
Constraining isocurvature initial conditions with WMAP 3-year data

Rachel Bean,1 Joanna Dunkley,2,3 and Elena Pierpaoli4
1Department of Astronomy, Cornell University, Ithaca, New York 14853, USA

2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
3Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

4Physics and Astronomy Department, University of Southern California, Los Angeles, California 90089-0484, USA
(Received 29 June 2006; published 7 September 2006)

We present constraints on the presence of isocurvature modes from the temperature and polarization
cosmic microwave background (CMB) spectrum data from the WMAP satellite alone, and in combination
with other data sets including SDSS galaxy survey and SNLS supernovae. We find that the inclusion of
polarization data allows the WMAP data alone, as well as in combination with complementary
observations, to place improved limits on the contribution of CDM and neutrino density isocurvature
components individually. With general correlations, the upper limits on these subdominant isocurvature
components are reduced to �60% of the first year WMAP results, with specific limits depending on the
type of fluctuations. If multiple isocurvature components are allowed, however, we find that the data still
allow a majority of the initial power to come from isocurvature modes. As well as providing general
constraints we also consider their interpretation in light of specific theoretical models like the curvaton
and double inflation.
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I. INTRODUCTION

Impressive recent developments in measurements of the
cosmic microwave background (CMB) temperature and
polarization anisotropies [1–4], large-scale structure
(LSS) [5–9], supernovae [10,11], and the Lyman-� forest
[12] have enabled stringent testing of the cosmological
model including the composition of the universe and the
initial conditions that seeded inhomogeneities. Although
the simplest initial conditions, arising from single field
inflation, predict scale-invariant, adiabatic inhomogene-
ities, this is far from the only possibility. Isocurvature
modes are predicted by a wide range of scenarios, for
example, multifield inflation [13–17], topological defects
[18,19], and through the decay of particles prior to nucleo-
synthesis such as a scalar curvaton [20–26], axions [27], or
the Affleck-Dine model of baryogenesis [17]. The degree
of correlation with adiabatic perturbations can vary across
the full spectrum, from completely (anti)correlated in the
curvaton scenario, intermediate correlation in some multi-
field inflation models, to uncorrelated modes in cosmic
string scenarios. Most proposed scenarios generate solely
baryon or cold dark matter (CDM) isocurvature modes
[28]; mechanisms generating neutrino density and velocity
isocurvature modes are also possible [29,30], though the
latter are more difficult to motivate.

Although the simplest adiabatic scenario is in complete
agreement with the current data [4], the question still
arises, how large a contribution could isocurvature modes
make and how sensitive is the cosmological parameter
estimation to their inclusion? In this paper we confront
these questions, specifically focusing on constraints from
the WMAP CMB temperature and polarization power
spectra [1–4], SDSS galaxy matter power spectrum [6],

and the SNLS supernovae survey [11]. Experiments in the
past ten years have ruled out models with purely isocurva-
ture perturbations [31–34], but have not excluded those
with admixtures of adiabatic and isocurvature modes.
Constraints placed on models with a single isocurvature
mode, in light of the first year WMAP results, indicate that
it must be subdominant [35–42], but models with multiple
modes may have larger nonadiabatic contributions
[40,43,44]. Here we analyze the constraints in light of
the 3-year WMAP data release of temperature and polar-
ization data for which only an analysis for perfectly corre-
lated CDM or baryon isocurvature perturbations has been
conducted so far [12,45].

In Sec. II we outline the approach and parametrizations
used in the analysis. In Secs. III and IV we, respectively,
establish the constraints on scenarios with purely corre-
lated and generally correlated single isocurvature modes.
In doing so we reflect on what the limits on isocurvature
contributions imply for some key particle based theories
which depart from purely adiabatic perturbations. In
Sec. V we expand our analysis to allow multiple isocurva-
ture modes with general correlations, in which destructive
cancellations can allow a large fractional isocurvature
contribution. We conclude with a summary of our findings
and implications for future cosmological observations in
Sec. VI.

II. APPROACH

Perturbations to the metric may give rise to both curva-
ture perturbations on comoving hypersurfaces, as well as
entropy perturbations where the space-time curvature van-
ishes at early times. The former are termed adiabatic
perturbations and may be quantified by the curvature per-
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turbation, R. The latter are isocurvature modes, quantified
by the entropy perturbation Sx � ��x=��x � px� �
���=��� � p�� in the case of density perturbations, ��,
between photons and a fluid x, which may be CDM or
baryons. There are two further isocurvature modes where
the sum of the neutrino and photon densities, or momen-
tum densities, are initially unperturbed, whose initial con-
ditions are given in [30,46].

To first order, initial conditions ��c � ���b, ��� �
��� � 0 allow a time independent solution to the pertur-
bation equations for the pressureless matter components.
Baryon and CDM isocurvature initial conditions, up to a
factor of �c=�b, are essentially observationally indistin-
guishable and therefore we only consider CDM isocurva-
ture scenarios of the two here.

The perturbations may be characterized using the co-
variance matrix �, where

 �ij�k��
3�k� k0� �

�
k

2�

�
3
h�i�k���j �k

0�i (1)

as shown in [30]. The subscript i may take the values
fA;C;N; Vg, labeling the adiabatic (AD), CDM isocurva-
ture (CI), neutrino isocurvature density (NID), and neu-
trino isocurvature velocity (NIV) components,
respectively, and the random variable �i corresponds to
the amplitude of the ith mode.

We assume that the elements of the matrix � can be
parametrized as

 �ij�k� �Aij

�
k
k0

�
nij�1

; nij �
1

2
�ni � nj� (2)

in terms of a set of amplitude parameters Aij, power-law
spectral indices ni, and the pivot value k0 � 0:05=Mpc.

The angular power spectrum of a given correlation ij is
given by

 Cij‘ �
Z 1

0

dk
k

�2
ij�k��

i
‘�k��

j
‘�k�; (3)

where �i
‘�k� is the photon transfer function for initial

condition i. An admixture of the adiabatic mode with a
single isocurvature mode can be expressed in terms of the
pure adiabatic, isocurvature and wholly correlated spectra,
such that

 C‘ �AAACAA‘ �AIICII‘ � 2AAICAI‘ ; (4)

where I labels C, N, or V. This is commonly parametrized
using one of the following:

 C‘ � CAA‘ � B
2CII‘ � 2B cos�CAI‘ ; (5)

 � �1� ��CAA‘ � �C
II
‘ � 2	

��������������������
��1� ��

p
CAI‘ ; (6)

to within an overall normalization factor, with the former
used by [34–36] and the latter by [37,39,42]. Using
Eq. (6), the amplitude and correlation phase of the isocur-

vature contribution are given by � and 	, respectively.
These in turn can be related to the overall ratio of isocur-
vature to adiabatic component given by B � S=R, with
� � B2=�1� B2�, and general correlation 	 � cos�. We
will use � and 	 as parameters in this analysis, for models
with a single isocurvature mode, sampling with 	 directly
rather than 2	

��������������������
��1� ��

p
. With these definitions, a posi-

tive correlation between the adiabatic and isocurvature
perturbations will produce a wholly correlated CMB spec-
trum with a negative amplitude at large scales, in agree-
ment with e.g. [34–36,39] and the CAMB package. The
primordial adiabatic perturbation may be defined such that
these correlated spectra have the opposite sign, as used in
[40,41,43,44]. The above parametrizations do not naturally
extend to the addition of more than one isocurvature mode,
for which a method is given in [40,43]. Here

 C‘ �
XN
ij�1

zijĈ
ij
‘ (7)

for N perturbation modes, where
PN
i;j�1 z

2
ij � 1, and any

matrix z with a negative eigenvalue is assigned a zero prior
probability. Ĉ‘ are normalized to have equal CMB power
in each mode i, such that zij quantify the physically ob-
servable power in each mode.1 By definition the coordi-
nates zij lie on the surface of a N2-dimensional unit sphere,
which can be sampled uniformly with N2 � 1 amplitude
parameters using the volume preserving mapping shown in
[40]. To quantify the isocurvature contribution in the case
of multiple modes, a measure is given by riso �

ziso=�ziso � zAA�, where ziso �
����������������
1� z2

AA

q
. This is equiva-

lent to the fiso parameter in [40,43,44], but different to the
fiso used in e.g. [35,36,42], which corresponds to B in
Eq. (6).

It is important to note that constraints on � can depend
strongly on the pivot scale, whereas the zij parameters are
independent of the pivot. As such, the zij parametrization is
a useful direct measure of isocurvature, whereas � can be
misleading when the isocurvature and adiabatic spectral
tilts are allowed to vary independently, as will be discussed
in Sec. IV. For ease of comparison with previous analyses,
however, for single components we present constraints for
f�;	g (pivoted at k � 0:05=Mpc) and give equivalent
constraints on fzijg, since the relation between the single
mode parametrization f�;	g and the fzijg is not trivial. For
multiple modes we solely present results using the fzijg
parametrization.

We parametrize our cosmological model in terms of a
�CDM scenario using the following parameters: �bh

2,
�ch

2, 
, ��, bSDSS, and an overall scalar amplitude pa-
rameter, limiting our search to flat models with scalar
fluctuations and assume 3.04 massless neutrinos species

1Ĉij‘ � Cij‘ =
����������
PiPj

p
, with the power Pi �

P1000
‘�2 �2‘�

1�Cii‘ �TT�.
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with zero chemical potential. We do not investigate here
broader parameter spaces including tensor modes, running
in the scalar spectral index, spatial curvature, or evolving
dark energy. Throughout this paper we use a single pa-
rameter ns for both the isocurvature and adiabatic spectral
index. However, we do relax this constraint in Sec. IV
where we discuss the implications of a single CDM iso-
curvature mode generally correlated with the adiabatic
one.

We find constraints using the 3-year WMAP CMB data
alone [1,3] for CDM and neutrino density isocurvature
scenarios with a variety of degrees of correlation, and
constraints on one, two, and three isocurvature components
more generally in combination with data from the SDSS
galaxy survey [6], including a Gaussian prior on the SDSS
bias measurement 1:03� 0:15 [7] and nonlinear correc-
tions [47], and supernova data from SNLS [11]. We include
big bang nucleosynthesis (BBN) estimates of the baryon to
photon ratio, conservatively encompassing measurements
of both deuterium (�10 � 6:4� 0:7) and helium-3 (�10 �
6:0� 1:7) [48] by imposing a Gaussian prior of �bh

2 �
0:022� 0:006. Small-scale polarization data do not yet
noticeably tighten the constraints so we do not include
them in the analysis. As we discuss in the analysis and
conclusion, however, future small-scale polarization data
could well be an important test of isocurvature scenarios.
We generate CMB and matter power spectra using the
CAMB package [46], which is consistent with our perturba-
tion definitions. The likelihood surfaces are explored using
Markov chain Monte Carlo (MCMC) methods, applying

the spectral convergence test described in [49], and the
Gelman and Rubin convergence test [50]. We also use a
downhill simplex method to find the best-fit likelihood,
starting from the maximum likelihood point sampled by
the chains, since the likelihood peak is only sparsely
sampled by MCMC in high dimensional spaces.

III. UNCORRELATED AND PERFECTLY
CORRELATED ISOCURVATURE: SINGLE MODES

In a variety of theoretical scenarios the isocurvature and
adiabatic fluctuations in matter can arise out of a single
mechanism and subsequently have well-defined degrees of
correlation. We first consider constraints on purely corre-
lated (	 � 1), uncorrelated (	 � 0), and anticorrelated
(	 � �1) CDM and neutrino density isocurvature fluctu-
ations from WMAP data alone (TT� TE� EE), and in
combination with other data sets. Figure 1 shows that for
both CDM and neutrino density isocurvature, purely cor-
related scenarios are the most tightly constrained by the
data. For CDM modes with WMAP� SDSS� SNLS�
BBN (and WMAP only) we find�< 0:009�<0:01� at 95%
confidence limit (C.L.) for purely correlated and
<0:009�<0:045� for anticorrelated modes (consistent
with [12], who find �< 0:005 including Ly-� data). The
corresponding limits for neutrino density modes are �<
0:017�<0:025� and <0:026�<0:083�. The wholly uncorre-
lated isocurvature modes are allowed to contribute a much
more significant fraction of the overall power, with �<
0:11�<0:26� and �< 0:21�<0:55� (95% C.L.) for CDM

FIG. 1 (color online). One-dimensional likelihood distributions for CDM (top) and neutrino (bottom) density isocurvature models
with perfectly correlated 	 � 1, anticorrelated 	 � �1, and uncorrelated 	 � 0 isocurvature perturbations using WMAP only data
(black full) and combined with SDSS, SNLS, and BBN data (red dashed line).
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and neutrino density isocurvature modes. We consider the
statistical support for presence of isocurvature fluctuations
by using the best-fit likelihood, L, calculated by compar-
ing the theoretical spectrum predicted by the cosmological
scenario, fCth

l g, to the observed temperature and polariza-
tion maps or spectra, x, in light of the statistical and
systematic errors encoded in the covariance matrix C,

 L �xjCth
l � �

Y
data sets

exp	xC�1x=2
����������
detC
p : (8)

The 3-year WMAP data is entirely consistent with no
isocurvature contribution being required, having no im-
provement over the best-fit likelihood for the adiabatic
scenario �2 lnL � 11 252 (arising from the joint pixel/
spectrum based likelihood approach outlined in [1,4] with
total �2 �

P
xC�1x � 3279 for 3244 degrees of freedom

and
P

lndetC � 7973).
For WMAP data alone significant cosmological parame-

ter degeneracies exist between � and �ch2 and ns, arising
because the principal effects of the isocurvature modes are
modifications to the large-scale temperature fluctuations.
We find no significant degeneracy between the isocurva-
ture fraction and the optical depth to reionization. The
impact of these degeneracies are most significant for the
uncorrelated and anticorrelated CDM and neutrino density
modes while they have only a nominal effect on the corre-
lated mode constraints. For the uncorrelated and anticorre-
lated modes �ch2 is decreased by roughly 1�, and ns is
increased by 2� from the adiabatic value. The addition of
SDSS, SN1a, and BBN data sets tightens the constraints by
truncating these degeneracies and bringing the values back
towards the fiducial values. The correlated CDM and neu-
trino modes are little improved by the inclusion of SDSS�
SNLS data because in these scenarios there is no signifi-
cant degeneracy between � and ns and �ch2, the two
parameters that are significantly better measured by the
inclusion of the complementary data sets to the CMB.

These constraints have implications for the curvaton
scenario [24], which includes accelerated expansion by
inflation but allows for primordial perturbations to be
generated by the decay of a distinct scalar field, the curva-
ton. While no unique prescription for the generation of
fluctuations in the curvaton scenario exists, there is a range
of scenarios where the curvaton gives rise to the cold dark
matter isocurvature perturbations, which in general predict
nadi � niso. The curvaton scenario does not provide a
unique prescription for the generation of fluctuations, how-
ever in its simplest form it predicts the existence of cold
dark matter isocurvature perturbations with nadi � niso.
This is because the curvature and entropy perturbations
are related to the gauge invariant Bardeen variable 

 S C � 3�CDM � � (9)

 R � �: (10)

The kind and amount of isocurvature depends on when the
curvaton field decays and CDM is created [51]. Scenarios
in which CDM is generated prior to curvaton decay have
CDM � 0 and the entropy and adiabatic fluctuations per-
fectly anticorrelated (	 � 1) yielding � � 0:9 which re-
mains ruled out at high significance. If the CDM is to be
generated by the curvaton decay then 	 � �1 and the
amount of isocurvature reflects the ratio of the curvature
fluctuation after decay to before it, r � before=after which
using the sudden decay approximation r � �curvaton=�tot,
r � �1� 1

3

���������
1��

p
��1 [51]. Our analysis therefore sets limits

on the curvaton decay, with 0:97< r< 1 (95% C.L.) from
WMAP� SDSS� SNLS, comparable to the ones ob-
tained by Beltran et al. [42] (r > 0:98 95% C.L.), who
also included Lyman-� constraints and used a slightly
different parametrization. For neutrino isocurvature modes
generated by density perturbations we find r > 0:94 (95%
C.L.). The most practical mechanism, however, for gener-
ating neutrino isocurvature perturbations is through a per-
turbation in the lepton number [24], and subsequent
nonzero chemical potential, not analyzed here.

IV. GENERALLY CORRELATED ISOCURVATURE:
SINGLE MODES

We next consider constraints on generally correlated
isocurvature fluctuations from combined WMAP, SDSS,
SN1a, and BBN data, including the CDM density, neutrino
density, and neutrino velocity modes individually.

Constraints on the two-dimensional isocurvature ampli-
tude and correlation spaces are shown in Fig. 2 and sum-
marized in Table I. For CDM isocurvature we find
�< 0:15 at the 95% C.L. and no overall improvement in
the goodness of fit �2 lnL � 11 383. Neutrino density
models have �< 0:18, and neutrino velocity models �<
0:26. The CDM mode prefers a small positive correlation
with the adiabatic mode.

Repeating the analysis with the zij parameters we find
95% upper limits on the isocurvature fraction in terms of
CMB power, riso, of 0.13 (CI), 0.08 (NID), and 0.14 (NIV)
compared to 0.23, 0.13, and 0.24 for the first year WMAP
data [40]. These constraints from 3 years of WMAP there-
fore show a marked improvement, being �60% of those
obtained with the first year WMAP data; the improved
polarization data prefer a lower level of isocurvature.

The data is fully consistent with � � 0=riso � 0, with
the goodness of fit �2 lnL improved by only �1 for each
case. These additional degrees of freedom, however, cause
the baryon density and spectral index mean values to move
more than 1� from their adiabatic values: both values are
increased by 2� when the NIV mode is included, exploit-
ing the degeneracy observed in [43].

Our investigation finds that the results are sensitive to
the choice of prior: constraints on � obtained by sampling
� and 	 directly differ from those derived from the distri-
bution sampled using the zij parametrization. This is dem-
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onstrated in the top row of Fig. 2, where the two methods
are compared. We see that there is more phase space
available for models with larger � when sampling with a
uniform prior on the observable isocurvature CMB power,
than there is when sampling with a uniform prior on �. The
likelihood of the best-fitting models are not affected by the
choice of prior however, and we can expect the dependence
to be reduced as data improves.

If the assumption of nadi � niso is relaxed, and niso is
allowed to vary freely within the bounds 0< niso < 3, a
large phase space is opened up for models with large niso

and a small, negatively correlated, isocurvature contribu-

tion, as shown in Fig. 3. As a result the 1D marginalized
constraints on the isocurvature contribution are decreased
from riso < 0:13 to<0:10 (95% C.L.). The isocurvature tilt
cannot be constrained by WMAP� SDSS� SN1a data
sets alone, however [42] show that additional Ly-� data
prefer higher tilts of 1:9� 1. When spectral indices are
able to vary freely, riso is a good measure of isocurvature
because � then becomes extremely sensitive to the pivot
point at which the spectral indices are defined. The sce-
nario we investigate here with CDM isocurvature and
niso � nadi is a case in point. For models with high
niso�0:05=Mpc� the isocurvature power on larger cosmo-

TABLE I. 95% upper (or lower) limits, or means and 68% confidence levels, for mode
contributions for models with generally correlated isocurvature. Scenarios using WMAP,
SDSS, and SNLS data in which the adiabatic and isocurvature spectral indexes are both fixed
to be identical and where they are allowed to differ are shown. The best-fit likelihood, and the
number of degrees of freedom (dof) added to the standard adiabatic model are shown.

CI CI NID NIV
nadi � niso nadi � niso nadi � niso nadi � niso

riso <0:13 <0:10 <0:08 <0:14
zAA >0:989 >0:995 >0:996 >0:987
zII <0:09 <0:05 <0:06 <0:12
zAI 0:06� 0:07 �0:02� 0:01 0:0� 0:03 0:02� 0:05
� <0:15 <0:68a <0:18 <0:26
	 0:2� 0:3 �0:2� 0:2 0:0� 0:3 0:08� 0:3
Added dof 1 2 1 1
�2 lnL 11 383 11 377 11 383 11 381
���2 lnL� 0 �6 0 �2

aConstraints on � are strongly dependent on the chosen pivot point in this case, whereas riso is
pivot independent, and therefore provides a good measure of the isocurvature contribution. The
� limit is shown here solely for completeness.

FIG. 2 (color online). 68% and 95% 2-dimensional constraints on the amplitudes of generally correlated isocurvature modes, for the
CI mode (left), the NID mode (center), and the NIV mode (right) for WMAP plus SDSS and SNLS data. The top panels show
primordial amplitude contributions in terms of �, 	, using flat priors on zij (line contours) and �, 	 (filled contours). The
f�; 2	

��������������������
��1� ��

p
g parameter space is contained within a circle of unit radius shown by the dashed line. The lower panels show

the observable CMB power contributions in terms of zij.

CONSTRAINING ISOCURVATURE INITIAL . . . PHYSICAL REVIEW D 74, 063503 (2006)

063503-5



logical scales is significantly reduced for a given � and
therefore � is able to be increased to compensate. The
relative power in isocurvature, however, roughly indicated
by ��=�1� �� � �k=k0�

niso�nadi , is not increased.
The best-fit model is shown in Fig. 4, has nadi � 1:01,

niso � 2:6 and may be distinguished from the adiabatic
model at small scales in temperature and large scales in
polarization. The goodness of fit is improved, compared to
the adiabatic model, by a ���2 lnL� of 6 to 11 377 for
only 2 additional degrees of freedom. Such an improve-

ment is driven by the use of the 3-year WMAP data in the
analysis ; it was not previously observed in the first year
results [35,36,39,41]. Future small-scale temperature mea-
surements will no doubt help distinguish these, currently
degenerate, high isocurvature tilt models.

This subset of models may inform us about double
inflation scenarios. If there are multiple fields driving in-
flation, it is possible to generate entropy perturbations in
which the additional light fields modify the curvature
perturbations on horizon scales, and also modify the con-
sistency relations relating scalar to tensor modes [52,53].
In the most general case nadi � niso � ncorr, with each
related to the slow roll parameters along the flat directions
of the scalar fields. For example, for theories in which one
scalar field plays a dominant role in driving inflation, but
two fields play a significant role during reheating, one finds
that niso � ncorr [53]. Analyses in which ncorr has been
allowed to vary have found it is a nuisance parameter
unconstrained by data [39], so we believe it is reasonable
to assume that fixing the scale dependence of the cross
spectrum, ncorr � �nadi � niso�=2, does not unduly bias the
conclusion. For two field inflation of two minimally
coupled scalar fields of mass mh and ml, the magnitude
and correlation of the resulting CDM isocurvature compo-
nent are dependent on the ratio of the masses R � mh=ml
and number of e-foldings sk. A bound on R comes from the
magnitude of the cross-correlated spectrum [39]

 2	
��������������������
��1� ��

p
jmax �

2sk�R
2 � 1�

s2
k � �R

2 � 1�2
: (11)

Assuming sk � 60 we find an upper bound on the ratio of
the two scalar fields of R< 3:5. This is weaker than the
R< 3 at 95% C.L. obtained with the inclusion of Lyman-�
data [42], although we caution that constraints on � in this
case are strongly dependent on the choice of prior and pivot
scale.

It would be interesting, but beyond the scope of this
paper, to place constraints on specific double inflation
models in which model-dependent predictions for each
mode’s spectral index are included.

FIG. 4 (color online). AD� CI: (Top) CMB temperature
power spectrum for the best-fit model with correlated AD�
CI modes and independent spectral indices (solid line) for
WMAP plus SDSS and SNLS data. The model has riso � 3%,
� � 0:6, 2	

��������������������
��1� ��

p
� �0:14, nadi � 1:01, niso � 2:6, and

has �2 lnL lower than the best-fit adiabatic model. The con-
tribution of each mode correlation to the total spectrum is shown,
including the WMAP data. Bottom: the CMB spectra are com-
pared to the pure adiabatic best-fit model (dashed line). Only the
‘ < 500 section of the TE spectrum is shown.

FIG. 3 (color online). The effect of varying the CDM isocurvature spectral index independently for an AD� CI scenario with
WMAP plus SDSS and SNLS data: 68% and 95% constraints on the AD� CI cross correlation 	 (left panel), and adiabatic spectral
index (right panel). The high isocurvature tilt prefers models with a larger anticorrelation but with lower isocurvature power. The
dotted line in the right panel shows nadi � niso.
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V. GENERALLY CORRELATED ISOCURVATURE:
MULTIPLE MODES

In this section we consider models with two additional
correlated isocurvature modes, (CI� NID, CI� NIV,
NID� NIV), and finally a model with the full set of
adiabatic and three isocurvature modes. We sample the
modes using the parametrization given in Eq. (7) for N �
3 and N � 4. Table II shows constraints for the relative
mode contributions for this set of models. We also give the
primordial amplitudes Aii of the autocorrelations contrib-
uting to the best-fitting models, where C‘ �PN
i;j�1 AijC

ij
‘ .

Two isocurvature modes.—As is shown in Table II,
models with two modes permit far more isocurvature
than those with a single mode.

Although when considered individually, the neutrino
velocity isocurvature modes allow the largest isocurvature
fraction, interestingly when two modes are included, joint
CDM and neutrino density isocurvature (CI� NID) allow
the most freedom, more than twice as much isocurvature
(riso � 0:4� 0:1) as the combinations including the neu-
trino velocity mode. This freedom arises from degenera-
cies within the isocurvature components destructively

interfering, originally observed in [40] and shown in
Fig. 5. Degeneracies with the NIV mode do also exist
where the spectra add constructively, but such models
have large baryon densities ruled out by current BBN
measurements.

Figure 6 shows the best-fit CMB temperature spectrum
for the CDM� neutrino density isocurvature model with
riso � 41%, compared with 47% with first year WMAP
data [40]. The contributions from all six correlations (three
autocorrelations and three cross correlations) lead to
greater large-scale polarization CMB power, but cancel
almost completely in the CMB temperature and galaxy
power spectrum.

All three two-mode models prefer baryon densities
higher than the concordance value (with mean values
0:025<�bh

2 < 0:027), despite the BBN constraint. The
spectral index is also more poorly constrained, with the
CI� NID models preferring a low spectral index (0:93�
0:03), and the CI� NIV (0:99� 0:04) and NID� NIV
(1:03� 0:03) preferring larger values. The other cosmo-
logical parameters are consistent with adiabatic �CDM.

Three isocurvature modes.—When all three modes are
included, the constraints are highly sensitive to the BBN
constraint due to the strong degeneracy between �bh2 and

FIG. 5 (color online). AD� CI� NID: 2-dimensional constraints show the degeneracy between isocurvature cross-correlation
amplitudes zij, and the adiabatic amplitude zAA, that allows the destructive interference of isocurvature spectra.

TABLE II. Means and 68% C.L. for autocorrelated contributions (zij) for models with generally correlated isocurvature modes as
indicated. The best-fit primordial amplitudes Aii for the pure modes are shown.

CI� NID� NIV
CI� NID CI� NIV NID� NIV CI� NID� NIV No BBN/bias

riso 0:4� 0:1 0:15� 0:06 0:20� 0:08 0:44� 0:09 0:51� 0:09
zAA 0:8� 0:1 0:98� 0:02 0:96� 0:03 0:8� 0:1 0:7� 0:1
zCC 0:2� 0:1 0:04�0:03

0:02    0:21� 0:09 0:23� 0:09
zNN 0:16� 0:09    0:05� 0:03 0:23� 0:09 0:28� 0:10
zVV    0:09� 0:05 0:17� 0:09 0:15� 0:06 0:21� 0:09
1010AAA 18.1 21.8 20.0 20.0 14.1
1010ACC 5.2 0.45    11.2 12.4
1010ANN 8.1    0.35 34.9 37.2
1010AVV    3.0 4.7 8.9 21.4
Added dof 4 4 4 8 10
�2 lnL (���2 lnL�) 11 379��4� 11 382��1� 11 381��2� 11 375��8� 11 374��9�
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the NIV amplitude. With the BBN prior and SDSS bias we
find riso � 0:44� 0:09, increasing to riso � 0:51� 0:09
when no BBN or SDSS bias priors are included, to be
compared to 0:57� 0:09 found for the first year WMAP
data [43].

A well-fitting model [���2 lnL� � �6 with 10 extra
degrees of freedom in comparison to the adiabatic best fit]
with a majority of the power coming from isocurvature
modes, riso � 62%, is shown in Fig. 7. This model was
obtained without the BBN prior and has a large baryon
density (�bh2 � 0:037); however even including the BBN
constraint, the baryon density is higher than the concord-
ance value for this class of models (0:031� 0:003), and
�ch

2 is raised by 1� to 0:124� 0:007. Figures 6 and 7
indicate that precision small-scale temperature and large-
scale polarization will more tightly determine the under-
lying initial conditions. In particular future small-scale
CMB experiments should strengthen the constraint on the
baryon density, since high baryonic isocurvature models
are more degenerate at smaller scales than their low baryon
counterparts.

Given that the data can still only poorly constrain the
isocurvature contribution for these multimode models, the
constraints presented here depend on the prior distribution
we have chosen. Previous work has shown that other
parametrizations can decrease or increase this contribution
[40], depending on the phase-space volume available for
purely adiabatic models compared to mixed isocurvature
models. As with the single mode case, improved data will
help limit this prior dependency.

VI. CONCLUSION

We have investigated the constraints on the presence of a
variety of isocurvature modes in the initial conditions of
structure formation, in light of recent observations of tem-
perature and polarization CMB data and large-scale struc-
ture and supernovae surveys.

The improved WMAP data, with the inclusion of low l
polarization measurements, has strengthened these con-
straints on the contributions of individual isocurvature
modes, with the polarization data disfavoring models
with a large isocurvature fraction. Scenarios with either
CDM (or baryon) or neutrino isocurvature allow only a
very limited contribution, which can be translated into
strong constraints on the curvaton model and some
double-field inflationary models. Although models with
multiple isocurvature modes do not offer a significantly
better fit to the data, models with nonzero isocurvature
fluctuations fit the data as well as the adiabatic model
and can comprise the majority of power when additional
modes are considered simultaneously.

Of the models with more than one isocurvature mode,
those most likely to pose the greatest difficulty for distin-
guishing with future data are those with large fractions of
both correlated CDM and neutrino density isocurvature,
which provide the best fit to the data, and due to their
destructive interference are highly degenerate in the CMB
and galaxy power spectra. Those with neutrino velocity
fluctuations (both two and three mode models) are better
constrained by BBN and bias measurements.

FIG. 6 (color online). AD� CI� NID: Spectra as in Fig. 4.
The model shown has correlated modes, with riso � 41%, and
cosmological parameters �bh

2 � 0:026, �ch
2 � 0:12, �� �

0:73, 
 � 0:10, ns � 0:92, bSDSS � 0:98. The isocurvature spec-
tra add destructively, canceling almost completely.

FIG. 7 (color online). AD� CI� NID� NIV: Spectra as in
Fig. 4. The model shown has riso � 62%. No BBN or bias
constraint has been imposed; the cosmological parameters are
�bh2 � 0:037, �ch2 � 0:13, �� � 0:75, 
 � 0:10, ns � 0:98,
bSDSS � 1:2.
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With WMAP plus LSS and SN data, the baryon density
and spectral tilt are found to be sensitive to the inclusion of
isocurvature modes. With the current data, the reionization
optical depth however is robust despite the modifications
isocurvature models can make to large-scale polarization
spectra. Extending beyond the �CDM scenario, given
results found in [49], we would not expect that allowing
independent tilts for all the modes, or including curved
geometries, to have a large effect. Future B-mode polar-
ization data will help break degeneracies between tensor
and isocurvature modes that would currently arise from
large-scale temperature CMB data.

Future small-scale temperature and polarization data,
together with improved galaxy and Lyman-� power spec-
trum measurements, should help constrain a subset of the
models we have considered, but improved large-scale

CMB polarization data from WMAP and, in particular,
Planck, demonstrated in [54], will be crucial if we are to
strongly constrain this general set of correlated isocurva-
ture models.
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