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We generalize our previous work on gravitational lensing by a Kerr black hole in the strong deflection
limit, removing the restriction to observers on the equatorial plane. Starting from the Schwarzschild
solution and adding corrections up to the second order in the black hole spin, we perform a complete
analytical study of the lens equation for relativistic images created by photons passing very close to a Kerr
black hole. We find out that, to the lowest order, all observables (including shape and shift of the black
hole shadow, caustic drift and size, images position and magnification) depend on the projection of the
spin on a plane orthogonal to the line of sight. In order to break the degeneracy between the black hole
spin and its inclination relative to the observer, it is necessary to push the expansion to higher orders. In
terms of future very-long base line interferometry observations, this implies that very accurate measures
are needed to determine these two parameters separately.
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I. INTRODUCTION

As predicted by general relativity, photons passing near
a black hole suffer deviations from their original trajectory.
If the minimum distance between the photon and the black
hole is much larger than the gravitational radius, a weak
field approximation of the metric tensor is sufficient to
describe the light deflection. Two images of the original
source are then detected by the observer. On the other
hand, photons passing very close to the black hole may
suffer very large deviations without falling into the black
hole. These photons may perform one or more loops
around the black hole before reemerging in the observer
direction, thus generating two infinite sets of relativistic
images very close to the black hole shadow. It can be easily
intuited that these relativistic images represent a unique
probe to gain information on the very strong gravitational
fields surrounding the black holes. Through their study it
would be possible to learn the properties of black holes and
get new insight on general relativity in a strong field
regime. The features of relativistic images will thus repre-
sent a possible challenge arena for alternative theories of
gravitation.

Even though a general relativity approach to this subject
typically results in involved equations and heavy numerical
integrations, a surprisingly simple formula for the deflec-
tion angle induced by a Schwarzschild black hole in the
strong deflection limit (SDL) was proposed by Darwin [1]
and revived in Refs. [2–4]. The logarithmic divergence of
the deflection angle in the impact parameter was shown to
be universal and valid for all spherically symmetric black
holes [5], as every class of such black holes leads to the
same expansion for the deflection angle, with coefficients
depending on the specific form of the black hole metric.
The SDL method was then applied to several classes of

black holes, ranging from Reissner-Nordström to black
holes in string theory, from braneworld black holes to
wormholes [6]. By the SDL method it is thus possible to
quantify the observables related to relativistic images for
any class of spherically symmetric black holes, allowing an
easy comparison among different theories. For alternative
methods, see Refs. [7,8].

For spinning black holes, things do not work so easily.
Starting from the geodesics equations in Kerr spacetime,
which Carter [9] reduced to first-order equations depend-
ing on four constants of motion, many numerical ap-
proaches have been developed to study and visualize
such geodesics. Numerical efforts have also been profused
in the context of gravitational lensing to investigate the
apparent shape of the accretion disk of the black hole
[2,10,11], the light curve of a star orbiting around it [12],
and the structure of the caustics [13], which turned out to
be extended and to have a 4-cusped astroid structure. Some
interesting general results have recently been derived
through Morse theory [14]. The extension of the SDL
methodology to Kerr black holes was first performed in
Ref. [15] and the SDL formula was recovered for photons
lying near to the equatorial plane. Anyway, the expansion
coefficients had to be calculated numerically as functions
of the lens spin.

A first step toward a complete analytical treatment of
this subject was made in Ref. [16] (hereafter Paper I) where
the lens equation was analytically solved in the limit of
small values of the angular momentum of the black hole
(denoted by a) and for observers lying on its equatorial
plane. This last assumption, besides ensuring simpler equa-
tions, was justified by the fact that the most important black
hole candidate (Sgr A*, first suggested in Ref. [8]) is
located in the center of our Galaxy and presumably has a
spin axis perpendicular to the galactic plane, where the
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solar system lies. The expansions for small values of the
angular momentum allowed us to use the Schwarzschild
SDL formula as a starting point for the description of the
deflection of light rays looping around a Kerr black hole.

This analytical approach provided very simple equations
(which could even be inverted for sources near a caustic)
and a full description of the extended structure of the
caustics, which were confirmed to have a 4-cusped struc-
ture, symmetric with respect to (w.r.t.) the equatorial plane
and shifted from the optical axis. Only the first-order
caustic cannot be recovered in the SDL approach as it is
formed in the weak deflection regime [13,17]. It was also
shown that the extension of relativistic caustics enhances
the cross section for the creation of additional images,
whose magnification is sensible in a relatively large region
around the caustic. Direct observations of these relativistic
images, which should be possible with the resolutions
achieved by future projects, could test the Kerr nature of
black hole lenses (see e.g. Refs. [16,18] for detailed dis-
cussions on observational perspectives). It is interesting to
compare the lensing effect of a Kerr black hole to that of a
Schwarzschild black hole embedded in an external gravi-
tational field. Also, in the latter case astroid caustics arise,
though with different sizes and positions [19].

In this paper we further investigate Kerr black hole
lensing, getting rid of the equatorial observer hypothesis.
In spite of the presence of a new parameter (the inclination
of the spin axis relative to the line of sight, that we shall
indicate by #o), the surprisingly simple structure of all
analytical results is preserved. Our philosophy will be to
try to confine all technicalities to the appendixes or refer
the reader to Paper I for more detailed derivations. This
paper will thus keep its main focus on the implications of
all results on observable quantities. What emerges from
our study is that all observables (to the lowest order) just
depend on a sin#o, that is, the projection of the spin on a
plane orthogonal to the line of sight. The consequences of
this fact will be discussed in the conclusions in Sec. VII.

Our paper is structured as follows: in Sec. II we recall
the main properties of Kerr geodesics. In Sec. III, we trace
the borders of the shadow of the Kerr black hole for all
values of the observer declination. In Sec. IV we apply the
SDL to null Kerr geodesics illustrating the main strategy
and referring to two appendixes for the details. In Sec. V
we derive the critical curves and caustics structure, and in
Sec. VI we analyze the lens mapping in the neighborhood
of a caustic, finding the position and the magnification of
the images, concluding with a discussion on the detectabil-
ity of relativistic images.

II. KERR GEODESICS

In this section, we shall review the basics of Kerr geo-
desics and introduce the notations to be used throughout
the paper. For more details on the physical meaning of all

quantities, the reader may refer to Paper I or directly to
Ref. [20].

The main subject of our paper is the Kerr black hole,
whose metric in Boyer-Lindquist coordinates [21], x� �
�t; x; #;��, reads

 ds2 �
�� a2sin2#

�2 dt2 �
�2

�
dx2 � �2d#2

�
�x2 � a2�2 � a2�sin2#

�2 sin2#d�2

�
2axsin2#

�2 dtd�; (1)

 � � x2 � x� a2; (2)

 �2 � x2 � a2cos2#: (3)

Distances are measured in units of the Schwarzschild
radius (2 MG=c2 � 1), # and � are the colatitude and
azimuth, respectively, x is the radial coordinate, and a is
the specific angular momentum of the black hole, running
from 0 (Schwarzschild black hole) to 1=2 (extremal Kerr
black hole) in our units.

We consider a static observer at Boyer-Lindquist coor-
dinates �DOL; #o;�o�. The distance between the observer
and the black hole is thus DOL, while the colatitude #o of
the observer coincides with the inclination of the spin on
the line of sight OL. Exploiting the freedom to choose the
zero of the azimuth, we set�o � �. We will very often use
the notation � � cos#. Thus we also define �o � cos#o.
Figure 1 illustrates Boyer-Lindquist coordinates for a ge-
neric point P and for the observer O in particular.

L

O
P

a

ϑ

φ

ϑο

FIG. 1. Boyer-Lindquist coordinates in a Kerr metric, also
referred to as spin-oriented coordinates in the text. L is the black
hole with spin a. O is the observer and P is a generic point. The
gray disk visualizes the equatorial plane of the black hole.
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Lightlike geodesics can be expressed in the following
form in terms of the first integrals of motion J andQ found
by Carter [9],

 �
Z dx����

R
p � �

Z d#�����
�
p ; (4)

 �f ��i � a
Z x2 � a2 � aJ

�
����
R
p dx� a

Z dx����
R
p

� J
Z csc2#�����

�
p d#; (5)

where

 � � Q� a2cos2# � J2cot2#; (6)

 R � x4 � �a2 � J2 �Q�x2 � �Q� �J� a�2�x� a2Q;

(7)

and�i is the initial value of the azimuthal coordinate of the
photon.

The roots of R represent inversion points in the radial
motion. In gravitational lensing we consider photons com-
ing from infinity, grazing the black hole and going back to
infinity. For such trajectories there is only one inversion
point x0, representing the closest approach distance. The
minimum allowed value of x0 can be found solving the
equations R�x� � 0 and R0�x� � 0 simultaneously.
However, in the Kerr black hole, we do not have a unique
minimum closest approach xm, but rather a continuous
family of values which depend on the approach trajectory
followed by the photon. In particular, it is possible to
establish a relation among the minimum closest approach
xm and the corresponding values of the constants of motion
J and Q, which we shall indicate by Jm and Qm (see e.g.
Ref. [20]),

 Jm �
x2
m�2xm � 3� � a2�1� 2xm�

a�1� 2xm�
; (8)

 Qm �
x3
m�2a2 � xm�xm � 3=2�2	

a2�xm � 1=2�2
: (9)

xm also represents the radius of the unstable circular
photon orbit. This radius is fixed to 3=2 when a � 0
(Schwarzschild black hole). In the case of Kerr black holes,
xm may vary between two limiting values xm�, xm�, de-
pending on the incoming direction of the photon. The two
limiting values can be analytically obtained solving the
equation Qm � 0 (in fact, it is possible to show that gravi-
tational lensing trajectories cannot be realized for Q< 0
[20]). To the third order in a, they read [16]

 xm� �
3

2



2���
3
p a�

4

9
a2 


20

27
���
3
p a3 �O�a4�: (10)

For example, photons whose orbit lies on the equatorial
plane may turn either in the same way of the black hole
(prograde photons) or in the opposite sense (retrograde
photons). Prograde photons are allowed to get closer to
the black hole, with a minimum closest approach given by
xm�, while retrograde photons must stay farther than xm�,
in order to be deflected without falling into the black hole.
Photons whose orbit does not lie on the equatorial plane are
characterized by intermediate values of xm, with Qm > 0.
Thus xm can be used to parametrize the family of unstable
photon orbits allowed in the Kerr metric or, equivalently,
the incoming direction of the photon. The corresponding
values of the constants of motion are uniquely determined
by Eqs. (8) and (9).

Although exact expressions for xm� and xm� are avail-
able, it is convenient to start with a perturbative expansion
ab initio in order to be prepared to face more complicated
quantities in the following [16]. Throughout our treatment,
only for xm do we need to push the expansion to the third
order, in order to obtain some quantities to the second order
in a.

III. THE SHADOW OF A KERR BLACK HOLE

The constants of motion J andQ have an immediate link
to the position in the sky where the observer detects the
photon. In fact, we can define angular coordinates ��1; �2�
on the observer sky centered on the black hole position. We
choose the orientation of these coordinates in such a way
that the spin axis of the black hole is projected on the �2

axis (see Fig. 2).
As shown in Ref. [20], photons detected by the observer

at angular coordinates ��1; �2� are characterized by con-
stants of motion given by

 J � ��1DOL

����������������
1��2

o

q
; (11)

 Q � �2
2D

2
OL ��

2
o��

2
1D

2
OL � a

2�: (12)

These relations can be easily recovered taking the limit for
large distances in the equations of motion of the photon.
They show that J can be identified with the component of
the orbital angular momentum of the photon along the spin
axis, whereas Q� J2 ��2

oa2 is the squared total angular
momentum of the photon.

Note that, with our choice of ��1; �2�, in the limit of the
equatorial observer �o � 0, prograde photons (J > 0,
Q � 0) are detected by the observer on the left side of
the black hole, while retrograde photons (J < 0, Q � 0)
are detected on the right side. Conversely, in the limit of
polar observers (�o ! �1), the projected angular momen-
tum J vanishes, while Q! ��2

1 � �
2
2�D

2
OL � a

2.
Inverting Eqs. (11) and (12), we find the position ��1; �2�

in the sky where the photon is detected with given con-
stants of motion J and Q, apart from an ambiguity in the
sign of �2,
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 �1 � �
J

DOL

����������������
1��2

o

p ; (13)

 �2 � �D�1
OL

������������������������������������������������
Q��2

o

�
a2 �

J2

1��2
o

�s
: (14)

These relations can be used to convert the locus
�Jm;Qm�, parametrized by xm according to Eqs. (8) and
(9) in the �J;Q� space, into a new one ��1;m; �2;m� in the
observer sky. However, not all values of xm in the range
�xm�; xm�	 are acceptable. This can be easily understood,
as photons lying on the equatorial plane can never reach
nonequatorial observers. The reality condition for �2;m

restricts xm to the range �xp�; xp�	, where xp� and xp�
are the roots of the equation �2;m � 0. To third order in a,
these quantities read

 

xp� �
3

2



2���
3
p a

����������������
1��2

o

q
�

4

9
a2�1��2

o�



4

27
���
3
p a3�5� 6�2

o�
����������������
1��2

o

q
�O�a4�: (15)

Comparing with Eq. (10), we see that xp� ! xm� in the
limit �o ! 0. On the other hand, when �o ! �1, the
allowed range for xm shrinks to a single value xp !

3
2�

8
9 a

2. This witnesses that when the observer is on the polar
axis the axial symmetry of the lensing configuration is

restored and all unstable photon orbits have the same
radius again.

When a vanishes, xp� and xp� both coincide with the
Schwarzschild photon sphere radius, 3=2, while, when a is
not zero, they are distinct and every value of xm in the
interval �xp�; xp�	 uniquely fixes the amplitude of the
oscillation of the photon orbit on the equatorial plane, as
we shall see later. On the basis of this consideration, in
Paper I (with �o � 0) we introduced a parametrization of
xm in the range �xm�; xm�	, replacing awith a� in Eq. (10),
with the parameter � varying in the range ��1; 1	.

In order to take into account the changes from Eq. (10)
to Eq. (15), we have to update such parametrization, since
it is not directly applicable to the case �o � 0. Our new
parametrization for xm is

 

xm �
3

2
�

2���
3
p a�

����������������
1��2

o

q
�

4

9
a2�1��2

o�

�
4

27
���
3
p a3��5� 6�2

o�
����������������
1��2

o

q
�O�a4�: (16)

As � varies in the interval ��1; 1	 we get all possible
values of xm in the interval �xp�; xp�	. It will become clear
later that � is strictly related to the position angle of the
generic point in the observer sky.

With this parametrization, we can rewrite Eqs. (8) and
(9) to the second order in a as

 Jm��� �
3
���
3
p

2
�

����������������
1��2

o

q
� a�1��2

o��1� �2�

� a2 �
����������������
1��2

o

p
3
���
3
p �5� 2�2 � 2�2

o�1� �
2�	;

(17)

 

Qm��� �
27

4
�1� �1��2

o��
2	 � 3

���
3
p
a�

����������������
1��2

o

q
� �1��2

o � �1��
2
o��

2	 � a2��1��2
o�

2

� 4�1��2
o��

2 � 3�1��2
o�

2�4	: (18)

Notice that the presence of a in the denominators of
Eqs. (8) and (9) allows � to be present already in the
zero-order terms in Eqs. (17) and (18), permitting the use
of the � parametrization in Schwarzschild spacetime as
well. However, since this parametrization has been intro-
duced in a slightly different way w.r.t. Paper I, the expres-
sions derived here cannot be directly compared to those of
Paper I, except for those quantities that are independent of
�. For example, eliminating � from Eqs. (17) and (18), one
can derive an expression for the locus �Jm;Qm� in the form
Qm�Jm�. Doing the same with the expressions of Paper I,
one would indeed find the same function Qm�Jm� in the
limit �o ! 0.

-2 -1 1 2
θ1

-2

-1

1

2

θ 2

FIG. 2. The shadow of the black hole in the observer sky for
a � 0:1 and different values of the observer position #o. The
solid line is for #o � �=2 (equatorial observer), the dashed line
is for #o � �=4, and the dotted line is for #o � 0 (polar
observer).
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Inserting Eqs. (17) and (18) in Eqs. (13) and (14) we get
 

DOL�1;m � �
3
���
3
p

2
�� a

����������������
1��2

o

q
�1� �2�

� a2 �

3
���
3
p �5� 2�2

o � 2�2�1��2
o�	; (19)

 DOL�2;m � �
3
���
3
p

2

��������������
1� �2

q

 a�

��������������
1� �2

q ����������������
1��2

o

q


 a2

��������������
1� �2

p
3
���
3
p �1� 2�2

o � 2�2�1��2
o�	:

(20)

This locus is formed by the points in the observer sky
where photons with the minimum closest approach would
show up. No gravitational lensing images are possible
inside this locus, which is thus also known as the shadow
of the black hole. In Fig. 2 we show it for different values

of �o. Note that, to zero order, �1;m / �� and �2;m /��������������
1� �2

p
, justifying the identification of � with the cosine

of the position angle in the ��1; �2� plane as taken from the
opposite of the �1 axis. This fact facilitates the physical
interpretation of the parameter �.

The shadow of the black hole is the first observable in
extreme gravitational lensing by supermassive black holes.
It thus deserves some further analysis in order to under-
stand the effect of the spin and the observer position.

First, we note that �1;m and �2;m, to second order in a,
satisfy the ellipse equation

 

��1;m � �0�
2

A2
1

�
�2

2;m

A2
2

� 1 (21)

with the origin shifted rightward by

 �0 �
2a

����������������
1��2

o

p
DOL

; (22)

and the semiaxes given by

 A1 � D�1
OL

�
3
���
3
p

2
�
a2���

3
p

�
; (23)

 A2 � D�1
OL

�
3
���
3
p

2
�
a2���

3
p �2

o

�
: (24)

By these analytical expressions for the shadow, we can
make several considerations. The presence of a nonvanish-
ing spin causes a slight distortion and a displacement of the
shadow from the black hole position. When the observer
lies on the spin axis (�o � �1), the axial symmetry is
restored and the shadow returns to be centered on the
black hole and circular. However, even in this limiting
case, the radius of the shadow is no longer 3

���
3
p
=2 as in

Schwarzschild black hole, but it is slightly smaller,

3
���
3
p
=2� a2=

���
3
p

.
It has been proposed that the observation of the shape of

the shadow of a black hole by very-long base line inter-
ferometry (VLBI) may help to determine the parameters of
a Kerr black hole, such as its mass, its angular momentum,
and the inclination of the spin [10,22]. However, both in
the shift �0 and in the ellipticity

 e �
A2 � A1

A2
�

2

9
a2�1��2

o�; (25)

the black hole spin and the observer declination appear in

the same combination a
����������������
1��2

o

p
� a sin#o, which repre-

sents the projection of the spin on a plane orthogonal to the
line of sight. Thus it is impossible to determine both the
absolute value of the spin and its inclination from the shape
of the shadow. The only possibility is that we already know
the distance DOL and the mass of the black hole to such
accuracy that we are able to extract a from a measure of the
minor semiaxis A1 solely. However, since the spin contri-
bution to the major semiaxis is only of second order in a,
we need a very high accuracy in the shadow observation in
order to appreciate such a small contribution. For example,
if a � 0:1, the spin contribution to A1 is of order 0.2%. As
already pointed out in Ref. [22] by numerical examples, the
disentanglement of a and #o is only possible for values of
the black hole spin very close to the extremal case. By our
perturbative formulas, we have justified this claim analyti-
cally. Of course, for high values of a, when higher orders
contribute to determine the shape of the shadow, the de-
generacy between a and #o can be broken, in agreement
with what was stated in Ref. [22].

It has been pointed out in Paper I that, as long as we deal
with Kerr black holes with spin smaller than a � 0:2, the
perturbative approximation works surprisingly well. Then,
the degeneracy between a and #o in the shadow of the
black hole poses a serious difficulty to the determination of
the parameters of the black hole by the simple observation
of the shadow. As we shall see in the next sections, this
degeneracy plagues all gravitational lensing observables in
different degrees.

IV. KERR LENSING IN THE STRONG
DEFLECTION LIMIT

As in Paper I, we introduce the following parametriza-
tion of the observer sky:

 

� �1��; �� � �1;m����1� ��;

�2��; �� � �2;m����1� ��:
(26)

Varying � in the range ��1; 1	 and � in the range ��1;1	,
we can obviously cover the whole upper half of the ob-
server sky, since � establishes the position angle of the
light ray w.r.t. the ���1� axis [through Eqs. (19) and (20)]
whereas � fixes the angular distance from the shadow of the
black hole. In fact, in the following, � will be generically
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referred to as the separation from the shadow of the black
hole.

We are interested in light rays experiencing very large
deflections by a Kerr black hole. These light rays reach the
observer from directions ��1; �2� very close to the shadow.
In the parametrization (26), they are thus characterized by
a very small positive �, while keeping � in the whole range
��1; 1	. The SDL amounts to performing the integrals in
the geodesics equations (4) and (5), to the lowest orders in
the separation from the shadow �.

The values of the constants of motion J and Q, corre-
sponding to such strongly deflected photons, can be found
using Eqs. (11) and (12):

 J��; �� � Jm����1� ��; (27)

 Q��; �� � Qm����1� 2�� � 2a2��2
o: (28)

Substituting these expressions in Eq. (7) and solving the
equation R � 0 for x0, we get the closest approach distance
as

 x0��; �� � xm����1� ��; (29)

 � �

������
2�
3

s �
1�

2

3
���
3
p a�̂�

2

27
a2�10��2

o � 14�̂2�

�
; (30)

where we have introduced the compact notation

 �̂ � �
����������������
1��2

o

q
: (31)

As � represents the separation of the image in the
observer sky from the shadow of the black hole, � repre-
sents the relative difference between the closest approach
x0 and the minimum closest approach xm��� fixed by the
position angle through �. It will be synthetically called the
approach parameter. As � decreases, we expect the deflec-
tion to increase more and more. In the limit �! 0, the
photon is injected into the unstable orbit with radius xm���.
Conversely, photons with a large approach parameter are
weakly deflected. Of course, the relation between � and �
ensures that the SDL can be equivalently stated in terms of
either of the two parameters.

Let us introduce our gravitational lensing configuration.
As said before, the observer is at radial coordinate DOL,
polar angle #o, and azimuthal angle �o � �. We will call
the optical axis the line connecting the lens and the ob-
server. The source is assumed to be static at Boyer-
Lindquist coordinates �DLS; #s; �s�.

Our lens equations are provided by Eqs. (4) and (5),
where we identify the final value of the azimuthal coor-
dinate with the observer’s coordinate (�f � �o � �), and
the initial value with the source’s coordinate, �i � �s. In
these equations there are two radial integrals and two
angular integrals. The radial integrals are solved using
the SDL technique and expanding all coefficients to second
order in a, as in Paper I. The results of this procedure are

reported in Appendix A. Similarly, the angular integrals are
solved to second order in a in Appendix B.

Once all integrals are calculated, we have to solve
Eqs. (4) and (5) in terms of the source coordinates
��s;�s�, so that they are in the lens map form

 

��s � �s��; ��;

�s � �s��; ��:
(32)

Note that the lens equation will be written in terms of the
approach parameter � and the position angle through �.
Through Eqs. (26) and (30) we can then go back to the
coordinates in the observer sky ��1; �2�.

In the following sections, we will calculate the critical
curves and the caustics of the Kerr gravitational lens order
by order. The procedure is indeed identical to that de-
scribed in Paper I, save for the complication introduced
by the additional parameter �o. However, once we manage
to recast all equations in the best forms, the results remain
very simple, so that a thorough discussion of the effects of
spin and observer colatitude is possible.

V. DERIVATION OF THE RELATIVISTIC
CAUSTICS

A. Zero-order caustics

The first task is to recover the results for a Schwarzschild
black hole, imposing the limit a! 0.

Using the results of Appendixes A and B to zero order,
Eqs. (4) and (5) read, respectively,

  � m�
 arcsin
�s��������������

1� �̂2
q � ��1�m arcsin

�o��������������
1� �̂2

q ;

(33)

 

�s � �� Sign��	m�� arctan
�s�̂���������������������������

1��2
s � �̂

2
q


 ��1�m arctan
�o�̂���������������������������

1��2
o � �̂

2
q ; (34)

where the new variable

  � �2 log�� 2 log�12�2�
���
3
p
�	 (35)

allows us to put the equations in a very compact form.  
actually coincides with the deflection induced by a
Schwarzschild black hole with the same mass of our Kerr
black hole. On the basis of this connection, we shall often
refer to  as the ‘‘scalar deflection’’ in the following.

The double signs coming from the angular integrals
must be treated as follows: if the photon moves out of
the source increasing its initial value of �, then we must
choose the upper signs; otherwise we will select the lower
signs. These double signs are the relics of those present in
Eqs. (4) and (5). For more details about their origin, the
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reader is referred to Appendix B. m represents the number
of inversions in the polar motion of the photon.

Introducing the quantity

  o � 
��1�m arcsin
�o��������������

1� �̂2
q ; (36)

we can easily solve Eqs. (33) and (34) w.r.t. �s and �s to
get the zero-order lens equation

 �s � 
��1�m
��������������
1� �̂2

q
sin� �  o�; (37)

 

�s � ��1�m� � arctan��̂ tan o	

� arctan��̂ tan� �  o�	: (38)

Since the azimuth � is a coordinate with period 2�, we
have eliminated the Sign��	 in front of m� in Eq. (38). In
the derivation of Eq. (38) from Eqs. (34) and (37), we have
used the relations

 

�s���������������������������
1��2

s � �̂
2

q � 
 tan� �  o�; (39)

 

�o���������������������������
1��2

o � �̂
2

q � 
��1�m tan o (40)

and exploited the fact that the number of inversions in the
polar motion is just the integer part of � �  o � �=2�=�.

Let us understand the meaning of the zero-order lens
equations. Equation (37) states that the photon performs
symmetric oscillations on the equatorial plane (recall that

� � cos#) with amplitude
��������������
1� �̂2

q
, which depends on the

observer declination and the trajectory chosen by the pho-
ton (polar �̂ � 0, equatorial �̂ � �1, or whatever). The
number of oscillations depends on the scalar deflection  ,
which diverges when the approach parameter �! 0.  o is
the initial condition of the oscillation, which depends on
the observer declination. The double signs take into ac-
count the fact that the oscillations occur in opposite ways
depending on the starting sign of _�.

Equation (37) is the azimuthal motion of the photon. It
can be better understood when we choose equatorial pho-
tons with �̂ � 1. Then it just reduces to� � ��  , which
states that the azimuthal shift is the scalar deflection minus
�, as expected in this simple case. Different values of �
need to be analyzed by some spherical trigonometry, in
order to understand the trigonometric functions in Eq. (37).

After the zero-order lens equation is constructed, we can
study the structure of critical curves and caustics. The
Jacobian of the lens map, D, can be easily calculated
from (37) and (38). We find

 

@�s

@�
� ���1�m

�̂
����������������
1��2

o

p
��������������
1� �̂2

q sec o sin ; (41)

 

@�s

@ 
� 
��1�m

��������������
1� �̂2

q
cos� �  o�; (42)

 

@�s

@�
� �

cos� �  o� sec o sin ����������������
1��2

o

p ; (43)

 

@�s

@ 
� �

�̂sec2� �  o�

1� �̂2tan2� �  o�
; (44)

and using Eqs. (31) and (36), we finally have

 D �
@�s

@�
@�s

@ 
�
@�s

@ 
@�s

@�
� 
��1�m

sin ��������������
1� �2

p : (45)

Since all transformations from � ; �� to ��1; �2� are
nonsingular (except for the points � � �1), the solutions
of the equation D � 0 determine the critical curves. To
zero order we have

  k � k�: (46)

As expected, the critical curves correspond to values of
the scalar deflection that are multiples of �. Having
introduced the most generic coordinate system for the
black hole has not prevented us from recovering the
Schwarzschild result. Through Eqs. (26), (30), and (35)
we reconstruct the critical curves in the observer coordi-
nates

 DOL�1;k��� � �
3
���
3
p
�

2
�1� �k	;

DOL�2;k��� � �
3
���
3
p

2

��������������
1� �2

q
�1� �k	;

(47)

where

 �k � 216�2�
���
3
p
�2e�k� (48)

is the separation of the critical curve from the shadow.
We will refer to the integer number k as the critical curve

(or caustic) order. Equations (47) describe a series of
concentric rings, parametrized by �, slightly larger than
the shadow of the black hole and whose radius 3

��
3
p

2 �1� �k�
exponentially decreases to the shadow radius with increas-
ing critical curve order.

The equations of the caustics are easily found introduc-
ing Eq. (46) into (37) and (38) and exploiting the fact that
the number of inversionsm coincides with k if  � k�. We
have

 �s � ��1�k�o;�s � �1� k��: (49)

As already known, the Schwarzschild caustics are point-
like and lie on the optical axis. They are in front of the
black hole (�s � �o, with �s being an odd multiple of �)
for even values of k (retrolensing caustics), and behind it
(�s � ��o, with �s being an even multiple of �) for odd
k (standard lensing).
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The SDL description is limited to large deflections ( *

�), thus working better and better for higher order caustics
[5,18]. It cannot be applied to the first-order one (k � 1)
whose full description can be derived in the weak deflec-
tion limit for sources sufficiently far from the lens. In what
follows, we focus on caustics of order k � 2 and inves-
tigate how their structure is affected by the concomitant
action of the lens spin and the observer declination.

B. First-order caustics

We now introduce first-order corrections to the zero-
order solutions found in the previous section. Starting
from the results of Appendix A and B, we solve the lens
equations perturbatively adding the first-order terms to
Eqs. (37) and (38), obtaining

 �s � 
��1�m
��������������
1� �̂2

q
sin� �  o� 
 ��1�m

2a�̂

3
���
3
p

�

��������������
1� �̂2

q
cos o sin ; (50)

 

�s � �1�m��� arctan��̂ tan o	� arctan��̂ tan� � o�	

�
4a

3
���
3
p

�
 � 3

���
3
p

log�2
���
3
p
� 3�

�
1� �̂2

2

cos� � o� sin cos o
1��1� �̂2�sin2� � o�

�
: (51)

The Jacobian of the lens equation to first order is

 D � 
��1�m
sin ��������������
1� �2

p �
1�

2a�
����������������
1��2

o

p ���
3
p

�
; (52)

which is always solved by Eq. (46), thus implying that the
scalar deflection  and consequently the approach parame-
ter � are not affected by lens spinning to the first order.
Anyway, due to the spin dependence in Eq. (30), first-order
corrections modify the separation of the critical curves
from the shadow. They read

 

DOL�1;k � �
3
���
3
p
�

2
�1� �k� � a�1� �2 � �k�1� �2�	

�
����������������
1��2

o

q
;

DOL�2;k � �
3
���
3
p
�1� �k�

��������������
1� �2

p
2


 a�
��������������
1� �2

q
�1� �k�

�
����������������
1��2

o

q
; (53)

where �k is still the zero-order separation defined in
Eq. (48).

Coming to the caustics, from Eqs. (46), (50), and (51) we
get

 �s � ��1�k�o; (54)

 �s � ��1� k� � ��k; (55)

 ��k � 4a
�
k�

3
���
3
p � log�2

���
3
p
� 3�

�
: (56)

So, caustics are still pointlike but the alignment with the
optical axis is now missing because of first-order correc-
tions, as already pointed out in Paper I. The azimuthal shift
is proportional to the caustic order; it does not depend on
the observer declination and is negative, thus implying a
clockwise drift, if we look at the black hole from the north
pole. This means that, as k is still the number of inversion
points, prograde (retrograde) light rays, emitted by a
source on a caustic point, perform more (respectively
less) than �k� 1�=2 loops. Moreover, as the caustics drift
from the optical axis and from each other, perfect align-
ment of observer, lens, and source is not required for the
enhancement of the images which are enhanced one at a
time, as sources cannot cross more than one caustic point at
the same time. For numerical values of the shift see Paper I,
Table 1.

C. Second-order caustics

In this section we investigate the effects of second-order
corrections in the black hole spin on the critical curves and
caustics. Following the same steps as in the previous sub-
section, we can add the second-order terms a2���2�s to
Eqs. (50) and a2���2�s to (51). Since they have quite long
expressions, we report them in Appendix C and proceed
with the analysis of the second-order lens equation. In fact,
although the general second-order lens equation is quite
involved, it is easy to solve the Jacobian determinant
equation D � 0 in terms of the second-order perturbation
of  , starting from the zero-order solution (46). We get

  k � k�� a2� ; (57)

where

 � � � 1
18�9ck�3� 2�2

o � 3�̂2� � 32�1� �̂2�	 (58)

and

 ck �
2
9�5k�� 8

���
3
p
� 36�: (59)

Using Eqs. (30) and (35) we can calculate the second-
order corrections to the approach parameter � and the
separation from the shadow �. After that, by Eqs. (26),
we can derive the second-order corrections to the critical
curves given in Eq. (53),
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DOL�
�2�
1;k � a2 �

3
���
3
p �5� 2�2

o � 2�̂2

� �k�29� 8�2
o � 32�̂2�	;

DOL�
�2�
2;k � 
a

2

��������������
1� �2

p
3
���
3
p �1� 2�2

o � 2�̂2

� �k�21� 32�̂2�	;

(60)

where the zero-order separation �k is always given by
Eq. (48).

Plugging Eq. (57) into the lens map, we get the caustics
parametric equations up to the second order in a:

 �s � ��1�k�o � a2ck�1��2
o�

3=2�1� �2�3=2; (61)

 �s � �1� k��� ��k � a2ck�3
����������������
1��2

o

q
: (62)

As explained in Sec. VA, the double sign in Eq. (61) allows
for the possibilities that the photon starts its journey by
increasing � or by decreasing �, respectively. It is neces-
sary to take both possibilities into account in order to cover
the whole caustic. In agreement with Paper I and other
works where the same results are found numerically (e.g.
[13]), we get extended caustics whose shape is a 4-cusped
astroid, with cusps in � � �1 and � � 0 (for different
signs of initial _�). The extension of the caustics along �
and along � is different. However, choosing appropriate
coordinates centered on the caustic, it is possible to show
that the extension in the sky as seen by the black hole is the
same along both axes (see next subsection).

D. Observables related to critical curves and caustics

After second-order corrections to critical curves and
caustics have been derived, we can discuss their depen-
dence on a and #o.

First, we note that the critical curves obtained adding
Eq. (60) to (53) satisfy the ellipse equation

 

��1;k � �0�
2

A2
1;k

�
�2

2;k

A2
1;k

� 1 (63)

with the same origin shift as the shadow [Eq. (22)] and
semiaxes given by

 A1;k � D�1
OL

�
3
���
3
p

2
�1� �k� � a2 4� �k�4� 9ck�

2
o�

4
���
3
p

�
;

(64)

 

A2;k � D�1
OL

�
3
���
3
p

2
� �16�2

k � 4�3� �2
k��

2
o

� 27ck�k�1� �k��3� 2�2
o�	

a2

12
���
3
p
�1� �k�

�
: (65)

The critical curves tend to coincide with the shadow in the
limit k! 1, which corresponds to photons winding an

infinite number of times, thus tending to the unstable
photon orbit. The ellipticity of the critical curves is

 e � a2�1��2
o�

4�3� �2
k� � 81ck�k�1� �k�

54�1� �k�
2 ; (66)

which is slightly higher than that of the shadow for the
lower order critical curves, but tends to that of the shadow
as k! 1. In particular, we see that shift and ellipticity of
the critical curves still depend on the combination a sin#o,
as for the shadow. So, even the observation of several
critical curves cannot help to determine a and #o
separately.

Let us come to the caustics. Here the situation is more
subtle and needs to be investigated with a grain of salt.

Suppose we have no independent knowledge of the
direction of the black hole spin or, at least, the direction
of the spin is not known to any great accuracy. Then, the
observer will construct his coordinates allowing for a non-
vanishing position angle 	 for the spin axis. The uncer-
tainty in 	 will be determinant in the following discussion.
Let us thus introduce �x; #̂; �̂� as observer-oriented coor-
dinates, still centered at the black hole, but with the polar
axis perpendicular to the optical axis and the azimuth �̂
taken from the direction opposite to the observer. In gen-
eral, if the observer ignores the spin axis, the spin axis of
the black hole would have a position angle 	 from the polar
axis, as fixed by the observer. The coordinate transforma-
tion from ��;�� to �#̂; �̂� is

 

#̂ � arccos��
����������������
1��2

o

q
cos	��o

���������������
1��2

q
cos� cos	

�
���������������
1��2

q
sin� sin		; (67)

 

�̂ � arctan��
���������������
1��2

q
sin� cos	

��o

���������������
1��2

q
cos� sin	��

����������������
1��2

o

q
sin	�

� �
���������������
1��2

q ����������������
1��2

o

q
cos����o�

�1	: (68)

Figure 3 illustrates the geometrical meaning of these
coordinates.

Transforming the caustics (61) and (62) from the spin-
oriented coordinates ��;�� to the observer-oriented coor-
dinates �#̂; �̂�, and expanding to second order in a, we get

 

#̂s �
�
2
� ��1�k��k

����������������
1��2

o

q
sin	� ��1�k

�
1

2
��2

k�o

����������������
1��2

o

q
cos	� Rk���1�k�3 sin	

� �1� ��3=2 cos		; (69)
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�̂s � �1� k��� ��k

����������������
1��2

o

q
cos	

�
1

2
��2

k�o

����������������
1��2

o

q
sin	� Rk��3 cos	

� ��1�k�1� ��3=2 sin		; (70)

where

 Rk � a2ck�1��
2
o� �

2
9a

2�1��2
o��5k�� 8

���
3
p
� 36�

(71)

is the semiamplitude of the caustic. In fact, we can appre-
ciate that, in observer-oriented coordinates, the extension
of the caustic is the same in both polar and azimuthal
directions, as anticipated before for any coordinate system
centered on the caustic. So, the extension is quadratic in the
spin and is maximal for equatorial observers, while the
astroid shrinks to a single point when the observer lies on
the spin axis. The caustic extension also increases linearly
with the caustic order k.

Then, we note that the angular shift of the center of the
caustic from the optical axis is

 �k � arccos�sin#̂ cos�̂	 � ��k

����������������
1��2

o

q
� 4a

����������������
1��2

o

q �
k�

3
���
3
p � log�2

���
3
p
� 3�

�
: (72)

It is linear in the black hole spin and the caustic order.
Similarly to the semiamplitude, the shift is also maximal
for equatorial observers and vanishes for polar observers,
when the axial symmetry is restored.

The shift and the semiamplitude of the caustics are very
easy quantities to determine in case of observation of the
relativistic images generated by a source crossing a rela-

tivistic caustic. In fact, if the observer is able to identify the
source and follow its direct image throughout the duration
of the caustic crossing event, then he would immediately
determine the position of the caustic and estimate its ex-
tension. Unfortunately, even in these two quantities, the
black hole spin and the observer declination always appear

in the combination a
����������������
1��2

o

p
� a sin#o, making the

breaking of the degeneracy between these two parameters
impossible. On the other hand, it is easy to determine the
order k of the caustic involved in the lensing event, since
the ratio

 

�2
k

Rk
�

8�k�� 3
���
3
p

log�2
���
3
p
� 3�	2

3�5k�� 8
���
3
p
� 36�

(73)

only depends on k and increases monotonically in k, with-
out degeneracy between any two values.

One possibility for the separate determination of a and
�o arises in the case that the spin position angle 	 is known
to a very good accuracy from independent measures. Then
we can move to a more convenient coordinate frame where
	 � 0. If this is possible, looking at Eqs. (69) and (70) we
see that the shift in the azimuthal direction is linear in a,
while a residual quadratic shift is present in the polar
direction, which amounts to

 �k �
1

2
��2

k�o

����������������
1��2

o

q
� 8a2�o

����������������
1��2

o

q �
k�

3
���
3
p � log�2

���
3
p
� 3�

�
2
: (74)

Then, if one is able to measure this residual shift, one
can extract the observer colatitude #o as

 cot#o �
2�k
�2
k

: (75)

Once the observer position relative to the spin axis is
known, we can use either �k or Rk to extract the black hole
spin a. However, as for the case of the direct determination
of a from the measure of the minor semiaxis of the shadow,
this is a higher order measure, which requires very accurate
independent information.

Figure 4 shows a caustic and illustrates the meaning of
the semiamplitude Rk, the horizontal shift �k, and the
vertical shift �k. The picture is done for a standard lensing
caustic (k odd) with #o > �=2, so that the caustic is
displaced upward [see Eq. (69)].

As usual, we can trust our results as long as the pertur-
bative terms remain small. In extremal or close-to-extremal
Kerr black holes, higher orders in a would play a major
role in the critical curves and caustics profile. In that case,
the degeneracy between a and #o can probably be broken
also through the determination of the extension and posi-
tion of the caustics or through the analysis of the critical
curves. However, in the literature there is no investigation
of Kerr black holes with high spin that is deep enough to

L

O

P

a

ϑ

φ

ϑο

ν

FIG. 3. Observer-oriented coordinates �#̂; �̂� introduced in the
text. L is the black hole with spin a. O is the observer and P is a
generic point. #o is the inclination of the spin on the line of sight,
and 	 is the position angle of the spin.
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allow a comparison with our perturbative results for low
spins.

VI. GRAVITATIONAL LENSING NEAR CAUSTICS

A. Position of the relativistic images

Although in our picture the images cannot be found
analytically for arbitrary source positions using the lens
mapping that we have derived, they can actually be found
for sources in the neighborhood of a caustic. This is indeed
the most interesting case, as the relativistic images are
highly magnified and become observable only if this event
occurs. Assuming that the angular distance between the
source and a caustic of order k is of the order of a2 (thus
comparable with the caustic semiaxis), we can write the
source position as

 �s � ��1�k�o � a
2��s; (76)

 � � �1� k�����k � a2��s: (77)

In this assumption, the images will be very close to the
critical curve of order k. Then the scalar deflection will be

  � k�� a2� : (78)

Plugging the last equation into the lens map written up to
corrections of second order in a and inverting with respect
to ��s and ��s, we get

 

��s � 

1

9

����������������
1��2

o

q ��������������
1� �2

q
�9� � �5k�� 8

���
3
p
� 20�

� �1� �1��2
o��2�	; (79)

 

��s �
�

9
����������������
1��2

o

p �92� 24
���
3
p
� 15k�� 9� 

� 2�2
o�5k�� 8

���
3
p
� 36� � �5k�� 8

���
3
p
� 20�

� �1��2
o��

2	: (80)

Solving (80) with respect to � and plugging its ex-
pression into (79), we find

 ��s� � �S��1�k�1��2
o����s � ck

����������������
1��2

o

q
��

�
��������������
1� �2

q
; (81)

where ck is given by Eq. (59) and S � 
��1�k. This
equation can be more conveniently written in terms of
observer-oriented coordinates �#̂s; �̂s�. Supposing that
the position angle of the spin has been well established
by observations of the shadow or by the shift of the caustic
itself, we put 	 � 0 for simplicity and write

 #̂ s �
�
2
� ��1�k�k � �#̂s; (82)

 �̂ s � �1� k�����k � ��̂s; (83)

with

 �#̂s � �a2 ��s����������������
1��2

o

p ; (84)

 ��̂s � a2��s

����������������
1��2

o

q
: (85)

Then, we can write Eq. (81) directly in terms of these
coordinates as

 �#̂s� � S��1�k���̂s � Rk��
��������������
1� �2

q
; (86)

where Rk is the semiamplitude of the caustic given by
Eq. (71). The solutions of this equation for arbitrary source
positions ��#̂s; ��̂s� determine the relativistic images gen-
erated by the Kerr black hole. As the roots of Eq. (86) are
found squaring both its sides, the solutions of the squared
equation satisfy the original one only for one choice of S. S
is directly related to the half-sky where the image appears.
In fact, we recall that the parametrization (26) has an
ambiguity in the sign of �2. This ambiguity can be solved
observing that the photon reaches the observer from the
upper side of the black hole if S is positive and from the
lower side if S is negative. This fact can be easily estab-
lished remembering that in all our equations the upper
signs hold when the photon leaves the source by increasing
its � coordinate. Then, if its polar motion undergoes one
inversion (k � 1), the photon reaches the observer from
above and we coherently have S � 1. On the other hand, if
the lower signs hold, the photon begins its motion decreas-
ing its � coordinate. With one inversion, it reaches the
observer from below and coherently we have S � �1. The

L

O

2Rk

a

δk

∆k
ϑο

FIG. 4. A typical caustic in Kerr lensing. The extension is the
same in both directions. Having chosen coordinates such that the
position angle of the spin vanishes, the caustic has an azimuthal
shift �k and a vertical shift �k w.r.t. the line of sight.
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same reasoning can be repeated with an arbitrary number k
of inversions in the polar motion.

It can be easily verified that Eq. (86) has four real
solutions if the source is inside the caustic and only two
real solutions if the source is outside. Once the coordinate
� (which, we recall, represents the cosine of the position
angle) of the image is known, Eq. (80) can be used to
determines the value of � (perturbation of the scalar
deflection). However, it is important to stress that
Eq. (86) determines � to zero order only. Therefore, though
the positions of the images in the observer sky are generi-
cally given by
 

DOL�1 � �
3
���
3
p

2
��1� �k� � a

����������������
1��2

o

q
� �1� �2 � �k�1� �

2�	

�
a2�

6
���
3
p f10� 4�2�1��2

o� � 4�2
o

� �k�27� � 58� 64�2�1��2
o� � 16�2

o	g;

(87)

 

DOL�2 � S
3
���
3
p

2

��������������
1� �2

q
�1� �k� � aS�

��������������
1� �2

q
�

����������������
1��2

o

q
�1� �k�

� S
a2

6
���
3
p

��������������
1� �2

q
f2� 4�2�1��2

o�

� 4�2
o � �k�27� � 42� 64�1��2

o��
2	g;

(88)

to the second order in a, only a zero-order expression of �
is actually available. So, the position of the images is
accurate only to zero order in a and is given by

 DOL�1 � �
3
���
3
p

2
��1� �k�; (89)

 DOL�2 � S
3
���
3
p

2

��������������
1� �2

q
�1� �k�: (90)

To zero order, we see that the images of order k lie along
the critical curve of order k [we remind the reader that �k is
just the separation of the critical curve of order k from the
shadow (48)], with position angle determined by the solu-
tions of Eq. (86). If a more accurate theoretical prediction
of the images position (including first-order corrections) is
needed, it is necessary to push the lens equation to the third
order. Indeed this would be a worthy (though heavy) task
since the equation for the images (86) depends on a only
through Rk. As noticed before, this quantity only depends
on the projection of the spin on the line of sight. So, once
more, the observables (in this case the positions of the
images) only depend on a sin#o to the lowest order.

However, contrarily to the former observables, the posi-
tions of the images could be detected to an accuracy
sufficiently high to be sensitive at least to first-order cor-
rections in a. So, it would be indeed desirable to check
whether the positions of the images may help to break the
degeneracy between the absolute value of the spin and its
inclination on the optical axis.

B. Magnification

The magnification is defined as the ratio of the angular
area of the image and the corresponding angular area of the
source. The angular area of the image is simply jd�1d�2j,
while the angular area of the source is j sin#sd�sd#sj or
j sin#̂sd�̂sd#̂sj if one uses observer-oriented coordinates.
Then the magnification can be calculated as j sin#̂sj�1

times the inverse of the Jacobian determinant of the lens
application in the form

 

�
�̂s � �̂s��1; �2�;

#̂s � #̂s��1; �2�:
(91)

Following the same approach of Paper I, we can find the
expression of the magnification for sources in the neigh-
borhood of caustics exploiting the available relations (79),
(80), (84), and (85) to get

 

�
��̂s � ��̂s�� ; ��;

�#̂s � �#̂s�� ; ��;
(92)

and (87) and (88) to get

 

� �1 � �1�� ; ��;

�2 � �2�� ; ��:
(93)

Then the perturbation of the scalar deflection � and the
cosine of the position angle � play the role of intermediate
variables between the source coordinates �#̂s; �̂s� and the
image coordinates in the observer sky ��1; �2�.

Since sin#̂sd�̂s � d���̂s� and d#̂s � d��#̂s� to the
lowest order, the Jacobian of the map (91) reduces to

 

@��̂s; #̂s�
@��1; �2�

�
@���̂s; �#̂s�
@�� ; ��

�
@��1; �2�

@�� ; ��

�
�1
; (94)

where we have used the matrix notation

 

@�y1; y2�

@�x1; x2�
�

@y1

@x1

@y1

@x2
@y2

@x1

@y2

@x2

 !
: (95)

As the derivatives and the Jacobian matrix have very
involved expressions, we do not go too much into detail
and only report here the two eigenvalues of the Jacobian
matrix

 
r �
2DOL

3
���
3
p
�k
; (96)
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t �
2DOLDO

27
���
3
p
�1� �k�

; (97)

where
 

DO � ��1�k
a2

2
f9ck�3� 2�2

o � 3�̂2	

� 32�1� �̂2� � 18� g: (98)

In a first approximation 
r only depends on the caustic
order k and is always positive. On the other hand, 
t
vanishes at caustic crossing [see Eq. (58)]. Following
Paper I, we will call 
r and 
t, respectively, radial and
tangential eigenvalues, although they are such only in the
limit a! 0. Taking into account that the flux received by
the observer is D2

LS=D
2
OS times the flux received by the

black hole, the radial and tangential magnifications are

 �r �
DOS

DLS

1


r
; (99)

 �t �
DOS

DLS

1

j
tj
(100)

while the total magnification is given by � � �r�t.
An interesting thing to note is that the radial magnifica-

tion is completely independent of a and �o. It is just the
same as in the Schwarzchild black hole case. On the other
hand, the tangential magnification is sensitive to the caustic
structure, which can be seen more clearly if we plug the
solution of the lens equation (80) for � into Eq. (98). In
fact, we have

 �t � ��1�k
DOS

DLS

3
���
3
p
�1� �k��

2DOL�Rk�
3 � ��̂s�

; (101)

where the ��1�k accounts for the parity of the image and �
must be determined solving Eq. (86). The whole depen-
dence of the magnification on the black hole spin and the
observer declination is through the caustic semiamplitude
Rk, where they appear in the usual combination a sin#o.

C. Relativistic images around Sgr A*

In this subsection we want to complement the discussion
about the detectability of relativistic images done in Paper I
by some additional considerations. Indeed there are many
factors that contrast the positive detection of relativistic
images around Sgr A*. The photons with the right incident
direction for performing a complete loop around a black
hole and then reaching the observer are very few, because a
slight perturbation in the incident trajectory results in a
very different outgoing direction. Moreover, during their
journey, photons may be scattered or absorbed by the
accreting matter surrounding the supermassive black
hole. Finally, the photons surviving up to the observer
must be recognized and distinguished from the noise com-
ing from the environment.

Scattering and absorption from accreting matter are
strongly model dependent and cannot be easily quantified
without nontrivial assumptions on the infalling plasma
physics. We are not going to face this problem here, since
it demands an extensive investigation beyond the purpose
of this work.

On the other hand, our gravitational lensing analysis
allows us to give sharp answers on the brightness and
spatial properties of the images. In Paper I, we have
suggested that the observed low-mass x-ray binaries
(LMXB) orbiting around Sgr A* provide an ideal popula-
tion of sources for the gravitational lensing in the SDL
[23]. Of course, we need to resolve the shadow of Sgr A* in
order to identify relativistic images around it. This requires
a resolution of the order of the �as, which is just one step
beyond the limit reached in the radio band. In the x-ray
band, projects of space interferometry which could reach
resolutions even better than�as are currently being studied
(MAXIM, http://maxim.gsfc.nasa.gov). When such
projects become reality, a complete imaging of Sgr A*
will be possible and the relativistic images could be
distinguished.

Apart from spatial resolution, which can be attained by
realistic future projects, in order to detect a signal in the
x-ray band from a relativistic image, we need a sufficient
energy flux. With an intrinsic luminosity LS  2�
1033 ergs s�1 in the band 2–10 keV, emitted by a surface
with radius RS � 100 km, LMXBs are sources as powerful
as Sgr A* itself but enjoy a much higher surface brightness
[23]. If one of these sources crosses a relativistic caustic of
order k, the angular area of the resulting relativistic image
is the original source area �R2

S=D
2
OS multiplied by the

magnification factor �. As long as the source is inside
the caustic, the magnification stays higher than a minimum
value corresponding to a source located at the center of the
caustic. The central magnification has been calculated in
Paper I and amounts to

 �c �
D2
OS

D2
LSD

2
OL

27�k�1� �k�
4Rk

; (102)

for each of the four relativistic images present when the
source is inside the caustic.

For a detector with collecting area AD, the observed flux,
taking into account an absorption factor " � 0:158, de-
duced from Ref. [24], is thus

 Fk � "
LS

4�R2
S

�
�c

�R2
S

D2
OS

�
AD: (103)

With DOL � 8 kpc, MBH � 4:3� 106M� [25], and
DOS ’ DOL (since DLS � DOL), we have

 F2 � 2:3� 10�11 ergs s�1

�
DLS

100 AU

�
�2
�
a

0:02

�
�2

�

�
AD

100 m2

�
; (104)
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for a source crossing the caustic of order k � 2 and a black
hole spin a � 0:02 [26]. This flux is independent of the
source radius, as long as the source is much smaller than
the caustic extension, as in our case. We have considered a
collecting area AD � 100 m2 which might be realistically
obtained by future space detectors. The count rate for
photons in the considered band (with average energy
6 keV) is thus of the order of 2:4� 10�3 s�1, which is
comparable to the counts usually reported as positive
detections by the Chandra satellite for faint sources
[23,24]. Of course, such a high value for the count rate
can only be achieved with a collecting area as large as that
which we have considered here, which is roughly 100
times larger than that of Chandra.

Sgr A* itself emits in the x-band and provides a back-
ground noise to the signal of a relativistic image. The
image of a LMXB is entirely contained within a single
pixel of a hypothetic detector where every pixel covers
1�as� 1�as of sky. We can estimate the noise due to Sgr
A* considering that its intrinsic luminosity is of the same
order as LS [23,24], but its emitting region has a radius RSgr

of the order of 100 Schwarzschild radii. Then, every pixel
is affected by a noise from Sgr A* of the order of

 FSgr � "
LS

4�R2
Sgr

!2
pAD; (105)

where !p is the size of the pixel. We thus have

 FSgr � 3:7� 10�14 ergs s�1

� !p

1�as

�
2
�

AD
100 m2

�
; (106)

which is roughly 600 times smaller than F2. This proves
that the background from Sgr A* is indeed negligible for
relativistic images of order 2 if one has sufficient resolving
power. It is also important to stress that these estimates
have been calculated considering the minimum magnifica-
tion �c for a source inside a caustic. When the source is
close to a fold or a cusp, the brightness of the relativistic
image can be sensibly higher.

We conclude this discussion mentioning that the bright-
ness of relativistic images of order 3 is 0:016F2, which
allows a marginal detection w.r.t. the noise by Sgr A*,
while relativistic images of higher order are too faint to
be detected, at least for the configuration examined here.

VII. CONCLUSIONS

This paper completes the cycle of papers devoted to the
study of gravitational lensing by Kerr black holes in the
strong deflection limit. After the first pioneering work of
Ref. [15], where equatorial lensing was reduced to the
same problem already solved for spherically symmetric
black holes [5], in Ref. [16] we managed to make a
complete analytical treatment of Kerr lensing for equato-
rial observers, introducing a perturbative expansion in the
spin a. In this work we have extended that idea to Kerr

lensing with a generic observer. Though the strategy is
essentially unchanged, the introduction of a new parameter
(the inclination of the spin or equivalently the observer
colatitude #o) has increased the difficulty of the derivation.
Nevertheless, our investigation has reached its objective: a
basically simple and accurate description of Kerr lensing
phenomenology with arbitrary observer position.

An essential summary of the main results obtained in-
cludes the following: the shape of the shadow of the black
hole (21); the shape of all critical curves (63); the shape
and position of the caustics [Eqs. (69) and (70)]; the
position of the images [Eqs. (89) and (90) with Eq. (86)]
and their magnification [Eqs. (99) with (96) and (101)] for
sources close to a caustic.

To the second order in a, the shadow of the black hole
and the critical curves are ellipses slightly displaced from
the black hole position. The ellipticity is slightly higher in
critical curves than in the shadow. The caustics are dis-
placed from the optical axis and show the characteristic 4-
cusped astroid shape with the same extension in both
directions. The caustic shrinks back to a single point
when the observer lies on the spin axis, restoring the axial
symmetry. There are two additional images when the
source is inside a caustic.

The fundamental fact that emerges is that all observables
to the lowest order are functions of a sin#o, which repre-
sents the projection of the black hole spin on a plane
orthogonal to the line of sight. These observables include
the following: the shift and the ellipticities of the shadow
and of critical curves; the shift and the extension of the
caustics; and the position and the magnification of the
images.

The degeneracy between the absolute value of the spin
and its inclination on the line of sight can only be broken
by next-to-leading-order terms in all observables. This has
been explicitly shown considering the shadow and critical
curves’ semiaxes and the caustic vertical shift. These are
second-order contributions to zero-order quantities, thus
requiring extremely accurate measures, which may be very
challenging. For example, if the black hole spin is a � 0:1,
in order to break the degeneracy we need a relative accu-
racy of order a2 � 0:01 in the measures.

The most promising way to break the degeneracy is
through higher order corrections to the positions of the
images. In fact, our second-order treatment is only suffi-
cient to determine the position angle of the images to zero
order in a. Indeed the first-order corrections are likely to be
within reach of future VLBI observations, but unfortu-
nately they require at least a third-order treatment of Kerr
lensing in order to be determined analytically. This could
represent the main target for future theoretical develop-
ments of our methodology.

Of course, if the black hole spin is close to the extremal
value a � 0:5, the degeneracy breaking terms arising from
higher orders in a grow to the same size as the lowest order
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contributions and the problem would not be the degeneracy
between a and #o but the correct theoretical interpretation
of the observations in a nonperturbative frame, in order to
perform a safe parameters extraction.
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APPENDIX A: RESOLUTION OF RADIAL
INTEGRALS

This appendix reports the calculation of the radial inte-
grals appearing in the geodesics equations (4) and (5). The
double signs remind us that the integration along the whole
trajectory of the photon must be performed in such a way
that all pieces bounded by two consecutive inversion points
must sum up with the same sign [20]. Gravitational lensing
trajectories have only one inversion point in x0, the closest
approach distance. Thus we just have to sum the contribu-
tions due to two branches (approach and departure). These
two branches of the photon trajectory are actually related
by the time-reversal symmetry, so that the results of the
whole radial integrals are just twice the contributions
covering the departure branch. Summing up, the radial

integrals reduce to

 I1 � 2
Z 1
x0

dx����
R
p ; (A1)

 I2 � 2
Z 1
x0

x2 � a2 � aJ

�
����
R
p dx; (A2)

where we have neglected the corrections due to the finite-
ness of DOL and DLS, thus extending the integration do-
main to �1. The resolution by the SDL technique can be
read from Appendix A of Paper I, since the only change
comes when we replace J and Q by their new expressions
containing �o. Thus we can directly jump to the results,
which read

 I1 � �a1 log�� b1; (A3)

 I2 � �a2 log�� b2: (A4)

The coefficients expanded to second order in a are

 a1 �
4

3
���
3
p �

16

27
a�̂�

8

81
���
3
p a2�7� 4�2

o � 5�̂2�; (A5)

 b1 � a1 log�12�2�
���
3
p
�	 �

8

81
�5

���
3
p
� 6�a2�1� �̂2�;

(A6)

 a2 �
4���
3
p �

8

3
a�̂�

8

9
���
3
p a2�3� 2�2

o � 5�̂2�; (A7)

 

b2 � a2 log�4
���
3
p
�2

���
3
p
� 3�1�

��
3
p

	 �
8

9
a�̂�9� 2

���
3
p
� 3

���
3
p

log�2
���
3
p
� 3�	 �

4

27
a2f26

���
3
p
� 16� 2

���
3
p

log�3�

� 8�2
o � 12

���
3
p
�2
o � 12�3��2

o� log�2
���
3
p
� 3� � �̂2�38

���
3
p
� 20� 5�1� 2

���
3
p
� log�3� � 30 log�2�

���
3
p
�	g (A8)

with �̂ � �
����������������
1��2

o

p
.

APPENDIX B: RESOLUTION OF ANGULAR
INTEGRALS

This appendix is devoted to the resolution of the angular
integrals

 J1 � �
Z 1�����

�
p d#; (B1)

 J2 � �
Z csc2#�����

�
p d#: (B2)

Introducing the variable � � cos#, the two integrals
become

 J1 � �
Z 1��������

��

q d�; (B3)

 J2 � �
Z 1

�1��2�
��������
��

q d�; (B4)

where

 �� � a2��2
� ��

2���2
� ��

2�; (B5)

 �2
� �

�����������������������������
b2
JQ � 4a2Qm

q
� bJQ

2a2 ; (B6)

 bJQ � a2 � J2
m �Qm; (B7)

and we have already replaced J and Q with Jm and Qm,
coherently with the fact that we only retain terms that are
logarithmically diverging or constant in the approach pa-
rameter � (or equivalently in the separation from the
shadow �).
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�� has two zeros in � � ���. Then the photon per-
forms symmetric oscillations of amplitude �� w.r.t. the
equatorial plane. It is useful to write the explicit expres-
sions of �� and �� in terms of the spin a and the position
parameter �. Using Eqs. (17) and (18) in Eq. (B6) and
expanding to the second order in a, we find

 �� �
��������������
1� �̂2

q �
1� aA� �

1

2
a2A2

�

�
; (B8)

 

�� �
3
���
3
p

2a
� 2�̂� 4a

��2
o � �̂

2�

3
���
3
p

�
4

27
a2�̂�3� 10�2

o � 8�̂2�; (B9)

where

 A� �
2�̂�1��2

o��1� �2�

3
���
3
p
�1� �̂2�

: (B10)

In a first approximation, the oscillation amplitude �� is��������������
1� �̂2

q
, plus corrections due to the black hole spin. Note

that the minimal amplitude of the oscillations is obtained

for � � �1, which gives �� � j�oj. Purely equatorial
trajectories with �� � 0 are involved in gravitational
lensing only if the observer itself lies on the equatorial
plane. On the other hand, polar photons (� � 0) perform
oscillations with maximal amplitude �� � 1, touching the
poles of the black hole.

Now it is convenient to introduce a new integration
variable z � �=��, which allows us to eliminate the
dependence on a in the integration extrema. The integrals
become

 J1 � �
Z 1������

�z

p dz; (B11)

 J2 � �
Z 1

�1��2
�z

2�
������
�z

p dz; (B12)

with

 �z � a2��2
� ��2

�z
2��1� z2�: (B13)

In order to perform the angular integrals, it is wise to
expand the integrands to second order in a and then inte-
grate. The primitive functions read

 FJ1
�z� �

2

3
���
3
p arcsin�z�

�
1�

4

3
���
3
p a�̂�

1

27
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p
; (B14)
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3
���
3
p
�̂�1� �1� �̂2�z2	

� �3�1��2
o� � �̂

2 � z2�3� 4�̂2 � �̂4 ��2
o�3� 5�̂2��	

�
: (B15)

Similarly to radial integrals, the angular integrals appear
with double signs reminding us that they must be per-
formed piece by piece between any two consecutive inver-
sion points and all contributions must be summed with the
same sign [20]. The integration covers the whole trajectory
of the photon, which may perform several oscillations
around the equatorial plane. The integration must start
from the source position zs � �s=�� and must end at
the observer position zo � �o=��. Let us indicate by m
the number of inversion points in the polar motion touched
by the photon. Still we must consider two possibilities
depending on the direction taken by the photon starting
from zs. In fact, we may have a trajectory in which z is
initially either growing or decreasing. In the first case, the
first pieces of the angular integrals cover the domain �zs; 1	.
After that, we have m� 1 integrals covering the whole
domain ��1; 1	. All these integrals must be taken with the
same sign so that they always sum up. Finally, if m is even,
the photon reaches zo with growing z and the last piece

covers the domain ��1; zo	, otherwise z is finally decreas-
ing and the domain is �zo; 1	. The total angular integrals are
thus given by the sum of all these contributions covering
the domains just described. Exploiting the primitive func-
tions (B14) and (B15), we can express each integral as (in
the following, i takes the values 1 or 2)
 

Ji � FJi�1� � FJi�zs� � �m� 1��FJi�1� � FJi��1�	

� FJi�zo� � FJi��1� (B16)

for m even and
 

Ji � FJi�1� � FJi�zs� � �m� 1��FJi�1� � FJi��1�	

� FJi�1� � FJi�zo� (B17)

for m odd.
Noting that both primitives are odd functions of z, we

have FJi��1� � �FJi�1� and we can express the angular
integrals in the compact form

V. BOZZA, F. DE LUCA, AND G. SCARPETTA PHYSICAL REVIEW D 74, 063001 (2006)

063001-16



 Ji � 
�FJi�zs� � ��1�mFJi�zo�	 � 2mFJi�1�: (B18)

The ��1�m ensures that the sign of the zo-term is the same
as the zs-term if the number of inversions is odd, and is
opposite if m is even. We have also introduced a double
sign to take into account the possibility that z is initially
decreasing from the starting value zs.

For future reference, we also write the explicit values of
FJi�1�,

 FJ1
�1� �

�

3
���
3
p

�
1�

4a�̂

3
���
3
p �

a2�1� 8�2
o � 25�̂2�

27

�
;

(B19)

 

FJ2
�1� �

�

3
���
3
p
�̂

�
1�

2a

3
���
3
p
�̂
�1��2

o � �̂
2�

�
2a2

27�̂2
�3�1��4

o � �̂
2� � �̂3 � 11�̂4

� 6�2
o�1� �̂

2�	

�
: (B20)

APPENDIX C: SECOND-ORDER CONTRIBUTIONS
TO THE LENS EQUATION

In this appendix we report the expressions for ���2�s and
���2�s , which must be added to Eqs. (50) and (51) to obtain
the second-order lens equation. They read
 

���2�s � 
��1�m

��������������
1� �̂2

q
54

f6��̂2 � 1� cos 1

� ��1� 3�̂2� cos o � �1� �̂
2�

� cos�2 1 �  o�	 sin g; (C1)

 

���2�s �
1� �̂2

27�̂2
cos2 o�1� 21�̂2 � �1� �̂2� cos2 o	

� �arctan��̂ tan o� � arctan��̂ tan 1�	

�
2� �1� �̂2� cos2 1

9�cos2 1 � �̂
2sin2 1�

�̂ n

�
1

864�̂�cos2 1 � �̂
2sin2 1�

2

X3

i�0

pi�̂
2i; (C2)

where  1 �  �  o,  n � 5 � 8
���
3
p
� 20, and

 p0 � 64cos3 1cos3 o sin ; (C3)

 

p1 � 384 cos 1 � 2�7� 4 cos2 o � cos4 o� sin2 1

� �11� 20 cos2 o � 5 cos4 o� sin4 1

� 4�384� �14 sin2 o � 5 sin4 o�cos2 1	

� cos2 1 � 96�12� cos2 1cos3 o sin o�; (C4)

 

p2 � 768�1� cos4 1� � 8�9� cos2 o�cos2 o sin2 1

� �13� 28 cos2 o � 7 cos4 o� sin4 1

� 8�9� 11 cos2 1�cos2 1 sin2 o

� 4�9� 7 cos2 1�sin2 1 sin4 o; (C5)

 

p3 � 384�3� cos4 1� � �5� 3 cos4 o� sin4 1

� 2�9� cos4 o � 24 cos2 osin2 1�

� 20�sin22 1 sin2 o � sin2 1 sin4 o�

� 12�128� sin2 1 sin4 o� cos2 1: (C6)
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