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Scalar field dark matter: Nonspherical collapse and late-time behavior
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We show the evolution of nonspherically symmetric balls of a self-gravitating scalar field in the
Newtonian regime or equivalently an ideal self-gravitating condensed Bose gas. In order to do so, we use a
finite differencing approximation of the Schrddinger-Poisson (SP) system of equations with axial
symmetry in cylindrical coordinates. Our results indicate: (i) that spherically symmetric ground state
equilibrium configurations are stable against nonspherical perturbations and (ii) that such configurations
of the SP system are late-time attractors for nonspherically symmetric initial profiles of the scalar field,
which is a generalization of such behavior for spherically symmetric initial profiles. Our system and the
boundary conditions used, work as a model of scalar field dark matter collapse after the turnaround point.
In such case, we have found that the scalar field overdensities tolerate nonspherical contributions to the

profile of the initial fluctuation.
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I. INTRODUCTION

Recently, scalar fields have played different roles in
several scenarios related to astrophysical phenomena.
The reason is that such fields are quite common in theo-
retical physics, specially branches related to theories be-
yond the standard model of particles, high dimensional
theories of gravity an tensor-scalar theories alternative to
General Relativity. In the present research we deal with the
scalar field dark matter model (SFDM), which assumes the
dark matter to be a classical minimally coupled real scalar
field determined by a cosh-like potential. Such potential
behaves exponentially at early stages of the universe and as
a free field (quadratic potential) at late times, which pro-
vides the field with the necessary properties to mimic the
behavior and successes of cold dark matter at cosmic
scales. In fact in [1-3] it was shown that the mass parame-
ter of the scalar field gets fixed by a desired cut-off of the
power spectrum, which has two effects: (i) the theory gets
fixed and (ii) there is no overabundance of substructure,
which standard cold dark matter cannot achieve. One
important consequence is that the boson has to be ultralight
with masses around m ~ 10721723 eV, This is a substan-
tially important bound, because in the standard dark matter
models there are no such ultralight dark matter candidates.
The benefit obtained however, is two fold: the scalar field
can represent a Bose Condensate of such ultralight parti-
cles and the Compton wavelength forbids the scalar field to
form cuspy structures. In fact, in [4] it was shown that in
order for the scalar field interaction to become long range,
the system only needs to be condensed.

After the fluctuation analysis about this candidate and its
corresponding concordance with observations—the model
mimics the properties of the ACDM at cosmic scale—-,
the next step has to be in the direction of the study of
structure formation and the explanation of local phe-
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nomena, like rotation curves in galaxies. Fortunately there
have been important advances in such direction [5,6].
About the gravitational collapse, in [7] it was shown that
relativistic self-gravitating scalar field configurations can
be formed when they have galactic masses provided the
mass of the boson is ultralight. Nevertheless, because the
gravitational field in galaxies is weak, the race turned into
the newtonian limit of the system of equations, which was
developed in [8]. The price to be paid is that it is not
possible to apply the approach at very early stages of the
evolution of the universe, and the profit is that the scalar
field in the nonrelativistic regime provides a clear inter-
pretation within the Bose-Condensate formalism and clas-
sical Quantum Mechanics. In both cases, the strong gravity
and the Newtonian regimes, a wide range of arbitrary
spherically symmetric initial configurations collapse and
form gravitationally bounded and virialized objects with a
smooth density everywhere called oscillatons (except those
that are related to unstable initial configurations that col-
lapse into black holes in the strong field regime) [9,10].
This property seems to be fundamental in order to form
galactic halos, because several high resolution observa-
tions are consistent with regular galactic dark matter pro-
files in the center of the galaxies [11], which implies that
this type of condensate could be an alternative to solve the
cuspy density profiles of dark halos.

Two pieces of the model that are in progress are the high
energy fully relativistic case, including exponential-like
scalar field potentials and the free field weak energy new-
tonian, both are complementary and necessary to explore
the SFDM hypothesis. Inspired in a late-time astrophysical
scenario, at stages after the turnaround point where weak
field applies and the field is free, the question is whether
dark matter halos are gravitationally bounded objects of
scalar field which have been formed through a gravitational
collapse of initial scalar field overdensities. The newtonian
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version of the Einstein-Klein-Gordon system of equations
is provided by the Schrodinger-Poisson equations (SP),
which are the ones that lead the gravitational collapse of
the system. This approximation should work for the evo-
lution of an initial density profile after the epoch when the
overdensity fluctuation starts to evolve independently of
the cosmic expansion.

In the recent past, it has been found that in spherical
symmetry the SP system has equilibrium solutions of two
types: stable, for which the wave function is nodeless
(called sometimes ground state configurations) and others,
for which the wave function has nodes (called sometimes
excited configurations) that decay into ground state solu-
tions. From these solutions only the ground state ones are
stable [9,12]; even further, it has been found that such
configurations behave as late-time attractors for initially
quite arbitrary spherically symmetric density profiles
[8,13].

In [8] it was shown that free scalar field overdensities
after the turnaround virialize and tend to form ground state
configurations. Because of a very general scale invariance
of the Schrodinger-Poisson system of equations such re-
sults were also valid for a structure of arbitrary mass [9]. In
[13] was shown that the spherical collapse of SFDM tol-
erates the introduction of a self-interaction term, which on
the other hand is associated to the self-interaction term of a
self-gravitating Bose-condensate [14], and helps at allow-
ing diverse sizes and masses of the final configurations.

In this paper we go a step forward and study the collaps-
ing process of nonspherical initial configurations, in par-
ticular, those involving at most quadrupolar terms. In order
to achieve this goals an axisymmetric code that solves the
SP system is needed. We choose to deal with cylindrical
coordinates denoted by (x, z), where x is the radial coor-
dinate and z the axial coordinate. The SP system for the
free field case in these coordinates reads
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where 7 = ¢ = 1 and we are using the rescaled variables
X — mx, z— mz, t— mt and the wave function ¢ —
v4wGip. This set of coupled partial differential equations
in two spatial dimensions plus time is the core of the
present manuscript. As mentioned before, these equations
have stable solutions in spherical symmetry (see [13] for
solutions also including a nonlinear term in the
Schrodinger equation); such solutions have shown to be
not only stable, but also late-time attractors for quite
arbitrary initial density profiles [9,13]. Therefore, our
main task in the present manuscript will be to show that
such solutions are still attractors even for nonspherically

symmetric initial density profiles.
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In the next section we present the code we constructed
for the present purpose. In Sec. III we show how a ground
state configuration reacts under nonspherical perturba-
tions. In Sec. IV we show the evolution and fate of non-
spherical initial density profiles. Finally in Sec. V we draw
some conclusions.

II. THE CODE
A. Description

The present code is built under the same numerical finite
differences method used in the spherically symmetric case
in [9,13]. We approximate the continuous equations (1) and
(2) using centered finite differencing for both coordinates x
and z on a uniform grid defined by x = pAx and z = gAz,
p, q integers; we used the same resolution in both direc-
tions (Ax = Az). The spatial differential operator is the
same in both equations and we dealt with both in the same
manner: aside of the usual finite differencing expression
for the space derivatives only two delicate items were
included related to the first order derivative with respect
to x in (1) and (2): (i) we staggered the grid in the
x-direction in order to avoid the divergence of such term
and (i1) we transformed such term into % % = 2%, with
the last expression a derivative with respect to x.

1. Schriodinger equation

In the present case this is the evolution equation of the
system. We discretize time ¢ = nAt, n an integer and At
the resolution in time. We solve this equation using a
second order accurate explicit time integrator, which is a
modified version of the usual three steps iterative Crank-
Nicholson method [15].

Instead of using a characteristic analysis of the propa-
gating modes to set an open boundary at the edges of the
domain, we decided to use a sponge in the outermost
region of the domain. The sponge is a concept used suc-
cessfully in the past when dealing with the Schrodinger
equation (for detailed analyses see [9,16]). This technique
consists in adding up to the potential in the Schrodinger
equation an imaginary potential. The result is that in the
region where this takes place there is a sink of particles,
and therefore the density of probability approaching this
region will be damped out, with which we get the effects of
a physically open boundary.

2. Poisson equation

Equation (2) is an elliptic equation for U which we solve
using the 2D five-point stencil for the derivatives and a
successive over-relaxation (SOR) iterative algorithm with
optimal acceleration parameter (see e.g. [17] for details
about SOR). In order to impose boundary conditions we
made sure the boundaries were far enough for the mass
M = [||*d®x to be the same along the three faces of the
domain and used the monopolar term of the gravitational
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field; that is, we used the value U = —M/r along the

boundaries with r = 4/x?> + z? for the gravitational poten-
tial. At the axis we demanded the gravitational potential to
be symmetric with respect to the axis.

B. Construction of equilibrium initial data
Initial data

The nature of the SP system allows one to have plenty of
freedom about choosing the initial data, that is: once we
choose an initial wave function ¢ we integrate (2) at initial
time; this means that the initial wave function is quite
arbitrary. In fact we implement this type of initial data
for the case of nonspherical collapse. Nevertheless, for the
purpose of testing our numerical techniques, we decided to
use initial data corresponding to spherically symmetric
ground state configurations. Here we briefly describe how
these data are obtained.

In spherical symmetry Egs. (1) and (2) read:

N

la’ﬁ— ZW(N’//)-’_UI’// 3)
62
2 U) = gy, @)
ar

where r = /x? + 72 is the spherical radial coordinate. It is
assumed a time dependence of the type ¢ = ¢(r)e’®’, and
demand the conditions of regularity at the origin ¢(0) =
d,¢(0) = 0 and isolation ¢(x — o0) = 0, the system be-
comes an eigenvalue problem where the frequency of the
wave function is the eigenvalue. The system to be solved
reads

82
ﬁ(rtﬁ) =2r(U — ) ®)

02 5
W(FU) =r¢=. (6)

We use a shooting method that bisects the value of w for a
given central value of ¢ that satisfies the boundary con-
ditions. That is, one constructs a one parameter family of
solutions labeled by central field, and a given frequency is
found for each value of the label as shown in [9,13].
Excited solutions can be also constructed by allowing ¢
to vanish at a given number of points, but always demand-
ing the satisfaction of the boundary conditions. Up to here
the construction in spherical symmetry. Once we account
with these data: (i) we interpolated the wave function of the
spherical data in the xz-grid and (ii) resolved the Poisson
Eq. (2), then we have initial data for ground state configu-
rations in our axially symmetric domain.

The system (3) and (4) is invariant under a clever scaling
property given by

{t,r, U, ¢} — {1725, 1717, 220, A2} (7

PHYSICAL REVIEW D 74, 063504 (2006)
{p, M, K, W} — {X*p, AM, VK, P W} ®)

where U is the gravitational potential, ¢ is the spatial part
of the wave function, p is the density of probability, M is
the integral of p, K and W are the expectation value of the
kinetic and gravitational energy, respectively, and A is a
scaling parameter. Property (7) and (8) implies that if a
solution is found for a given central field value gz’A>(O) = q§0
(e.g. $(0)=1= p(0)=1) it is possible to build the
whole branch of ground state equilibrium configurations.
For instance, if the plot Mvsp(0) is to be constructed, we
know from [9] that for $(0) = p(0) = 1 we have M =
2.0622; using the relations (7) and (8) for ¢ and M we find
A= (p/p)"/* = M/M, which implies that the desired plot
is given by the function M = 2.0622(p(0))"/* for all cen-
tral values of the scalar field density. This function is used
later on when showing the attractor behavior of these
configurations.

C. Testing the code with ground state configurations

The steps followed in the construction of the solutions to
Egs. (1) and (2) can be summarized as follows: (i) choose a
type of initial data for the r = 0 slice (x, 0), (ii) populate
the xz grid with those data, (iii) solve Eq. (2) and get a
gravitational potential, (iv) using such potential leap the
system using (1) a At time slice further, (v) use the ob-
tained wave function to solve again (2), (vi) then repeat the
loop 4, 5 either until the physics starts going wrong (physi-
cal quantities lose convergence, dissipative effects show
up) or the cpu-time cannot be afforded.

We test this code using systems whose properties we
already know from their construction, these are the ground
state equilibrium configurations constructed in the pre-
vious subsection; they show a particular property: in the
continuum limit the wave function oscillates with constant
frequency w, which implies the density of probability p =
|s|> and therefore the gravitational potential U remain
time-independent. Unfortunately we do not account with
infinite resolution and therefore we are solving the discre-
tized versions of Egs. (1) and (2); instead we solve the
second order finite differencing approximation of those
equations, which is nothing but a truncated expansion of
the solution of the functions involved. Let us describe the
situation with an example: assume we start with a ground
state configuration with (0, 0) = 1 and therefore the cen-
tral density p(0, r) = p(0,0) = 1 at all times; first, as we
are solving a truncated system of equations the time-
independence of the central density cannot be satisfied in
a strict fashion, instead we can at most demand the central
density to converge to 1 at all times; second, due to the
truncation error of the finite differencing we are perturbing
the system all the times and therefore the system should
behave as an stable configuration that is perturbed and thus
should oscillate with the modes obtained from a perturba-
tion theory analysis. Therefore we have a two-fold trap to
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Left: we show the Fourier transform of the central density of the configuration after the evolution has been performed; the

main peak shows up at y = 0.046, which coincides with the result found using the perturbation theory in spherical symmetry from [9].
Right: the second order convergence of the central density to the value one is shown using two different resolutions. The runs were
carried out on a x € [0, 20], z € [—20, 20] domain with resolutions Ax = Az = 0.1, 0.2. A Cauchy type convergence test decides
whether or not we have convergence: the fact that the low resolution run shows a central density 4 times bigger than the one with the
double resolution with respect to the value one, indicates the second order convergence to one.

verify whether or not the code is solving the physical
system whose properties we know beforehand.

With all this in mind we evolved such a configuration
with (0,0) = 1 with our code and the results are as
follows. The Fourier transform in Fig. 1 of the central
density reveals that the main frequency of oscillation is
v = 0.046 which coincides with the result predicted by the
first order radial perturbation theory developed in [9]; this
indicates that despite the nonspherical nature of our grid,
the perturbation due to the discretization of the physical
domain is spherical. On the right hand side of Fig. 1 we
show the second order convergence of the central density
to one, which indicates that our approximations work as
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FIG. 2. In this plot we show the meaning of virialized con-
figurations. That is, due to discretization errors when solving the
SP equations, there is an intrinsic error in the calculations. We
say the system is virialized only in the continuum limit. This is
the reason why we show here the second order convergence also
for the virial relation. Because this example corresponds to an
ground state equilibrium configuration, which we know is vi-
rialized, we can be confident that not only the evolution code, but
also the diagnostics tools work fine.

they should when we refine the grid and approach the
continuum limit.

In Fig. 2 we verify that ground state equilibrium con-
figurations are virialized in the continuum limit, where the
relation 2K + W = 0 is satisfied with second order con-
vergence. The quantities K and W are calculated as fol-
lows:

K= —% f W V2Ydix 9)

1
W = 3 f:,lf*Utﬂch (10)
where the integrations are performed over the numerical
domain.

III. NON-SPHERICAL PERTURBATIONS

It is still possible to use the discretization error to perturb
a ground state equilibrium configuration in a nonspherical
way, for instance, using different resolutions in the x and z
directions (see [18] for the use of such trick in relativistic
boson stars). However this time we choose to fully-truly
perturb the system with the addition of a shell of particles
as done in [19], but this time using nonspherical shells like
in [20]. We start with a spherically symmetric ground state
equilibrium configuration and add up a contribution pro-
portional to a given spherical harmonic. Thus, we propose
initial data given by

l//(X, t) = ‘r/lground + 5‘/’ (1 1)

where 8¢ = e V(32 q,Y?), where the coeffi-

cients a; = Ale’(Vx”Zz”O)z/ 7 are gaussian like shells
added to the real part of the wave function of the ground
state configuration; on the other hand, the factor

e~ k24" contributes with a nonzero initial speed of
the perturbation; notice that the up labels of the spherical
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FIG. 3. The initial density profile of the perturbed equilibrium
configuration. The central blob corresponds to the equilibrium
configuration, whose magnitude is one at the origin. The pertur-
bation thus consists of two blobs coming with speed &, from the
poles and a belt of particles over the equatorial plane.

harmonics are all zero because otherwise they cannot be
defined within an axially symmetric grid. Thus the com-
plete set of parameters characterizing the perturbation are:
ro, A;, o and k,.

We practiced several combinations of coefficients ay,
including spherical perturbations containing only the Y§
contribution and found similar results. We only present the
one with the parameters: ry = 10.0, A = A; =0, A, =
0.02, o = 2.0, k, = —2.0 carried out on a grid x € [0, 20],
7z € [—20, 20] with resolution Ax = Az = 0.2. The per-
turbation shows a quadrupolar contribution. In Fig. 3 we
show the density of probability p at initial time. The mass
of the shell is 0.8% that of the ground state equilibrium
configuration.

In Fig. 4 we show the evolution of such system. What
can be seen is that the system relaxes and virializes around
a spherical ground state equilibrium configuration. The
original equilibrium configuration is recovered, which

PHYSICAL REVIEW D 74, 063504 (2006)

was verified in the following terms: the mass M and the
total energy E = K + W approach the values of the equi-
librium configuration, the relation 2K + W converges to
zero in the continuum limit after a short time, the system
has a nonspherical initial shape and after a while the
ellipticity converges to zero in the continuum limit. This
reasons indicate that these ground state equilibrium con-
figurations are stable against nonspherical perturbations
that involve the introduction of a quadrupolar shell of
particles.

IV. NON-SPHERICAL COLLAPSE

In this section we essay a step forward in the obvious
direction, that is, the collapse of nonspherical initial pro-
files for the SP system of equations. In fact we show that
spherically symmetric ground states, are late-time attrac-
tors for initial configurations which are not spherically
symmetric.

A. Requirements for a nonspherical collapse

The method followed to verify that nonspherical initial
configurations evolve toward a spherically symmetric
ground state is as follows. (i) Given the evolution of a
nonspherical initial profile (X, 7) is carried out, we obtain
via a Fourier Transform of a physical quantity, e.g. the
central density p”, the frequency y of the fundamental
mode of oscillation of the system; We assume that 7y
corresponds to the characteristic frequency of oscillation
of a linearly perturbed ground state ¥peryrhed toward which
i is evolving to. This is because the intrinsic perturbation
of the system associated to the discretization of the equa-
tions, we do not expect that, even for large evolution times,
¢ matches exactly a stationary ground state. (ii) Once we
estimate f (as done for the construction of Fig. 1) we can
calculate the rescaling parameter A that relates perurbed
and the ground state with #(x, 0) = 1. Using the definition
of frequency and the rescaling relation for 7 given by (7) the
rescaling parameter is calculated as A = (f/f)/2. (iii) The
rescaling parameter A lets us calculate the nonhat quanti-
ties in (8) for the ground state ¥perirnea- Because we are not
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FIG. 4. Left: evolution of the total energy; it can be observed that initially the whole system appears overwarmed due to the presence
of the perturbation and its dynamical state; as the time runs, in a rather short time, the system recovers the total energy of the original
configuration. Right: the quantity 2K + W is monitored and it relaxes and converges to zero with second order.
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in the continuum limit we can at most demand that the
physical quantities for ¢(x, r), such as its density pf and
mass M, converge to those of a ground state configura-
tion. (iv) However, the information related to the conver-
gence to an equilibrium configuration is not enough and we
also verify that the fate of ¢ is a spherical configuration.
We define the ellipticity of the system as the integrated
difference between plf = p(0,z, 1) and pﬁ{' = p(x,0,1)
measured from the center of mass of the configuration.
We observe for all our nonspherical initial configurations
that after a transient period their ellipticity of the system
relaxes and becomes zero in the continuum limit.
(v) Finally, for all the evolved initial configurations we
verify that the virialization condition is satisfied as shown
in the perturbation case in Sec. III.

B. Bigger perturbations

In order to illustrate this we show the evolution of a
ground state grounq Plus a considerable nonspherical den-
sity contribution which can be already considered to be a
nonspherical initial profile. We evolved initial configura-
tions of the form

QII(X: t) = '»bground + EIQ:OQIY? (12)

where a; = Ajexp[—r*/o7] is a gaussian with r =
Vx? + 7% centered at the origin, width ¢, and real ampli-
tude A,. Several runs were made for different A; and o,
and here we present only a representative one. In all cases
the result is that the whole system evolves toward a ground
state with a mass considerably bigger than that of ¥gouna
alone. The way in which the system evolves to a ground
state is through the gravitational cooling process [9,13],
which is powered by the ejection of scalar field.

This attractor behavior has been shown for spherically
symmetric configurations in [13] and is shown here for the
first time for the case of nonspherical initial profiles. Here
we present the results for the initial configuration for which
Poromnd(0,0) =2, I =1, Ay =1 and o; = 2. The mass
added to the system is the order ~3% that of the original
ground state configuration, which implies the following
result: some of the added particles joined the ground state
configuration and evolved toward another rescaled ground
state configuration different from the original one, simply
because it is not a small perturbation this time. The evolu-
tion was carried out on a grid x € [0, 12], z € [—12, 12]
with resolutions Ax = Az =0.1 and Ax = Az = 0.15.
For this configuration we found the fundamental frequency
at late time to be f = 0.0983, which gives a rescaling
parameter of A = 1.462. The central density and mass of
the ground state ¢, associated with this specific A are
M, =3.014 and p! = 4.563. In Fig. 5, we show the
evolution of the mass M, versus the central density pf
of the state ¢ for the two different resolutions previously
specified. The solid line is the branch of all the ground
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FIG. 5. Evolution of the mass of the initial configuration versus
the central density specified in the text. The resolutions used are
Ax = Az = 0.1 (dotted) and Ax = Az = 0.15 (dashed). The
solid line represents the branch of spherical ground states.
considering our calculations are second order convergent, from
these two runs with the respective resolutions, we infer that the
configuration in the continuum limit is that marked with a cross.

states constructed as indicated in section II and the cross
symbol corresponds to the state with the parameters above.

Convergence of M, and pf quantities to the star in the
plot is shown also in Fig. 5. The convergence is second
order and the stars indicate the configuration we expect the
system will relax onto for each resolution. A convergence
analysis would reveal second order approach toward the
configuration marked with the star. In Fig. 6, we show the
ellipticity of the system; we can see that the system relaxes

3 ; ; ; ; ‘

— Ellipticity

0 o0 zdoo 00 40‘00 ‘ so‘oo
t

FIG. 6. Evolution of the Ellipticity and the expression 2K +

W. It is shown that after a while the initial axisymmetric

configuration evolves toward a spherical one as the Ellipticity

goes to zero. On the other hand as 2K + W oscillates around

zero with decreasing amplitude we conclude that the system
tends to a virialized state.

063504-6



SCALAR FIELD DARK MATTER: NONSPHERICAL ...

and becomes spherical. Also in this figure it is shown that
the system is virialized.

C. Non-Spherical initial profiles

What is in turn is to investigate the evolution of axisym-
metric initial configurations. We choose these initial data to
have the form

(x, 1) = 23 A exp[—r?/a?]Y? (13)

where r is as before, o is the width of a gaussian and A;
a real amplitude. Several runs were made for different A;
and o; here we present the results for the initial configu-
ration with A3 =9.0, A, = A, =A; =10 and oy =
o1 = 0, = g3 = 1.5. The evolution was carried out on a
grid x €[0,12], z €[—12,12] with resolution Ax =
Az=0.1 and Ax = Az = 0.15. For this configuration
we found a fundamental frequency f = 0.128 that implies
a rescaling parameter A = 1.669. The central density and
mass of the ground state ¢, associated with this specific A
are M, = 3.441 and p, = 7.75 respectively, a point which
is marked with a cross in Fig. 7. In such Figure we show the
evolution of the mass M, versus the central density pf of
the state ¢ for the two grid resolutions previously specified.
The solid line is the branch of all the ground states con-
structed as indicated in Sec. II. The stars are the configu-
rations the system is approaching to for the different
resolutions; because we know such systems are only ap-
proximately an equilibrium configuration we practiced a
Richardson extrapolation calculation and found that in
terms of mass and central density, in the continuum limit
-assuming the second order convergence we have in our
algorithms- the cross is the configuration these results

352

35+

348—

346

3.44—

3421

FIG. 7. Evolution of the central density and mass of the initial
configuration specified in the text. We used once again resolu-
tions Ax = Az = 0.1 (dashed) and Ax = Az = 0.15 (dotted).
The solid line represents the branch of spherical ground states.
As in the previous subsection, the stars correspond to the states
our runs tend to, and the cross indicates the configuration we
would achieve with infinite resolution.
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— Ellipticity

0 500 000 1500 2000 2500

FIG. 8. Temporal evolution of the Ellipticity and the expres-
sion 2K + W of the initial configuration specified in the text. It is
shown that after a while the initial axisymmetric configuration
evolves toward a spherical one as the Ellipticity goes to zero. On
the other hand as 2K + W oscillates around zero with decreasing
amplitude we conclude that the system tends to a virialized state.

converge to. Thus in Figs. 7 and 8 we show that the system
evolves toward a spherical and virialized configuration.

V. CONCLUSIONS

We have presented a new code designed to solve the SP
system with axial symmetry in cylindrical coordinates. We
have shown it passes the necessary testbeds of stability and
consistency with expected results related to spherically
symmetric ground state equilibrium configurations.

We perturbed ground state equilibrium configurations
with rather general axially symmetric shells of particles,
which were proportional to the first axisymmetric spherical
harmonics. Moreover, these shells were endowed with an
initial speed toward the equilibrium configuration. The
main result is that ground state configurations are stable
against this type of perturbations.

Finally, we have evolved axisymmetric initial profiles,
and showed that spherically symmetric ground state equi-
librium configurations play the role of late-time attractors.
This is a generalization of the same result when the initial
profiles are spherically symmetric [13]. We have thus
shown that the final state of a nonspherical self-gravitating
scalar field fluctuation is a ground state spherically sym-
metric solution. Thus we showed that such configurations
are late-time attractors not only for initial spherically
symmetric configurations but also for quite general initial
axisymmetric shapes.

In the context of the scalar field dark matter model we
have quite a new result: the collapse of overdensities
tolerates an initial nonspherical contribution to the initial
profiles, and moreover, initially axisymmetric profiles tend
toward a spherical ground state.

063504-7



ARGELIA BERNAL AND F. SIDDHARTHA GUZMAN

About the process of virialization, with the results at
hand we are unable to establish whether the gravitational
cooling (powered by the emission of scalar field) is the
only responsible for the relaxation of the system. The cases
involving a nonzero quadrupolar contribution to the gravi-
tational potential might allow one to formulate the study of
another channel, that of the emission of gravitational
waves, which would be the subject of a further
investigation.

Definitely a major application of the tools shown in this
paper is the demonstration of the stability properties of
rotating solutions to the SP system of equations con-
structed in the past [12,21]. It remains unclear whether
excited state solutions representing spinning configura-

PHYSICAL REVIEW D 74, 063504 (2006)

tions are stable, and whether such solutions could contrib-
ute to the SFDM possibilities in terms of quick virialization
of collapsed structures and other dynamical properties, for
instance, the noncupsy density profile might demand a
considerably important spherical contribution in the case
the wave function has odd parity.

ACKNOWLEDGMENTS

This research is partly supported by grants PROMEP
UMICH-PTC-121 and CIC-UMSNH-4.9. The runs were
carried out in the Ek-bek cluster of the ‘“Laboratorio de
Supercomputo Astrofisico (LASUMA)” at CINVESTAV-
IPN. A.B. acknowledges support from CONACyT.

[1] V. Sahni and L. Wang, Phys. Rev. D 62, 103517 (2000).

[2] T. Matos and L. A. Urena-Lopez, Class. Quant. Grav. 17,
L75 (2000).

[3] T. Matos and L. A. Urefia-L6pez, Phys. Rev. D 63, 063506
(2001).

[4] F. Ferrer and J. A. Grifols, Phys. Rev. D 63, 025020
(2001).

[5]1 A. Arbey, J. Lesgourgues, and P. Salati, Phys. Rev. D 64,
123528 (2001); 65, 083514 (2002); 68, 023511 (2003).

[6] J.P. Mbelek, Astron. Astrophys. 424, 761 (2004).

[71 M. Alcubierre, F.S. Guzman, T. Matos, D. Nuiez, L. A.
Urefia-Lopez, and P. Wiederhold, Class. Quant. Grav. 19,
5017 (2002).

[8] E.S. Guzman and L. A. Urefia-Lopez, Phys. Rev. D 68,
024023 (2003).

[9] E.S. Guzman and L. A. Urefia-Lopez, Phys. Rev. D 69,
124033 (2004).

[10] M. Alcubierre, R. Becerril, F.S. Guzman, T. Matos, D.
Niuifez, and L. A. Urefia-Lopez, Class. Quant. Grav. 20,
2883 (2003).

[11] S.S. McGaugh, V.C. Rubin, and E. de Block, Astron. J.

122, 2381 (2001); W.J.G. de Blok, S.S. McGaugh, and
V. C. Rubin, Astron. J. 122, 2396 (2001); G. Gentile et al.,
Mon. Not. R. Astron. Soc. 351, 903 (2004)A. D. Bolato,
J.D. Simon, A. Leroy, and L. Blotz, Astrophys. J. 565, 238
(2002).

[12] R. Harrison, I. Moroz, and K. P. Tod, math-ph/0208045.

[13] E.S. Guzman and L. A. Urefia-Lépez, Astrophys. J. 645,
814 (2006).

[14] X.Z. Wang, Phys. Rev. D 64, 124009 (2001).

[15] S. Teukolsky, Phys. Rev. D 61, 087501 (2001).

[16] M. Israeli and S.A. Orszag, J. Comp. Phys. 41, 115
(1981).

[17] G.D. Smith, Numerical Solution of Partial Differential
Equations (Oxford University Press, New York, 1965).

[18] FE.S. Guzman, Phys. Rev. D 70, 044033 (2004).

[19] J. Balakrishna, E. Seidel, and W-M. Suen, Phys. Rev. D
58, 104004 (1998).

[20] J. Balakrishna, R. Bondarescu, G. Daues, F.S. Guzman,
and E. Seidel, Class. Quant. Grav. 23, 2631 (2006).

[21] B. Schupp and J.J. van der Bij, Phys. Lett. B 366, 85
(1996).

063504-8



