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We constrain the post-Newtonian gravity parameter � on kiloparsec scales by comparing the masses of
15 elliptical lensing galaxies from the Sloan Lens ACS Survey as determined in two independent ways.
The first method assumes only that Newtonian gravity is correct and is independent of �, while the second
uses gravitational lensing which depends on �. More specifically, we combine Einstein radii and radial
surface-brightness gradient measurements of the lens galaxies with empirical distributions for the mass
concentration and velocity anisotropy of elliptical galaxies in the local universe to predict �-dependent
probability distributions for the lens-galaxy velocity dispersions. By comparing with observed velocity
dispersions, we derive a maximum-likelihood value of � � 0:98� 0:07 (68% confidence). This result is
in excellent agreement with the prediction of general relativity that � � 1, which has previously been
verified to this accuracy only on solar-system length scales.
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Gravitational lenses provide some of the most inspira-
tional and thought-provoking images in astronomy. It is
often said in the popular press that these represent a
wonderful verification of Einstein’s general theory of rela-
tivity (GR). In 1937, Zwicky [1] proposed that lensing by
distant galaxies and clusters would furnish both a test of
GR and a tool for the measurement of the lensing masses.
Since the discovery of the first gravitational lenses, how-
ever, astronomers have emphasized the latter application
over the former. In fact, gravitational lensing alone cannot
simultaneously determine the masses of lenses and test the
weak-field limit of the Schwarzschild metric which under-
lies the theory of lensing.

Since Eddington’s original solar eclipse expedition of
1919, the Schwarzschild metric has been extensively
probed in the weak-field limit within the solar system
(e.g. [2]) and with binary radio pulsars (e.g. [3]). In all
cases, however, the scales involved are of order light
seconds. Most recently, the Cassini mission has determined
the post-Newtonian parameter � (e.g. [4,5]), described
below, by directly measuring the Shapiro delay [6] as radio
signals pass by the Sun in their travel from the spacecraft to
the Earth, giving a measured value of � � 1� �2:1�
2:3� � 10�5 [2]. In this paper we set precise constraints
on � on galactic scale sizes of several kiloparsecs (1 pc ’
3:1� 1018 cm): impact parameters �1011 times larger
than in Sun-grazing solar-system tests. We accomplish
this by comparing the masses of relatively low-redshift
(0:06< z < 0:33) galaxies as deduced from strong gravi-
tational lensing with their masses as estimated from their
stellar orbital dynamics. Since the former determination
depends upon GR through the value of �, whereas the latter
depends only upon Newtonian gravity, the quantitative

agreement between the two methods can place a direct
constraint upon �. Our analysis constrains � to have a
value of 0:98� 0:07 (68% confidence), in excellent agree-
ment with the GR prediction of � � 1. This statistical
precision is enabled by data for a large and homogeneous
sample of recently discovered gravitational-lens galaxies.
Similar analyses have been carried out previously, but with
much lower statistical significance. Nottale [7] applied this
type of test to the lensing galaxy cluster A370 to obtain
0:87< �< 1:55, subject to assumptions about the mass
structure of the cluster. Dar [8] found agreement within &

30% error bars between the observed and predicted image
separations in a heterogeneous sample of 5 gravitational-
lens systems, also for fixed mass-structure assumptions,
but did not translate this result into a constraint on �.
Sirousse-Zia [9] developed formalism for the test, express-
ing the dependence upon � of the lensing properties of the
singular isothermal sphere galaxy model (see below), but
did not derive any observational results.

The dependence of gravitational lensing upon � can be
derived from a general form of the metric for a point mass
m in the weak-field limit for a space-time that yields
Newtonian gravity:

 d�2 � dt2
�
1�

2m
r

�
� dr2

�
1�

2�m
r

�
� r2d�2: (1)

The parameter � equals unity for the Schwarzschild met-
ric,� is the angle in the invariant orbital plane, andG and c
have been set equal to 1. In this formulation, the weak-field
gravitational acceleration can be calculated, and is verified
to be�Gm=r2 as given by Newton and independent of the
parameter �. From the speed of light in the radial direction
as inferred by an external observer at infinity, one may
define an effective index of refraction for the space sur-
rounding the point mass, and hence around any arbitrary*Electronic address: abolton@cfa.harvard.edu
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mass distribution through the principle of superposition.
This quantity is used to compute the Shapiro delay, and for
sufficiently isolated gravitational-lens systems one may
invoke the thin-lens approximation. Thus gravitational
lensing can be formulated in terms of two-dimensional
Fermat time delay surfaces [10,11]. By extremizing the
sum of the Shapiro and geometric time delays, one obtains
the ‘‘lens equation’’ that relates position in the observed
image plane to location in the unobserved and unlensed
source plane:

 

~� s � ~��
�1� ��

2
~r � ~��: (2)

Here, ~�s is the angular source location, ~� is the angular
location of the image, and  � ~�� is a scaled line-of-sight
integral of the Newtonian gravitational potential of the
lensing object (see Eq. 48 of [12] for the explicit definition
of  in this context). The Einstein radius, defined by ~�s �
0 for circularly-symmetric projected potentials, simply
scales with the factor �1� ��=2. The difficulty in inferring
anything about the � parameter is that it appears only as a
product with the relevant masses of the problem. Unless
one knows the lensing mass via some method other than
lensing, there is no distinction between, e.g., the solution
for a lensing mass M and � � 1 and the solution for a
lensing mass of 2M and � � 0.

The actual observational test that we perform here can
be understood most simply in terms of the singular isother-
mal sphere (SIS) galaxy model, though we in fact allow for
more general galaxy models in our analysis. The SIS is a
dynamically self-consistent, spherically-symmetric three-
dimensional profile with density ��r� � �2

v=�2�Gr2�. It is
perhaps the best one-parameter model for elliptical gal-
axies, characterized by an isotropic and radially constant
dispersion of stellar orbital velocities �v that determines
the mass within any given radius. Through gravitational
lensing, the SIS forms a ring image of any background
objects along the same line of sight, with an angular
Einstein radius of

 �E � �1� ��2���
2
v=c

2��DLS=DS�; (3)

where DLS and DS are distance measures discussed further
below. Thus, within the context of the SIS model, mea-
surements of the Einstein radii and velocity dispersions of
gravitational-lens galaxies can be used to constrain the �
parameter [9]. (From an observational standpoint, velocity
dispersion is defined in this work as the luminosity-
weighted integral of the second moment of the stellar
velocity distribution along the observational line of sight.
It may be measured from the spectrum of a galaxy whose
stellar population is spatially unresolved by fitting for the
broadening of stellar atomic absorption lines that best
reproduces the features seen in the integrated galaxy
spectrum.)

Spatially resolved, high signal-to-noise observations of
the kinematics of elliptical galaxies, whose stellar popula-
tions are dynamically ‘‘hot’’ (i.e., not characterized by
ordered circular orbits), can be used in combination with
detailed modeling to deduce radial density profiles and to
directly test the validity of the isothermal approximation.
Such studies (e.g. [13–19]) indicate a modest amount of
dark matter within one half-light radius and an approxi-
mately isothermal density profile in elliptical galaxies that
are nearby enough to permit the necessary observations.
Gravitational-lens galaxies (hereafter GLGs), by contrast,
are typically elliptical galaxies at relatively high redshift
and with significant contamination from the light of lensed
quasar images, and thus do not allow the same type of
dynamical analysis as local ellipticals. Thus lensing itself
is usually the only robust measurement of the mass of the
GLG, and a model for the density profile must simply be
assumed. An exception is the Lenses Structure and
Dynamics [LSD] Survey [20–24], which has used lens-
galaxy velocity dispersions in combination with Einstein
radii and the implicit GR assumption of � � 1 to place
constraints on the relative contributions of luminous and
dark matter in distant GLGs.

The current work is enabled by the significant new
sample of relatively low redshift (0:06< z< 0:33) ellip-
tical GLGs presented by the Sloan Lens ACS (SLACS)
Survey [25–27]. The SLACS GLGs, which were discov-
ered within the Sloan Digital Sky Survey spectroscopic
database (SDSS: [28]), are particularly distinguished by
the ease and accuracy with which their surface-brightness
profiles and stellar dynamics can be measured, relative to
previously known GLGs. Publicly available SDSS
velocity-dispersion measurements of SLACS GLGs pro-
vide a single, lensing-independent dynamical mass scale
for each system, though they do not allow a lensing-
independent determination of the GLG density profiles.
In this work we adopt the hypothesis that, by virtue of
their relatively low redshifts, SLACS GLGs are sufficiently
like nearby elliptical galaxies for their distribution in den-
sity profiles to be approximated by the distribution deduced
for nearby elliptical galaxies from the application of de-
tailed dynamical modeling. The masses of SLACS GLGs
can thus be inferred independently of lensing from their
SDSS velocity dispersions, with an uncertainty quantified
by both measurement error and intrinsic scatter in density
profile (and velocity anisotropy, discussed below). The
most significant evolution to be expected between nearby
elliptical galaxies and the SLACS GLGs is in luminosity,
which we circumvent by working entirely with mass,
shape, and dynamical observables.

In order to work with directly observable quantities (of
which galaxy mass is not one), we frame our analysis in
terms of a comparison between the stellar velocity disper-
sions of GLGs (i) as observed and (ii) as predicted from
their lensing Einstein radii for a given value of �. Before
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proceeding into more detail, we note that the observed
stellar dispersions of SLACS GLGs agree within observa-
tional errors with their Einstein radii when the latter are
directly translated into velocity dispersions using Eq. (3)
and assuming � � 1 (see Fig. 5 of [26]). To incorporate the
possible effects of nonisothermal lens profiles, we employ
the self-similar, axisymmetric model described by
Koopmans [29]. This model approximates the mass- and
luminosity-density profiles of GLGs with power-law
forms: i.e. three-dimensional mass density ��r� / r��

and luminosity density 	�r� / r�
 (here we have used �
to replace the �0 of [29] to avoid confusion with the post-
Newtonian parameter of interest). With � and 
 considered
as separate parameters, the model corresponds to a scale-
free galaxy with a constant logarithmic radial mass-to-light
ratio gradient, capable of describing an increasing dark-
matter fraction at increasing radius. Larger values of � and

 correspond to more centrally concentrated mass and light
profiles. The observed angular Einstein radius �E of a GLG
gives a measurement of the enclosed mass. Taking the
mass normalization set by �E and fixed values for � and

, the spherically-symmetric steady-state Jeans equation is
integrated analytically for velocity dispersion in the radial
direction as a function of radius. (The Jeans equation is
obtained from the velocity moments of the collisionless
Boltzmann equation for the phase space distribution of
stellar orbits in Newtonian gravity; see, e.g., [30]) The
model further assumes a constant radial profile for the
conventionally defined velocity anisotropy parameter �
which relates velocity dispersions in the radial and tangen-
tial directions: � � 1� �2

v;tan=�
2
v;rad. The Jeans-equation

solution assumes the validity of Newtonian gravitation on
the relevant scales, but is independent of � in the weak-
field limit as discussed above. The luminosity-weighted
squared velocity dispersion is integrated along the line of
sight to give an analytic prediction for the observed veloc-
ity dispersion as a function of position within the image of
the GLG. The simplest SIS model is described by the
special case of � � 
 � 2 and � � 0.

The sample we analyze consists of the 15 SLACS GLGs
with published Einstein radii, determined by fitting singu-
lar isothermal ellipsoid (SIE) lens models with the normal-
ization of [31] to Hubble Space Telescope (HST) imaging
data [27]. Though the SIE model assumes a particular
radial mass profile, measured Einstein radii depend only
weakly upon the details of the radial mass distribution of
the GLG. We obtain 
 values by computing average loga-
rithmic surface-brightness profile slopes for the 15 systems
through nonlinear least-squares fitting of elliptical power-
law luminosity models convolved with the instrumental
point-spread function to the HST imaging data within a
radius of 1.8 arcseconds about the center of each GLG. (A
three-dimensional brightness profile 	�r� / r�
 will have a
projected two-dimensional profile I�R� / R�
�1.) Both the
mass and light models fitted to the HST data include a

projected minor-to-major axis-ratio parameter q to allow
for ellipticity. To connect these models to the axisymmetric
approximation of the analytic Jeans equation-based frame-
work, we use the interchange

 R$ Rq �
������������������������
qx2 � y2=q

q
; (4)

which conserves the total mass or light within a given
isodensity or isobrightness contour. Stellar velocity-
dispersion values for each GLG are taken from the output
of the Princeton 1d spectroscopic pipeline analysis of the
SDSS database [32]. The SDSS spectrograph integrates all
atmospherically blurred galaxy light within a circular
optical-fiber aperture of radius 1.5 arcseconds on the sky.
The fractional systematic velocity-dispersion inaccuracy
incurred in a circularly-symmetric Jeans analysis of an
oblate galaxy is calculated by [33] to be small provided
that one uses angularly-averaged velocity dispersions and
Einstein radii, as we do in our calculations here. We add
this error in quadrature to the observational velocity-
dispersion error estimates for each lens, though it is small
(median contribution of 2%) and has a negligible effect on
our result.

To determine suitable probability distributions for the
mass concentration � and velocity anisotropy � of the
SLACS GLGs, we make use of the results of Gerhard
et al. [15], who compute the density structure for a sample
of nearby elliptical galaxies using dynamical observations.
From Fig. 1 of that work, we determine the change in
circular velocity (or, equivalently, mass enclosed) between
0.2 and 0.6 half-light radii for each of the 17 galaxies with
data over that range. The chosen radial range corresponds
roughly to the range probed by the SLACS GLG sample.
We assign to each of these galaxies a logarithmic radial
density slope � that will give the same relative change in
circular velocity. This gives a sample mean log-slope of
h�i � 1:93 and an intrinsic RMS variation of �� � 0:08.
From Fig. 5 of the same work, we calculate the average and
RMS variation of the velocity anisotropy parameter � to be
h�i � 0:18 and �� � 0:13 (excluding the outlier galaxies
NGC 4636 and NGC 4486B). We model the probability
distributions of � and � for the SLACS GLGs as uncorre-
lated Gaussians with these parameters. Neither of these
properties exhibit significant correlation with galaxy mass
in [15].

For comparison with the observed velocity dispersions,
we integrate the position-dependent velocity dispersion
predicted by lensing over the SDSS spectroscopic
optical-fiber aperture. The combined effect of the circular
SDSS aperture (radius 1.5 arcseconds) and the typical
image quality of FWHM 2 arcseconds (due to atmospheric
blurring) is well approximated by a circular Gaussian
weighted aperture with a FWHM of 2.8 arcseconds, which
we combine with luminosity weighting in an integration of
Eq. 2.4 of [29]. We furthermore incorporate the depen-
dence of gravitational lensing upon � and eliminate the
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explicit dependence on the mass of the GLG in favor of the
Einstein radius to obtain

 h�2
l:o:s:i �

c2

4�
DS

DLS
�E

�
2

1� �

�
f��; 
; ��

�

�
�A
�E

�
2��

21��=2

�
5� 
� �

3� 


�

�

�
�	�5� 
� ��=2


�	�3� 
�=2


�
: (5)

Here, the first occurrence of �E is to be expressed in
radians. The dimensionless function f��; 
; �� is given
in [29]. The quantity �A is the ‘‘Gaussian sigma’’ of the
spatial weighting aperture: i.e., 2.8 arcseconds divided by
2.355. Additional factors on the second and third lines arise
from our use of a Gaussian integration aperture. DS and
DLS are angular-diameter distances from the observer to
the lensed galaxy and from the GLG to the lensed galaxy,
respectively, specifying the angle subtended by a given
physical distance transverse to the line of sight. These
distances are functions of the redshifts of the two galaxies,
which have been measured to high accuracy for all SLACS
systems using SDSS spectroscopic data [25]. DS and DLS

also depend upon the adopted cosmology, and in principle
would be altered through the Robertson-Walker metric by
any change in � (as noted by [9]). However, such changes
would necessarily be accompanied by changes in the
matter-energy density of the universe in order to reproduce
the shape of the luminosity distance-redshift relation em-
pirically constrained by type Ia supernova observations out
to redshift z � 1 [34–37]. Thus although we shall compute
DS and DLS under the assumption of the currently favored
cosmology with density parameters ��M;��� � �0:3; 0:7�
[38], we regard this recipe as a suitable proxy for the
empirical distance-redshift relation.

We use Eq. (5) to determine numerically the probability
distribution of the ‘‘true’’ aperture velocity dispersion
h�2

l:o:s:i
1=2, which we denote below by � for convenience,

for each GLG as a function of �. This is done by computing
� over a grid of all physically allowed � and � values (i.e.,
those that give finite central mass and predict non-negative
�2) at fixed �
; �E; �A�, assigning differential weights over
the grid as given by the assumed probabilities of � and �,
and sorting in � to determine the cumulative probability
distribution. This computation is repeated over a grid of �
values from 0–4 to derive the desired probability density
P1��j�� for each lens. The probability density for obtain-
ing a particular measured SDSS velocity dispersion �SDSS

at fixed � is then given by

 P3��SDSSj�� �
Z
d�P2��SDSSj��P1��j��: (6)

For P2��SDSSj��, we assume a Gaussian distribution about
the true value, with a width given by the measurement error
for each system. Statistical errors on the measured 
 and

�E values are neglected, since they have an exceedingly
small effect compared to the errors on the �SDSS values and
the assumed intrinsic variation in � and �.

For each GLG i, given its measured �SDSS, Eq. (6) may
be interpreted as a likelihood distribution for the parameter
�. Since we expect the true value of � to be universal and
thus the same for all GLGs in the sample, we can express
its likelihood distribution given all the data and the prior
assumptions as

 L ��� �
Y

lenses i

P�i�3 ��
�i�
SDSSj��: (7)

Figure 1 shows the individual factors in this likelihood
product, as well as the joint normalized likelihood density.
Though the distribution of individual maximum-likelihood
values seen in Fig. 1 appears slightly bimodal between �
values greater than 1 and less than 1, this effect is not
statistically significant: a Kolmogorov-Smirnov test of the
distribution of individual � values indicates a reasonable
33% probability of being drawn from a Gaussian distribu-
tion about � � 1 with a width equal to the mean RMS
width of the individual � distributions (approximately 0.3).
Furthermore, the individual � values are not significantly
correlated with any lens-galaxy observables. The joint
distribution L��� is described well by a Gaussian in �,
from which we derive a maximum-likelihood constraint of
� � 0:98� 0:07 (68% confidence).

Our maximum-likelihood value for � is in excellent
agreement with the GR-predicted value of � � 1. This
result is an important quantitative test of the theory of
gravitation on scales much larger than have been probed
previously with solar-system experiments. The current
analysis is enabled by the new sample of GLGs from the
SLACS Survey for which lens masses can (implicitly) be
estimated through a combination of observables and rea-

FIG. 1. Normalized likelihood densities for the post-
Newtonian parameter � derived from individual SLACS GLGs
( gray), with joint likelihood for the entire sample (black). The
joint distribution is approximately Gaussian, giving � � 0:98�
0:07 (68% confidence).
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sonable assumptions independent of lensing itself. We note
that a spatially resolved and/or higher signal-to-noise ob-
servational determination of the stellar dynamics of the
SLACS GLGs would remove some of the reliance on prior
assumptions based on the local universe, thus making the
result more robust.
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