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Using a post-Newtonian diagnostic tool developed by Mora and Will, we examine numerically
generated quasiequilibrium initial data sets that have been used in recently successful numerical
evolutions of binary black holes through plunge, merger and ringdown. We show that a small but
significant orbital eccentricity is required to match post-Newtonian and quasiequilibrium calculations. If
this proves to be a real eccentricity, it could affect the fine details of the subsequent numerical evolutions
and the predicted gravitational waveforms.
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I. INTRODUCTION

Recent breakthroughs in numerical relativity have made
it possible to evolve Einstein’s equations for binary black
holes (BBH) stably for several orbits, including the plunge,
merger and ringdown phases, and to generate intriguingly
robust gravitational waveforms [1–5]. The starting point of
these evolutions is a set of initial data, obtained from the
initial-value equations of general relativity, intended to
represent two black holes in circular orbital motion; this
is the expected end product of long-term binary evolution
under the circularizing and damping effects of gravita-
tional radiation emission.

In earlier work [6,7] we developed an approach, based
on the post-Newtonian approximation, designed to study
and elucidate the physical content of these initial data sets,
and showed that, in order to match post-Newtonian theory
with some data sets [8,9], a small but significant orbital
eccentricity was required. In this paper we apply this post-
Newtonian diagnostic to the initial data used in recent BBH
evolutions, and find that they also require an orbital eccen-
tricity. In particular we examine the corotating and non-
spinning initial data computed by Cook and collaborators
[10,11] and the nonspinning ‘‘puncture’’ initial data of
Tichy and Brügmann and of the ‘‘Lazarus’’ group
[12,13]. If this residual and unintended noncircularity is
real, it may affect the detailed structure of the numerically
generated gravitational waveforms.

The plan of the paper is as follows. In Sec. II we
summarize the Post-Newtonian diagnostic equations for
BBH derived in [7]. In Sec. III we apply the diagnostic
to the BBH quasiequilibrium configurations of [10–13].
Sec. IV presents conclusions.

II. POST-NEWTONIAN DIAGNOSTIC FOR BINARY
BLACK HOLES

Consider a binary system of black holes of irreducible
massesm1 andm2, and rotational angular velocities!1 and

!2, with mirr � m1 �m2 and � � m1m2=m2
irr defining the

total irreducible mass and reduced mass parameter, respec-
tively, (0<� � 1=4). Following [6,7] we define an eccen-
tricity e and a quantity � � mirr=p related to the semilatus
rectum p of the orbit, according to:
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where �p is the value of the orbital angular frequency �
where it passes through a local maximum (pericenter), and
�a is the value of � where it passes through the next local
minimum (apocenter). These quantities reduce exactly to
their Newtonian counterparts in the small orbital frequency
(Newtonian) limit, and are gauge invariant through first
post-Newtonian order, among other advantages [6,7].

We want to compare with quasiequilibrium configura-
tions of equal-mass BH-BH binaries, so we set m1 � m2

and � � 1=4. For corotating binaries we also set !1 �
!2 � ! � �, while for nonspinning binaries we have
!1 � !2 � 0. We exploit the fact that there exist exact
formulae for the energy and spin of isolated Kerr black
holes in terms of the irreducible mass, M � Mirr=�1�
4�Mirr!�2	1=2, S � 4M3

irr!=�1� 4�Mirr!�2	1=2. The total
binding energy and angular momentum of the system are
then given by

 Eb � ESelf � EOrb � EN;Corr � ESpin;

J � S� JOrb � JN;Corr � JSpin;
(2)

where
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The orbital (‘‘Orb’’) contributions are expressed in an
ADM-like (Arnowitt-Deser-Misner) gauge and are valid
to third post-Newtonian (3PN) order (see [7] for a discus-
sion of different gauges in the diagnostic). In Eqs. (3a) and
(3b), we have expanded the Kerr formulae for M and S in
powers of mirr!, assumed to be small compared to unity,
keeping as many terms as needed to reach a precision
comparable to our 3PN orbital formulae, and have sub-
tracted mirr in order to obtain the binding energy. The

‘‘N,Corr’’ terms come from converting the individual total
masses that appear in the Newtonian orbital energy to
irreducible masses and their corrections due to spin, and
the ‘‘Spin’’ terms are spin-orbit effects. For black hole
binaries, tidal and spin-spin effects can be shown to be
negligible [7]. To obtain Eb and J at a turning point as
functions of �, we substitute � � �mirr�a�

2=3=�1� e�4=3

or � � �mirr�p�
2=3=�1� e�4=3 for apocenter or pericenter,

respectively. When Eb, J, ! and � are suitably scaled by
mirr, there remains only one free parameter, the eccentricity
of the orbit. This approach was used in [6] to compare with
the numerical quasiequilibrium solutions of Grandclément
et al. [9], and it was found that a substantially better fit to
the numerical data was obtained for nonzero values of e, of
the order of 0.03, with the system at apocenter, than for e �
0. We now apply this diagnostic to other data sets that have
recently played an important role in BBH evolutions.

III. DIAGNOSIS OF BBH INITIAL DATA SETS

Cook and collaborators have developed initial data sets
for quasiequilibrium BBH, allowing for both corotation
and zero spin, in a series of papers [10,11,14–18]. Using
the thin-sandwich approach, combined with ‘‘excision’’
boundary conditions for the black holes adapted for treat-
ing spin, they considered systems possessing a ‘‘helical
Killing vector’’, @=@t��@=@�, meant to represent a
circular orbit, one that is stationary in a frame rotating
with angular velocity �. Additionally, they impose the
condition that the Komar mass, a mass defined for sta-
tionary systems, equal the ADM mass, an invariant mass
measured at spatial infinity. It is believed that this condition
helps ensure that the orbit is truly circular. We apply our
diagnostic to two data sets, taken from Refs. [10,11], re-
spectively. For nonspinning BH, the second data set used a
more accurate prescription for setting the BH spins to zero;
in the earlier data, the black holes were not truly non-
rotating. We take the data from Tables IV (corotating)
and V (nonspinning) of [10] and of [11], and plot
Eb=mirr and J=m2

irr vs mirr�. Figure 1 shows the compari-
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FIG. 1 (color online). Binding energy (left) and angular momentum (right) for the corotating and nonspinning BH-BH initial data
from [11]. Circles (squares) are nonspinning (corotating) data from [11], the solid lines are circular PN diagnostics with e � 0, the
dashed lines are eccentric PN diagnostics with e � 0:025.
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son between the data of Caudill et al. [11] and our diag-
nostic, plotted for e � 0 and for e � 0:025 (with our
definitions, positive values of e correspond to the system

being at apocenter). Figure 2 shows the eccentricity re-
quired to match each data point from both [10,11]. In the
improved data set of Caudill et al. for the nonspinning case,
the apparent eccentricity in the fits to J is reduced, and the
functional behavior of e with mirr� is now the same
(monotonically increasing) in both the nonspinning and
corotating cases. For the corotating case, there is essen-
tially no difference in the fits between the two data sets.
Furthermore, as in earlier comparisons [6], there is a
systematic difference between the eccentricity required to
match the binding energy and that required to match the
angular momentum.

Another approach to initial quasiequilibrium data for
BBH evolutions is the puncture method, in which the
conformal factor of the conformally flat spatial slices is
written in terms of a Newtonian-like potential mA=jx�
xAj (a puncture) for each body. This approach can also be
made to incorporate the helical Killing vector and Komar-
ADM mass equality assumptions [19]. Tichy and
Brügmann [12] and Baker et al. [13] (the Lazarus project)
have used this approach to generate initial data for non-
spinning binary black holes in quasicircular orbits. In
Fig. 3 we show the eccentricity required to match these
data sets; again the eccentricity is small but significant, and
again different between Eb and J. We also show explicitly
the eccentricity required to match the Tichy-Brügmann
data using a 2PN diagnostic, obtained by truncating the
3PN terms in the orbital expressions; the differences are
comparable to the differences between the two numerical
data sets, and are not large enough to account for the
difference between the Eb and J curves. Table I lists the
coefficients of a cubic fitting function to the eccentricity
required to match Eb and J for different initial data sets.

IV. CONCLUSIONS

We have shown, using a post-Newtonian diagnostic tool,
that initial data sets for binary black hole mergers may
actually represent slightly eccentric orbits. Several remarks
are called for. First, there is evidence from the dynamical
evolutions of some of these initial data sets that the orbits
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FIG. 3 (color online). Eccentricity solutions for puncture ini-
tial data. Solid and dashed lines are solutions for the Tichy-
Brügmann puncture data using 3PN and 2PN diagnostics, re-
spectively. Dotted lines are from 3PN solutions for the Lazarus
puncture data.

TABLE I. Least-squares fit of the eccentricity for the corotat-
ing (corot) and nonspinning (nospin) data by Caudill et al., for
the Tichy-Brügmann puncture data (TB) and for the Lazarus data
(Lazarus). The integer N is the number of data points used for
the fit. We fit by a cubic polynomial e �

P3
k�0 ek�mirr��

k.
�emax � max��e� enum�=enum	 is the maximum percentage er-
ror of the fit with respect to the numerical data enum.

Fit of Eb
N 103 
 e0 e1 e2 e3 �emax

corot 25 �0:73418894 0.23870832 �0:37207668 74.523304 �3:758
nospin 25 �0:11438527 0.15748053 1.2258277 0.83081005 5.751
TB 12 �5:4145414 0.75157074�14:093449 224.07983 �11:64
Lazarus 5 �2:1760344 0.60151690�13:280282 221.40238 1.244

Fit of J
N 103 
 e0 e1 e2 e3 �emax

corot 25 �1:8164595 0.56024586 �3:2850593 147.08294 �4:452
nospin 25 �0:99496055 0.45656217 �1:0622433 60.466300 �3:088
TB 12 �9:4590074 1.6687984 �40:943406 624.96446 �20:98
Lazarus 5 �16:332921 2.0037212 �43:661018 577.56427 1.161
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FIG. 2 (color online). Eccentricity required to match data points for nonspinning (left) and corotating data (right). Black lines are
solutions for the energy, red lines are solutions for the angular momentum. In the nonspinning case, continuous lines refer to the
Caudill et al. data [11], dashed lines to the earlier Cook-Pfeiffer data [10].

ECCENTRICITY CONTENT OF BINARY BLACK HOLE . . . PHYSICAL REVIEW D 74, 061503(R) (2006)

RAPID COMMUNICATIONS

061503-3



are slightly eccentric. For example, in the recent evolution
of several BBH orbits through merger and ringdown by
Baker et al. [3] using the Lazarus initial data, an oscillatory
behavior of the separation of the black holes can be seen in
their Figure 9. Similar oscillations were seen in the binary
neutron star evolutions of [20,21], although the results
there were very sensitive to grid resolution and size of
the computational domain.

On the other hand, we continue to be puzzled by the
difference in values of e inferred from fits to Eb and J. This
difference was also seen in fits of the diagnostic to data
from the Meudon group [6], and could be cited as a defect
of the PN approximation. However, this difference occurs
systematically even at the smallest values of mirr�, where
relativistic corrections are quite small.

We want to emphasize that the eccentricity we are dis-
cussing here is not related to the mismatch between an
initial quasicircular orbit (with _r � �r � 0 by construction)
and the reality of a pre-existing inspiral (with _r �
�16�m=r�3=5), since the initial data sets know nothing
about radiation reaction. That eccentricity, which would
be induced on an evolution from a perfectly circular initial
orbit, has been discussed in detail by Miller [22].
Depending on the starting point of the evolution, the in-
duced eccentricity from this effect could be as large as
0.03.

Irrespective of the origin of the eccentricity, Miller
pointed out that the result could be a substantial decrease
in detection signal-to-noise when a numerically generated,

eccentric waveform template is matched against a ‘‘true’’
waveform generated by a quasicircular inspiral of a real
BBH (see, for example, Figures 7 and 9 of [22]).

If eccentricity is an issue and cannot be removed or
reduced by tuning the initial data sets, one could ask
whether it could be damped away naturally by numerically
evolving several orbits leading up to the onset of plunge,
around mirr�� 0:1. Using Eqs. (2.34) of [7], which give
the evolution of our orbit elements e and � under radiation
reaction, it is straightforward to show, at 2.5PN order and in
the small eccentricity limit, that the number of orbits N
required to reduce the eccentricity by a factor X � ef=ei
by the time the orbit reaches a final angular velocity �f is
given by N � �X�30=19 � 1�=64���mirr�f�

5=3. For � �
1=4 and mirr�f � 0:1, this gives 34 orbits for a reduction
by 1=10, and 11 orbits for a reduction by 1=5. Suppressing
eccentricity this way is likely to be a challenge without
additional breakthroughs in numerical relativity.
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