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We consider a vectorial, confining SU�N� gauge theory with a variable number, Nf, of massless
fermions transforming according to the fundamental representation. Using the Schwinger-Dyson and
Bethe-Salpeter equations, we calculate the S parameter in terms of the current-current correlation
functions. We focus on values of Nf such that the theory is in the crossover region between the regimes
of walking behavior and QCD-like (nonwalking) behavior. Our calculations indicate that the contribution
to S from a given fermion decreases as one moves from the QCD-like to the walking regimes. The
implications of this result for technicolor theories are discussed.
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I. INTRODUCTION

The properties of a vectorial gauge theory as a function
of the fermion content are of fundamental importance.
Here we consider such a theory [in �3� 1� dimensions at
zero temperature and chemical potential] with gauge group
SU�N� and Nf massless fermions transforming according
to the fundamental representation of this group. For N �
Nc � 3 and Nf � 2, this is an approximation to actual
quantum chromodynamics (QCD) with just the u and d
quarks, since their current-quark masses are much smaller
than the scale �QCD ’ 400 MeV. We restrict here to the
rangeNf < �11=2�N for which the theory is asymptotically
free. An analysis using the two-loop beta function and
Schwinger-Dyson equation (reviewed below) leads to the
inference that for Nf in this range, the theory includes two
phases: (i) for 0 � Nf � Nf;cr a phase with confinement
and spontaneous chiral symmetry breaking (S�SB), and
(ii) for Nf;cr � Nf � �11=2�N a non-Abelian Coulomb
phase with no confinement or spontaneous chiral symmetry
breaking. We shall refer to Nf;cr, the critical value of Nf, as
the boundary of the non-Abelian Coulomb (conformal)
phase [1].

For Nf slightly less than Nf;cr, the theory exhibits an
approximate infrared (IR) fixed point. Let the SU�N� run-
ning gauge coupling be denoted as g���, where � denotes
the energy or momentum scale, and let ���� �
�g���2=�4��. As � decreases from large values, ����
grows to be O(1) at a scale �, but increases only rather
slowly as� decreases below �, so that there is an extended
interval in energy below � where � is large, but slowly
running (‘‘walking’’). In addition to its intrinsic field-
theoretic interest, this walking behavior is an essential
ingredient of modern technicolor models of dynamical
electroweak symmetry breaking [2], providing the requi-
site enhancement of standard-model (SM) fermion masses
[3–8]. As Nf approaches Nf;cr from below, quantities with
dimensions of mass vanish continuously; i.e., the chiral
phase transition separating phases (i) and (ii) is continuous.

In this paper, we shall use solutions of the Schwinger-
Dyson (SD) and Bethe-Salpeter (BS) equations to compute
a derivative of the difference of the vector and axial-vector
current-current correlation functions, �0

VV�0� ��0
AA�0�.

Up to a multiplicative factor, this is the coefficient �L10 of
one of the terms in the effective chiral Lagrangian for the
theory [9,10]. Moreover, in the context in which one con-
siders the SU�N� theory as a technicolor (TC) model, with
N � NTC, the above quantity is proportional to the correc-
tion to the Z propagator due to virtual electroweak-
nonsinglet technicolor particles, often denoted as S [11–
14]. We focus on the crossover region between the walking
regime that occurs for Nf & Nf;cr and the QCD-like (non-
walking) regime that occurs for smaller Nf. In particular,
we will show that there is a significant decrease in the
contribution to S from each fermion as� decreases through
this crossover region, from the QCD-like regime to the
extreme walking regime. We attribute greater weight to this
relative decrease than to the magnitude of S at a given �
since, as will be reviewed below, the calculation of S in
QCD via SD-BS methods tends to overestimate it.

There are several motivations for this work. The quantity
S, or equivalently �L10, is an intrinsic property of the SU�N�
theory, and it is of interest to understand how this quantity
depends on Nf. Further, our calculations have important
implications for technicolor models of dynamical electro-
weak symmetry breaking [3–8]. For this application, as
noted, we identify the SU�N� group with the technicolor
gauge group. Precision electroweak data [13,14] determine
allowed regions of values of S and the other Z and W
propagator corrections denoted T and U, and yield a strin-
gent constraint on the contributions from new particles in
technicolor models. In order to assess the viability of these
models, it is necessary to have a reliable calculation of the
contribution to S from technicolor particles. A perturbative
calculation of S is not reliable since the technifermions are
strongly interacting on the relevant scale�mZ. Although it
is possible to carry out a nonperturbative calculation for
technicolor theories that behave like scaled-up QCD (by
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using QCD data as input for the relevant spectral func-
tions), such theories are excluded since they cannot pro-
duce sufficiently large standard-model fermion masses. It
is more difficult to carry out a nonperturbative estimate of
S for technicolor models that have walking behavior; such
estimates have been presented in Refs. [15–20]. These
suggest that the contribution to S per technifermion elec-
troweak doublet is reduced in the walking region. Meson
masses and fP (the generalization of f�) were calculated in
this walking regime in Ref. [21]. (See also Ref. [22] for the
analogous calculations in QCD.) A motivation for our
calculations in this paper is to gain further insight into
the behavior of S by studying its behavior in the crossover
region between the walking and QCD-like regimes. One of
the reasons for concentrating on this crossover region is
that the theory still has an approximate infrared fixed point
here, and hence one can study the dependence of S on Nf
without having to introduce a model-dependent cutoff on
the growth of the SU�N� gauge coupling in the infrared that
was required in calculations of S via the SD and BS
equations for small Nf values, such as Nf � 3 in QCD
[17,23]. As our previous calculations of meson masses and
fP in this crossover region showed [24], although it is a
restricted interval in Nf or equivalently, the value of the
infrared fixed point, it is sufficiently large to observe a
significant change between walking and QCD-like
behavior.

This paper is organized as follows. Section II is devoted
to a review some background material concerning the beta
function, approximate infrared fixed point and walking
behavior, and technicolor models. Section III contains
definitions of the current-current correlation functions
and the expression for S in terms of these correlation
functions. Section IV explains how the current correlators
are obtained from Bethe-Salpeter amplitudes while Sec. V
discusses the method of solution of the Bethe-Salpeter
equation. Our results are presented in Sec. VI and their
implications for technicolor theories in Sec. VII.

II. SOME PRELIMINARIES

In this section we review some background for our
calculations. For the theory under consideration, with an
SU�N� gauge group and Nf massless fermions in the
fundamental representation, the renormalization group
(RG) equation for the running coupling ���� is

 � � �
d����
d�

� �
����2

2�

�
b0 �

b1

4�
��O��2�

�
; (2.1)

where � is the momentum scale. The two terms listed are
scheme-independent. The next two higher-order terms
have also been calculated but are scheme-dependent; their
inclusion does not significantly affect our results. For the
relevant case of an asymptotically free theory, b0 > 0 so
that an infrared fixed point exists if and only if b1 < 0. This

coefficient b1 is positive for 0 � Nf � Nf;IR, where
Nf;IR � �34N3�=�13N2 � 3�, and negative for larger Nf.
For N � 3, Nf;IR ’ 8:1 [25]. The value of � at this IR fixed
point, denoted ��, is given by �� � �4�b0=b1.
Substituting the known values of these terms [26,27], one
has

 �� �
�4��11N � 2Nf�

34N2 � 13NNf � 3N�1Nf
: (2.2)

Solving Eq. (2.2) for Nf in terms of �� yields

 Nf �
2N2	17N���=�� � 22


�13N2 � 3����=�� � 8N
: (2.3)

As is evident from Eqs. (2.2) and (2.3), �� is a monotoni-
cally decreasing function of Nf and equivalently Nf is a
monotonically decreasing function of ��, for Nf;IR �
Nf � �11=2�N.

To study the dependence of S on Nf, what we actually
vary is the value of the approximate IR fixed point ��,
which depends parametrically on Nf. For definiteness, we
shall take N � 3; however, as will be seen, N only enters
indirectly, via the dependence of the value of the infrared
fixed point �� [Eq. (2.6) below] on Nc. Hence, our findings
may also be applied in a straightforward way, with appro-
priate changes in the value of ��, to an SU�N� gauge theory
with a different value of N.

In the one-gluon exchange approximation, the
Schwinger-Dyson gap equation for the inverse propagator
of a fermion transforming according to the representation
R of SU�N� has a nonzero solution for the dynamically
generated fermion mass, which is an order parameter for
spontaneous chiral symmetry breaking, if � � �cr, where
�cr is given by

 

3�crC2�R�
�

� 1; (2.4)

and C2�R� denotes the quadratic Casimir invariant for the
representation R [28]. Using

 C2�fund:� � C2f �
N2 � 1

2N
(2.5)

for the fundamental representation yields

 �cr �
2�N

3�N2 � 1�
: (2.6)

For the case N � 3 that we use for definiteness here,
Eq. (2.6) gives �cr � �=4 ’ 0:79. To estimate Nf;cr, one
solves the equation �� � �cr, yielding the result [8]

 Nf;cr �
2N�50N2 � 33�

5�5N2 � 3�
: (2.7)

For the valuesN � 3 andN � 2 this givesNf;cr ’ 11:9 and
Nf;cr ’ 7:9, respectively. These estimates are only rough,
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in view of the strongly coupled nature of the physics.
Effects of higher-order gluon exchanges have been studied
in Ref. [29]. In principle, lattice gauge simulations should
provide a way to determine Nf;cr, but the groups that have
studied this have not reached a consensus [30].

If �� is less than the critical value, �cr, for a bilinear
fermion condensate to form, the above IR fixed point is
exact, with the coupling � approaching �� from below as
the energy scale E decreases from large values to zero. Let
us denote the fermions as fai with a � 1; . . . ; N and i �
1; . . . ; Nf. If �� >�cr, as E descends from large values, the
coupling � eventually exceeds the above critical value, the
fermion condensates h

PN
a�1

�fa;if
a
i i (with no sum on i)

form, and are equal for each flavor i � 1; . . . ; Nf [with
electroweak interactions negligibly small relative to the
SU�N� interaction]. Accordingly, the global SU�Nf�L 

SU�Nf�R 
 U�1�V symmetry [where U�1�V is fermion
number] is broken to generalized isospin times fermion
number, SU�Nf�V 
U�1�V .

Associated with this, the fermions pick up dynamical
masses � and are integrated out as the energy scale de-
creases below �. Hence, in this case, the IR fixed point is
only approximate since, in the effective field theory for
energies below �, the form of the beta function is that for
the pure gauge theory, Nf � 0. The case where �� is close
to, and slightly larger than, �cr, yields walking behavior. In
the strong walking regime, the dynamical fermion mass,
and also hadron masses are exponentially smaller than the
scale � at which the coupling first becomes O(1) as the
energy scale decreases from large values. Although our SD
and BS equations are semiperturbative, the analysis is self-
consistent in the sense that our �cr really is the value at
which, in our approximation, one passes from the confine-
ment phase to the non-Abelian Coulomb phase, and our
values of � do span the interval over which there is a
crossover from walking to QCD-like (i.e., nonwalking)
behavior.

As is evident from the above results, decreasing Nf
belowNf;cr has the effect of increasing �� and thus moving
the theory deeper in the phase with confinement and spon-
taneous chiral symmetry breaking, away from the bound-
ary with the non-Abelian Coulomb phase. This is the key
parametric dependence that we shall use for our study. In
Refs. [20,21] the range of �� used for the calculation of
meson masses was chosen to be 0:89 � �� � 1:0, an
interval where there is pronounced walking behavior. For
the case N � 3 considered in Ref. [20] and here, given the
above-mentioned value, �cr � �=4, it follows that this
lower limit, �� � 0:89, is about 12% greater than this
critical coupling. The reason for this choice of lower limit
on �� was that the calculation of S involves very strong
cancellations as �� � �cr ! 0�, rendering it progressively
more and more difficult to obtain accurate numerical re-
sults in this extreme walking limit. For our present study of
S we consider an interval extending to larger couplings,

from �� � 1:0 to �� � 1:8. Our upper limit is chosen in
order for the ladder approximation used in our solutions of
the Schwinger-Dyson and Bethe-Salpeter equations to
have reasonable reliability. From Eq. (2.3) it follows that
�� � 0:89 corresponds to Nf � 11:65, about 2% less than
Nf;cr. For a coupling as large as �� � 1:8, the semipertur-
bative methods used to derive Eqs. (2.2) and (2.3) are
subject to large corrections from higher-order perturbative,
and from nonperturbative, contributions; recognizing this,
the above upper limit of �� corresponds to Nf ’ 10:3, a
roughly 13% reduction from Nf;cr � 11:9. Although this
shift appears to be by only a modest amount when ex-
pressed in terms of Nf, in terms of �� it is a factor of 2, and
our calculations in Ref. [24] showed a dramatic change in
the values of meson mass ratios and fP=� in this range,
with these values changing from their walking limits to-
ward QCD-like values. Hence, we anticipate that this range
can be sufficient to study the shift in the value of S, and our
results confirm this.

If Nf > Nf;cr, i.e., �� <�cr so that this IR fixed point of
the two-loop RG equation is exact, then, denoting b �
b0=�2��, the solution to this equation can be explicitly
written [31,32] in the entire energy region as

 ���� � ��	W�e
�1��=��b�� � � 1
�1; (2.8)

where W�x� � F�1�x�, with F�x� � xex, is the Lambert W
function, and � is a RG-invariant scale defined by [6]

 � � � exp
�
�

1

b

�
1

��
ln
�
�� � ����
����

�
�

1

����

��
: (2.9)

Now since we are studying the confined phase with Nf <
Nf;cr, (�� >�cr) with spontaneous chiral symmetry break-
ing, �� is only an approximate, rather than exact, IR fixed
point. Hence, the solution (2.8) is only applicable in an
approximate manner to our case; for momenta much less
than the dynamical fermion mass �, the fermions de-
couple, and in this very low-momentum region, with the
fermions integrated out, the resultant � would increase
above the value �� at the approximate IR fixed point.
However, since �� � in a walking or near-walking
theory, it follows that this lowest range of momenta makes
a small contribution to the relevant integrals to be eval-
uated in our calculations. Hence, over most of the integra-
tion range for these integrals where the coupling � is large,
it is approximately constant and equal to its fixed-point
value, �� (see Fig. 2 of Ref. [21]). This means that one can
use, as a reasonable approximation, the expression

 ���� � ��������; (2.10)

where � is the step function. (This is the same approxima-
tion used in Refs. [21,24].) Thus, in the walking region and
the adjacent crossover region, the calculations have the
advantage that one can avoid having to introduce an arti-
ficial cutoff on the growth of� in the infrared, in contrast to
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the situation for smaller Nf, where the walking behavior
disappears and this cutoff is necessary.

Since an important application of our results is to techni-
color models, we briefly mention some relevant features of
these models. As noted, the technicolor gauge theory has a
gauge group SU�NTC� and an asysmptotically free cou-
pling that gets large at the TeV scale [2]. It contains a set of
massless, vectorially coupled technifermions. The left-
handed components of these fermions transform as dou-
blets under SU�2�L. The spontaneous chiral symmetry
breaking and formation of a bilinear technifermion con-
densate breaks the electroweak symmetry from SU�2�L 

U�1�Y to U�1�em, producing masses for the W and Z given
to leading order by m2

W � m2
Zcos2�W � �g2=4�ND;TFF2

TC,
where FTC is the technicolor analogue of f� and ND;TF

denotes the number of SU�2�L doublets of technifermions.
In order to give masses to the standard-model fermions
(which are technisinglets), it is necessary to embed techni-
color in a larger, extended technicolor (ETC) theory
[33,34], with interactions that transform technifermions
to the standard-model fermions and vice versa. To satisfy
constraints from flavor-changing neutral-current processes,
the ETC vector bosons that mediate generation-changing
transitions must have large masses, ranging from a few
TeV to 103 TeV. For our present study, concerned with S,
we concentrate on the technicolor theory at the scale of a
few hundred GeV, with the ETC gauge bosons integrated
out.

We focus here on models in which the technifermions
transform according to the fundamental representation of
the SU�NTC� gauge group. Two simple examples are the so-
called one-doublet and one-family technicolor models. A
one-doublet TC model has Nf � 2 technifermions, de-
noted U and D, whose chiral components transform ac-
cording to

 FL �
UL

DL

� �
: �NTC; 1; 2�0;L;

UR: �NTC; 1; 1�1;R;

DR: �NTC; 1; 1��1;R;

(2.11)

where the numbers in parentheses refer to the dimensions
of the representations of SU�NTC� 
 SU�3�c 
 SU�2�L and
the subscripts refer to the weak U�1�Y hypercharges. The
value NTC � 2 has been preferred in recent TC/ETC
model-building [35,36] for several reasons, including the
fact that it (i) minimizes technicolor contributions to the S
parameter, (ii) can naturally produce a walking theory in a
one-family model (see below), and (iii) makes possible a
mechanism to explain light neutrino masses [36]. The one-
doublet TC model has one SU�2�L doublet of technifer-
mions for each technicolor index, which we express as
ND;TF � 1, and hence a total number of SU�2�L doublets
of technifermions equal to ND;tot � ND;TFNTC � NTC. The
TC sector with just theseNf � 2 technifermions would not

exhibit walking behavior, but one can add SM-singlet
technifermions to produce a theory that does have such
behavior [37]. In a one-family TC model the technifer-
mions transform as
 

QL: �N; 3; 2�1=3;L

uR: �N; 3; 1�4=3;R

dR: �N; 3; 1��2=3;R

LL: �N; 1; 2��1;L

NR: �N; 1; 1�0;R

ER: �N; 1; 1��2;R:

(2.12)

Hence, this type of technicolor models contains Nf �
2�Nc � 1� � 8 technifermions. As is evident from
Eq. (2.7), with N � NTC � 2, the value Nf � 8 is close
to the value Nf;cr and hence, to within the accuracy of the
two-loop beta function analysis, this technicolor model can
naturally exhibit walking behavior. Reverting to general
N � NTC for our discussion, this one-family technicolor
model thus has ND;TF � �Nc � 1� � 4 SU�2�L doublets for
each technicolor index, and hence a total of ND;tot � 4NTC

SU�2�L doublets of technifermions.
Because of the spontaneous chiral symmetry breaking in

the technicolor theory, the technifermions pick up dynami-
cal masses �TC proportional to FTCN

�1=2
TC , where we have

included theNTC-dependent factor that would be present in
the large-NTC limit, since fP and �TC scale, respectively,
like N1=2

TC and N0
TC in this limit. For the one-doublet and

one-family TC models, FTC ’ 250 and 125 GeV, respec-
tively. In QCD, the constituent quark mass � ’ 3:5f�, and
one expects a roughly similar ratio in TC theories (see
Fig. 3 in our previous work [24]). Since the SM gauge
couplings are small at the technicolor scale, different tech-
nifermions are expected to have roughly degenerate dy-
namical masses, and the contributions of the techniquark
and technilepton doublets to one-loop corrections to the Z
propagator are approximately equal.

III. EXPRESSION FOR S IN TERMS OF CURRENT-
CURRENT CORRELATION FUNCTIONS

As a measure of corrections to the Z propagator arising
from heavy particles in theories beyond the standard
model, S was originally defined as [11]

 S �
4s2

Wc
2
W

�em�mZ�

d��NP�
ZZ �q

2�

dq2

��������q2�0
; (3.1)

where s2
W � 1� c2

W � sin2�W , evaluated at mZ and the
superscriptNP refers to the fact that the definition includes
new physics beyond the standard model. In the case of
technicolor, the technifermions are taken to have zero
masses; because of the spontaneous chiral symmetry
breaking in the TC theory, they pick up dynamical masses
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�TC of order the technicolor scale. More recent analyses of
precision electroweak data define S slightly differently,
replacing the derivative at q2 � 0 by a discrete difference
(in the MS scheme) [13]

 SPDG �
4s2

Wc
2
W

�em�mZ�

�
��NP�
ZZ �m

2
Z� ���NP�

ZZ �0�

m2
Z

�
: (3.2)

The difference between these definitions is small if the
heavy physics scale �TC satisfies �2�TC=mZ�

2 � 1, as is
the case in the TC models considered here.

For our purposes it will be convenient to use the original
definition, Eq. (3.1). The implications of our results for
technicolor theories would be essentially the same if we
used the expression (3.2). With either definition, since a
one-loop heavy fermion correction to the Z propagator has
a prefactor �g2 � g02�=�16�2�, where g and g0 are the
respective SU�2�L and U�1�Y gauge couplings, and since
�g2 � g02�=�16�2� � �em=�4�s2

Wc
2
W�, the prefactor

4s2
Wc

2
W=�em�mZ� in the definition of S cancels out the

leading dependence on the electroweak gauge couplings
(evaluated at the scale mZ), yielding a quantity that de-
pends on the intrinsic properties of the strongly coupled
SU�N� gauge theory.

Now, suppressing the SU�NTC� gauge index, we write
the fermions as a vector,  � � i; . . . ;  Nf �. We then define
vector and the axial-vector currents as

 Va��x� � � �x�Ta�� �x�; Aa��x� � � �x�Ta���5 �x�;

(3.3)

where the Nf 
 Nf matrices Ta (a � 1; . . . ; N2
f � 1) are

the generators of SU�Nf� with the standard normalization
Tr�TaTb� � 1

2�
ab. In terms of these currents, the two-point

current-current correlation functions �VV and �AA are
defined via the equations

 i
Z
d4xeiq�xh0jT�Ja��x�J

b
	�0��j0i

� �ab
�q�q	
q2 � g�	

�
�JJ�q

2�; (3.4)

where Ja��x� � Va��x�, Aa��x�. With the above normaliza-
tion of Ta, ��q2� measures the contributions to the time-
ordered product in Eq. (3.8) per fermion. Given that, to a
good approximation, different technifermion doublets con-
tribute equally to S, it is natural to define a reduced
quantity, Ŝ, that represents the contribution to S from
each such pair, namely (with ND � Nf=2),

 Ŝ �
S
ND

: (3.5)

Then, in terms of the current-current correlation func-
tions defined above, S, as defined in Eq. (3.1), is given by

 Ŝ � 4�
d

dq2 	�VV�q
2� ��AA�q

2�
jq2�0: (3.6)

It is convenient to define the compact notation

 �V�A�q2� � �VV�q2� ��AA�q2�: (3.7)

As is evident from Eq. (3.6), one may also consider S in a
different context, namely that of an abstract vectorial
SU�N� gauge theory with Nf massless fermions transform-
ing according to the fundamental representation of this
group, and with all other interactions much weaker in
strength than the SU�N� gauge interaction. In this case,
in contrast to technicolor models, where Nf is even [since
the technifermions have left-handed components forming
SU�2�L doublets], Nf can be even or odd (being restricted
to be less than Nf;cr so that the theory is in the confinement
phase with spontaneous chiral symmetry breaking). Here,
one could naturally define the contribution to S from each
fermion individually, namely, S=Nf. However, since our
main application will be to technicolor, we shall continue,
as in Ref. [20], to present our results in terms of Ŝ. Because
of the asymptotic freedom of the SU�N� theory, for
Euclidean q2 much larger than �2, dimensional consider-
ations imply that, asymptotically, �V�A�q2� ’ h �  i2=q4

up to logs arising from anomalous dimensions. The quan-
tity Ŝ can also be expressed as a weighted integral over the
difference between the spectral functions for the vector and
axial-vector hadronic currents [38].

In QCD �V�A�0� satisfies the first Weinberg sum rule,
�V�A�0� � f2

� [39–42]. The Nf-generalization holds here
and provides an important constraint for our calculations.
This generalization is

 �V�A�0� � f2
P ; (3.8)

where fP (with P standing for ‘‘pseudoscalar’’) is the
Nf-flavor generalization of f� defined by the transition
matrix element

 h0jAa��0�j�
b�q�i � iq�fP�

ab; (3.9)

with a, b � 1; 2; . . . ; N2
f � 1. In actual QCD, the chiral

symmetry is explicitly broken by the u and d current-quark
masses (and also by electroweak interactions), so that the
pions decay, and, in particular, the dominant weak decay of
the ��, �� ! ��	� has a rate proportional to f2

�. Thus,
fP might be called the generalized Nambu-Goldstone bo-
son decay constant, but we will avoid this term, since in our
basic SU�N� theory with other interactions turned off, these
Nambu-Goldstone bosons are exactly massless and do not
decay. In the chiral limit of QCD, with mu � md � 0, it
has been estimated that �f��ch lim=f� ’ 0:935 [9], so that,
with the physical value f� � 92:4� 0:3, one infers that
�f��ch lim ’ 86 MeV (with a theoretical uncertainty of sev-
eral per cent from the chiral extrapolation). This slight
decrease will not be important for our work.
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The constant fP may be calculated by first solving the
Schwinger-Dyson equation for the momentum-dependent
dynamical fermion mass ��p� and then substituting this
into the Pagels-Stokar relation [43],

 f2
P �

Nc
4�2

Z 1
0
ydy

�2�y� � y
4
d
dy 	�

2�y�


	y� �2�y�
2
: (3.10)

Calculations using this method [17,21,24] have shown (for
N � Nc � 3) that as Nf increases from the value Nf � 2
toward Nf;cr, the generalized quantity fP decreases, as is
expected, since fP is an order parameter for spontaneous
chiral symmetry breaking. Furthermore, in the strong
walking limit Nf % Nf;cr, i.e., �� & �cr, it has been found
that fP vanishes like [7,44]

 fP � cf� exp
�
��

�
��
�cr
� 1

�
�1=2

�
; (3.11)

where cf is a constant. In Ref. [24] we calculated fP in the
crossover region between this extreme walking limit and
smaller values of Nf, corresponding to larger values of ��,
closer to QCD with Nf � 2 or 3 and found a dramatic
growth in fP=�, approaching values nearer to QCD, as
expected.

For QCD, fits to experimental data, including, in par-
ticular, the radiative decay �� ! e�	e�, yield the value
[9,45]

 S � 0:33� 0:04: (3.12)

To the extent that this is dominated by the two light quarks
u and d, one has Nf � 2, and hence ND � 1, so that the
measured value of S for QCD is also equal to Ŝ. The fact
that the light-quark vector and axial-vector mesons 
 and
a1 largely saturate the contributions to S is consistent with
this conclusion. An approximate calculation of Ŝ has been
performed using the ladder approximation to the
Schwinger-Dyson and (inhomogeneous) Bethe-Salpeter
equations for QCD (N � 3) with Nf � 2 quarks of negli-
gible mass [17]. Studies have also been done for the case
where one neglects the strange quark mass ms, i.e., N � 3,
Nf � 3 [17,23]. Since for either of these values of Nf the
beta function of the QCD theory does not exhibit an
infrared fixed point, it is necessary to cut off the growth
of the strong coupling. For typical cutoffs, it was found that
the SD-BS calculations tended to yield slightly too large a
value of Ŝ � S, namely Ŝ ’ 0:45–0:5 [17,23], rather than a
value in the 1� experimental range 0:29 & S & 0:37. This
suggests that in the SD-IBS approach, used for a vectorial
confining SU�N� gauge theory with small values of Nf
such that the theory has no perturbative IR fixed point, with
a typical IR cutoff on the coupling, tends to overestimate S
by about a factor of 1.4. Since the calculation of S in QCD
is a problem in strongly coupled, nonperturbative physics,
and the calculational method that was used is only approxi-
mate (neglecting, for example, instanton contributions),

one should probably not be surprised that it does not
precisely reproduce the measured value of S.

IV. CURRENT-CURRENT CORRELATION
FUNCTIONS IN TERMS OF BETHE-SALPETER

AMPLITUDES

In this section, we explain how the current-current cor-
relation functions are obtained from the Bethe-Salpeter
amplitudes, which will be calculated via the inhomogene-
ous Bethe-Salpeter (IBS) equation [44,46–56]. These
Bethe-Salpeter amplitudes ��J�, where J � V or A, are
essentially form factors, whose behavior in the timelike
region describes the coupling of the given current to physi-
cal hadronic bound states that can be produced by this
current, with an analytic continuation into the spacelike
region. Here we will only need these amplitudes for the
spacelike region q2 < 0 and at the point q2 � 0. The
amplitudes may be defined in terms of the three-point
vertex function as

 �kj�T
a�
f0

f

Z d4p

�2��4
e�ip�r��J����p; q; ��

� ��
Z
d4xeiq�xh0jT� k�f�r=2� � jf0���r=2�Ja��x��j0i;

(4.1)

where �f; f0�, �j; k�, and ��;�� are, respectively, the flavor,
gauge, and spinor indices. Closing the fermion legs of the
above three-point vertex function and taking the limit r!
0, one can express the current correlator in terms of the
Bethe-Salpeter amplitude as

 �JJ�q2� �
1

3

�
N
2

�X
�

Z d4p

i�2��4
Tr	�� �G�J����J��p; q; ��
;

(4.2)

where [57]

 G�V�� � ��; G�A�� � ���5; (4.3)

and an average has been taken over the polarizations, so
that �JJ�q2� does not depend on the polarization �.

We expand the Bethe-Salpeter amplitude ��J����p; q; �� in

terms of a complete bispinor basis with basis elements ��J�i
and the invariant amplitudes ��J�i as

 	��J��p; q; ��
�� �
X8

i�1

	��J�i �p; q̂; ��
���
�J�
i �p; q�; (4.4)

where we define

 Q2 � �q2 (4.5)

so that Q2 > 0 in the spacelike region, and set

 q̂ � �
q�������
Q2

p : (4.6)
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The bispinor basis elements can be chosen in such a
manner that they have the same spin, parity, and charge
conjugation as the corresponding current Ja��x�. For the
vector vertex we adopt the following bispinor basis ele-
ments:

 ��V�1 � �6 ; ��V�2 �
1

2
	�6 ; p6 
�p � q̂�;

��V�3 �
1

2
	�6 ; q̂6 
; ��V�4 �

1

3!
	�6 ; p6 ; q̂6 
;

��V�5 � �� � p�; ��V�6 � p6 �� � p�;

��V�7 � q̂6 �p � q̂��� � p�; ��V�8 �
1

2
	p6 ; q̂6 
�� � p�;

(4.7)

where 	a; b; c
 � a	b; c
 � b	c; a
 � c	a; b
. For the axial-
vector vertex we use the bispinor basis elements

 ��A�1 � �6 �5; ��A�2 �
1

2
	�6 ; p6 
�5;

��A�3 �
1

2
	�6 ; q̂6 
�p � q̂��5; ��A�4 �

1

3!
	�6 ; p6 ; q̂6 
�5;

��A�5 � �� � p��p � q̂��5; ��A�6 � p6 �� � p��5;

��A�7 � q̂6 �� � p��p � q̂��5;

��A�8 �
1

2
	p6 ; q̂6 
�� � p��p � q̂��5:

(4.8)

Given the charge-conjugation properties of the vector and
axial-vector currents and the above choice of the bispinor
basis elements, it follows that invariant amplitudes ��J�i are
even functions of p � q̂.

In the present analysis it is convenient to choose the
Lorentz reference frame so that only the timelike compo-
nent of q� is nonzero. Since we are working in the space-
like region (which avoids physical mass singularities), we
thus use a Wick rotation with

 q� � �iQ; 0; 0; 0�: (4.9)

Similarly, for the relative momentum p� we perform a
Wick rotation and parametrize it in terms of the real
variables u and w (with dimensions of mass) as

 p � q � �Qu; p2 � �u2 � w2: (4.10)

Hence, the invariant amplitudes ��J�i are functions of u and
w:

 ��J�i � ��J�i �u;w;Q�: (4.11)

Owing to the charge-conjugation properties of the Bethe-
Salpeter amplitude ��J� and the bispinor basis elements
defined above, the invariant amplitudes ��J�i �u; w� satisfies
the relation

 ��J�i �u; w;Q� � ��J�i ��u;w;Q�: (4.12)

Using this property of the invariant amplitudes, we rewrite

Eq. (4.2) as
 

�VV�Q2� �
N

�3

Z 1
0
du

Z 1
0
dww2

�
���V�1 �u;w;Q�

�
w2

3
��V�6 �u;w;Q�

�
; (4.13)

 �AA�Q2� �
N

�3

Z 1
0
du

Z 1
0
dww2

�
��A�1 �u; w;Q�

�
w2

3
��A�6 �u; w;Q�

�
: (4.14)

Here, we have used the expanded form of the Bethe-
Salpeter amplitude given in Eq. (4.4) and carried out the
three-dimensional angular integration.

From Eqs. (4.13) and (4.14), it follows that
 

�V�A�Q
2� �

1

3

�
N
2

�X
�

Z d4p

i�2��4
Tr	�6 ��J��p; q; ��

� �6 �5�
�A��p; q; ��


�
N

�3

Z 1
0
du

Z 1
0
dww2

�
����V�1 �u; w;Q�

� ��A�1 �u; w;Q�� �
w2

3
���V�6 �u;w;Q�

� ��A�6 �u; w;Q��
�
: (4.15)

Although both �VV�Q
2� and �AA�Q

2� are individually
logarithmically divergent, the underlying SU�Nf�L 

SU�Nf�R chiral symmetry guarantees that these divergen-
ces cancel in the difference �VV ��AA, which is there-
fore finite.

V. INHOMOGENEOUS BETHE-SALPETER
EQUATION

In this section we discuss the full (inhomogeneous)
Bethe-Salpeter equation, which we will use to calculate
current-current correlation functions and, from these, S
(and, as a check, also fP). The IBS equation is a self-
consistent description of the coupling of a current Ja� to
fermion-antifermion bound states. This coupling is repre-
sented by the Bethe-Salpeter amplitude ��J�. The four-
momenta assigned to the fermion and antifermion are
p � p� �q=2� and p � � �p� �q=2� so that the total
momentum of the bound state is q, and the relative mo-
mentum of the  and � is 2p. Since we are dealing with
J � 1 bound states, the bound-state amplitude also de-
pends on the polarization vector �, which satisfies � � q �
0 and � � � � �1. A graphical indication of the inhomoge-
neous Bethe-Salpeter equation structure is given in Fig. 1.
The IBS equation is

 T�p; q���J��p; q; �� � � �G�J� � K�p; k� � ��J��k; q; ��:

(5.1)
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Here the kinetic part T is

 T�p; q� � �S�1
F �p� q=2� � S�1

F �p� q=2�; (5.2)

where SF�p� � 1=�A�p�p6 ���p��. We follow the stan-
dard procedure of using the Landau gauge in calculations
with the Schwinger-Dyson and Bethe-Salpeter equations
since in this gauge the fermion wave function renormal-
ization factor A�p� � 1. The physical results are, of course,
gauge invariant. The Bethe-Salpeter kernel K in the im-
proved ladder approximation is expressed as
 

K�p; k� � C2f
�g2�p; k�

�p� k�2

�
�g�	 �

�p� k���p� k�	
�p� k�2

�

� �� � �	; (5.3)

where C2f was given in Eq. (2.5). In the above expressions
we use the tensor product notation

 �A � B�� � A�B; (5.4)

and the inner product notation

 K�p; k� � ��J��k; q; �� �
Z d4k

i�2��4
K�p; k���k; q�; (5.5)

where summations over Dirac indices are understood. (In
contrast, for our previous calculations [21,24] of meson
masses, we only needed to use the homogeneous Bethe-
Salpeter equation.)

As in Refs. [20,21,23,24,53], we make the ansatz for the
running coupling, after Euclidean rotation,

 ��pE; qE� � ��p2
E � q

2
E�; (5.6)

where the subscript denotes Euclidean. Since � would
naturally depend on the gluon momentum squared, �p�
q�2 � p2 � q2 � 2p � q, the functional form (5.6) amounts
to dropping the scalar product term,�2p � q. As discussed
in Ref. [24], this is a particularly reasonable approximation
in the case of a walking gauge theory because most of the
contribution to the integral comes from a region of
Euclidean momenta where � is nearly constant. Hence,
the shift upward or downward due to the �2p � q term in
the argument of � has very little effect on the value of this
coupling for the range of momenta that make the most
important contribution to the integral. The approximation
(5.6) enables one to carry out the angular integration
analytically.

The momentum-dependent dynamical mass ��p� for the
fermion is obtained from the Schwinger-Dyson equation,

 ��p� � �K�p; k� � SF�p�: (5.7)

We use the same kernel K�p; k� here as in the IBS equation
in order to respect the SU�Nf�L 
 SU�Nf�R chiral symme-
try [53,54]. The numerical method that is used for solving
the SD equation and the IBS equation involves approxi-
mating the respective integrals by discrete sums and is the
same as in Ref. [20,23]. The reader is referred to these
papers for more details on this method.

VI. RESULTS AND DISCUSSION

In this section we present the results of our calculations
of �V�A�Q

2� and Ŝ using the Schwinger-Dyson and (in-
homogeneous) Bethe-Salpeter equations. It is appropriate
to include an obvious cautionary remark that these calcu-
lations involve strong couplings � of order unity, and
therefore there could be significant corrections to the (im-
proved) ladder approximation used in our solutions of the
Schwinger-Dyson and Bethe-Salpeter equations.
Accordingly, as one check on the reliability of our meth-
ods, we have also carried out a comparison of fP obtained
from the SD and IBS equations via Eq. (3.8) with fP
obtained from the SD equation via the Pagels-Stokar
relation.

In Fig. 2 we plot our calculated values of �V�A�Q2�=f2
P

for �� � 1:8, 1.6, 1.4, 1.2 and 1.0, as functions of the
dimensionless quantity Q2=f2

P. The slope of each curve
at Q2 � 0 is equal to �Ŝ=�4�� for the given value of ��.
We first observe that �V�A�Q

2� is almost linear atQ2 � 0,
with a small positive second derivative. This is the justifi-
cation for our earlier statement that the implications of our

q q

q
2−p

q
2

q
2−p

q
2+p q

2

q
2

q
2

( p ; q )χ

+p q
2+p

+ ( ; q )χ
q

k

−p

+

−k

k

FIG. 1. A graphical expression of the IBS equation in the
(improved) ladder approximation.
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FIG. 2. Plot of �V�A�Q
2�=f2

P as a function of Q2 in the
spacelike interval 0 � Q2=f2

P � 1:2, for �� � 1:0, 1.2, 1.4,
1.6, 1.8. As indicated, the horizontal axis refers to the quantity
Q2=f2

P. For comparison, �V�A�Q
2�=f2

P for QCD with Nf � 3
massless quarks is also plotted. See text for further details.
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findings for technicolor would be essentially the same
whether we used the definition of Ŝ in terms of a derivative
at Q2 � 0 or a finite difference, analogously to Eq. (3.2).
Second, from Fig. 2 it is clear that the magnitude of the
slope, and hence Ŝ, decreases as �� decreases toward the
chiral phase transition point �cr.

In Fig. 3, we plot the values of Ŝ, derived from the slope
of �V�A�Q2� at Q2 � 0, for several values of ��. As
indicated by the subscript n, the values are normalized by
the value of Ŝ at �� � 1:8, i.e., 0.47. This figure shows that
Ŝ decreases by about 40% as �� is reduced from 1.8 to 0.9,
or equivalently (cf. Eq. (2.3)) as Nf is increased from 10.3
to 11.6. As our calculation of meson masses in Ref. [24]
showed, this is a crossover region, in which the theory is
changing from QCD-like, nonwalking behavior at smaller
Nf to the walking regime at larger Nf approaching Nf;cr.
Reinserting the factor of ND � Nf=2 to get S itself, we
obtain a decrease by about 30% in S, since ND only
increases by about 10% over this range. Thus, our calcu-
lation shows that, for this range of values, Ŝ decreases
significantly as one moves from the QCD-like to the walk-
ing regimes. This finding is an important result of our
present study.

As a check on our calculational methods, we compare fP
calculated in two different ways: via the Pagels-Stokar
relation, Eq. (3.10), denoted �fP�PS, and by the first
Weinberg sum rule (W1) or equivalent relation �V�A�0� �
f2
P in Eq. (3.8), denoted �fP�W1. In view of the fact that the

Pagels-Stokar itself is approximate and that our solution of
the SD and IBS equations involves the ladder approxima-
tion and the neglect of completely nonperturbative contri-
butions such as those due to instantons, we do not expect
exact agreement between these two different methods of
calculation. In Fig. 4 we present a plot of the ratio
�fP�PS=�fP�W1 as a function of ��. The closeness of this

ratio to unity gives one measure of the accuracy and
reliability of our calculations. We see that the ratio is
within about 20% of unity and is essentially independent
of �� in the range considered, with the Pagels-Stokar
method yielding a slightly smaller value than the expres-
sion in terms of the current-current correlation functions.
This gives us further confidence in the results of our SD-
IBS calculation of Ŝ.

Our finding that Ŝ and S are reduced as one moves from
the QCD-like regime toward the walking regime of an
SU�N� gauge theory is in agreement with the approximate
analytic results of Refs. [15,16,18,19], and it complements
those works, being based on a numerical solution of the
Schwinger-Dyson and Bethe-Salpeter equations. In the
subinterval 0:9 � �� � 1:0 closer to the walking limit
our results coincide with those in Ref. [20]. Our use of a
larger interval has the advantage that we are able to observe
a larger reduction in Ŝ as �� decreases than was done in
Ref. [20]. We have not attempted here to examine the
extreme walking limit ��� � �cr�=�cr ! 0�. As discussed
in Ref. [20], it becomes increasingly difficult to obtain an
accurate numerical solution for Ŝ in this limit because of
very strong cancellations.

In addition to this decreasing trend of Ŝ, one may also
discuss the absolute magnitude of Ŝ. Our calculation yields
Ŝ � 0:47 at �� � 1:8. If Ŝ continues to be a monotonic
function of Nf (and hence, in the range of interest here,
also a monotonic function of ��), then an extrapolation of
our calculation to the QCD case with Nf � 2 or, with the
strange quark mass neglected, Nf � 3, would predict a
value of Ŝ * 0:5. This is similar to the value that was
obtained in earlier studies using the SD and IBS equations
in a different manner than here, where it was necessary to
introduce an cutoff on the growth of the strong coupling in
the infrared [17,23]. In Ref. [23] it was shown that if one

α cr

α *

)( fP PS )( fP W1
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0.4
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 1

1.2

 1  1.2  1.4  1.6  1.8

FIG. 4. Plot of the ratio �fP�PS=�fP�W1, where �fP�PS and
�fP�W1 denote fP calculated via Eq. (3.10) and via Eq. (3.8),
respectively, as a function of ��.
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FIG. 3. Plot of Ŝn for several values of �� in the range 0:9 �
�� � 1:8. As indicated by the subscript n, the values are nor-
malized by the value of Ŝ at �� � 1:8, i.e., 0.47.
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used a cutoff that led to a very large value of the coupling,
one could get a result for S in agreement with the experi-
mental value (3.12), but the reliability of the calculational
method in the presence of such a large coupling was not
clear. We shall adopt the optimistic viewpoint here of
giving greater weight to the change in Ŝ as a function of
Nf than to the absolute value of Ŝ itself. Equivalently, one
could envision applying an overall correction factor of
about 2=3 to the absolute magnitude of Ŝ so that the value
for small Nf matches that in QCD. Physically, this factor
would be regarded as correcting for the strong-coupling
effects not included in the SD-IBS analysis.

Although one cannot use perturbation theory reliably to
calculate S in a strongly coupled gauge theory, the pertur-
bative result is often used in discussions of constraints on
new physics, and hence it is worthwhile to see how our
results compare with the perturbative computation. A one-
loop perturbative calculation with degenerate fermions
having effective masses satisfying �2�=mZ�

2 � 1 yields
the well-known result Spert � ND;tot=�6�� where here
ND;tot � NDN, i.e.,

 Ŝ pert �
N
6�

: (6.1)

In QCD with Nf � 2 and N � Nc � 3, this perturbative
calculation would predict SQCD;pert ’ 1=�2�� ’ 0:16. The
experimental value in Eq. (3.12) is approximately twice
this; SQCD ’ 2SQCD;pert. The reductions that we have found
in Ŝ and S for the range of �� investigated suggest that in a
walking theory, much or all of the above factor of 2 might
be removed, and the true value of S might well be compa-
rable to, or, indeed, perhaps less than, the perturbative
estimate.

For reference, in the one-doublet and one-family techni-
color models, the perturbative expressions for the techni-
particle contributions to S are STC;pert � NTC=�6�� and
STC;pert � 2NTC=�3��, respectively. With NTC � 2, these
take the values SQCD;pert ’ 0:1 and 0.4, respectively. Fits to
precision electroweak data yield allowed regions in S and
two other parameters describing modifications of the Z and
W propagators by new physics beyond the standard model,
namely the parameter T measuring violations of custodial

SU(2) from this new physics and a third parameter, U, of
somewhat less importance here. Since the standard-model
expression for S includes a term �1=�6��� ln�mH=mH;ref�,
the resultant allowed regions depend on the choice of the
reference value of the SM Higgs mass, mH;ref . The com-
parison of these with a technicolor theory is complicated
by the fact that technicolor has no fundamental Higgs field;
sometimes one formally uses mH;ref � 1 TeV for a rough
estimate, since the SM with mH � 1 TeV has strong lon-
gitudinal vector boson scattering, as does technicolor.
However, this may involve some double counting when
one also includes contributions to S from technifermions,
whose interactions and bound states (e.g., technivector
mesons) are responsible for the strong W�L W

�
L and ZLZL

scattering in a technicolor framework. The current fit
[13,14] disfavors values of S * 0:2. Our findings in this
paper suggest, in agreement with the previous works noted
above using different methods, that the constraint on walk-
ing technicolor models could be less severe than would be
inferred from the perturbative formula for the technifer-
mion contribution to S.

VII. SUMMARY

In summary, using numerical solutions of the
Schwinger-Dyson and (inhomogeneous) Bethe-Salpeter
equation, we have calculated the S parameter as a function
of the approximate infrared fixed point,��, or equivalently,
the number of massless fermions, Nf, in a vectorial, con-
fining SU�N� gauge theory. We have focused on the cross-
over region between the walking and QCD-like
(nonwalking) regimes. Our results show that Ŝ and also S
decrease significantly as �� decreases in this range. This
trend agrees with earlier indications of a decrease in S in
walking gauge theories. We have discussed the implica-
tions for technicolor models.
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