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We present a detailed calculation of the transition temperature in QCD with two light and one heavier
(strange) quark mass on lattices with temporal extent N� � 4 and 6. Calculations with improved staggered
fermions have been performed for various light to strange quark mass ratios in the range, 0:05 � m̂l=m̂s �
0:5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the
chiral (m̂l ! 0) and continuum (aT � 1=N� ! 0) limits we find for the transition temperature at the
physical point Tcr0 � 0:457�7� where the scale is set by the Sommer-scale parameter r0 defined as the
distance in the static quark potential at which the slope takes on the value, �dV �qq�r�=dr�r�r0

� 1:65=r2
0.

Using the currently best known value for r0 this translates to a transition temperature
Tc � 192�7��4� MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss
current ambiguities in the determination of Tc in physical units and also comment on the universal scaling
behavior of thermodynamic quantities in the chiral limit.
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I. INTRODUCTION

It is by now well established that the properties of matter
formed from strongly interacting elementary particles
change drastically at high temperatures. Quarks and gluons
are no longer confined to move inside hadrons but organize
in a new form of strongly interacting matter, the so-called
quark-gluon plasma (QGP). The transition from hadronic
matter to the QGP as well as properties of the high tem-
perature phase have been studied extensively in lattice
calculations over recent years [1]. Nonetheless, detailed
quantitative information on the transition and the structure
of the high temperature phase in the physical situation of
two light and a heavier strange quark ((2� 1)-flavor
QCD) is rare [2–5]. In order to relate experimental ob-
servables determined in relativistic heavy ion collisions to
lattice results, it is important to achieve good quantitative
control, in calculations with physical quark masses, over
basic parameters that characterize the transition from the
low to the high temperature phase of QCD. One of the
most fundamental quantities clearly is the transition
temperature.

Many lattice calculations, performed in recent years,
suggest that for physical values of the quark masses, the
transition to the high temperature phase of QCD is not a
phase transition but rather a rapid crossover that occurs in a
small, well defined, temperature interval. In particular, the
calculations performed with improved staggered fermion
actions indicate a rapid but smooth transition to the high
temperature phase [3,6]; distributions of the chiral conden-
sate and Polyakov loop do not show any evidence for
metastabilities; and the volume dependence of observables

characterizing the transition is generally found to be small.
This allows one to perform studies of the transition in
physical volumes of moderate size which have already
led to several calculations of the QCD transition tempera-
ture for 2 and 3-flavor QCD on the lattice. A first chiral and
continuum limit extrapolation of the transition temperature
obtained in (2� 1)-flavor QCD with improved staggered
fermions has been given recently [3]. A similar extrapola-
tion of results obtained with rather large quark masses has
also been attempted for 2-flavor QCD in calculations per-
formed with Wilson fermions [7].

In this paper we report on a new determination of the
transition temperature in QCD with almost physical light
quark masses and a physical value of the strange quark
mass. Our calculations have been performed with an im-
proved staggered fermion action [8] on lattices of temporal
extent N� � 4 and 6. We use the Rational Hybrid Monte
Carlo (RHMC) algorithm [9] to perform simulations with
two light and a heavier strange quark. We will outline
details of our calculational set-up in the next section. In
Sec. III we present our finite temperature calculations for
the determination of the transition point on finite lattices.
Section IV is devoted to a discussion of our zero tempera-
ture scale determination. We present our results on the
transition temperature in Sec. V and conclude in Sec. VI.

II. LATTICE FORMULATION AND
CALCULATIONAL SET UP

We study the thermodynamics of QCD with two light
quarks (m̂l � m̂u � m̂d) and a heavier strange quark (m̂s)
described by the QCD partition function which is discre-
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tized on a four dimensional lattice of size N3
� � N�,

 Z��; m̂l; m̂s; N�; N�� �
Z Y

x;�

dUx;��detD�m̂l��
1=2

��detD�m̂s��
1=4e��SG�U�: (1)

Here we will use staggered fermions to discretize the
fermionic sector of QCD. The fermions have already
been integrated out, which gives rise to the determinants
of the staggered fermion matrices,D�m̂l� andD�m̂s� for the
contributions of two light and one heavy quark degree of
freedom, respectively. Moreover, � � 6=g2 is the gauge
coupling constant, m̂s;l denote the dimensionless, bare
quark masses in units of the lattice spacing a, and SG is
the gauge action which is expressed in terms of gauge field
matrices Ux;� 2 SU�3� located on the links �x;�� �
�x0;x; �� of the four dimensional lattice; � � 0; . . . ; 3.

In our calculations we use a tree level, O�a2� improved
gauge action, SG, which includes the standard Wilson
plaquette term and the planar 6-link Wilson loop. In the
fermion sector, we use an improved staggered fermion
action with 1-link and bended 3-link terms. The coefficient
of the bended 3-link term has been fixed by demanding a
rotationally invariant quark propagator up to O�p4�, which
improves the quark dispersion relation at O�a2�. This
eliminates O�a2� corrections to the pressure at tree level
and leads to a strong reduction of cut-off effects in other
bulk thermodynamic observables in the infinite tempera-
ture limit, as well as in O�g2� perturbation theory [8]. The
1-link term in the fermion action has been ‘‘smeared‘‘ by
adding a 3-link staple. This improves the flavor symmetry
of the staggered fermion action [10]. We call this action the
p4fat3 action. It has been used previously in studies of
QCD thermodynamics on lattices of temporal extent N� �
4 with larger quark masses [2,6]. We improve here on the
old calculations performed with the p4fat3 action in several
respects: (i) We perform calculations with significantly
smaller quark masses, which strongly reduces extrapola-
tion errors to the physical quark mass values; (ii) we obtain
results for a smaller lattice cut-off by performing calcula-
tions on lattices with temporal extent N� � 6 in addition to
calculations performed on N� � 4 lattices. This yields an
estimate of finite lattice size effects and allows a controlled
extrapolation to the continuum limit. Moreover, (iii) we
use the RHMC algorithm [9] for our calculations. This
eliminates step size errors inherent in earlier studies of
QCD thermodynamics with staggered fermions. Without
these finite step size errors, a reliable analysis of finite
volume effects is possible since one has excluded the
possibility of finite step size errors and finite volume
effects acting in concert. The RHMC algorithm has also
been used in other recent studies of QCD thermodynamics
with standard staggered fermions [5,11].

Our studies of the transition to the high temperature
phase of QCD have been performed on lattices of size
N3
� � N� with N� � 4 and 6 and spatial lattice sizes N� �

8, 16, 24 and 32. We performed calculations for several
values of the light to strange quark mass ratio, m̂l=m̂s for
fixed m̂s. The strange quark mass has been chosen such that
the extrapolation to physical light quark mass values yields
approximately the correct physical kaon mass value. This
led to the choice m̂s � 0:065 for our calculations on N� �
4 lattices and m̂s � 0:04 for the N� � 6 lattices. Some
additional calculations at a larger bare strange quark
mass, m̂s � 0:1, have been performed on the N� � 4 lat-
tices to check the sensitivity of our results to the correct
choice of the strange quark mass. Zero temperature calcu-
lations have been performed on 163 � 32 lattices. On these
lattices, hadron masses and the static quark potential have
been calculated. The latter we use to set the scale for the
transition temperature, while the hadron masses specify the
physical values of the quark masses.

As will be discussed later in more detail, we use pa-
rameters characterizing the shape of the static quark po-
tential �r0; r1;

����
�
p
� as well as hadron masses to set the scale

for thermodynamic observables. At each value of the
strange quark mass we have performed simulations at
several light quark mass values corresponding to a
regime of pseudoscalar (pion) masses1 150 MeV & mps &

500 MeV. A brief overview of lattice sizes, quark masses
and basic simulation parameters used in our calculations is
given in Table I. Further details on all simulations reported
on here and results for some observables are given in an
Appendix.

The numerical simulation of the QCD partition function
has been performed using the RHMC algorithm [9]. Unlike
the hybrid-R algorithm [13] used in most previous studies
of QCD thermodynamics performed with staggered fermi-

TABLE I. Spatial lattice sizes (N�) used for simulations with
different pairs of light and strange quark masses �m̂l; m̂s� on
lattices with temporal extent N�. The fifth column gives the
number of different gauge coupling values at which calculations
have been performed for each parameter set. The last column
gives the maximum number of gauge configurations generated
per �-value.

N� m̂s m̂l N� #� values max. no. of conf.

4 0.1 0.05 8 10 59000
0.02 8 6 49000

4 0.065 0.026 8, 16 10, 11 30000, 60000
0.013 8, 16 8, 7 30000, 60000
0.0065 8, 16 9, 6 34000, 45000
0.00325 8, 16 8, 5 30000, 42000

6 0.040 0.016 16 11 20000
0.008 16, 32 9, 1 62000, 18000
0.004 16, 24 7, 6 60000, 8100

1Here and everywhere else in this paper we use r0 �
0:469�7� fm [12] to convert lattice cut-offs to physical units.
The r0-parameter is discussed in more detail in Sec. IV.
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ons, this algorithm has the advantage of being exact, i.e.
finite step size errors arising from the discretization of the
molecular dynamics evolution of gauge fields in configu-
ration space are eliminated through an additional Monte
Carlo accept/reject step. This is possible with the introduc-
tion of a rational function approximation for roots of
fermion determinants appearing in Eq. (1). We introduce
different step lengths in the integration of gluonic and
fermionic parts of the force terms that enter the equations
of motion for the molecular dynamics (MD) evolution.
During the MD evolution, we use a 6th order rational
approximation for the roots of the fermion determinants,
and a more accurate 12th order rational approximation
during the Metropolis accept reject/step. The choice of
these parameters give virtually identical results when com-
pared with results obtained using more stringent toleran-
ces. We tuned the MD stepsizes to achieve about (70–
80)% acceptance rate for the new configurations generated
at the end of a MD trajectory of length �MD � 0:5. As a
result of these algorithmic improvements our simulations
now run much faster compared to the old implementation
of the hybrid-R algorithm. In particular, we can use much
larger step sizes for our molecular dynamics evolution,
especially for the lightest quark masses, resulting in sig-
nificantly reduced CG counts per gauge configuration gen-
erated. Details on the tuning of the parameters of the
RHMC algorithm used in our simulations will be given
elsewhere [14].

III. FINITE TEMPERATURE SIMULATIONS

Our studies of the QCD transition at finite temperature
have been performed on lattices of size N3

� � N�. The
lattice spacing, a, relates the spatial (N�) and temporal
(N�) size of the lattice to the physical volume V � �N�a�3

and temperature T � 1=N�a, respectively. The lattice
spacing, and thus the temperature, is controlled by the
gauge coupling, � � 6=g2, as well as the bare quark
masses.

Previous studies of the QCD transition with improved
staggered fermions gave ample evidence that the transition
from the low to high temperature regime of QCD is not a
phase transition but rather a rapid crossover. The transition
is signaled by a rapid change in bulk thermodynamic
observables (energy density, pressure) as well as in chiral
condensates and the Polyakov loop expectation value,

 

h �  iq
T3

�
1

VT2

@ lnZ
@m̂q

�
N2
�

4N3
�
hTrD�1�m̂q�i; q � l; s;

(2)

 hLi �

*
1

3N3
�

Tr
X

x

YN�
x0�1

U�x0;x�;0̂

+
; (3)

which are order parameters for a true phase transition in the
zero and infinite quark mass limit, respectively. Note that

we have defined the chiral condensate per flavor degree of
freedom, i.e. the derivative with respect to m̂l should be
considered as being a derivative with respect to one of the
two light quark degrees of freedom.

On theN� � 4 lattices we performed calculations at four
different values of the light quark mass, m̂l=m̂s � 0:05,
0.1, 0.2 and 0.4 with m̂s � 0:065. This choice of parame-
ters corresponds to masses of the Goldstone pion ranging
from about 150 MeV to 450 MeV. Some additional runs
have been performed with a somewhat larger strange quark
mass value, m̂s � 0:1, and two values of the light quark
mass, m̂l � 0:2m̂s and 0:5m̂s, which we used to check the
sensitivity of our results on the choice of the heavy quark
mass (or equivalently the kaon mass). On the N� � 6
lattices calculations have been performed for three values
of the light quark mass, m̂l=m̂s � 0:1, 0.2 and 0.4 with a
bare strange quark mass m̂s � 0:04. This covers a range of
pseudoscalar masses from 240 MeV to 490 MeV. The
choice of m̂s insures that the physical strange quark mass
remains approximately constant for both values of the
lattice cut-off. For N� � 4 we performed simulations on
lattices with spatial extent N� � 8 and 16. For N� � 6
most calculations have been performed on 163 � 6 lattices;
some checks of finite volume effects have been performed
forml � 0:2ms on a 323 � 6 lattice and forml � 0:1ms on
a 243 � 6 lattices.

For each parameter set ��; m̂l; m̂s� we generally gener-
ated more than 10000, and in some cases up to 60000,
gauge field configurations. While the Polyakov loop ex-
pectation value and its susceptibility have been calculated
on each gauge field configuration, the chiral condensates
and their susceptibilities have been analyzed only on every
10th configuration using unbiased noisy estimators with 10
noise vectors per configuration. We have monitored the
autocorrelation times in all our runs. From correlation
functions of the gauge action we typically find autocorre-
lation times �MD of O�100� configurations. They can rise
up to O�250� configurations in the vicinity of the transition
temperature. Our data samples thus typically contain a few
hundred statistically independent configurations for each
parameter set. We show two time histories of chiral con-
densates in the transition region in Fig. 1. All simulation
parameters, results on autocorrelation times, the light and
heavy quark condensates, the Polyakov loop expectation
value, and the corresponding susceptibilities are summa-
rized in the Tables, which are presented in the Appendix.

In Fig. 2(left) we compare results for the light quark
chiral condensate calculated on lattices of size 83 � 4 and
163 � 4. It clearly reflects the presence of finite volume
effects at small values of the quark mass. While finite
volume effects seem to be negligible for m̂l=m̂s 	 0:2,
for m̂l=m̂s � 0:1 we observe a small but statistically sig-
nificant volume dependence for the chiral condensate
as well as for the Polyakov loop expectation value.
This volume dependence is even more pronounced for
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m̂l=m̂s � 0:05 and seems to be stronger at low tempera-
tures. While the value of the chiral condensate increases
with increasing volume the Polyakov loop expectation
value decreases (Fig. 2(right)).

In a theory with Goldstone bosons, e.g. in
O�N�-symmetric spin models, it is expected that in the
broken phase the order parameter, O, changes with the
symmetry breaking field, h, as O�h� �O�0� 
 h1=2 [15].
This behavior has also been found in QCD with adjoint
quarks, i.e. h �  i 
 c0 � c1�ml=T�

1=2 [16,17]. Our current
analysis of the quark mass dependence of the chiral con-
densate is not yet accurate enough and has not yet been
performed at small enough quark masses to verify this
behavior explicitly. We will analyze the light quark mass
limit in more detail elsewhere.

We use the Polyakov loop susceptibility as well as the
disconnected part of the chiral susceptibility to locate the
transition temperature to the high temperature phase of
QCD,

 �L � N3
��hL2i � hLi2�; (4)

 

�q
T2 �

N�
16N3

�
�h�TrD�1�m̂q��

2i� hTrD�1�m̂q�i
2�; q� l; s:

(5)

In Fig. 3 we show results for the disconnected part of the
light quark chiral susceptibility, �l, calculated on 83 � 4
and 163 � 4 lattices. Results for �l and the Polyakov loop
susceptibility, �L, obtained from our calculations on 163 �
6 lattices are shown in Fig. 4. The location of peaks in the
susceptibilities has been determined from a Ferrenberg-
Swendsen reweighting of data in the vicinity of the peaks.
Errors on the critical couplings determined in this way
have been obtained from a jackknife analysis where
Ferrenberg-Swendsen interpolations have been performed
on different subsamples. In agreement with earlier calcu-
lations we find that the position of peaks in �l and �L show
only little volume dependence and that the peak height
changes only little, although the maxima become some-
what more pronounced on the larger lattices. This is con-
sistent with the transition being a crossover rather than a
true phase transition in the infinite volume limit.

Although differences in the critical coupling extracted
from �L and �l are small we find that on small lattices the
peak in the Polyakov loop susceptibility is located at a
systematically larger value of the gauge coupling �. In a
finite volume this is, of course, not unexpected, and in the
infinite volume limit an ambiguity in identifying the tran-
sition point may also remain for a crossover transition.
Nonetheless, we observe that the difference �c;L � �c;l
decreases with increasing volume and is within errors
consistent with zero for 163 � 4, which has the largest

FIG. 2. The light quark chiral condensate in units of a�3 (left) and the Polyakov loop expectation value (right) as function of the bare
light quark mass in units of the temperature, ml=T � m̂lN� for fixed � and m̂s � 0:065 on lattices of size 83 � 4 (circle) and 163 � 4
(triangles). Shown are results for various values of � ranging from � � 3:28 to � � 3:4 (top to bottom for h �  i and bottom to top for
hLi). Full and open symbols show results obtained from direct simulations and Ferrenberg-Swendsen interpolations, respectively.
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FIG. 1 (color online). Time history of the light and strange
quark chiral condensates for the smallest quark masses used in
our simulations on lattices of temporal extent N� � 4 and 6 and
for values of the gauge coupling in the vicinity of the critical
coupling of the transition on these lattices. The upper figure
shows a run at � � 3:305 with m̂l � 0:05m̂s on a 163 � 4 lattice
and the lower figure is for � � 3:46 and m̂l � 0:1m̂s on a 163 �
6 lattice.
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spatial volume expressed in units of the temperature,
TV1=3 � 4. On the smallest lattice, 83 � 4, we find �c;L �
�c;l ’ 0:0077�9�. Within the statistical accuracy of our data
we also do not find any systematic quark mass dependence
of this difference, �c;L � �c;l, which is shown in Fig. 5 for
the 3 different system sizes used in our calculations.

The peak positions, �c�m̂l; m̂s; N��, in the chiral and
Polyakov loop susceptibilities are generally well deter-
mined. An exception is our data set for m̂l=m̂s � 0:2 on
the 163 � 6 lattice which shows a quite broad peak in �l.
Consequently we find here the largest difference �c;L �
�c;l ’ 0:019�7� which also has the largest statistical error.
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FIG. 4 (color online). The disconnected part of the light quark chiral susceptibility (left) and the Polyakov loop susceptibility (right)
on lattices of size 163 � 6 for three different values of the light quark mass. Curves show Ferrenberg-Swendsen interpolations as
discussed in the caption of Fig. 2
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FIG. 3 (color online). The disconnected part of the light quark chiral susceptibility on lattices of size 83 � 4 (squares) and 163 � 4
(circles) for four different values of the light quark mass. The curves show Ferrenberg-Swendsen interpolations of the data points
obtained from multiparameter histograms with an error band coming from Ferrenberg-Swendsen reweightings performed on different
jackknife samples.
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The error on �c;�L;l��m̂l; m̂s; N�� translates, of course,
into an uncertainty for the lattice spacing a��c� which in
turn contributes to the error on the transition temperature.
In order to get a feeling for the accuracy required in the
determination of �c we give here an estimate for the
dependence of the lattice cut-off on the gauge coupling,
which will be determined and discussed in more detail in
the next section. From an analysis of scales related to the
static quark potential at zero temperature we deduce that,
in the regime of couplings relevant for our finite tempera-
ture calculations, a shift in the gauge coupling by �� �
0:02 corresponds to a change in the lattice cut-off of about
5%. An uncertainty in the determination of the critical
coupling of about 0.01 thus translates into a 2.5% error
on Tc.

We summarize our results for the critical couplings
determined from peaks in �L and �l, respectively, in
Table II. As the peak positions in both quantities apparently
differ systematically on finite lattices and for finite values
of the quark mass, we use the average of both values as an
estimate for the critical coupling, �c, for the transition to
the high temperature phase of QCD. We include the de-
viation of �c;L and �c;l from this average value as a
systematic error in �c and add it quadratically to the
statistical error. These averaged critical couplings are given
in the last column of Table II. Even with this conservative
error estimate the uncertainty in the determination of the
critical coupling is in almost all cases smaller than 0.01, i.e.
the uncertainty in the determination of �c will amount to
about 2% error in the determination of Tc.

In addition to the light quark condensate and its suscep-
tibility we also have analyzed the strange quark condensate
and its susceptibility, �s. We find that the light and heavy
quark condensates are strongly correlated, which is easily
seen in the MD-time evolution of these quantities. Already
on the smallest lattices the position of the peak in the heavy
quark susceptibilities is consistent with that deduced from
the light quark condensate. On the larger,N� � 16, lattices
the difference j�c;l � �c;sj is in all cases zero within
statistical errors, which are about 3 � 10�3. Any tempera-
ture difference in the crossover behavior for the light and
strange quark sector of QCD, which sometimes is dis-
cussed in phenomenological models, thus is below the
1 MeV level.

IV. ZERO TEMPERATURE SCALES

In order to calculate the transition temperature in terms
of an observable that is experimentally accessible and can
be used to set the scale for Tc we have to perform a zero
temperature calculation at the critical couplings �c deter-
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FIG. 5. The difference of gauge couplings at the location of
peaks in the Polyakov loop and chiral susceptibilities, �c;L �
�c;l. Shown are results from calculations on 83 � 4 (left), 163 �

4 (middle) and 163 � 6 (right).

TABLE II. Critical couplings determined from the location of peaks in the Polyakov loop
susceptibility as well as in the disconnected parts of the light and strange quark chiral
susceptibilities. The last column gives the average of �c;L and �c;l.

N� m̂s m̂l N� �c;L [from �L] �c;l [from �l] �c;s [from �s] �c [averaged]

4 0.1 0.05000 8 3.4248(46) 3.4125(32) 3.4132(36) 3.4187(83)
0.02000 8 3.3740(31) 3.3676(18) 3.3723(35) 3.3708(48)

4 0.065 0.02600 16 3.3637(20) 3.3618(12) 3.3615(13) 3.3627(25)
0.02600 8 3.3661(25) 3.3563(21) 3.3588(28) 3.3612(59)
0.01300 16 3.3389(18) 3.3362(17) 3.3374(17) 3.3376(28)
0.01300 8 3.3419(23) 3.3349(21) 3.3398(31) 3.3384(47)
0.00650 16 3.3140(5) 3.3145(3) 3.3132(4) 3.3143(6)
0.00650 8 3.3239(30) 3.3141(11) 3.3198(24) 3.3190(58)
0.00325 16 3.3042(43) 3.3085(26) 3.3132(69) 3.3064(55)
0.00325 8 3.3087(18) 3.3024(10) 3.3047(17) 3.3056(37)

6 0.04 0.01600 16 3.5002(25) 3.4973(12) 3.4967(12) 3.4988(32)
0.00800 16 3.4801(19) 3.4595(19) 3.4614(44) 3.4698(106)
0.00400 16 3.4668(24) 3.4604(18) 3.4603(11) 3.4636(44)
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mined in the previous section. This will allow us to elimi-
nate the unknown lattice cut-off, a��c�, which determines
Tc on a lattice with temporal extent N�, i.e. Tc �
1=N�a��c�. To do so we have performed calculations at
zero temperature, i.e. on lattices of size 163 � 32, and
calculated several hadron masses as well as the static quark
potential. From the latter we determine the string tension
and extract short distance scale parameters r0, r1, which
are defined as separations between the static quark anti-
quark sources at which the force between them attains
certain values [18],

 r2
dV �qq�r�

dr

��������r�r0

� 1:65; r2
dV �qq�r�

dr

��������r�r1

� 1:0: (6)

Although these scale parameters are not directly accessible
to experiment they can be well estimated from heavy
quarkonium phenomenology. Moreover, they have been
determined quite accurately in lattice calculations through
a combined analysis of the static quark potential [19] and
level splittings in bottomonium spectra [12]. Both these
calculations have been performed on identical sets of
gauge field configurations. We will use the value for r0

determined in the bottomonium calculation [12] for all
conversions of lattice results to physical units,

 r0 � 0:469�7� fm: (7)

Our zero temperature calculations have been performed
at values of the gauge coupling in the vicinity of the �c
values listed in the last column of Table II. We typically
generated several thousand configurations and analyzed
the hadron spectrum and static quark potential on every
10th configuration. A summary of our zero temperature
simulation parameters is given in Table III together with
the two scales characterizing the static quark potential,
r0=a and

����
�
p

a, expressed in lattice units. These scales
have been obtained by using the simple Cornell form to
fit our numerical results for the static quark potential,
V �qq�r� � ��=r� �r� c. With this fit-ansatz, which

does not include a possible running of the coupling �,
the force entering the definition of r0 is easily calculated
and we find from Eq. (6), r0 �

�����������������������������
�1:65� ��=�

p
. More de-

tails on the analysis of the static quark potential and the
precise form for the fit ansatz used by us will be given in
the next subsection.

In addition we also have calculated some meson masses,
the mass of the lightest pseudoscalar in the light quark
sector, mps and the strange quark sector, ms �s; and the
pseudoscalar heavy-light meson, mK. Results for these
masses are also given in Table III. They have been obtained
from point-wall correlation functions using a Z2-wall
source. The correlation functions have been fitted to a
double exponential ansatz that takes into account the two
lowest states contributing to the staggered fermion corre-
lation functions. We have varied the lower limit, rmin, of the
fit range to check for the stability of our fits. For the masses
displayed in Table III stable results typically are found for
rmin * 6 for N� � 4 and rmin * 8 for N� � 6. In the
following we discuss in more detail our analysis of the
static quark potential.

A. The static quark potential

The static quark potential at fixed spatial separation has
been obtained from an extrapolation of ratios of Wilson
loops to infinite time separation. The spatial transporters in
the Wilson loop were constructed from spatially smeared
links which have been obtained iteratively by adding
spacelike 3-link staples with a relative weight � � 0:4 to
the links and projecting this sum back to an element of the
SU�3� gauge group (APE smearing). This process has been
repeated 10 times. We have calculated the potential for on-
axis as well as off-axis spatial separations. As we have to
work on still rather coarse lattices and need to know the
static quark potential at rather short distances (in lattice
units) we have to deal with violations of rotational sym-
metry in the potential. In our analysis of the potential we
take care of this by adopting a strategy used successfully in

TABLE III. Simulation parameter for the scale setting runs on 163 � 32 lattices and results obtained for light and heavy quark
pseudoscalars (mps and ms �s), the kaon mass and scale parameters of the heavy quark potential. In column 4 we give the number of
configurations actually used in the analysis. Column 9 show the smoothed values for r0=a obtained from the fit ansatz given in Eq. (12).
Results for the largest quark mass pair, �m̂s; m̂l� � �0:1; 0:05�, have not been included in the fit.

m̂s m̂l � # conf. mpsa ms �sa mKa r0=a �r0=a�smooth

����
�
p

a

0.1 0.05 3.409 600 0.7075(3) 0.9817(2) 0.8571(3) 2.0525(36)(89) - 0.5564(17)(79)
0.02 3.371 560 0.4583(2) 0.9854(4) 0.7748(3) 2.0178(45)(56) 2.0097 0.5651(24)(92)

0.065 0.026 3.362 500 0.5202(4) 0.8045(3) 0.6794(6) 2.0250(59)(75) 2.0337 0.5580(26)(89)
0.013 3.335 400 0.3733(3) 0.8072(4) 0.6339(4) 1.9801(47)(11) 1.9803 0.5675(24)(90)
0.0065 3.31 750 0.2656(4) 0.8089(2) 0.6092(5) 1.9047(40)(132) 1.9018 0.5910(25)(116)
0.00325 3.30 400 0.1888(6) 0.8099(3) 0.5948(3) 1.8915(59)(136) 1.8750 0.5888(34)(95)

0.04 0.016 3.50 294 0.3864(6) 0.5988(6) 0.5048(6) 3.0061(143)(92) 3.0136 0.3766(27)(33)
0.008 3.47 500 0.2831(13) 0.6097(6) 0.4789(7) 2.8953(96)(56) 2.8736 0.3867(19)(40)
0.004 3.455 410 0.2043(10) 0.6143(6) 0.4634(7) 2.8030(75)(51) 2.8056 0.4016(19)(43)
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the analysis of static quark potentials [18] and heavy quark
free energies [20]. We replace the Euclidean distance on
the lattice, �r=a�2 � n2

x � n2
y � n2

z , by rI=a which relates
the separation between the static quark and antiquark
sources to the Fourier transform of the tree-level lattice
gluon propagator, D��, i.e.

 �rI=a��1 � 4	
Z 	

�	

d3k

�2	�3
exp�i ~k � ~n�D00�k�: (8)

which defines the lattice Coulomb potential. Here the
integers n � �nx; ny; nz� label the spatial components of
the 4-vector for all lattice sites and D00 is the timelike
component of D��. For the O�a2� improved gauge action
used here this is given by

 D�1
00 �k� � 4

X3

i�1

�
sin2 ki

2
�

1

3
sin4 ki

2

�
: (9)

This procedure removes most of the short distance lattice
artifacts. It allows us to perform fits to the heavy quark
potential with the 3-parameter ansatz,

 V �qq�r� � �
�
rI
� �rI � c: (10)

Fit results for
����
�
p

a and r0=a �
����������������������������������
�1:65� ��=�a2

p
obtained

with this ansatz are given in Table III. Errors on both
quantities have been calculated from a jackknife analysis.
We also performed fits with a 4-parameter ansatz com-
monly used in the literature,

 V �qq�r� � �
�
r
� �r� �0

�
1

rI
�

1

r

�
� c: (11)

Using this ansatz for our fits, we generally obtain results
which are compatible with the fit parameters extracted
from the 3-parameter fit. We combine the difference be-
tween the 4-parameter fit result and the 3-parameter fit with
differences that arise when changing the fit range for the
potentials and quote this as a systematic error. This is given
as a second error for r0=a and

����
�
p

a listed in Table III.
Using Eq. (7) we find that the lattice spacings correspond-
ing to the relevant coupling range explored in our N� � 4
and 6 calculations correspond to a ’ 0:24 fm and a ’
0:17 fm, respectively. As can be seen from Table III we
obtain values for r0

����
�
p

between 1.11 and 1.13. These
values are about 2% larger than those obtained on finer
lattices by the MILC collaboration [19].

We have determined the scale parameter r0 in units of
the lattice spacing for 9 different parameter sets
�m̂l; m̂s; ��. This allows to interpolate between different
values of the gauge coupling and quark masses. We use a
renormalization group inspired ansatz [21] which takes

into account the quark mass dependence of r0=a [3] and
which approaches, in the weak coupling limit, the 2-loop
�-function for three massless flavors,

 �r0=a�
�1 � R����1� Bâ2��� � Câ4����eA�2m̂l�m̂s��D:

(12)

Here R��� denotes the 2-loop �-function and â��� �
R���=R� ��� with �� � 3:4 chosen as an arbitrary normal-
ization point. A fit to 14 values for r0=a, which include 8 of
the 9 values for r0=a given in Table III and additional data
obtained in our studies of 3-flavor QCD [14], gives A �
1:45�5�, B � 1:20�17�, C � �0:21�6� and D � 2:41�5�
with a �2=dof � 0:9. We use this interpolation formula
to set the scale for the transition temperature.

B. The physical point

Our goal is to determine the transition temperature at the
physical point, i.e. for quark masses that correspond to the
physical light and strange quark masses that reproduce the
experimentally known hadron mass spectrum at zero tem-
perature. To do so we reduce the bare light quark mass, m̂l,
keeping m̂s fixed to an appropriate value that yields the
physical value for the pion mass expressed, for instance, in
units of r0, i.e. mpsr0 � 0:321�5�. The strange quark mass
should also be chosen such that, at this point, one of the
strange meson masses is reproduced. For this purpose we
monitor the value of the kaon mass and the strange pseu-
doscalar,2 ms�s. In the continuum limit the physical point is
then given as �mpsr0; mKr0� � �0:321�5�; 1:177�18�� where
the error reflects the uncertainty in r0 [12]. At this point the
strange pseudoscalar in units of r0 is given by ms�sr0 �
1:631�24�.

In Fig. 6, we show the kaon masses in units of r0,
corresponding to the different sets of light and heavy quark
mass values used in our calculations, plotted versus pseu-
doscalar masses in units of r0. These data are also given in
Table III. It can be seen that the two bare strange quark
mass values, m̂s � 0:065 and 0.04, used in our finite tem-
perature calculations on N� � 4 and 6 lattices, respec-
tively, allow us to approach the physical point in the light
quark mass limit. For mpsr0 � 0:321 we obtain mKr0 �

1:12 and 1.25 for the two parameter sets, which agrees with
the continuum value for the kaon mass within 6%. The
strange pseudoscalar mass is, as expected, almost indepen-
dent of the value of the light quark mass. Using the data
displayed in Table III we find from a linear extrapolation to
the physical point, ms�sr0 � 1:53�2� (m̂s � 0:065 data set)
and ms�sr0 � 1:69�2� (m̂s � 0:04 data set), respectively.
This too agrees with the continuum value within 6%.

For the third parameter set, m̂s � 0:1, we obtain ex-
trapolated values for the kaon mass, mKr0 � 1:41 and for

2The mass of the strange pseudoscalar may be estimated as
ms �s �

�����������������������
2m2

K �m
2
	

q
� 686 MeV [22].
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the strange pseudoscalar ms�sr0 � 1:96, which both are
about 20% larger than the physical values. We use this
parameter set to verify the insensitivity of Tcr0 to the
precise choice of the strange quark mass.

V. THE TRANSITION TEMPERATURE

To obtain the transition temperature we use the results
for the scales r0=a and

����
�
p

a obtained from fits to the static
quark potential. In cases where zero temperature calcula-
tions have not been performed directly at the critical
coupling but at a nearby �-value we use Eq. (12) to
determine the scales at �c�m̂l; m̂s; N��. The transition tem-

perature is then obtained as Tcr0 � �r0=a�=N� or
Tc=

����
�
p
� 1=

����
�
p

aN�. We show these results as function
of the pseudoscalar (pion) mass expressed in units of r0 in
Fig. 7. There we give 2 errors on Tcr0 and Tc=

����
�
p

. A thin
error bar reflects the combined statistical and systematic
errors on the scales r0=a and

����
�
p

a obtained from our 3-
parameter fit to the static quark potential. The broad error
bar combines this uncertainty of the zero temperature scale
determination with the scale-uncertainty arising from the
error on �c. As can be seen, the former error, which
typically is of the order of 2%, dominates our uncertainty
on Tcr0 and Tc=

����
�
p

on the coarser N� � 4 lattices, while
the uncertainty in the determination of �c becomes more
relevant for N� � 6. Values for the transition temperatures
are given in Table IV.

The comparison of results obtained on lattices with
temporal extent N� � 4 and 6 given in Fig. 7 clearly shows
a systematic cut-off dependence for the transition tempera-
ture. At fixed values of mpsr0, results obtained for N� � 6
are systematically smaller than the N� � 4 results by about
(3–4)%. On the other hand, we see no statistically signifi-
cant dependence of our results on the value of the strange
quark mass; results obtained on the N� � 4 lattice with a
strange quark mass m̂s � 0:1 and m̂s � 0:065 are in good
agreement. The former choice of parameters leads to a
kaon mass that is about 20% larger than in the latter case.

We have extrapolated our numerical results for Tcr0 and
Tc=

����
�
p

, which have been obtained for a specific set of
lattice parameters �m̂l; m̂s; N��, to the chiral and continuum
limit using an ansatz that takes into account the quadratic
cut-off dependence, �aT�2 � 1=N2

� , and a quark mass de-
pendence expressed in terms of the pseudoscalar meson
mass,
 

Ym̂l;m̂s;N� � Y0;ms;1 � A�mpsr0�
d � B=N2

�;

Y � Tcr0; Tc=
����
�
p

;
(13)
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FIG. 7 (color online). Tcr0 (left) and Tc=
����
�
p

(right) as a function of mpsr0 on lattices with temporal extent N� � 4, m̂s � 0:065
(squares) and m̂s � 0:1 (triangles) as well as for N� � 6, m̂s � 0:04 (circles). Thin error bars represent the statistical and systematic
error on r0=a and

����
�
p

a. The broad error bar combines this error with the error on �c. The vertical line shows the location of the
physical value mpsr0 � 0:321�5� and its width represents the error on r0. The three parallel lines show results of fits based on Eq. (13)
with d � 1:08 for N� � 4, 6 and N� ! 1 (top to bottom).
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FIG. 6. The square of the kaon mass in units of r2
0 versus the

square of the pseudoscalar meson mass also expressed in units of
r2

0. Shown are results for the three different sets of bare strange
quark masses, m̂s � 0:04, (squares) 0.065 (circles) and 0.1
(triangles). The star shows the location of the physical point
using r0 � 0:469 fm. The values of the light quark masses and
gauge couplings at which the zero temperature calculations on
163 � 32 lattice have been performed can be found in Table III.
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If the QCD transition is second order in the chiral limit the
transition temperature is expected to depend on the quark
mass as m̂1=�


l , or correspondingly on the pseudoscalar
meson mass as m2=�


ps with d � 2=�
 ’ 1:08 characteriz-
ing universal scaling behavior in the vicinity of second
order phase transitions belonging to the universality class
of O�4� symmetric, 3-dimensional spin models. If, how-
ever, the transition becomes first order for small quark
masses, which is not ruled out for physical values of the
strange quark mass, the transition temperature will depend
linearly on the quark mass (d � 2). A fit to our data set
with d as a free fit parameter would actually favor a value
smaller than unity, although the error on d is large in this
case, d � 0:6�7�.

Fortunately, the extrapolation to the physical point is not
very sensitive to the choice of d as our calculations have
been performed close to this point. It does, however, in-
crease the uncertainty on the extrapolation to the chiral
limit. We have performed extrapolations to the chiral limit
with d varying between d � 1 and d � 2. From this we
find

 mpsr0 � 0: Tcr0 � 0:444�6��12
�3 ;

Tc=
����
�
p
� 0:398�6��10

�1 ;
(14)

where the central value is given for fits with the O�4�
exponent d � 1:08 and the lower and upper systematic
error correspond to d � 1 and d � 2, respectively. Using
the fit values for the parameter A that controls the quark
mass dependence of Tcr0 (A � 0:041�5�) and Tc=

����
�
p

(A �
0:029�4�), respectively, we can determine the transition
temperature at the physical point, fixed by mpsr0, where
we then obtain a slightly larger value with reduced system-
atic errors,

 mpsr0 � 0:321�5�: Tcr0 � 0:457�7��8
�2;

Tc=
����
�
p
� 0:408�8��3

�1:
(15)

Here the error includes the uncertainty in the value for the
physical point, mpsr0, arising from the uncertainty in the
scale parameter r0 � 0:469�7� fm. We note that the ex-
trapolated values for Tcr0 and Tc=

����
�
p

may also be inter-
preted as a continuum extrapolation of the shape
parameters of the static potential. This yields r0

����
�
p
’

1:11 which is consistent with the continuum extrapolation
obtained with the asqtad-action [3].

The fit parameter Bwhich controls the size of the cut-off
dependent term in Eq. (13) is in all cases close to 1=3. We
find B � 0:34�9� for fits to Tcr0 and B � 0:33�7� for fits to
Tc=

����
�
p

, respectively. The critical temperatures for N� � 4
thus are about 5% larger than the extrapolated value, and
forN� � 6 the difference is about 2%. We therefore expect
that any remaining uncertainties in our extrapolation to the
continuum limit which may arise from higher order cor-
rections in the cut-off dependence of Tcr0 are not larger
than 2%.

The results for the transition temperature obtained here
for smaller quark masses and smaller lattice spacings is
entirely consistent with the results for 2-flavor QCD ob-
tained previously with the p4fat3 action on N� � 4 lattices
in the chiral limit, Tc=

����
�
p
� 0:425�15� [6]. We now find

for (2� 1)-flavor QCD for N� � 4 in the chiral limit
Tc=

����
�
p
� 0:419�6�. The continuum extrapolated result is,

however, somewhat larger than the continuum extrapolated
result obtained with the asqtad-action for (2� 1)-flavor
QCD in the chiral limit,3 Tcr0 � 0:402�29� [3], which is
based on the determination of transition temperatures on
lattices with temporal extent N� � 4, 6 and 8.

A. Using zero temperature scales to convert Tc to
physical units

Although we frequently have referred to the physical
value of r0 during the discussion in the previous chapters
we stress that our final result for dimensionless quantities,
in particular Tcr0 and Tc=

����
�
p

given in Eq. (14), does not
depend on the actual physical value of r0 or

����
�
p

.
As pointed out in the previous section, the results ob-

tained here for Tc expressed in units of r0 or
����
�
p

are
consistent with earlier determinations of these quantities.
In fact, after extrapolation to the continuum limit this ratio
turns out to be even somewhat smaller than those deter-
mined previously for 2-flavor QCD.

Unfortunately neither r0 nor
����
�
p

are directly measurable
experimentally. Their physical values have been deduced
from lattice calculations through a comparison with calcu-
lations for the level splitting in the bottomonium spectrum
[3,12]. This observable has the advantage of showing only
a weak quark mass dependence. Of course, dealing with
heavy quarks in addition to the dynamical light quarks

TABLE IV. Transition temperature in units of r0 and
����
�
p

. The
errors given are the combined statistical errors discussed in the
text.

N� m̂s m̂l Tcr0 Tc=
����
�
p

4 0.1 0.02 0.5043(61) 0.4422(88)
0.05 0.5251(105) 0.4598(111)

4 0.065 0.00325 0.4801(72) 0.4311(91)
0.0065 0.4811(35) 0.4273(84)
0.013 0.4981(45) 0.4432(79)
0.026 0.5071(38) 0.4488(77)

6 0.04 0.004 0.4768(51) 0.4236(66)
0.008 0.4823(124) 0.4308(120)
0.016 0.4996(47) 0.4413(61)

3In [3] Tc is given in units of r1 using results for r1=a taken
from [19]. We have expressed Tc in units of r0 using r0=r1 �
1:4795 to convert r1 to the r0 scale used by us.
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requires a special set-up (NRQCD) which might introduce
additional systematic errors. However, these findings have
been cross-checked through calculations of other observ-
ables which only involve the light quark sector. In particu-
lar, the pion decay constant, f	, has been evaluated on the
MILC configurations that have been used for the bottomo-
nium level splitting and yields a consistent value for r0

[23]. One may, of course, also consider using results for
masses of mesons constructed from light quarks, e.g. the
vector meson mass, to determine the scale for the transition
temperature, eg. Tc=m�. However, even on lattices with
smaller lattice spacings than those used in thermodynamic
calculations today, the calculation of vector meson mass is
known to suffer from large statistical and systematic errors
[19,23]. This is even more the case on the coarse lattices
needed for our finite temperature calculations. We thus
refrained from using results on the vector meson mass
for our determination of the transition temperature.

At present the scale parameter r0, deduced from the
bottomonium level splitting using NRQCD [12], seems
to be the best controlled lattice observable that can be
used to set the scale for Tc. Using for r0 the value given
in Eq. (7) we obtain for the transition temperature in QCD
at the physical point,

 Tc � 192�7��4� MeV; (16)

where the statistical error includes the errors given in
Eq. (15) as well as the uncertainty in the value of r0 and
the second error reflects our estimate of a remaining sys-
tematic error on the extrapolation to the continuum limit.
As discussed after Eq. (15) we estimate this error which
arises from neglecting higher order cut-off effects in our
ansatz for the continuum extrapolation, Eq. (13) to be
about 2%.

The value of the critical temperature obtained here is
about 10% larger than the frequently quoted value

175 MeV. We note that this larger value mainly results
from the value for r0 used in our conversion to physical
scales. Together with r0

����
�
p
’ 1:11 it implies that the string

tension takes on the value
����
�
p
’ 465 MeV. This value of

the string tension is about 10% larger than that used in the
past to set the scale for Tc [6].

VI. CONCLUSIONS

We have presented new results on the transition tem-
perature in QCD with an almost physical quark mass
spectrum. The extrapolation to the physical point and the
continuum limit is based on numerical calculations with an
improved staggered fermion action which have been per-
formed on lattices with two different values of the lattice
cut-off and seven different values of bare light and strange
quark masses.

It previously has been observed that the QCD transition
temperature is close to the freeze-out temperature ex-

tracted from observed particle yields in heavy ion experi-
ments [24,25]. Recent results from the RHIC experiments
determine this freeze-out temperature to be below
170 MeV [26,27]. Our results on the transition temperature
now seem to suggest that an intermediate regime between
the QCD transition and freeze-out exists during which the
system created in a heavy ion collision persists in a dense
hadronic phase.

The analysis presented here leads to a value for the
critical temperature with about 5% statistical and system-
atic errors. It clearly is desirable to confirm our estimate of
the remaining systematic errors through an additional cal-
culation on an even finer lattice. Furthermore, it is desir-
able to verify this result through calculations that explore
other discretization schemes for the fermion sector of QCD
and to also obtain a reliable independent scale setting for
the transition temperature from an observable not related to
properties of the static quark potential.
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APPENDIX: SUMMARY OF SIMULATION
PARAMETERS AND RESULTS

In this Appendix we summarize all numerical results
from our simulations with two light and a heavier strange
quark mass. The header line for all tables display the
temporal lattice size N� and values of the light (m̂l) and
strange (m̂s) quark masses. The first 4 columns of the
Tables display the spatial lattice size, N�, the value of
the gauge coupling, �, the number of configurations and
the autocorrelation time in units of gauge field configura-
tions generated at the end of a Molecular Dynamics tra-
jectory of length �MD � 0:5. The next three columns give
the Polyakov loop expectation value and the light and
strange quark chiral condensates. The remaining three
columns give the corresponding susceptibilities of these
three observables. Note that on the 243 � 6 lattice the
strange quark condensate and its susceptibility have not
been evaluated. We also do not quote a value for the light
quark chiral susceptibility in this case, as the current
statistics is not yet sufficient to determine this reliably.
All data are given in units of appropriate powers of the
lattice spacing.
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N� � 4, m̂s � 0:065, m̂l � 0:00325
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.2400 1500 32 0.0260(6) 0.1854(17) 0.2908(9) 0.086(4) 1.34(4) 0.235(13)
3.2600 19000 40 0.0309(10) 0.1647(15) 0.2769(8) 0.114(6) 1.79(7) 0.289(13)
3.2800 30000 61 0.0374(8) 0.1400(18) 0.2619(9) 0.164(7) 2.53(16) 0.477(41)
3.2900 30000 89 0.0457(10) 0.1189(15) 0.2497(8) 0.204(10) 3.01(8) 0.519(25)
3.3000 30000 81 0.0548(13) 0.0954(26) 0.2372(12) 0.257(8) 3.50(9) 0.631(23)
3.3100 30000 84 0.0626(16) 0.0778(31) 0.2267(15) 0.284(15) 3.53(14) 0.698(36)
3.3200 20000 57 0.0772(10) 0.0481(17) 0.2098(9) 0.247(17) 2.06(19) 0.540(55)
3.3400 20000 40 0.0902(12) 0.0297(15) 0.1939(9) 0.241(17) 0.97(16) 0.414(32)

16 3.2900 38960 66 0.0424(4) 0.1313(5) 0.2513(3) 0.221(10) 2.15(12) 0.510(28)
3.3000 40570 101 0.0520(6) 0.1084(10) 0.2389(5) 0.279(11) 3.16(17) 0.645(37)
3.3050 32950 105 0.0588(7) 0.0927(13) 0.2309(6) 0.314(22) 3.90(30) 0.743(58)
3.3100 42300 102 0.0649(5) 0.0791(11) 0.2240(5) 0.314(11) 4.12(17) 0.778(34)
3.3200 39050 92 0.0760(4) 0.0544(8) 0.2108(8) 0.310(20) 3.22(21) 0.663(48)

N� � 4, m̂s � 0:065, m̂l � 0:0065
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.2600 10000 37 0.0272(7) 0.1868(12) 0.2828(8) 0.097(7) 0.95(9) 0.289(34)
3.2800 30000 45 0.0352(8) 0.1604(12) 0.2646(6) 0.149(12) 1.28(11) 0.363(32)
3.2900 8900 56 0.0394(16) 0.1490(24) 0.2573(12) 0.146(17) 1.32(19) 0.334(53)
3.3000 30000 76 0.0456(9) 0.1314(13) 0.2465(7) 0.207(5) 2.11(7) 0.565(20)
3.3100 30000 105 0.0542(21) 0.1127(30) 0.2346(16) 0.269(18) 2.51(17) 0.649(54)
3.3200 34380 191 0.0671(18) 0.0869(27) 0.2197(15) 0.280(12) 2.30(9) 0.630(32)
3.3300 30000 101 0.0780(17) 0.0665(25) 0.2067(14) 0.288(26) 1.99(24) 0.626(70)
3.3400 20000 75 0.0884(18) 0.0506(23) 0.1957(16) 0.248(14) 1.13(11) 0.472(35)
3.3600 12750 30 0.1017(25) 0.0344(14) 0.1798(16) 0.242(16) 0.50(7) 0.361(29)

16 3.2800 20510 56 0.0312(3) 0.1662(3) 0.2664(2) 0.168(10) 1.10(9) 0.379(23)
3.2900 30160 79 0.0380(6) 0.1507(8) 0.2562(4) 0.212(16) 1.38(10) 0.432(29)
3.3000 36100 76 0.0445(3) 0.1351(6) 0.2464(3) 0.244(16) 1.96(15) 0.574(42)
3.3100 40440 110 0.0542(4) 0.1146(5) 0.2343(2) 0.316(14) 2.74(11) 0.740(34)
3.3150 45570 141 0.0612(6) 0.1007(10) 0.2262(6) 0.334(15) 3.12(17) 0.820(44)
3.3200 32310 81 0.0666(7) 0.0896(10) 0.2198(5) 0.304(17) 2.51(20) 0.647(51)

N� � 4, m̂s � 0:065, m̂l � 0:013
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.2600 10000 26 0.0255(9) 0.2075(7) 0.2865(6) 0.083(7) 0.48(3) 0.228(9)
3.2800 10000 45 0.0315(9) 0.1865(19) 0.2705(14) 0.118(8) 0.73(7) 0.314(31)
3.3000 20000 58 0.0383(13) 0.1645(20) 0.2545(13) 0.168(11) 1.13(11) 0.436(44)
3.3200 30000 109 0.0520(18) 0.1372(22) 0.2355(14) 0.254(14) 1.64(10) 0.621(38)
3.3300 30000 134 0.0621(18) 0.1188(22) 0.2231(14) 0.294(12) 1.68(9) 0.620(38)
3.3400 20000 79 0.0747(18) 0.0991(25) 0.2098(16) 0.303(15) 1.68(9) 0.669(38)
3.3600 17720 52 0.0948(17) 0.0695(19) 0.1879(13) 0.268(14) 0.96(7) 0.473(21)
3.3800 10000 40 0.1091(15) 0.0521(10) 0.1707(8) 0.237(11) 0.41(3) 0.296(20)

16 3.3200 20680 85 0.0501(6) 0.1387(8) 0.2356(5) 0.293(24) 1.60(16) 0.612(66)
3.3250 54840 114 0.0554(6) 0.1295(7) 0.2295(4) 0.298(16) 1.82(14) 0.680(51)
3.3300 50000 149 0.0615(5) 0.1185(7) 0.2222(4) 0.340(13) 1.94(8) 0.730(33)
3.3350 55600 124 0.0673(4) 0.1091(6) 0.2160(4) 0.330(17) 1.92(10) 0.711(37)
3.3400 60000 104 0.0741(6) 0.0980(8) 0.2085(5) 0.355(12) 1.95(7) 0.733(26)
3.3450 32560 82 0.0803(5) 0.0886(6) 0.2021(4) 0.315(18) 1.61(13) 0.650(47)
3.3500 20780 65 0.0859(5) 0.0801(6) 0.1960(4) 0.303(20) 1.31(11) 0.572(46)
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N� � 4, m̂s � 0:065, m̂l � 0:026
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.2600 10000 30 0.0235(6) 0.2378(14) 0.2918(10) 0.076(5) 0.35(4) 0.217(21)
3.2800 10000 22 0.0270(9) 0.2241(8) 0.2802(5) 0.096(7) 0.38(4) 0.226(20)
3.3000 9530 39 0.0311(12) 0.2091(15) 0.2675(12) 0.134(10) 0.58(5) 0.339(28)
3.3200 9270 66 0.0387(22) 0.1884(25) 0.2507(19) 0.161(14) 0.66(10) 0.381(56)
3.3400 20000 64 0.0484(16) 0.1673(16) 0.2335(11) 0.237(16) 0.91(6) 0.496(37)
3.3500 30000 118 0.0580(23) 0.1520(26) 0.2217(19) 0.285(15) 1.09(10) 0.594(54)
3.3600 30000 128 0.0737(21) 0.1315(24) 0.2057(18) 0.344(21) 1.26(8) 0.697(43)
3.3700 30000 91 0.0819(23) 0.1189(22) 0.1955(16) 0.342(33) 1.16(15) 0.673(77)
3.3800 20000 107 0.0965(21) 0.1033(20) 0.1825(16) 0.338(23) 0.95(8) 0.594(46)
3.4000 10000 39 0.1108(16) 0.0862(12) 0.1672(9) 0.253(24) 0.48(7) 0.346(44)

16 3.3000 9050 32 0.0255(3) 0.2105(3) 0.2684(2) 0.138(8) 0.46(3) 0.283(25)
3.3100 6890 42 0.0291(6) 0.2012(6) 0.2607(4) 0.162(12) 0.49(5) 0.296(36)
3.3350 16870 117 0.0422(8) 0.1756(9) 0.2399(7) 0.235(20) 0.82(8) 0.453(41)
3.3500 26500 85 0.0569(5) 0.1529(5) 0.2221(3) 0.307(18) 1.14(7) 0.608(39)
3.3550 38760 110 0.0626(6) 0.1446(6) 0.2156(4) 0.334(15) 1.15(5) 0.618(30)
3.3600 29780 215 0.0681(10) 0.1370(11) 0.2097(8) 0.443(20) 1.69(11) 0.910(65)
3.3625 37880 101 0.0729(5) 0.1312(4) 0.2052(3) 0.371(24) 1.25(10) 0.678(53)
3.3650 40000 101 0.0757(7) 0.1272(7) 0.2020(5) 0.359(27) 1.26(12) 0.691(64)
3.3700 60000 85 0.0833(3) 0.1179(3) 0.1947(3) 0.359(13) 1.17(5) 0.664(31)
3.3750 60000 75 0.0903(3) 0.1095(3) 0.1879(3) 0.332(15) 0.98(4) 0.577(27)

N� � 4, m̂s � 0:1, m̂l � 0:05
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.3600 6900 29 0.0326(18) 0.2295(13) 0.2939(10) 0.137(16) 0.29(3) 0.172(20)
3.3800 6900 69 0.0424(36) 0.2106(27) 0.2784(20) 0.246(34) 0.55(11) 0.317(65)
3.4000 27740 105 0.0542(16) 0.1919(15) 0.2633(11) 0.321(16) 0.71(3) 0.402(17)
3.4200 59900 114 0.0786(17) 0.1656(13) 0.2423(10) 0.369(15) 0.80(4) 0.463(25)
3.4350 59290 148 0.0934(27) 0.1498(19) 0.2293(15) 0.405(20) 0.69(4) 0.411(24)
3.4500 38450 77 0.1120(19) 0.1336(11) 0.2158(9) 0.324(26) 0.46(4) 0.298(23)
3.4750 7000 120 0.1280(48) 0.1195(30) 0.2027(25) 0.399(74) 0.40(14) 0.291(89)
3.5000 1400 17 0.1511(11) 0.1045(14) 0.1873(13) 0.151(44) 0.08(2) 0.073(20)

N� � 4, m̂s � 0:1, m̂l � 0:02
N� � # conf. � hLi h �  il h �  is �L �l �s

8 3.3200 6250 33 0.0320(17) 0.1873(21) 0.3016(11) 0.104(11) 0.45(5) 0.166(14)
3.3400 29120 102 0.0444(19) 0.1622(20) 0.2852(11) 0.202(16) 0.92(11) 0.303(32)
3.3600 49210 99 0.0613(11) 0.1334(10) 0.2667(5) 0.314(17) 1.42(7) 0.452(24)
3.3800 30000 183 0.0835(18) 0.1016(20) 0.2461(11) 0.344(13) 1.24(8) 0.436(27)
3.4000 6300 37 0.1031(25) 0.0770(20) 0.2284(14) 0.259(23) 0.50(5) 0.233(16)
3.4200 6500 21 0.1149(19) 0.0650(11) 0.2171(8) 0.240(17) 0.26(3) 0.173(17)
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N� � 6, m̂s � 0:04, m̂l � 0:004
N� � # conf. � hLi h �  il h �  is �L �l �s

16 3.4400 25850 75 0.0146(2) 0.0553(5) 0.1371( 3) 0.106(6) 1.10(4) 0.337(14)
3.4500 38680 77 0.0182(3) 0.0451(6) 0.1301( 3) 0.128(6) 1.36(11) 0.380(31)
3.4550 40030 65 0.0191(3) 0.0417(5) 0.1274( 3) 0.133(4) 1.30(6) 0.362(22)
3.4600 60000 97 0.0216(3) 0.1236( 2) 0.0361(3) 0.153(7) 1.57(11) 0.455(34)
3.4650 40030 129 0.0232(4) 0.1208( 4)) 0.0326(7) 0.162(8) 1.48(8) 0.438(19)
3.4700 30000 90 0.0254(5) 0.1179( 4) 0.0287(7) 0.155(9) 1.16(9) 0.410(35)
3.4800 30000 50 0.0298(4) 0.1119( 2) 0.0218(3) 0.149(6) 0.62(5) 0.300(29)

24 3.4450 5750 71 0.0143(4) 0.0530(2) - 0.111(10) - -
3.4500 8110 52 0.0178(4) 0.0453(2) - 0.150(8) - -
3.4550 6780 34 0.0199(3) 0.0402(2) - 0.115(6) - -
3.4600 5240 40 0.0206(4) 0.0369(2) - 0.131(10) - -
3.4650 6830 73 0.0239(5) 0.0313(3) - 0.159(21) - -
3.4700 5760 86 0.0258(6) 0.0277(2) - 0.155(14) - -

N� � 6, m̂s � 0:04, m̂l � 0:008
N� � # conf. � hLi h �  il h �  is �L �l �s

16 3.4500 51200 85 0.0144(2) 0.0661(2) 0.1349(1) 0.116(5) 0.92(8) 0.392(32)
3.4600 30980 80 0.0174(4) 0.0582(5) 0.1286(3) 0.135(7) 1.05(7) 0.430(30)
3.4650 53730 128 0.0194(3) 0.0536(4) 0.1251(3) 0.149(7) 1.10(9) 0.445(39)
3.4700 62490 64 0.0215(2) 0.0495(3) 0.1219(2) 0.156(6) 1.00(5) 0.398(21)
3.4750 59950 94 0.0237(4) 0.0452(5) 0.1185(3) 0.166(7) 1.08(7) 0.440(27)
3.4800 26670 52 0.0253(4) 0.0422(5) 0.1159(3) 0.168(9) 0.92(8) 0.384(34)
3.4900 18080 42 0.0297(4) 0.0355(5) 0.1102(3) 0.155(7) 0.56(5) 0.289(22)
3.5000 13190 29 0.0323(5) 0.0314(3) 0.1060(2) 0.155(7) 0.37(3) 0.223(11)
3.5100 10350 23 0.0361(6) 0.0280(4) 0.1020(4) 0.133(10) 0.30(3) 0.222(25)

32 3.4700 18240 92 0.0211(2) 0.0496(3) 0.1219(2) 0.149(10) 0.99(10) 0.393(41)

N� � 6, m̂s � 0:04, m̂l � 0:016
N� � # conf. � hLi h �  il h �  is �L �l �s

16 3.4200 10000 34 0.0079(2) 0.1137(3) 0.1589(3) 0.054(2) 0.42(3) 0.288(19)
3.4300 10000 40 0.0083(1) 0.1076(3) 0.1533(3) 0.060(3) 0.37(4) 0.251(31)
3.4400 10000 38 0.0091(3) 0.1009(4) 0.1472(4) 0.068(4) 0.36(4) 0.237(22)
3.4500 10000 28 0.0104(3) 0.0948(4) 0.1417(3) 0.090(6) 0.40(3) 0.256(18)
3.4600 10000 43 0.0124(5) 0.0879(7) 0.1355(5) 0.104(6) 0.52(5) 0.329(29)
3.4700 18410 49 0.0152(4) 0.0812(5) 0.1296(4) 0.112(5) 0.55(3) 0.336(20)
3.4800 11390 41 0.0178(6) 0.0743(5) 0.1235(4) 0.132(10) 0.49(4) 0.301(24)
3.4900 18920 49 0.0220(4) 0.0681(4) 0.1181(3) 0.166(12) 0.62(6) 0.357(30)
3.5000 20000 81 0.0269(7) 0.0605(6) 0.1115(5) 0.200(10) 0.72(7) 0.426(37)
3.5100 13510 62 0.0312(9) 0.0551(8) 0.1065(6) 0.173(15) 0.48(7) 0.308(42)
3.5200 8640 27 0.0350(5) 0.0503(4) 0.1020(3) 0.154(12) 0.31(3) 0.212(19)
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