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Observations of the gravitational radiation from well-localized, inspiraling compact-object binaries can
measure absolute source distances with high accuracy. When coupled with an independent determination
of redshift through an electromagnetic counterpart, these standard sirens can provide an excellent probe of
the expansion history of the Universe and the dark energy. Short �-ray bursts, if produced by merging
neutron star binaries, would be standard sirens with known redshifts detectable by ground-based
gravitational wave (GW) networks such as Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO), Virgo, and Australian International Gravitational Observatory (AIGO).
Depending upon the collimation of these GRBs, the measurement of about 10 GW-GRB events
(corresponding to about 1 yr of observation with an advanced GW detector network and an all-sky
GRB monitor) can measure the Hubble constant h to �2–3%. When combined with measurement of the
absolute distance to the last scattering surface of the cosmic microwave background, this determines the
dark energy equation of state parameter w to �9%. Similarly, supermassive binary black hole inspirals
will be standard sirens detectable by Laser Interferometer Space Antenna (LISA). Depending upon the
precise redshift distribution, �100 sources could measure w at the �4% level.
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I. INTRODUCTION

With the advent of the Laser Interferometer
Gravitational-wave Observatory (LIGO), we are on the
verge of an era of gravitational-wave (GW) astronomy
[1,2]. Among the most interesting expected sources for
GW observatories are compact-object binaries. Advanced
LIGO, a planned upgrade with tenfold increase in sensi-
tivity, would detect the inspirals and coalescence of stellar-
mass binaries within several hundred megaparsecs, while
the Laser Interferometer Space Antenna (LISA) would
study supermassive binary black holes (SMBBH) (M�
104–107M�) throughout the universe (z & 10).

The idea of using GW measurements of coalescing
binaries to make cosmologically interesting measurements
has a long history. As originally pointed out by Schutz [3],
observation of the gravitational radiation from an inspiral-
ing binary provides a self-calibrated absolute distance
determination to the source. Chernoff [4] and Finn [5]
took advantage of this property to show that, by observing
many inspiral sources, one can construct the distribution of
observed binary mass and GW signal strength, and thereby
statistically constrain the values of cosmological parame-
ters. More recently, Holz and Hughes [6] have shown that
LISA observations of well-localized SMBBH inspirals al-
low cosmological distance determination with unprece-
dented accuracy, with typical errors <1%. These GW
‘‘standard sirens’’ can precisely map out the expansion
history of the Universe, offering a powerful probe of the
dark energy.

The utility of standard sirens for constraining dark en-
ergy is quite similar to that of standard candles, such as
Type-Ia supernovae. One advantage of GW standard sirens
is that the underlying physics is well-understood. The
radiation emitted during the inspiral phase (as opposed to
the merger phase) is well-described using the post-
Newtonian expansion of general relativity [7]. An un-
known systematic evolution of the standard sirens over
time, precisely mimicking a different cosmology, is uni-
kely to be of concern. Furthermore, GW observatories
directly measure absolutely calibrated source distances,
whereas Type-Ia supernova standard candles provide only
relatively calibrated distances.

A major drawback of GW standard sirens is that,
although the gravitational waveforms measure distance
directly, they contain no redshift information. To be useful
as a standard candle, an independent measure of the red-
shift to the source is crucial. This can be determined
through observation of an electromagnetic counterpart,
such as the host galaxy of the source. Unfortunately, as
GW observatories are essentially all-sky, they generally
provide poor source localization, and the host galaxy is
not always unambiguously identifiable [8]. In cases where
source redshifts cannot be determined, the distribution of
unlocalized events can be used to place statistical bounds
on cosmological parameters [5]. In this paper we will focus
on GW sirens with counterparts with measurable redshifts,
as they can provide very tight constraints on cosmology.

Because standard siren distances are absolutely cali-
brated, even sources at low redshift (e.g., z & 0:2) can

PHYSICAL REVIEW D 74, 063006 (2006)

1550-7998=2006=74(6)=063006(9) 063006-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.063006


constrain dark energy. This may seem surprising, since at
low redshifts the distance-redshift relation is well-
described by a linear Hubble relation D � cz=H0, inde-
pendent of dark energy parameters. As emphasized by Hu
and Jain [9], and Hu [10], however, absolute distances to
sources at low redshift tightly constrain dark energy, when
combined with a determination of the absolute distance to
the last-scattering surface of the cosmic microwave back-
ground (CMB). To understand this, note that cosmological
distances are given by a redshift integral of the Hubble
parameter, which in turn depends on the sum of energy
densities at each redshift:
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Here �m ��de ��K � 1, H0 � 100h km=s=Mpc is the
Hubble constant today, and we have assumed a constant
equation of state parameter, w. If we assume a flat universe
(�K � 0), then �de � 1��m, and the only parameters
describing the global expansion are h, �m, and w.
Observations of the primary anisotropies in the CMB
provide two constraints on these three parameters. First,
the heights of the acoustic peaks determine the matter
density (in g=cm3), which fixes �mh

2. Second, the angular
scale of the peaks (their location in l-space) precisely
measures the angular diameter distance to the CMB last-
scattering surface, in Mpc. Absolute distances to low-
redshift sources measure the Hubble constant h, which
then allows all three parameters to be determined [9,10].
The constraints we present would be substantially de-
graded if the curvature were not fixed to zero; see [11,12]
for the prospects for precise constraints on curvature.

In addition to low-redshift standard sirens, those at
higher redshifts also help constrain dark energy, in the
same manner as high-redshift standard candles. Holz and
Hughes [6] discuss how LISA observations of SMBBH
inspirals can help constrain cosmology. For a dark energy
model which is not dramatically different from a cosmo-
logical constant �, the interesting redshift range is when
the dark energy density is significant (z & 1), although
note that gravitational lensing degrades the constraints
from the highest redshift standard sirens (or candles) [13].

As mentioned above, the GWs from standard sirens
measure source distances, but do not measure source red-
shifts. An electromagnetic counterpart associated with the
merger event will generally be required to use GW sources
to determine cosmology. One potential class of GW
sources guaranteed to have electromagnetic counterparts
are short �-ray bursts (GRBs). Some fraction of short
GRBs are thought to arise in the mergers of neutron star
(NS) binaries, and hence should be strong GW emitters in

the frequency band accessible to ground-based observato-
ries. The GRB counterpart to these GW source provides a
precise sky localization, which is useful both for determin-
ing the redshift to the source, and for significantly improv-
ing the GW determination of absolute distance. As we
discuss below, short GRBs occur at a rate large enough
for them to provide interesting cosmological constraints.

II. DISTANCE DETERMINATION FOR
INSPIRALING BINARIES

In this section we briefly review how distances to in-
spiraling binaries may be determined; see Ref. [14] for
more detail. An inspiraling binary at direction n̂ on the sky,
with orbital angular momentum axis L̂, generates GWs
with strain tensor

 h �t� � h��t�e� � h��t�e�; (2)

where the basis tensors are

 e� � ex 	 ex � ey 	 ey (3)

 e� � ex 	 ey � ey 	 ex (4)

with

 e x �
n̂� L̂

jn̂� L̂j
(5)

 e y � ex � n̂: (6)

Our convention is that n̂ points towards the source, hence
the waves propagate in the direction �n̂. We express the
amplitudes of the two polarizations h��t� and h��t� in the
frequency domain as
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where v 
 n̂ � L̂ is the cosine of the inclination angle of
the binary, and
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In this expression, D is the luminosity distance to the
source, and M � �1� z��m1m2


3=5=�m1 �m2�
1=5 is the

redshifted chirp mass of the binary. The phase � is given
by
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where tc is the time at coalescence, and �c is the orbital
phase at coalescence.

These expressions describe a binary’s waves only in the
Newtonian, quadrupole approximation—treating the bina-
ry’s kinematics as due to Newtonian gravity and using the
quadrupole formula to estimate its GW emission. Because
the phase parameters are essentially uncorrelated from the
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amplitude parameters, this approximation is good enough
to estimate the expected signal-to-noise ratio (SNR) from a
source, and provides a good estimate of the distance mea-
surement accuracy, but is not accurate enough to reliably
model the detailed GW waveform [14]. Higher order post-
Newtonian templates (see Ref. [7] for detailed discussion)
should be sufficiently accurate, and are used for the actual
data analysis.

Given h�t�, the measured strain is given by

 hM�t� � hab�t�dab; (10)

where the detector response tensor for an interferometer
with arms l̂ and m̂ is d � �l̂ 	 l̂� m̂ 	 m̂�=2. In the
notation of Ref. [14], a detector at colatitude � and longi-
tude � with orientation � has response tensor
 

d � cos�2���e� 	 e� � e� 	 e�
=2

� sin�2���e� 	 e� � e� 	 e�
=2: (11)

To recap, the source parameters determining the mea-
sured signal are distance D, chirp mass M, coalescence
time tc, coalescence phase �c, source direction n̂, and
orbital axis L̂. These are the 8 parameters to be determined
from the data timestream hM�t�. If the detector has strain
noise with spectral density Sh�f�, then the incident strain is
measured with SNR (assuming Wiener filtering):

 SNR 2 � 4
Z j~hM�f�j2

Sh�f�
df: (12)

The complicated angular dependence is hidden within the
measured strain ~hM. This dependence can be made more
explicit by rewriting the above equation as [5]

 SNR 2 � 4
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2
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Here flow ’ 10 Hz is the frequency below which the de-
tectors’ sensitivities are badly degraded by ground mo-
tions. In the optimal case, the binary is face-on (v � 1)
and directly overhead, so that F2

� � F
2
� � 1. This gives

 SNR opt � 4
A

D
I1=2

7 : (15)

If instead we average over all-sky positions and binary
orientations, we find

 SNR ave �
8

5

A

D
I1=2

7 ; (16)

where we have made use of hF2
�i � hF

2
�i � 1=5 and
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Note that the SNR in the optimal geometry is a factor 5=2
times larger than that for the average geometry. Also note
that face-on sources, when averaged over all-sky positions,
have SNR a factor

��������
5=4

p
’ 1:12 larger than SNRave.

We can estimate how well the parameters p are mea-
sured using the Fisher matrix

 Fij � 4
Z

Re
�@i ~h�M�f�@j ~hM�f�

Sh�f�

�
df; (19)

where @i 
 @=@pi, and � denotes complex conjugation.
Approximating the likelihood as
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then the error on parameter pi is given by
���������������
�F�1�ii

p
. Prior

constraints, or constraints from multiple detectors, are
implemented by multiplying the respective likelihoods,
which in this approximation reduces to summing the re-
spective Fisher matrices. In our calculations we compute
the partial derivatives numerically by finite differencing.
We note here that some (presently unquantified) error is
introduced into our analysis by using Fisher matrices,
which are strictly accurate only when the Gaussian ap-
proximation to the likelihood function is appropriate (the
‘‘high SNR’’ limit [14,15]). We are presently examining
how parameter estimation (and thus our conclusions) are
affected by directly computing the likelihood function,
rather than working strictly within the Gaussian approxi-
mation.

In practice, the ‘‘phase’’ parameters M, tc, and �c are
determined with exquisite precision. The ‘‘amplitude‘‘
parameters D, L̂, and n̂ are determined less well, in large
part due to parameter degeneracies. By using multiple
detectors many of these degeneracies can be broken. For
example, timing information from a network of detectors
helps determine the source direction n̂. Similarly, if the
detectors have different response tensors d, then the polar-
ization of the GW signal may be measured, which con-
strains the orbital axis L̂ [c.f. Eq. (7)].

III. GRBS OBSERVED BY GW NETWORKS

Short GRBs are an extremely promising source of GWs.
These sources have been of great interest recently, due to
the prompt localization of the events by the Swift1 [16,17]
and HETE-22 [18] satellites, allowing their detection in X-

1http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html
2http://space.mit.edu/HETE/Welcome.html
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ray, optical, and radio frequencies. Particularly exciting has
been the identification of several galaxies hosting short
bursts [16,18,19]. While the nature of short GRBs is not
yet known, a leading candidate is the merger of NS binaries
[20], although other models have been proposed as well
[21]. The detection or nondetection of GRBs in GWs
would be extremely useful [22], for example, in confirming
or refuting the NS-NS merger scenario, or determining the
extent of collimation of the �-ray emission [23].

Additionally, as mentioned above, short GRBs can also
be very useful for determining the background cosmology
by acting as GW standard sirens. One immediate advan-
tage offered by GRBs is that their bright electromagnetic
emission allows a precise localization of the source on the
sky, pinpointing the source direction n̂ and lifting some of
the degeneracies which limit distance determination. The
extent of collimation in short GRBs is not well known,
although recent analyses suggest that there may be a rather
wide range in jet collimation from burst to burst [24,25].
For bursts that arise from binary NS mergers, our theoreti-
cal expectation is that emission should be beamed prefer-
entially along the orbital angular momentum axis, where
baryon loading is minimized. If this is the case, then we
expect short GRBs to be nearly face-on, v � n̂ � L̂ � 1.
As can be seen from Eq. (7), this maximizes the amplitudes
of both GW polarizations, and hence maximizes the SNR
of the GW detection for a given source direction n̂. In what
follows we compute distance errors for two cases: (1) iso-
tropic distribution of L̂, and (2) collimation, assuming an
inclination probability distribution dP=dv / exp���1�
v�2=2�2

v� for �v � 0:05, corresponding to a roughly 20�

jet angle.
The expected chirp mass for GRBs, M � 1:2M�, pla-

ces them favorably in the frequency band accessible to
ground-based GW observatories. Several such observato-
ries are now operating or are planned for construction in
the near future. LIGO is already operational, and its sensi-
tivity should increase by an order of magnitude in a
planned upgrade (Advanced LIGO) [26]. A detector of
similar scale, Virgo [27], is under construction in Italy,
and there are plans for a similar detector, AIGO [28], in
Australia. The locations and orientations of these observ-
atories are listed in Table I. The two LIGO detectors are
oriented to have very similar response tensors, and there-
fore have limited ability to independently measure polar-
ization (and hence inclination). In the absence of a strong,

reliable prior, determining L̂ will thus require combining
LIGO with other observatories.

Henceforth we assume that all four detectors will ob-
serve GRB events; in subsequent work, we will investigate
how the distance errors degrade if one or more elements of
this network are removed. Preliminary results indicate that
reducing the size of the detector network does not substan-
tially degrade our ability to determine distance (aside from
the loss in total SNR) assuming that we can set a prior on
the beaming factor (and hence on the inclination angle). If
we cannot set such a prior, then losing sites in this network
badly degrades our ability to determine distance to these
sources. We emphasize this point to highlight the impor-
tance of modeling bursts, and the importance of having
widely separated GW detectors around the globe.

Figure 1 plots the noise spectral density forecasted for
Advanced LIGO [26]. Projected noise curves for the ad-
vanced detector configurations are not yet available for
Virgo or AIGO, so for simplicity we use the Advanced
LIGO curve for all the observatories in the network. For
comparison, we also show the sensitivity for the currently
operating LIGO observatories.

With the response tensors for the elements in our net-
work, and their noise spectra, we can now compute the
Fisher matrices and parameter errors for GRBs as a func-
tion of distance and location on the sky. For convenience,
when computing the Fisher matrix we replace the parame-
ter pair fD;v � n̂ � L̂g with the pair f�1� v�2=D; �1�
v�2=Dg, to avoid singularities in the limit v! 1 when v
and D become degenerate [14]. Another difficulty that
arises in the face-on limit is that the position angle of L̂,
denoted  by Ref. [14], becomes meaningless as v! 1.
Including it as a parameter would cause the Fisher matrix
to become singular in the face-on limit; we circumvent this
difficulty using singular value decomposition to invert the

TABLE I. Coordinates of GW observatories, in the notation of
Ref. [14]. All values are in degrees.

Site � � �

LIGO (Hanford) 43.54 �119:4 171
LIGO (Livingston) 59.44 �90:77 243
Virgo 46.37 10.5 115.6
AIGO 121.4 115.7 45 FIG. 1. Noise curve for the LIGO detectors, for initial (dotted)

and advanced (solid) sensitivity.
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Fisher matrix, zeroing any eigenvalue whose magnitude is
10�10 times that of the largest eigenvalue.

Because the antenna response of each detector varies
strongly with source direction n̂, the parameter errors at
any given distance D also depend strongly on n̂. We are
interested in average errors as a function of D; hence, for
eachDwe average over 100 different orientations of L̂ and
n̂. For example, Fig. 2 shows the expected constraints for
sources at a distance of D � 250 Mpc. Note that the errors
significantly improve if it is assumed that sources are
beamed towards us.

Given the likelihood distribution dP=dD, we define the
distance error as �2

D � hD
2i � hDi2, where averages are

with respect to dP=dD. Figure 3 plots �D as a function of
D. Our results appear roughly consistent with �D=D /
D / 1=SNR. Our best-fit linear scaling for unbeamed
GRBs is �D=D � D=�1:7 Gpc�, and �D=D �
D=�4:4 Gpc� for collimation �v � 0:05. Henceforth we
assume these scalings when estimating cosmological con-
straints from GW network observations of short GRBs.

IV. COSMOLOGICAL CONSTRAINTS FROM
STANDARD SIRENS

As discussed in x I, a measurement of the Hubble
constant h using GRB standard sirens, when combined
with CMB constraints, enables constraints on dark energy
parameters. We use two measurements from the CMB:
determination of the angular scale of the acoustic peaks,
lA, and determination of the matter density, �mh

2, from the
peak heights. Currently the Wilkinson Microwave
Anisotropy Probe satellite has measured lA � 303� 1
and �mh2 � 0:13� 0:01 [29]. We assume that the
Planck satellite will measure �mh2 to a fractional error
of �1% and lA to fractional error of 0.1%.

The acoustic scale is defined by lA � �D?=s?, where
D? is the distance to the last-scattering surface at z �
1089. The sound horizon at decoupling, s?, is approxi-
mately given by s? � 144:4 Mpc��mh2=0:14��0:252 [10].
Given the dependence of these observables on the cosmo-
logical parameters p � fh;�m; wg, we can then estimate
parameter errors using the Fisher matrix:

 

Fij �
@ilA@jlA
�2
A

�
@i�mh2@j�mh2

�2
!m

�
Z zmax

0

dN
dz

@iDL�z�@jDL�z�

�D�z�
2 � ��z

dDL
dz �

2
dz; (21)

where redshift errors �z are caused by peculiar velocities3

with assumed rms of 300 km=s. The luminosity distance
DL�z� � �1� z�D�z�, and its error �D, include both GW
errors, as computed in the previous section, and gravita-
tional lensing errors [30], computed using an approximate
nonlinear power spectrum [31].

For the source redshift distribution dN=dz, we assume
that short GRBs occur at a constant comoving rate of
10 Gpc�3 yr�1 [32]. We found in the previous section
that the SNR in distance determination per source scales
roughly like 1=D. Since the number of sources scales with
volume / D3, we expect the SNR on the Hubble constant h
to scale like D1=2

max, where Dmax is the maximum distance to

100 200 300 400 500
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0.015

0.020

0.025

0.030

D [Mpc]

dP
/d

D

FIG. 2 (color online). Distribution of measured distances for a
source at D � 250 Mpc, averaged over 100 source directions n̂
and orientations L̂. The solid curve shows constraints for ran-
domly oriented sources, while the dashed curve shows con-
straints for collimated sources with �v � 0:05.

0 100 200 300 400 500 600
0.0

0.1

0.2

0.3

0.4
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σ D
/ D

FIG. 3 (color online). Fractional distance errors as a function
of source distance D. The � symbols are for unbeamed GRBs,
while circles are for �v � 0:05. The two lines show the best-fit
linear relations (see text); note that there may be departures from
linear scaling at the highest distances.

3It may be preferable to measure redshifts of the host galaxies
rather than the GRBs themselves, whose progenitors may suffer
kicks which will add in quadrature to the redshift noise from
peculiar velocities.
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which GRBs may be detected as gravitational-wave
sources.

The standard threshold used in the GW literature for
detection has been SNR >8:5 [14,33]. The reason for this
high threshold is that sources are detected by correlating
the data timestream with large numbers (e.g. 1015) of
templates corresponding to different parameter values,
and therefore the detection threshold must be set high to
avoid excessive numbers of false detections. Such large
numbers of templates are required in order to fully explore
parameter space. For GRB sources, however, the parameter
space to be searched is considerably reduced: the �-ray
burst itself determines the source direction n̂ and time tc.
Depending upon one’s confidence in theoretical models for
GRBs, the chirp mass M and orientation L̂ may also
constrained. Because many fewer templates need to be
run for GRB sources, we should set the detection threshold
correspondingly lower. We conservatively estimate that
knowledge of the time of the GRB event reduces the
number of required templates by a factor �105, corre-
sponding to a reduced threshold SNR >7. Note that this
is the total SNR; since we have assumed a network of four
detectors with identical noise, this translates into a thresh-
old SNR>3:5 per detector. From this we can determine the
maximum distance to which sources may be detected using
Eq. (16). For chirp mass M � 1:2M�, we have A �

4:7� 10�6 sec5=6, and for our assumed noise spectral
density (Fig. 1), I7 � 8:33� 1044 Hz�1=3. Therefore the
maximum distance for which SNRave > 3:5 is Dmax �
600 Mpc. With our assumed rate density of 10 events
yr�1 Gpc�3, we expect to measure 9 events per year out
to this distance.

Assuming default cosmological parameters h � 0:72,
�m � 0:27, and w � �1, the resulting parameter errors
computed from Eq. (21) are shown in Fig. 4, as a function
of the time and sky area over which GRBs are observed.
While errors on the Hubble constant scale like �h /

N�1=2
GRB , the errors on w scale this way only in the limit of

small numbers of sources. Quite rapidly, the limiting error
on w becomes the uncertainty in the CMB measurements
(in the figure, fractional errors of 1% on �mh

2 were
assumed). Unless CMB errors can be significantly im-
proved, it will be difficult for low-redshift GW sources to
constrain w to better than the few percent level.

Higher redshift standard sirens would probe departures
of the cosmic expansion from linear Hubble scaling, and
thereby directly constrain parameters like �m and w.
Unfortunately, stellar-mass inspirals at high-redshift are
not sufficiently luminous to be detected by any existing
or planned GW observatory. Inspirals involving SMBBH,
however, are sufficiently luminous in GWs to be detected
at cosmological distances. As discussed by Holz and
Hughes [6], LISA observations of SMBBH inspirals can
in principle measure distances to better than 1% accuracy.
This precision is degraded, however, by gravitational lens-

ing caused by density fluctuations from large-scale struc-
ture along the line of sight to the source. Another difficulty
in using LISA observations is that, unlike in the case of
short GRBs, for SMBBHs there are no guaranteed electro-
magnetic counterparts. However, it has been argued that
many SMBBH mergers will be followed by bright quasar-
like activity [34], or possibly preceded by optical emission
[35], which will localize the GW source on the sky and
provide a source redshift.

Because of lensing errors, small numbers of LISA
sources will generally be unable to constrain dark energy
parameters significantly [6]. The effects of lensing dimin-
ish significantly at lower redshifts, so a single SMBBH
inspiral at z < 0:5 observed by LISA could measure the
Hubble constant to & 1% and w to & 10%. Although such
a source is unlikely, the low-redshift regime should already
be well-determined by ground-based GW observations of
short GRBs. On the other hand, if large numbers of
SMBBH mergers occur during LISA’s lifetime, then LISA
should provide quite interesting constraints on dark energy,
despite the lensing noise. To illustrate this, Fig. 5 plots
expected constraints in the �m vs h plane for a sample of
100 SMBBH inspirals observed by LISA, distributed in
redshift assuming a constant comoving density between
0< z< 2, combined with constraints from Planck-quality
CMB data. The 1-� errors on w are �w � 0:04; these are
competitive with ambitious Type-Ia supernova surveys like
Joint Dark Energy Mission . Note that these errors improve

FIG. 4 (color online). Errors on h and w as a function of
detected GRBs, assuming Planck-quality errors from CMB.
Solid curves are for �h, the error on the Hubble constant, while
dashed curves correspond to �w, for the dark energy equation of
state parameter. The lower curves are for beamed GRBs with
�v � 0:05, while the upper curves are for unbeamed GRBs. As
discussed in the text, we assume an event rate density of
10 events per year per Gpc�3; the tick marks at the top of the
plot show the exposure corresponding to the detected number for
the assumed rate density.

DALAL, HOLZ, HUGHES, AND JAIN PHYSICAL REVIEW D 74, 063006 (2006)

063006-6



considerably if the main source of noise, gravitational
lensing, can be cleaned out by reconstructing the lensing
mass distribution using other probes. Dalal et al. [30] argue
that cosmic shear measured from optical surveys would not
allow mass reconstruction with sufficient angular resolu-
tion. Cosmic magnification measured in the radio could
conceivably offer an alternative route (e.g., [36]).

Our discussion has focused on gravitational lensing only
as a source of noise, but in principle there is cosmological
information which can be extracted from the lensing fluc-
tuations themselves. With large numbers of sources, LISA
observations of cosmic magnification can provide con-
straints complementary to other probes. We would not
expect GW standard sirens to usefully probe the power
spectra of matter fluctuations or galaxy-mass correlations
[9] at any scale, compared to other means like cosmic shear
or Type-Ia supernovae, based on their noise power spectra :

 

�2
gal

ngal

�
�2

SN

nSN
�

�2
GW

nGW
; (22)

where galaxies have shape noise �gal � 0:4 and number
density ngal � 50=arcmin2, supernovae have luminosity
dispersion �SN � 0:1 and number density nSN �
4000=�20 deg�2 as observed by SNAP, and GW standard
sirens have luminosity errors �GW � 1% and number den-
sity nGW � 100=�4�sr�. On the other hand, GW standard
sirens can determine 1-point functions of the matter den-
sity better than other methods, in particular, the probability

distribution of lensing magnification. This could be useful
for distinguishing between different dark matter models
[37].

V. DISCUSSION

We have shown that observations of the GWs emitted by
binary compact-object inspirals can be a powerful probe of
cosmology. In particular, short �-ray bursts appear quite
promising as potential GW standard sirens. The presently
observed rate of short GRBs is sufficiently high that within
a few years of observation by the next generation of
ground-based GW observatories (e.g. Advanced LIGO,
Virgo, and AIGO), strong constraints on dark energy pa-
rameters may be derived (�w < 0:1). These inspiraling NS
binaries should be clean sources of GWs; possible sources
of contamination, such as tidal effects, magnetic torques,
or gasdynamical torques from circumbinary gas, should all
be negligible during the crucial inspiral phase (where
v=c & 0:3). We emphasize that the best distance measure-
ments come from combining multiple GW data from in-
struments that are widely separated. Good information
about the collimation of the gamma rays, and thus on the
likely inclination of the binary progenitors, will also im-
prove the utility of these standard sirens. Given the great
cosmological potential of GW observations of short GRBs,
there is strong incentive to extend the lifetime of GRB
satellites, such as Swift, to overlap with next-generation
gravitational-wave observatories.

We have largely focused on the most optimistic sce-
nario—a mature network of four advanced gravitational-
wave detectors widely scattered over the globe. We have
also, for ease of calculation, used the Gaussian approxi-
mation to the likelihood function in our parameter estima-
tion. In future work we intend to simultaneously relax both
of these assumptions. Indeed, as a preliminary step we
have examined—in the Gaussian approximation—the ef-
fect of reducing the number of detectors in our network.
We find that in going from 4 detectors to 3 (dropping the
Australian detector AIGO from our network), the degra-
dation in parameter accuracy largely scales with the deg-
radation in total SNR if we impose a prior on the binary’s
inclination. In this case, to a good approximation, the
parameter errors we have discussed throughout this paper
carry through with a prefactor

��������
4=3

p
’ 1:15. It should be

emphasized that the Gaussian approximation is only accu-
rate in the ‘‘high SNR’’ limit; it is almost certain that we
are not in this limit, and further abuse of the Gaussian
approximation would simply provide spuriously optimistic
estimates. In future work (currently in progress), we will
examine GW-GRB siren measurements using only the
LIGO detectors, the LIGO and Virgo detectors, and the
four detector LIGO-Virgo-AIGO network. In doing so, we
will also quantify the error induced by using the Gaussian
approximation to estimate parameters in GW measure-
ments.

FIG. 5. LISA constraints on dark energy. The solid contours
show the 68% and 95% confidence regions expected for a sample
of 100 SMBBH sources observed by LISA, distributed with
constant comoving density between 0< z < 2. A Planck prior
has been used on �mh

2 and lA, as discussed in the text.
The dotted contours correspond to a sample of 3000 SNe
with intrinsic luminosity scatter of 10%, with redshift distribu-
tion / exp���z� 0:5�2� over 0:02< z< 2. The dashed (dark
shaded) contour shows the 68% confidence region for the
combined constraints GW� SNe� CMB.
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The inspirals of SMBBH binaries observed by LISA can
also provide interesting constraints on dark energy, if the
rate of such mergers is high enough to average away noise
caused by gravitational lensing. At present, the total rate
and redshift distribution of SMBBH mergers are not well-
understood, with estimates ranging from a few (or zero) per
year, up to hundreds per year, depending upon assumptions
[38–41]. If the rates are at the high end of these estimates,
with a significant fraction at redshifts z < 2, then wmay be
constrained at the few percent level.
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