCALAR-VECTOR-
TENSOR THEORY

In this section, we present our model with which we
discuss the inflationary scenario.

We assume that the Lorentz symmetry exists, but that it
is spontaneously broken by the presence of a vector field
u� with expectation values

 h0ju�u�j0i � �1: (1)

The mechanism which gives this expectation value is dis-
cussed in Ref. [7]. Here, we have chosen the timelike
expectation value for the reason explained in Ref. [35].
The Nambu-Goldstone modes in the Minkowski space-
time can be represented by

 u� �
1���������������

1� 2
p �1; �; (2)

where  is a spatial vector field. Now, the action for the
Nambu-Goldstone boson in curved space-time with the
metric g�� becomes

 

S �
Z
d4x

�������
�g
p

���1r
�u�r�u� � �2r

�u�r�u�

� �3�r�u
��2 � �4u

�u�r�u
�r�u�

� ��u�u� � 1��; (3)

where �i are arbitrary parameters and � is the Lagrange
multiplier. Here we have taken into account the expectation
value by just adopting it as a constraint

 u�u� � �1: (4)

Thanks to the constraint, this is the most general low
energy action which has up to second order derivatives.
Note that we take u� as the dimensionless vector. Hence,
each �i has the dimension of mass squared. In other words,�����
�i
p

gives the mass scale of the symmetry breakdown.
It is straightforward to couple this Nambu-Goldstone

modes to gravity by just adding the Einstein-Hilbert
term. The resultant theory is called the Einstein-Ather or
the vector-tensor theory. Here, we adopt the latter name.
Remarkably, this vector-tensor theory is in agreement with
current experiments as long as certain relations between �i
hold [30–33].

We will consider the inflationary scenario in this Lorentz
violating gravity. Now, it is possible that the inflaton
couples to the vector in the following way
 

S �
Z
d4x

�������
�g
p

�
1

16�G
R� �1���r�u�r�u�

� �2���r�u�r�u� � �3����r�u��2

� �4���u�u�r�u�r�u� � ��u�u� � 1�

�
1

2
�r��2 � V���

�
; (5)

where we have chosen the Einstein frame. The above
action (5) has the general coordinate invariance, hence
there exists an invariance under the local Lorentz trans-
formations. The Lorentz violation appears spontaneously
when we consider a particular solution. In fact, due to the
constraint obtained by the variation with respect to �, we
have to choose a particular direction. Therefore, the
Lorentz invariance must be violated. The extent of
Lorentz violation is characterized by the magnitude of
�i. Since �i today can be different from �i in the very
early universe, we do not have any constraint on �i in the
inflationary stage. Of course, ultimately, �i has to ap-
proach the observationally allowed values today. Con-
servatively, we have the constraint on the present value
�i < 10�7 in the Planck unit [17]. If we allow a relation
between the different �i, then we do not have any con-
straint on �i.

In our setup, the preferred frame is selected by the
constrained vector field u� which violates Lorentz sym-
metry. In cosmology, there also exists a natural preferred
frame, the so-called CMB rest frame. As is shown in the
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appendix, these two frames are the same in practice. This
degeneracy has not been well appreciated so far. Indeed,
the cosmology has been mostly discussed in the context of
the Lorentz invariant Einstein gravity. Once this degener-
acy is noticed, however, the Lorentz violating scalar-vec-
tor-tensor theory of gravity (5) turns out to be a possible
framework to describe the inflationary universe.

If �i � 0, the action (5) is reduced to the conventional
one. In that case, we have the chaotic inflation for a generic
potential V. For the exponential potential, we have the
exact power law inflation. Once we switched on �i, the
Lorentz violating vector affects the inflaton dynamics.
Hence, our first concern is how the Lorentz violation
modifies the picture of the chaotic inflationary scenario.
Our second aim is to find the exact inflationary scenario
with the Lorentz violation. Interestingly, we find exact
solutions in the absence of the inflaton potential.

III. LORENTZ VIOLATING CHAOTIC INFLATION

Now, let us consider the chaotic inflationary scenario
and clarify to what extent the Lorentz violating vector
affects the inflationary scenario.

In principle, the preferred frame determined by the
vector u� can be different from the CMB rest frame.
That would imply an anisotropic universe. However, align-
ment of these frames had been achieved during the cosmic
expansion as is explained in the appendix. Hence, we can
start with the homogeneous and isotropic space-time.
Usually, the metric ansatz is imposed after taking the
variation. With a homogeneous ansatz, however, we can
perform the reduction at the action level provided that the
lapse function is kept as a variable. Hence, we parametrize
the metric as

 ds2 � �N 2�t�dt2 � e2��t��ijdx
idxj; (6)

where we have included the lapse function N . After the
variation, one can choose the lapse function freely because
it is nothing but a choice of the time coordinate. Note that
the shift function is not necessary because the homoge-
neous ansatz kills the freedom of the spatial coordinate
transformation. In other words, we have no momentum
constraint in the homogeneous system. The scale of the
universe is determined by�. Since the spatial isotropy does
not allow spatial components of u�, we have to take

 u� �
�

1

N
; 0; 0; 0

�
; (7)

where the normalization is determined by the constraint
(4). Given these, we can calculate necessary quantities, for
example, riuj � _�=N �ji and other components vanish.
Now, substituting these quantities into the action (5), we
obtain

 S �
Z
dt

1

N
e3�

�
�

3

8�G
�1� 8�G�� _�2 �

1

2
_�2

�N 2V���
�
; (8)

where ���� � �1 � 3�2 � �3. Note that �4 does not
contribute to the background dynamics. One might think
that the reduced action (8) looks like a nonminimally
coupled scalar field [36,37]. However, the structure of the
equations of motion is quite different. In particular, the
feature of perturbations is completely different.

Let us deduce the equations of motion. Taking the
variation with respect to � and � yields the evolution
equations for them. As the action (8) has the time repar-
ametrization invariance, we also have the Hamiltonian
constraint which can be obtained by taking the variation
with respect to the lapse function N . We set N � 1 after
taking the variation to choose the cosmic time. Then, we
define the dimensionless derivative Q0 by

 

_Q �
dQ
d�

d�
dt
� Q0

d�
dt
: (9)

Thus, the equations of motion are finally deduced as

 

�
1�

1

8�G�

�
H2 �

1

3

�
1

2

H2�02

�
�
V
�

�
(10)

 

�
1�

1

8�G�

�
H0

H
�

1

2

�02

�
�
�0

�
� 0 (11)

 �00 �
H0

H
�0 � 3�0 �

V;�
H2 � 3�;� � 0; (12)

where �;� denotes the derivative with respect to �. We
have taken H � _� as an independent variable. As is usual
with gravity, these three equations are not independent.
Usually, the second one is regarded as a redundant
equation.

The above equation changes its property at the critical
value �c defined by

 8�G���c� � 1: (13)

When we consider the inflationary scenario, we usually
require to have enough e-folding number, say N � 70. Let
�i be the corresponding initial value of the scalar field. If
�c >�i, the effect of Lorentz violation on the inflationary
scenario would be negligible. However, if �c <�i, the
standard scenario should be modified (see Fig. 1). It de-
pends on the models. To make the discussion more spe-
cific, we choose the model

 � � 	�2; V � 1
2m

2�2; (14)

where 	 and m are parameters. For this model, we have

 �c �
Mpl����������
8�	
p : (15)
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As �i 	 3Mpl approximately in the standard case, the
condition �i > �c implies the criterion 	 > 1=�72�� 	
1=226 for the Lorentz violation to be relevant to the
inflation. For other models, a similar criterion can be easily
obtained.

Now, we suppose that the Lorentz violation is relevant
and analyze the two regimes separately.

A. Lorentz violating stage

For a sufficiently larger value of �, both the coupling
function� and the potential function V are important in the
model (14). During this period, the effect of Lorentz vio-
lation on the inflaton dynamics must be large. In the
Lorentz violating regime, 8�G�
 1, we have

 H2 �
1

3�

�
1

2
H2�02 � V

�
(16)

 

H0

H
�

1

2�
�02 �

�0

�
� 0 (17)

 �00 �
H0

H
�0 � 3�0 �

V;�
H2 � 3�;� � 0: (18)

To have the inflation, we impose the condition

 H2�02 � V (19)

as the slow roll condition. Consequently, Eq. (16) is re-
duced to

 H2 �
1

3�
V: (20)

Using Eq. (20), the slow roll condition (19) can be written
as

 �02 � �: (21)

Now, we also impose the condition H0=H� 1 as the
quasi-de Sitter condition. Then, Eq. (17) gives us the
condition

 �0 � �: (22)

We also require the standard condition

 �00 � �0: (23)

Thus, we have the slow roll Eqs. (20) and

 �0 �
V;�
3H2 � �;� � 0: (24)

For our example (14), we can easily solve Eqs. (20) and
(24) as

 ���� � �ie
�4	�: (25)

For this solution to satisfy slow roll conditions (21)–(23),
we need 	 < 1=16. Thus, we have the range 1=226< 	<
1=16 of the parameter for which the Lorentz violating
inflation is relevant. Note that, in our model (14), the
Hubble parameter (20) becomes constant to the lowest
order in the slow roll approximation as

 H2 �
m2

6	
; (26)

even though the inflaton is rolling down the potential. This
is a consequence of Lorentz violation. When the higher
order corrections in the slow roll approximation are taken
into account, the value of H receives the small corrections,
however, the Hubble constant remains constant. In fact,
perturbative calculations give a full order result

 H2 �

m2

6	

1� 8	
3

:

B. Standard slow roll stage

After the inflaton crosses the critical value �c, the
dynamics is governed entirely by the potential V. In the
standard slow roll regime 8�G�� 1, we have

 H2 �
8�G

3

�
1

2
H2�02 � V

�
(27)

 

H0

H
� 4�G�02 � 0 (28)

 �00 �
H0

H
�0 � 3�0 �

V;�
H2 � 0 (29)

The following arguments are standard. The usual slow roll
conditions give the slow roll equations

 H2 �
8�G

3
V (30)

FIG. 1. There is a critical point where the coupling between
the Lorentz violating vector and the inflaton becomes ineffective.
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 �0 �
V;�
3H2 � 0: (31)

In the simplest case V � 1
2m

2�2, the evolution of the
inflaton can be solved as

 �2��� � �2
c �

�
2�G

: (32)

The scale factor a�t� � e� can be also obtained as

 a�t� � exp�2�G��2
c ��2�t���: (33)

The standard inflation stage ends and the reheating com-
mences when the slow roll conditions are violated.

C. e-folding number

Now it is easy to calculate the e-folding number. Let �i
be the value of the scalar field corresponding to the
e-folding number N � 70. The total e-folding number
reads

 N �
1

4	
log

�i

�c
� 2�G��2

c ��2
e�; (34)

where �e 	 0:3Mpl is the value of scalar field at the end of
inflation. Note that the first term arises from the Lorentz
violating stage. As an example, let us take the value 	 �
10�2. Then, �c 	 2Mpl. The contribution from the end of
inflation is negligible. Therefore, we get �i 	 12Mpl.

In this simple example, the coupling to the Lorentz
violating sector disappears after reheating. Hence, the
subsequent homogeneous dynamics of the universe is the
same as that of Lorentz invariant theory of gravity.
However, it is possible to add some constants to �i, which
are consistent with current experiments. In that case, the
effect of the Lorentz violation is still relevant to the sub-
sequent history.

So far, we have considered a special model where the
coupling � has the same power as the potential V. It is
straightforward to extend our consideration to more gen-
eral cases.

IV. LORENTZ VIOLATING INFLATION WITHOUT
POTENTIAL

In this section, we will investigate a purely Lorentz
violating inflationary model.

A. Exact solutions

It is interesting to observe that we have inflation even in
the case V � 0. In this case, Eqs. (10)–(12) read

 1 �
�02

6 ��
(35)

 

H0

H
�

1

2 ��
�02 �

��0

��
� 0 (36)

 �00 �
H0

H
�0 � 3�0 � 3 ��;� � 0; (37)

where we have defined the variable �� � �� 1=�8�G�.
Substituting Eq. (35) into Eq. (36), we have

 � ��H�0 � 3 ��H � 0 (38)

It yields ��H / e�3�.
The condition for the accelerating universe �a > 0 is now

 

H0

H
>�1: (39)

Using Eqs. (35) and (36), we can reduce the condition (39)
to

 �log ���0 <�2: (40)

As the scalar is rolling down, Eq. (35) can be solved as

�0 � d�=d� � �
�������
6 ��

p
. Thus, finally, we obtain the con-

dition for �� as

 

����
6
��

s
d ��
d�

> 2: (41)

Let us consider an exactly solvable model, �� � 	�2. In
this simplest case, the condition (41) yields 	 > 1=6. We
can solve Eq. (35) as

 � / e�
����
6	
p

�: (42)

Therefore, we have

 H / e��=p; p �
1

3� 2
������
6	
p : (43)

There are three cases to be considered, i.e.,
(i) 1=6< 	< 3=8, (ii) 	 � 3=8, (iii) 3=8< 	.

(i) 1=6< 	< 3=8
In this case, p > 0. Hence, it is easy to solve
Eq. (43)

 _�	 e��=p (44)

as

 a�t� 	 tp; p > 1: (45)

This is a power law inflation.
(ii) 	 � 3=8

In this case, 1=p � 0. This is nothing but the de
Sitter solution

 a�t� 	 eHt: (46)

The Hubble constant should be determined by the
initial condition. Although the space-time itself is
de Sitter, the scalar field shows a nontrivial time
evolution (42). Therefore, it is interesting to calcu-
late the curvature perturbations in this model.

(iii) 3=8< 	
In this case, p � �jpj< 0. Hence, the solution
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becomes

 a�t� 	 ��t��jpj; t < 0: (47)

Thus, this solution represents a superinflationary
universe. As the weak energy condition is effec-
tively violated for this case, we need to check the
stability of the solution. Moreover, this kind of
universe encounters a singularity in the future (at
t � 0). It is possible to resolve this singularity by
adding the term appeared in the string 1-loop cor-
rections [38,39]. It is also important to study if the
behavior of perturbations is also similar or not
[40,41]. We leave these issues for the future work.

B. Inflationary scenario

In the absence of the inflaton potential, we have obtained
exact solutions, i.e., the power law inflation, the de Sitter
inflation, and the superinflation. If we slightly modify ��,
the inflation will end when the condition (41) is violated.
Note that when the scalar varies from �i to �e, the
e-folding number of the universe can be calculated as

 N �
1������
6	
p log

�i

�e
: (48)

We expect that the reheating would occur during the os-
cillation phase. It should be stressed that the above infla-
tions are completely associated with the Lorentz violation.

V. EVOLUTION OF TENSOR PERTURBATIONS

Needless to say, the evolution of cosmological perturba-
tions needs to be studied. Because of the Lorentz violation,
the velocity of the gravitational waves are different from
the velocity of the light. This and the nontrivial coupling
functions �i would cause interesting consequence on the
spectrum of tensor, vector and scalar perturbations. In
particular, the vector perturbations are intriguing since
there are no vector perturbations in the Lorentz invariant
inflationary scenario. However, as the calculation is very
complicated, we leave the complete analysis for future
publication. Instead, here, we discuss the simplest case,
namely, tensor perturbations. Even in this case, we can
make some interesting predictions.

The tensor part of perturbations can be described by

 ds2 � �dt2 � a2�t���ij � hij�t; x
i��dxidxj; (49)

where the perturbations satisfy hii � h;jij � 0. The qua-
dratic part of the action is given by

 S �
Z
d4x

a3

16�G

�
1

4

 _hij _h0ij �

1

4a2 hij;kh
ij;k
�

(50)

where we have defined

 
 � 1� 16�G��1 � �3�: (51)

Apparently, the velocity of the gravitational waves is not 1.
To have a real velocity, we have to impose 
 > 0. Hence,
we assume �1 and �3 are constant, but �2 is time depen-
dent and so is �.

In the case of chaotic inflation model, the Hubble pa-
rameter is constant (26) during the Lorentz violating stage.
Therefore, the spectrum is extremely flat although the
inflaton is rolling down the potential.

VI. CONCLUSION

We have examined the impact of a model of Lorentz
violation on the inflationary scenario. As a specific model,
we have considered the spontaneous violation of the
Lorentz symmetry due to a vector field. More specifically,
we have investigated scalar-vector-tensor theory of gravity
where the vector is constrained to be unit and timelike.

First, we have examined the chaotic inflationary sce-
nario and found that the Lorentz violation modifies the
dynamics of the inflaton for a certain parameter region in
our model. We have shown that the inflationary stage
breaks into two parts; the Lorentz violating stage and the
standard slow roll stage. We found that the universe is
expanding as a de Sitter space-time in the Lorentz violating
stage although the inflaton field is rolling down the poten-
tial. Moreover, we have calculated the e-folding number by
taking into account the above modification and shown that
we can get enough e-folding.

In this paper, we have considered the simplest case �	
V 	�2. In other cases, for instance, �	�4 and V 	�2,
the Hubble parameter H increases during the Lorentz
violating stage. In the standard slow roll stage, the
Hubble parameter H decreases. Therefore, we can easily
generate the spectrum with the initial (steep) blue spectrum
and the later (slightly) red spectrum. This may explain the
deficiency of the CMB power spectrum at large scales
observed by WMAP [42].

We have also shown that the inflation can be realized
without the inflaton potential. Depending on the value of
the parameter 	, we have obtained exact solutions, i.e. the
power law inflation, de Sitter inflation, and the superin-
flation. Interestingly, even in the exact de Sitter case, the
dynamics of the scalar field turns out to be nontrivial. As
the weak energy condition is effectively violated for the
superinflationary solution, we definitely need to check the
stability of the solution. In all cases, the inflation ends
when the coupling function �� is slightly modified from
exactly solvable cases. These exactly solvable models are
important to understand the evolution of cosmological
perturbations in the Lorentz violating theory of gravity.

It would be interesting to study the evolution of fluctua-
tion completely. We briefly discussed the case of tensor
perturbations. If the vector modes of perturbations can
survive till the last scattering surface, they leave the rem-
nant of the Lorentz violation on the CMB polarization
spectrum. It is also intriguing to seek for a relation to the
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large scale anomaly discovered in CMB by WMAP [43–
46]. The calculation of the curvature perturbation is much
more complicated. However, it must reveal more interest-
ing phenomena due to Lorentz violating inflation. The
tensor-scalar ratio of the power spectrum would be also
interesting. These are now under investigation [47].
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APPENDIX: ALIGNMENT OF PREFERRED
FRAMES

Here, we would like to show that the alignment of two
frames, the CMB rest frame and the frame determined by
u�, will occur during the cosmological evolution. For
simplicity, we ignore the scalar field, instead we add a
cosmological constant term to the action. The action is
 

S �
Z
d4x

�������
�g
p

�
1

16�G
�R� 2�� � �1r

�u�r�u�

� �2r
�u�r�u� � �3�r�u��2

� �4u�u�r�u�r�u� � ��u�u� � 1�
�
: (A1)

We consider the Bianchi Type I metric as an ansatz:
 

ds2 � �N 2�t�dt2 � e2��t��e�4���t�dx2

� e2���t�fe2
��
3
p
���t�dy2 � e�2

��
3
p
���t�dz2g� (A2)

and now the vector field can be tilted as

 u� �
�

1

N �t�
cosh��t�; e���t��2���t� sinh��t�; 0; 0

�
: (A3)

Since the anisotropic space-time is parametrized generi-
cally, the above ansatz for the vector field is sufficiently
general. Thus, in general, the cosmic frame is different
from the preferred frame determined by u�. Substituting
the metric and the vector field into the action (A1), we
obtain
 

S �
Z
dt

1

N
e3���A _�2 � �N 2 � B� _�2

� � _�2
��

�D _�2 � E� _� _��F�2 _�2�; (A4)

where

 A �
3

8�G
f1� 8�G��1 � 3�2 � �3�g; (A5)

 B �
3

8�G
f1� 16�G��1 � �3�g; (A6)

 D � �1 � �4; (A7)

 E � 2�3�2 � �3 � �4�; (A8)

 F � 2�1 � 9�2 � 3�3 � �4; (A9)

 � �
�

8�G
: (A10)

By taking the variation of (A4), we obtain

 A _�2 � � � 0; (A11)

 

d
dt
�e3� _��� � 0; (A12)

 A
d
dt
�e3� _�� � 3�e3� � 0; (A13)

 E�
d
dt
�e3� _�� � 2D

d
dt
�e3� _�� � 2Fe3�� _�2 � 0;

(A14)

where we kept up to the first order with respect to �� and
�. From Eq. (A12), it turns out that the anisotropy decays
as the universe expands. Now, we can deduce the master
equation for the tilt � as

 

��� 3 _� _��
�
F
D

_�2 �
3E

2AD
�
�
� � 0: (A15)

Using Eq. (A11) and the definitions (8) and (9), we have

 

��� 3 _� _��
2�
A
� � 0: (A16)

For the effective gravitational coupling to be positive, we
need A > 0. Thus, (A16) tells us that the tilt � will vanish
during the cosmic expansion.

Namely, the CMB rest frame and the preferred frame
determined by u� are the same in practice. What we did in
this paper was reveal what this degeneracy means in infla-
tionary cosmology.
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