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We study the embedded QCD monopoles (‘‘quark monopoles’’) using low-lying eigenmodes of the
overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These
monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The
monopoles were suggested to be agents of the chiral symmetry restoration since their cores should
suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of
the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the
density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying
Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally
broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities
towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant
monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the
embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the
monopole.
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I. INTRODUCTION

It is generally believed [1,2] that the low-temperature
(confinement) and the high-temperature (deconfinement)
phases in QCD with realistic quark masses and vanishing
chemical potential � are separated by a smooth crossover
which takes place at temperature Tc � 170 MeV. As the
system goes through the crossover all thermodynamic
quantities and their derivatives change smoothly, being
nonsingular functions of the temperature T. Therefore
there is no local order parameter which can distinguish
between these two phases at � � 0.

Recently it was suggested [3] that a well-defined bound-
ary between the QCD phases at � � 0 can still be rigor-
ously defined as a proliferation (percolation) transition of
the so-called ‘‘embedded QCD monopoles’’ or, as we also
call them, ‘‘quark monopoles.’’ These monopoles are
(gauge-invariant) composite objects made of quark and
gluon fields. The monopoles are assumed to be proliferat-
ing at infinitely long distances in the high-temperature
phase while in the low-temperature phase they are moder-
ately dilute. Contrary to Abelian monopoles in compact
gauge theories, the embedded QCD monopoles are in
general, not directly associated with the confining proper-
ties of the vacuum.1 The embedded monopoles can be
considered as agents of the chiral symmetry restoration:
in the low-temperature phase the chiral condensate should
be suppressed in the cores of the embedded QCD mono-
poles while outside the monopoles the chiral condensate is
suggested to be nonzero.

The assumption that the chiral phase transition should be
driven by the percolation of such monopoles can intuitively
be understood as follows [3]. At low temperatures the
density of the embedded monopoles is low and suppression
of the chiral condensate by the monopole cores is negli-
gibly small. However, as the temperature increases, the
density of the embedded monopoles gets larger and, con-
sequently, the chiral condensate becomes more suppressed.
One can also look at the relation between the embedded
monopole density and the chiral condensate from another
side: with an increase of the temperature the chiral con-
densate becomes weaker, and the embedded monopoles—
which are energetically unfavorable hedgehogs in the
quark-antiquark condensates—become more populated.
At some point the chiral condensate gets low enough for
the embedded QCD monopoles to become sufficiently
dense to start proliferating themselves.

The quark monopole in QCD is conceptually similar to
the embedded defects of the standard electroweak (EW)
model [4]. These defects are called as the Nambu mono-
poles [5] and the Z-vortices [6]. The Z-vortices (if they are
not closed) begin and end on the Nambu monopoles. In the
broken low-temperature phase the value of the Higgs field
is suppressed inside the embedded EW defects, and is
asymptotically nonzero outside the defects. According to
analytical estimates [7] the Z-vortices are proliferating for
long distances in the high-temperature symmetric phase in
which they form a dense percolating network. In the bro-
ken phase the Z-vortex network is destroyed and these
objects become dilute. The Nambu monopoles possess
similar properties [8]. Numerical simulations [9,10] show
that the percolation transition of the Z-vortices takes place
both at the region of the relatively small Higgs mass [9],
MH & 72 GeV, where the phase transition of the first

1There should be, however, an indirect relation between the
confining properties and the embedded monopole dynamics
since as it is well known the confinement phenomena and the
chiral symmetry are intimately related to each other in QCD.
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order, and at large Higgs masses [10], MH * 72 GeV,
where the transition is a smooth analytical crossover [11].

In the condensed matter physics, an onset of percolation
realized in the absence of a thermodynamic phase transi-
tion is usually referred to as the Kertész transition [12]. The
Ising model in an external magnetic field provides the best
known example of the Kertész transition which is defined
with respect to the so-called Fortuin-Kasteleyn (FK) clus-
ters [13]. The FK clusters are sets of lattice links connect-
ing nearest spins in the same spin states. These clusters are
proliferating in the high-temperature (disordered) phase
and they are short-sized and dilute in the low-temperature
(ordered) phase. In zero magnetic field,H � 0, the ordered
and the disordered phases are separated by a phase tran-
sition at the Curie temperature Tc, which coincides with the
percolation transition for the FK clusters. In an external
magnetic field the phase transition is known to be absent
and the ordered and disordered phases are connected ana-
lytically by a crossover in the T–H plane. Nevertheless, the
phases are still separated by a Kertész transition line TK �
TK�H� which marks the proliferation (percolation) transi-
tion for the FK clusters. Obviously, in the zero-field limit
the Kertész line meets the Curie point, limH!0TK�H� !
Tc.

The Kertész-type transitions often appear in the gauge
theories coupled to fundamental mater fields. Besides
mentioned cases of embedded monopoles in QCD [3]
and the embedded defects in the Electroweak model [8–
10], the Kertész line appears, for example, in the compact
U(1) gauge theories [14]. The manifestation of the Kertész
line in the SU(2) Higgs model (which is similar to the
Electroweak model) can be found as the percolation of the
center vortices [15].

The picture of percolating embedded monopoles in
QCD is most probably related to the percolation of the
hadron clusters at high temperature and nonzero density
(� � 0) environment, which may be realized, for example,
in the heavy-ion collision experiments. In these extreme
conditions hadrons may overlap and form clusters within
which the quarks are no more confined. The onset of the
quark-gluon plasma phase is thus associated with the per-
colation transition of the hadron clusters [16,17].

In this paper we study basic properties of the embedded
(or, quark) monopoles using numerical simulations in the
SU(2) gauge theory without dynamical matter field. The
monopoles are defined with the help of c-valued eigen-
modes of the overlap Dirac operator. In Sec. II we describe
the structure of such monopoles in the continuum space-
time. We show that in the SU(2) Yang-Mills theory there
are three types of these monopoles characterized by their
behavior with respect to the global axial transformations.
We also discuss the extension of our construction to the
realistic SU(3) case. In the same section we provide a
lattice construction of the quark monopoles, which is
suitable for utilization in numerical simulations. In

Sec. III we describe results of our numerical simulations
for the density of the embedded monopoles. In Sec. IV we
discuss a relation between the monopole density and the
spectral density of the Dirac fermions. We also discuss a
relation of our results to the Banks-Casher formula [18].
Section V is devoted to numerical analysis of the structure
of the chromomagnetic fields around the monopoles. Our
conclusions are given in the last section.

II. QUARK MONOPOLES IN CONTINUUM AND
ON THE LATTICE

The quark monopoles in QCD are analogues of the
embedded (Nambu) monopoles [4,5] in the standard elec-
troweak model. Here we briefly outline the definition of the
embedded QCD monopoles following Ref. [3]. For the
sake of simplicity we consider the gauge theory with the
reduced number of colors, Nc � 2. An outline of the gen-
eralization of our approach to the bigger number of colors
is given at the end of this section.

A. Quark monopoles in continuum SU(2) gauge theory

Let consider the SU(2) Yang-Mills theory with one (for
simplicity) species of the fermion field  which transforms
in the fundamental representation of the gauge group.
Using  one can define the bilinear functions of the fer-
mion field

 

~� � � � �x�� ~� �x�; � � 1; i�5; (1)

where ~� � ��1; �2; �3� are the Pauli matrices acting in the
color space and ��, �5 is the standard set of the spinor
�-matrices in the four-dimensional space-time. The real-
valued composite fields ~�S and ~�A (with the subscripts S
and A corresponding to the scalar, 1, and axial, i�5, op-
erators, respectively) are scalar and, respectively, pseudo-
scalar (axial) fields from the point of view of space-time
transformations. Both these fields transform as adjoint
three-component quantities with respect to the action of
the gauge group.

In the EW model the role of the adjoint composite field
(1) is played by the scalar triplet �y ~��, where � is the
two-component Higgs field. The EW embedded defects
can then be formulated in terms of the classical or asymp-
totic configurations of the gauge and the Higgs fields. To
make a tight link between the embedded defects in both
theories we assume from the very beginning that the fer-
mion field  used in the definition (1) is a c-valued
function. It is convenient to choose the field  to be an
eigenmode of the Dirac operator D,
 

D�A� ��x� � � ��x�;

D�A� � ���@� � i
1
2�
aAa�� �m;

(2)

corresponding to a configuration of the gauge fields Aa��x�.
In our numerical analysis we use the massless Dirac op-
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erator with m � 0. The Dirac eigenmodes are labeled by
the eigenvalues � of the Dirac operator. The label � will be
omitted in this Section for the sake of simplicity.

The axial transformations are defined by the global
Abelian parameter �,

 UA�1�:  ! ei��5 ; � ! � ei��5 : (3)

The color vectors ~�S and ~�A are transforming into each
other under the axial transformations (3) as follows:

 

~�S
~�A

 !
!

~�S
~�A

 !
0

�
cos2� sin2�
� sin2� cos2�

� � ~�S
~�A

 !
: (4)

Using two adjoint fields (1) we define three unit color
vectors

 ~n S �
~�S
j ~�Sj

; ~nA �
~�A
j ~�Aj

; ~nI �
~�S 	 ~�A
j ~�S 	 ~�Aj

; (5)

where � ~A; ~B� and � ~A	 ~B�a � �abcAbBc are, respectively,
the scalar and the vector products in the color space and
j ~Aj � � ~A; ~A�1=2 is the norm of the color vector A. The last
term in Eq. (5), ~nI, is a (normalized) vector product of the
scalar and axial color vectors. The vector ~nI is interesting
because it is invariant under the axial transformations (3)
and (4). The index I in the subscript of ~nI stands for
‘‘invariant.’’

The crucial observation is to interpret the unit vectors (5)
as directions of the corresponding composite adjoint Higgs
field. Thus we have three Georgi-Glashow multiplets
�na�; A

a
��, � � S; A; I, which can be used to construct the

gauge-invariant ’t Hooft tensors [19],
 

F �
���n�; A� � Fa���A�na� �

1

g
�abcna��D

ad
� n��

b�Dad
� n��

c;

� � S; A; I; (6)

where Fa�� � @�A
a
� � @�A

a
� � g�

abcAb�A
c
� is the field

strength tensor for the SU(2) gauge field Aa�, and

 �Dad
� �

ab � 	ab@� � g�abcAc�; (7)

is the adjoint covariant derivative. The ’t Hooft tensor (6) is
the gauge-invariant field strength tensor for the diagonal
(with respect to the color direction ~n�) component of the
gauge field

 A �
� � Aa�na�; � � S; A; I: (8)

The current of the quark monopole of the �th type,
 

k�
� �

g
4


@� ~F �
�� 


Z
C�
d�
@XC�

� ���
@�

	�4��x� XC�
����;

~F �
�� �

1

2
�����F

�
��; (9)

has a 	-like singularity at the corresponding worldline C�.
The monopole worldline is parameterized by the vector

x� � XC�

� ��� and the parameter �. The quark monopoles
defined according to Eq. (9) are quantized and the corre-
sponding monopole charge is conserved (i.e., the world-
lines C� are closed).

The quark monopoles k�
� carry the magnetic charges

with respect to the ‘‘scalar,’’ ‘‘axial,’’ and ‘‘chirally invari-
ant’’ components of the gauge field A�

�, Eq. (8). In the
corresponding Unitary gauges na� � 	a3, the quark mono-
poles correspond to monopoles ‘‘embedded’’ into the di-
agonal component (8). In the gauges, where the diagonal
component A�

� is regular, such monopoles are hedgehogs
in the composite quark-antiquark fields. The corresponding
quark condensates are characterized by the typical hedge-
hog behavior na� � x

a in the local (transverse) vicinity of
the monopoles. The fact of the existence of these mono-
poles in QCD is not a dynamical fact but rather a simple
(kinematical) consequence of the existence of the adjoint
real-valued fields (1) and (5). Note that there is an infinite
number of equivalent formulations of the embedded mono-
poles associated with triplet isovectors which are given by
a chiral rotation (4) of, say, isovector ~�A with an arbitrary
angle �. The dynamics of these monopoles is studied
below.

Let us summarize briefly: if one has the configuration of
the gauge field A� and the configuration of the (generally
massive) quark c-field  then the location of the embedded
quark monopoles of all three types (‘‘scalar,’’ ‘‘axial,’’ and
‘‘invariant’’) can be found with the help of relations (1),
(5), (6), and (9). The quark c-fields  can be defined as a
set of eigenmodes of the Dirac operator (2), labeled by the
eigenvalue �.

B. Quark monopoles in SU(2) gauge theory on the
lattice

The lattice construction of the quark monopoles in
Euclidean QCD closely resembles a similar lattice con-
struction [20] of the embedded defects in the standard
model of electroweak interactions. Consider a configura-
tion of the lattice gauge fields U�x;�� and a configuration
of the c-valued fermion matter field ��x�. Using the fer-
mionic field ��x� one can construct the composite color
fields on the Euclidean lattice

 �aS�x� ��y�x��a��x�; �aA�x� ��y�x��a�5��x�; (10)

which are the lattice analogues of the continuum expres-
sions (1). Then the adjoint variables �aS and �aA can be used
to construct the lattice unit vectors nS, nA, and nI, in a
manner completely similar to Eq. (5).

The next step is to define the (un-normalized) projec-
tions of the gauge field onto the color directions n� 


na��
a:

 

V��x;�� � U�x;�� � n��x�U�x;��n��x� �̂�;

� � S; A; I:
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The field V� behaves under the action of the gauge trans-
formation � as a gauge field

 V��x;�� ! �y�x�V��x;����x� �̂�:

The lattice analogue of the ’t Hooft tensor (6) is given
[20] by the compact field ���x;��� 2 ��
;
� defined on
the plaquette P � fx;��g:
 

����x;��� � arg�Trf�1� n��x��V��x;��V��x� �̂; ��

	 Vy� �x� �̂; ��V
y
� �x; ��g�: (11)

Because of the property n��x�V��x;�� � V��x;��n��x�
�̂�, the definition (11) is independent of the choice of the
reference point x on the plaquette P. One can show that in
the Unitary gauge, n��x� � �3, the gauge-invariant pla-
quette function (11) coincides with the standard Abelian
plaquette formed out of the compact Abelian fields
�u��x;�� � argU11

� �x;��.
The singularities in the compact fields ��� correspond to

the quark monopoles of the scalar, axial and invariant
types. The quark monopoles are defined on the links of
dual lattice �fx;�g which are dual to the cubes cx;� of the
primary lattice:

 j��x;�� � �
1

2


X
P2@cx;�

���
P; (12)

where the sum is taken over all six plaquettes P forming
the faces of the cube cx;�. Equation (12) is an analog of the
standard definition [21] of the Abelian monopole in the
lattice gauge theory of compact Abelian fields. By con-
struction, the monopole current (12) is integer-valued,
j� 2 Z, and conserved, 	�j� � 0. Here the operator 	 is
the lattice divergence.

C. Generalization to SU(3) gauge group

The construction of the embedded quark monopoles can
be generalized to the realistic case of the SU(3) Yang-Mills
theory. The structure of such monopoles shares similarity
with the non-Abelian monopoles in the SU(3) gauge theory
coupled to an octet Higgs field. A good review of the
subject on the monopole configurations in the SU(3)
gauge-Higgs models be found in Refs. [22]. Below we
briefly outline the construction to be discussed elsewhere
in more detail [23].

The generators of the SU(3) gauge group are given by
eight traceless matrices Ta � �a=2 normalized as
TrTaTb � 	ab=2. Here �a are the standard Gell-Mann
matrices. Contrary to the simplest case of two colors, there
are two structure constants in the SU(3) gauge group. The
totally symmetric constant fabc is defined via the relation
�Ta; Tb� � ifabcTc, while the values of the totally sym-
metric structure dabc can be deduced from the equation
fTa; Tbg � 1

3	
ab � dabcTc. These constants can also be

expressed via the single relation, 4 TrTaTbTc �
dabc � ifabc.

Similar to the SU(2) case (1) the SU(3) model admits
two composite octet vectors

 �a� � � �x�� ~Ta �x�; � � 1; i�5; (13)

where we use the same notations as in the SU(2) case. This
should not, however, lead to a confusion since the SU(3)
gauge group is discussed in this section only.

Besides the scalar octet �aS with � � 1 and the axial
octet �aA with � � i�5 the structure SU(3) gauge group
allows us to build the invariant field

 �aI � fabc�bS�
b
A; (14)

which transforms in the adjoint representation of the SU(3)
gauge group. The octet �I is the SU(3) generalization of the
invariant SU(2) triplet field �I � ~�S 	 ~�A which is used in
Eq. (5). One can explicitly show that the composite field
(14) is invariant under the global axial rotations which read
in terms of the SU(3) octet fields (13) as follows:
 

�a� ! R��0�a�0 ; R �
cos2� sin2�

� sin2� cos2�

 !
�aS
~�aA

 !
;

�;�0 � S; A:

(15)

In addition to the asymmetric constant fabc the SU(3)
gauge group possess the symmetric structure constant dabc.
Therefore one can define three additional octet fields, �aSS,
�aAS 
 �aSA, and �aAA which form a symmetric rank-2 tensor
field

 �a�1�2
� dabc�b�1

�b�2
; �1;2 � S; A; (16)

with respect to the global axial rotations (15):

 �a�1�2
! R�1�01

R�2�02
�a�01�02

: (17)

Summarizing, in the realistic case of three colors we
have six2 independent structures which are classified with
respect to the global axial rotations (15) as the scalar (�aI ),
vector (�aS and �aA), and rank-2 symmetric tensor (�aSS, �aSA,
and �aAA). All these structures behave as octet fields with
respect to the SU(3) gauge transformations.

Note, that from a kinematical point of view any of the six
octet fields can equivalently be used to construct the em-
bedded quark monopoles in the SU(3) gauge theory. The
relevance of one or another octet field is to be figured out
with the help of the dynamical considerations (i.e., with the
help of numerical simulations). In the rest of this Section
we describe the kinematical construction of the embedded
monopoles in the theory with the SU(3) gauge group and

2In a multiflavor case there are six octet structures per one
flavor, as well as a number of the flavor-mixing structures
composed of quarks of different flavors.
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therefore use a generic notation �a for any of the six
composite fields, or for a linear combinations of them.

In order to characterize the embedded monopoles in
QCD it is convenient to work in the Cartan-Weyl basis
[24]. The Cartan subgroup of the SU(3) gauge group is
generated by two diagonal generators

 H1 
 T3 �
1

2

1 0 0
0 �1 0
0 0 0

0@ 1A;

H2 
 T8 �
1

2
���
3
p

1 0 0
0 1 0
0 0 �2

0@ 1A;
(18)

which form the two-component vector ~H � �H1; H2�. In
any point of the space-time the octet field �a can be gauge-
rotated to the Cartan subalgebra

 ��x� ! j��x�j� ~h�x�; ~H�; ~h2
� 1: (19)

where �a; b� denotes the scalar product in the Cartan space,
and ~h is the unit two-component vector pointing to the
direction of the composite octet field � in the Cartan space.

The magnetic charge of the SU(3) monopole [24]

 ~g M �
4

g
�n1

~��1 � n2
~��2�; (20)

is given in terms of the dual simple roots ~��� with � � 1, 2.
The dual roots ~��� are expressed in terms of the original
simple roots ~�� of the SU(3) group as ~��� � ~��=j ~��j2.
These roots are often chosen in the self-dual form,

 

~� 1 � �1; 0�; ~�2 � ��1=2;
���
3
p
=2�: (21)

The generalization of the standard Dirac quantization of
the monopole charge to the case of the SU(3) monopole
reads as

 eig� ~gM; ~H� � 1: (22)

The Dirac condition (22) is satisfied by Eq. (20) provided
the numbers n1 and n2 are integer.

The classification of the SU(3) monopoles qualitatively
depends on the direction of the local Higgs field in the
Cartan subalgebra. If the vector ~h in Eq. (19) is not or-
thogonal to any of the simple roots ~�1 and ~�2, Eq. (21),
then the pattern of the symmetry breaking is ‘‘maximal’’
[24]

 SU �3� ! U�1� 	 U�1�; (23)

and the corresponding vacuum manifold is characterized
by a nontrivial second homotopy group,

 
2

�
SU�3�

U�1� 	 U�1�

�
� Z2: (24)

Thus, the monopoles are described by the two integer

numbers. These numbers are n1 and n2 which enter the
definition of the monopole charge (20).

If the asymptotic Higgs field is orthogonal either to the
simple root ~�1 or to the simple root ~�2, then the symmetry
breaking is ‘‘minimal’’

 SU �3� ! U�2�: (25)

This pattern also possess a nontrivial second homotopy
group

 
2

�
SU�3�

U�2�

�
� Z; (26)

and the monopoles are characterized by one integer num-
ber which is either n1 (if � ~�2; ~h� � 0) or n2 (if � ~�1; ~h� � 0).

The position of the SU(3) monopole can locally be
determined with the help of the ’t Hooft tensors similarly
to the SU(2) case (9). In the Cartan space the monopole is a
pointlike source of the magnetic field which is described
locally as B ’ � ~gM; ~H�r=r3 provided ~r is close to the center
of the monopole. The type of the symmetry breaking
pattern corresponds to the type of the embedding of the
SU(2) HP monopole into the larger SU(3) group. In the
general case of the SU�N� gauge group the embedded
monopoles can be formulated similarly to the case of the
SU�N� gauge-Higgs monopoles reviewed in detail in
Ref. [22].

It is known [22] that in the case of the monopolelike
solutions to the classical equations of motion of the SU(3)
gauge-Higgs model, the choice of either maximal (23) or
minimal (25) symmetry breaking patterns depends on the
details of the Higgs potential [22]. In the case of QCD one
can realize both patterns simultaneously. Let us take any of
the six octet fields (13) and (14) or (16), and project it onto
the Cartan subgroup. The color direction of this field in any
point is usually not perpendicular to any of the root vectors
(21) apart from rare degenerate cases. Thus, if we choose
any of the above octets as the effective Higgs field �, then it
is likely that the maximal embedding pattern (23) is real-
ized. On the other hand, a linear combination of any of the
two octets can always be fine-tuned (again, apart from rare
degenerate cases) to be perpendicular to a chosen root
vector, so that the minimal embedding pattern (25) can
also be realized in QCD. A discussion on the kinematical
construction and well as on the possible dynamical signifi-
cance of such monopoles in QCD will be published else-
where [23]. Below we discuss numerical signatures of the
embedded quark monopoles in the simpler case with two
colors.

III. DENSITY OF QUARK MONOPOLES AT ZERO
AND FINITE TEMPERATURE

In order to study basic properties of the embedded QCD
monopoles we perform a simulation of the pure SU(2)
Yang-Mills model on the lattice at zero and finite tempera-
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tures. The technical details of numerical simulations are
given in the appendix, and below we discuss the results of
the simulations.

A. Monopole densities and the effect of temperature

In Figs. 1(a)–1(c) we show the lattice densities latt of,
respectively, scalar, axial and invariant embedded mono-
poles at zero temperature. The densities, plotted in the
units of the lattice spacing a, are shown as functions of
the Dirac eigenmode energy � for three values of the
coupling �. Apart from a few irregular points (which we
ascribe to statistical fluctuations), the densities are smooth
functions of the eigenmode energy �. Moreover the scalar
and axial densities at zero-temperature are decreasing
functions of � for � * 150 MeV. The density of the chir-
ally invariant quark monopole is a decreasing function for
all considered values of �. The density of the chirally
invariant monopoles is higher than the scalar and axial
monopole densities.

According to Figs. 1(a) and 1(b) the scalar and axial
densities coincide with each other within the error bars.
This observation does not contradict the statement that the
chiral symmetry is broken in the low-temperature phase. In
order to illustrate this fact let us consider, as a toy example,
a lattice model describing the SO(2) global scalar field
� � ��1; �2�

T with two real-valued components �1 and
�2. The global SO(2) symmetry treats the field� as a two-
component vector in an internal space. This symmetry is an
analogue of the axial symmetry (3), while the components

�1 and �2 can be associated with the scalar, �S, and axial,
�A, triplets, respectively.

Apart from a kinetic term, �@���2, a generic Lagrangian
of the toy model should contain the SO(2)-invariant poten-
tial

 V��2� � �2�2 � ���2�2; (27)

with �2 
 �2
1 ��

2
2. In the broken phase (�2 < 0) the

scalar field develops a nonzero expectation value in the
infinite volume system, h�i � 0. As a consequence, the
vacuum of the model becomes noninvariant under the
SO(2) transformations. In the symmetric phase (�2 > 0)
the global symmetry is restored since h�i � 0.

However, in a finite volume the expectation values of the
components of the Higgs fields should vanish in both
phases, h�1iV � 0 and h�2iV � 0 (here the subscript V
in h. . .iV indicates that the averages are taken in a finite
volume). This happens because in the averages the finite
number of integrals over the scalar fields �1;2�x� includes
also integrations over all orientations of the fields in the
internal space. Thus, in a finite-element system all the
internal directions are formally equivalent. Moreover, one
gets h�2

1iV 
 h�
2
1iV both in broken and unbroken phases

because of the same reason. This is precisely the same as
what we could expect for the expectation values of the
triplet fields, h ~�2

SiV � h ~�
2
AiV , in a finite volume system

regardless if the chiral symmetry is broken in the thermo-
dynamic limit or not.
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FIG. 1 (color online). The densities of the (a) scalar, (b) axial, and (c) chirally invariant embedded monopoles in confinement phase
for � � 2:3493, 2.418, and 2.5 on vs the Dirac eigenvalue �. (d) The same but for the deconfinement phase at T � 1:15Tc. The
densities are given in the units of the lattice spacing a.
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As a consequence, finite volume expectation values of
any operator O��S� should be equivalent to the expectation
value of its axial counterpart O��A�. In other words, the
choice of the axial isovector ~�A in a role of the adjoint
composite Higgs field is as good as the choice of the scalar
isovector ~�S. Thus the densities of the scalar and axial
quark monopoles should coincide with each other in the
finite volume.

Apart from the quenched case, in the real QCD with
dynamical quarks the breaking of the chiral symmetry
must explicitly be seen in the densities of the embedded
monopoles: the density of the scalar and axial monopoles
must in general be different. For example, it is expected [3]
that at sufficiently high temperatures the density of the
axial quark monopoles should be higher than the density
of the scalar monopoles. We expect that the effect should
also be observable in the finite volume because of an
explicit breaking of the axial symmetry by the fermion
determinant. In fact, the measure of the integration over the
fermion fields is axially anomalous [25], and therefore the
expectation values of the operator O��S� should be differ-
ent from its axial analogue O��A�. In terms of the toy
SO(2) model the effect of noninvariant measure can be
emulated by an addition of an extra SO(2) breaking term
(say 	V / �1) to the potential (27).

In Fig. 1(d) we show the density of the quark monopoles
at the temperature T � 1:15Tc corresponding to the de-
confinement phase. Similarly to the zero-temperature case,
the density of the scalar and axial monopoles coincide with
each other. The invariant monopoles are denser than the
scalar/axial monopoles for all values of eigenvalue �. The
monopole density is independent of the eigenvalue in the
region 0 < � & 400 MeV. In the limit �! 0 the densities
of the scalar/axial and invariant monopoles in physical
units are, respectively,

 

lim
�!0

phys
� ��� !

�
� �3 fm�3 �scalar and axial�

� �4fm�3 �invariant�

T � 1:15Tc:

(28)

In the region � * 400 MeV the density of the monopoles
of all three types quickly drops down. This observation will
be confronted with the fermion spectral function in Sec. IV.

To estimate the effect of temperature on the monopole
density it worth comparing the lattice monopole densities
at zero temperature for� � 2:3493 (shown by filled circles
in Figs. 1(a)–1(c)] and at T � 1:15Tc for� � 2:35 [shown
in Fig. 1(d)]. The selected values of the lattice coupling �
are very close to each other and therefore they correspond
to almost the same value of the lattice spacing a according
to Table I of the appendix. In a wide region of the Dirac
eigenvalues, 0< �< 500 MeV, the density of the scalar
and axial monopoles at T � 0 case are noticeably smaller
then the density of the these monopoles at T � 1:15Tc:

 

latt
S;A�T � 1:15Tc�

latt
S;A�T � 0�

� 2 . . . 3: (29)

The effect of temperature on the invariant quark mono-
poles is milder compared to the scalar/axial monopoles:

 

latt
I �T � 1:15Tc�

latt
I �T � 0�

� 1:5 . . . 2: (30)

The difference in ratios (29) and (30) can probably be
explained by the fact that the chirally invariant embedded
monopoles are, by definition, explicitly invariant under the
axial transformations (3), while the scalar and axial mono-
poles are not. Thus the invariant monopole is less insensi-
tive to the effects of the chiral symmetry breaking/
restoration compared to the scalar and axial monopoles.

Summarizing, the results of this section show that the
density of the quark monopoles is an increasing function of
the temperature in agreement with general expectations
[3].

B. Scaling towards continuum limit

An extrapolation to the continuum limit of numerically
calculated quantities is one of the most important issues of
the lattice simulations. In general, the monopole densities
can be extrapolated to the continuum with the help of the
following polynomial formula:

 latt�a� � C� v  a� s  a2 �   a3; (31)

where C, v, s, and  are the fitting coefficients. The terms
of the order O�a4� and possible logarithmic corrections are
neglected in Eq. (31). Naively, if the monopoles are physi-
cal objects which form a gaslike ensemble then one could
expect that the coefficient -representing the physical
density of the monopoles—is to be nonzero while the other
coefficients in Eq. (31) are vanishing. Below we show
numerically that this is not the case.

We found that the scaling of densities for all nonzero
modes, � � 0, is universal in a sense that the form of the
scaling function does not depend on � while being sensi-
tive to the monopole type. For illustrative properties we
take here the eigenvalue � � 235 MeV. We show in
Figs. (2(a) and 2(b)] the densities of, respectively, the
scalar and invariant embedded monopoles vs the lattice
spacing a. Since the scalar and axial monopoles have the
same (within error bars) densities we show the data for the
scalar monopoles only. In the same figures we show the
best fitting curves for the (truncated) fitting function (31).

As it seen from Figs. 2 the expected fit latt / a3 does
not work for all types of monopoles. The corresponding
quality of the fit is �2=d:o:f: � 20 and 82 for scalar/axial
and invariant monopoles, respectively. However, the fits
latt�a� � C� v  a and latt�a� � C� s  a2 give reason-
able values for �2=d:o:f: (of the order of unity), while the
coefficient C is consistent with zero within error bars in all
our fits. Setting C � 0 we obtain that the best fits for the
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scalar/axial and invariant monopole densities is achieved,
respectively, by the functions
 

latt
S;A�a; �� � sS;A���  a

2; latt
I �a; �� � vI���  a;

� � 0:
(32)

In all these cases �2=d:o:f:� 1. Note that the density of the
scalar/axial and invariant monopoles can not be well fitted
by the linear and, respectively, quadratic functions of a
since in these cases the quality of fits is as large as 10–20.
All discussed fits are shown in Figs. 2(a) and 2(b) by lines.

The similar analysis can be performed for the zero
mode, Figs. 3(a) and 3(b). We find that the best fit functions
are
 

latt
S;A�a� � sS;A�0�  a

2; latt
I �a� � CI�0� � sI�0�  a

2;

� � 0; (33)

with �2=d:o:f:� 1:3 and 0.5, respectively. The best fit
parameters are
 

sS;A�0� � 1:66�3� fm2; CI�0� � 0:094�2�;

sI�0� � 4:6�2� fm2:
(34)

Thus, the scaling properties of the density of the invariant
monopoles at � � 0, Eq. (32), and at � � 0, Eq. (33), are
different from each other even on the qualitative level.

We also attempted to determine the scaling behavior of
the densities using the power fit of the form Ca�, where C
and � are fitting parameters. For the nonzero modes we

typically get �S;A � 2 and �I � 1 which is in agreement
with the best fit function used above. For example, for the
case of � � 235 MeV we get �S;A � 1:9�1� and �I �
1:04�7�. The scalar/axial monopoles constructed from the
of the zero Dirac mode give �S;A�0� � 2:1�1�. The fit by
the same dependence of the invariant monopole with � � 0
give �I�0� � 0:78�6� with higher values of �2=d:o:f: � 3.
Therefore the constant term CI � 0 in the corresponding
fitting function (the middle formula in Eq. (33)) is
essential.

The scaling coefficients sS;A and vI obtained with the
help of extrapolation (32) to the continuum limit are shown
in Figs. 4(a) and 4(b) , respectively, as functions of the
Dirac eigenvalue �. The scaling coefficient sS;A��� of the
scalar and axial monopoles has a peak around ��
150 MeV while the scaling coefficient vI��� of the invari-
ant mode is a monotonically decreasing function for all
studied eigenvalues �.

The behavior of the scaling coefficients sS;A and vI has
some particularities. For example, we find that these scal-
ing coefficients can be described by the formulae

 sfit
S;A��� � l2S;A 

�
�

1 MeV

�
��S;A

; for � > 250 MeV;

(35)

 vfit
I ��� � BI

�
1�

�
�I

�
; for all �; (36)
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FIG. 3 (color online). The same as in Fig. 2 but for the zero mode, � � 0.
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FIG. 2 (color online). The extrapolation of the scaling coefficients for the densities of the (a) scalar and axial, and (b) chirally
invariant quark monopoles using various fits for � � 235 MeV.
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where the data for sS;A is compared with the fitting function
(35) only in the region of large � with � > 250 MeV since
in the small �-region the behavior of this quantity is
statistically unclear (there is however, a noticeable tend
of sS;A to decrease as �! 0). We get (with �2=d:o:f: � 2)
the similar values for scalar and axial monopoles:

 �S � 0:54�4�; lS � 0:15�2� fm; (37)

 �A � 0:44�4�; lA � 0:21�2� fm: (38)

This result suggest that the scaling exponent � may be
close to 1=2 for scalar and axial types of the quark mono-
poles. Setting �S;A � 1=2 one gets

 

lS � 0:171�1� fm
lA � 0:174�1� fm

for �S;A � 1=2: (39)

The last fits are shown in Fig. 4(a) by the solid and dashed
lines for the scalar and axial monopoles, respectively.

The scaling coefficient vI is compared to the fitting
function (36) in the whole available region of the eigen-
values �. We get the following best fit parameters:

 BI � 1:09�1� fm�1; �I � 1:53�4� GeV: (40)

The corresponding fit is shown in Fig. 4(b) by the solid
line. One can see that the scaling of the coefficient vI for
the invariant monopoles towards small values of the eigen-
values � is a smooth linear function over the whole region
of studied eigenvalues �. The �! 0 limit for the coeffi-
cients sS;A corresponding to the scalar and axial monopoles
are known less accurately, as it can be seen from Fig. 4(b).
Summarizing, in the �! 0 limit we find:
 

lim
�!0

sS;A��� � 1:9�3� fm�1;

lim
�!0

vI��� 
 BI � 1:09�1� fm�1:

(41)

As it is seen from Eqs. (34) and (41) the scaling coefficients
sS;A at � � 0 for scalar and axial modes seems to coincide
with the corresponding limits, lim�!0sS;A��� � sS;A�0�. On
the other hand, the scaling coefficient vI for the invariant
monopole has a discontinuity at � � 0, vI�0� �

lim�!0vI���, since the corresponding scaling formulae,
Eqs. (32) and (33), are different from each other even on
the qualitative level.

C. Cluster structure of the monopole ensembles

The ensembles of the trajectories of the embedded
monopoles can be characterized by percolation properties.
As it happens in the case of the FK clusters in the Ising
model, a general ensemble of the monopole trajectories
consists of clusters of different types. If in the thermody-
namic limit at certain physical conditions there exists a
nonzero probability to find a cluster of infinite length, then
the objects are said to be percolating and are often called as
‘‘condensed.’’ In the finite volume the role of the percolat-
ing cluster is played by a monopole cluster with the size of
the order of the system volume. Using the standard termi-
nology we call the percolating clusters as ‘‘infrared’’ (IR)
and the short-length clusters are referred to as ‘‘ultravio-
let’’ (UV).

In our studies we have used the following definitions of
the IR and UV clusters [26]:

(i) The largest cluster is called the IR cluster;
(ii) The wrapped cluster is also called the IR cluster.

More precisely, for each monopole cluster C we
calculate the sum S� �

P
j2Cj�. If this sum is

nonzero then the cluster is called the IR cluster;
(iii) Other clusters are called the UV clusters.
As an example, we show in Figs. 5(a)–5(c) the total

monopole density along with the density of the quark
monopoles in the IR and the UV clusters for scalar, axial
and invariant monopoles, respectively. The densities are
shown at zero temperature (for � � 2:3493) as functions
of the eigenvalue �. One finds that the most part of mono-
poles of all types belongs to the IR clusters. The IR
monopole density is about 3=4 of the total monopole
density in the case of the scalar and axial monopoles, while
in the axially invariant case almost all (about 95%) mono-
poles are residing in the IR clusters. Another interesting
feature of the monopole density spectrum is that the UV
part of the monopole clusters is almost insensitive to the
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FIG. 4 (color online). The scaling coefficients for the densities of the (a) scalar and axial, and (b) chirally invariant quark monopoles.
The fits by functions (35) and (36) are shown by solid and dashed lines.
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value of the Dirac eigenvalue �. The UV density of the
invariant monopoles is very small being slightly increasing
function of the eigenvalue �.

In order to estimate how the temperature affects the
monopole densities, we show in Fig. 6 the densities of
the monopoles in the IR and UV clusters in the deconfine-
ment phase at T � 1:15Tc. The lattice spacing for the data
shown in Figs. 5 and 6 is chosen to be almost the same. One
can clearly see that the basic features of the cluster struc-
ture in the deconfinement phase are similar to those in the
confinement phase except for the quantitative difference: in
the deconfinement phase a bigger (compared to the con-
finement phase) fraction of the monopoles belong to the IR
cluster.

The scaling of the individual contributions (total, IR and
UV) towards continuum limit is especially interesting. We
found that the total and the IR parts of the lattice density of
the chirally invariant monopole scale towards the contin-
uum limit proportionally the lattice spacing a for all non-
zero (� > 0) modes. The UV part of the lattice density does
not depend on the coupling a at all, which indicates that
this part is a lattice artifact. Note that the last two obser-
vations do not contradict to each other in the sense of the
numerical fitting since the constant UV part is very small
and is almost consistent with zero. For example, at � �
235 MeV we have latt

I;UV � 0:006�5�. Therefore the scaling

of the IR and the total parts should numerically be the
indistinguishable from each other, and both should follow
the functional dependence (32).

As for the scalar and axial monopoles, their IR and UV
clusters also scale differently. The IR part of the scalar and
axial monopole densities (written in the lattice units) scales
as a2, similarly to the total density (32). As for the UV part,
we have found that the scaling of the corresponding lattice
density is proportional to a. This is drastically different
from scaling of the total and infrared parts. Unlike the
invariant monopole case, in the case of scalar/axial mono-
poles there is a substantial part of the monopoles residing
in the UV clusters. Therefore the different scaling of the
UV part cannot in general be neglected. Unfortunately, the
accuracy of our data is such that the truncated fit (31) with
two fitting parameters v, s and with C �  � 0 can not
give a reliable estimate of the coefficient v. In order to get
this coefficient with a good accuracy, we fit the data for the
monopole density in the ultraviolet clusters using the linear
formula

 latt
�;UV � vUV

� a; � � S; A: (42)

An example of this fit is shown in Fig. 7(a) and the
corresponding coefficient of proportionality vUV is plotted
in Fig. 7(b).
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FIG. 6 (color online). The same as in Fig. 5 but for the deconfinement phase at T � 1:15Tc.
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FIG. 5 (color online). The total, infrared and ultraviolet densities of the (a) scalar, (b) axial, and (c) chirally invariant embedded
monopoles vs the Dirac eigenvalue �.
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Summarizing, the scaling laws for the total, IR and UV monopole densities corresponding to nonzero Dirac eigenvalues,
are

 

latt;total
S;A �a; �� � stotal

S;A ���  a
2; latt;total

I �a; �� � vtotal
I ���  a;

latt;IR
S;A �a; �� � sIR

S;A���  a
2; latt;IR

I �a; �� � vIR
I ���  a;

latt;UV
S;A �a; �� � vUV

S;A���  a
1; latt;UV

I �a; �� � CUV
I ���  a

0;

� � 0: (43)

As for the zero mode, the UV part of the density of the
invariant monopoles is consistent with zero while the IR
part coincide with the total monopole density within error
bars. In the case of the scalar and axial monopoles both
total, IR and UV parts satisfy the quadratic scaling law
(33). Moreover, Eq. (43) indicates that in the continuum
limit the most part of the scalar, axial, and invariant mono-
poles corresponding to nonzero Dirac eigenvalues (� � 0)
resides predominantly in UV monopole clusters. This is
not the case for the exact zero mode (� � 0) which even in
the continuum limit may possess both IR and UV compo-
nents of the densities. So, the exact zero modes and the
nonzero modes have, in fact, different embedded monopole
content.

We also study the relative ratio R of the monopole
density in the IR clusters latt

IR compared to the total mono-
pole density latt

total,

 R �
latt

IR

latt
total

: (44)

In order to extrapolate this ratio to the continuum limit we
use the linear formula:

 Rfit�a� � R0�1� Ka�: (45)

Here R0 and K are the fitting parameters. An example of
the extrapolation and the extrapolated values of R are
shown in Figs. 8(a) and 8(b) , respectively. Note that
according to Eq. (43) the formula for extrapolation (45)
should contain O�a2� corrections, which, however, can not
be traced out due to limited accuracy of our data.

D. Discussion on scaling properties

It is interesting to speculate about the nature of the
observed scaling behavior of the embedded monopole
densities (31)–(33), (42), and (43). In the zero-temperature
case the naive physical density, phys�a; �� �
a�3latt�a; ��, of the scalar, axial and invariant embedded
monopoles diverges in the continuum limit as

 phys
S;A �a; �� � a

�1; phys
I �a; �� � a�2; � � 0;

(46)

 phys
S;A �a; 0� � a

�1; phys
I �a; 0� � a�3; � � 0:

(47)

Let us suppose for a moment that the general quantity
(31) is a density of objects of an unknown dimension, and
that the individual objects are not strongly correlated in the
lattice ensembles. Then, on general grounds, the terms in
the formula (31) can be interpreted as follows.

If the object is of a pure lattice origin (a lattice artifact),
then its lattice density should not change with the variation
of the physical scale a. Thus, if the first term C is nonzero
in the continuum limit a! 0, then density  corresponds
to a purely lattice object. The physics of these objects is
determined by the ultraviolet cutoff �UV � a

�1 only.
Now, suppose that parameter the C vanishes and the

leading behavior of the lattice density is latt � va� . . .
as a! 0, where the coefficient v is of the order of the
physical QCD scale v��QCD. Then the world manifolds
of the objects are the three-dimensional volumes distrib-
uted in the four-dimensional space-time with the physical
density v. The corresponding object is a membrane.
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FIG. 7 (color online). (a) Example of the extrapolation of the UV fraction of the scalar and axial monopole densities at the
eigenvalue � � 235 MeV. The fit is done by the linear formula (42). (b) The scaling coefficient vUV vs � for the UV part of the scalar
and axial monopole densities. The quantity vUV is extrapolated the continuum limit.
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The leading scaling behavior in the form latt � sa2 �
. . . corresponds to stringlike objects, density of which is
given by the quantity s��2

QCD. Finally, if one studies
pointlike objects (i.e., monopoles), which are not strongly
correlated, then the scaling of their density should be
latt � a3 � . . . , and the physical density of the objects
should be ��3

QCD.
However, these simple considerations become incorrect

if the objects are (strongly) interacting with each other. As
an illustrative example, it may be useful to consider cur-
rents of Abelian monopoles in an Abelian projection of
pure SU(2) Yang-Mills theory. A general configuration of
the gauge fields typically contain [27,28] two components
of the monopole clusters, one of them is infrared and the
other one is ultraviolet. The physical density of the infrared
monopole currents is finite in the continuum limit a! 0,
which means that the for these monopoles the coefficients
C, v and s in Eq. (31) are zero. On the other hand, the
ultraviolet component of the Abelian monopole density
diverges as a�1 in physical units. One can understand
this scaling as a consequence of a strong correlation be-
tween segments of the monopole loops at the scale of the
lattice spacing a because a typical UV monopole cluster is,
in fact, a loop of the length of a few lattice spacings. One
can equivalently say that the monopole clusters are short-
ranged dipoles. The nature of this strong correlation is of a
purely lattice origin as the recent data shows [28]. Indeed,
it was found in Ref. [28] that the density of the UV
monopoles strongly depends on the UV-properties of the
gluon action. The density of the IR monopole clusters are
also sensitive to the lattice details of the gluon action, since
the artificial UV monopoles may randomly connect to the
physical IR clusters and be counted by a lattice algorithm
as a part of the physical IR cluster.

Thus the a�1 and a�2 scaling of the physical densities of
the scalar/axial and, respectively, invariant embedded
monopoles may be a result of the lattice procedure(s)
which may be sensitive to the UV-scale. On the other
hand one can not exclude a possibility that the embedded
QCD monopoles may be strongly correlated with objects

which have surfacelike and 3D volumelike world trajecto-
ries. This property is supported by the observation [29] that
the low-lying fermion modes show unusual localization
properties being sensitive both to the physical scale
�QCD and to the ultraviolet cutoff, a�1. If this suggestion
is correct, then the scaling of the ‘‘slave’’ monopoles may
manifest the scaling of the ‘‘master’’ objects. In this case
the scalar/axial and invariant monopoles should be corre-
lated with (or, as one can also say, ‘‘lie on’’) strings and
membranes, respectively. In this paper we are not perform-
ing a detailed scaling analysis of the monopole clusters
concentrating on simplest properties only. A review of the
lattice data on many-dimensional vacuum objects in four-
dimensional Yang-Mills theory can be found in Ref. [30].

Finally, let us note that the embedded monopoles are
likely not lattice artifacts because their densities scale as
nonzero powers of the lattice spacing a. Still, the effect of
the lattice artifacts on the density may be noticeable since
the gauge fields are not improved at all contrary to the
Dirac eigenmodes which are greatly improved by using the
overlap fermions.

IV. EMBEDDED MONOPOLES AND FERMION
SPECTRAL DENSITY

One of the most essential characteristics of the fermion
modes in the gauge theory is the fermion spectral density
F which is formally defined as the expectation value

 F��� �
1

V

�X
��

	��� ���
�
; (48)

where the sum goes over all Dirac eigenvalues �� � ���A�
corresponding to gauge fields configurations A which enter
the partition function. The low-lying part of the fermion
spectrum is important for the chiral symmetry breaking
due to the Banks-Casher formula [18],

 h �  i � �lim
�!0


F���; (49)

which relates the chiral condensate h �  i with the spectral
density.
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FIG. 8 (color online). (a) Example of extrapolation of the infrared-to-total ratios (44) corresponding to the scalar, axial, and chirally
invariant embedded monopoles for the eigenvalue � � 235 MeV. The fit is done by the linear formula (45). (b) The infrared-to-total
ratios of the scalar, axial and invariant monopole densities extrapolated by Eq. (45) to the continuum limit vs �.
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Examples of the spectral density F as functions of � are
shown in Fig. 9 for the confinement (T � 0, � � 2:3493)
and for the deconfinement (T � 1:15Tc,� � 2:35) phases.
In the zero-temperature (confinement) case the spectrum is
a gradually increasing function of the eigenvalue �, and the
low-energy part of the spectrum has a finite �! 0 limit. In
the deconfinement phase the low-energy part of the spec-
trum is suppressed compared to the confinement phase but
is, however, nonzero. This feature as well as the peak of the
spectral density at � � 0 may be an artifact related to an
effect of the finite volume. We expect that in the limit of an
infinite volume the spectrum above the deconfinement
temperature should vanish below some critical value
�c�T�. This property could imply vanishing of the chiral
condensate (49) in the deconfinement phase, h �  i	
�T > Tc� � 0. In our case the critical value is �c�T �
1:15Tc� � 400 MeV.

The embedded QCD monopoles are suggested [3] to be
agents the chiral symmetry restoration, since in the cores of
these monopoles the chiral invariance should be unbroken.
According to the proposed scenario, one can expect that at
low Dirac eigenvalues—which are relevant to the chiral
symmetry breaking due to the Banks-Casher relation
(49)—the density of the embedded monopoles should be
high in the chirally invariant (high-temperature) phase and
the density should be relatively low in the chirally broken
(low-temperature) phase. Thus suggestion implies, in turn,
that the density of the embedded monopoles should be
anticorrelated with the fermion spectral function: the lower
value of the spectral function the higher monopole density
is expected to be. In particular, in the high-temperature
phase the vanishing spectral function at � < �c implies the
high density of the quark monopoles for � < �c, and vice
versa.

The anticorrelation of the quark monopole density and
the fermion spectral function is indeed observed in decon-

finement phase as it is shown in Fig. 1(d). Indeed, as one
can see from comparison of Fig. 1(d) and the T � 1:15Tc
spectral function shown in Fig. 9, at high � the fermion
spectral function is high corresponding to low embedded
monopole density, while at low � the fermion spectral
density is suppressed in accordance with the observed large
valued of the monopole density.

In the confinement case the qualitative relation between
the spectral density and the embedded monopole density is
true as well according to Figs. 1(a)–1(c) and 9: the fermion
spectrum is an increasing function of the Dirac eigenvalue
� while the monopole densities are generally decreasing
function of �.

V. EXCESS OF GLUON ACTION ON QUARK
MONOPOLES

If the embedded QCD monopoles are physical objects
then we would expect that these objects are locally corre-
lated with the action density and, presumably, with the
topological charge. Following Refs. [31,32] we calculate
numerically the excess of the SU(2) gauge action at the
position of the embedded monopole currents jx;�,

 fS �
hjjx;�jScx;�i � 6hjjx;�jihSPi

hjjx;�ji
; (50)

where Sc is the sum over the elementary plaquette actions,

 Sc �
X
P2@c

SP; SP � 1�
1

2
TrUP;

belonging to the six faces P of the cubes c 
 cx;� with
nonzero monopole charge, jx;� � 0. Here UP is the SU(2)
plaquette constructed from the lattice links Ux� in the
standard way UPx;�� � Ux�Ux��̂;�U

y
x��̂;�U

y
x�. The second

term in Eq. (50) subtracts the vacuum average of the action
from the value of the gluon action at the monopole.

Equation (50) can be understood as the (average) excess
of the Yang-Mills action calculated at the (average) dis-
tance r � a=2 from the center of the monopole. In fact, in
any given lattice configuration the position of the mono-
pole center can not be determined exactly within the lattice
the cube possessing a nonzero monopole charge. However
on average the monopole center is located as the cube
center which resides at the distance a=2 from any face
(plaquette) of the cube. It is worth noticing that Eq. (50)
defines the excess of the chromomagnetic part of the action
since by construction the action around the monopole is
calculated on the plaquettes P perpendicular to the corre-
sponding link l � fx;�g of the monopole trajectory.

In the naive continuum limit the elementary plaquette,
say Px;12, is expanded in powers of the lattice spacing as
follows:

 SPx;12
�a� � a4 g

2

8
�Fa12�x��

2 �O�a6�; (51)
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FIG. 9 (color online). Spectral fermion density in the confine-
ment (T � 0, � � 2:3493) and in the deconfinement (T �
1:15Tc, � � 2:35) phases.
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where g is the (bare) coupling and Ux� � eiagA��x��̂=2�.
Thus the excess of the action (50) can be written as (we
omit O�a6� corrections starting from here)

 fS�a� � a4 

2
Bmon�a=2�; (52)

where

 B mon�a=2� � h�s�Bc�2imonjr�a=2 � h�s�Bc�2i; (53)

is the excess of the chromomagnetic condensate at the
distance r � a=2 from the quark monopole and �s �
g2=�4
�. The chromomagnetic field at the segment of the
monopole current j� is defined as Bc��j�� �
������F

c
��=2. This definition reduces to the standard

one for a static (� � 4) monopole: Bci � �ijkFcjk=2 with
i; j; k � 1; 2; 3. In the Euclidean space-time at zero tem-
perature the chromomagnetic and the standard gluon con-
densates are related as h�s�Bc�2i � h�s�F

c
���

2i=2.
Before proceeding with analysis of the numerical data it

would be instructing to discuss the expected behavior of
the chromomagnetic fields inside the embedded mono-
poles at least on a qualitative level. In Ref. [3] the em-
bedded QCD monopole is associated with the Nambu
monopole in the electroweak model. The Nambu mono-
pole is essentially the ’t Hooft-Polyakov [19,33] (HP)
monopole configuration embedded into the EW model.
Therefore one naively can expect that the behavior of the
chromomagnetic fields inside the embedded monopole in
QCD is qualitatively similar to that of the HP monopole in
the Georgi-Glashow model.

As an illustrative example let us consider the
Bogomol’ny-Prassad-Sommerfeld (BPS) limit [34] of the
Georgi-Glashow model,

 L GG �
1

4
�Fa���

2 �
1

2
�Dad

���2 �
�
4
���a�2 � �2�2: (54)

This model describes the dynamics of the SU(2) gauge
field Aa� interacting with the triplet (adjoint) Higgs field
�a, a � 1, 2, 3. The adjoint covariant derivative is given in
Eq. (7). The scalar coupling � describes self-interaction of
the Higgs field. The condensate of the Higgs field is
jh ~�ij � �. The masses of the gauge and Higgs fields in
the Georgi-Glashow model are, respectively,mA � gv and
m� �

������
2�
p

�.
The BPS limit is defined by the condition � � 0, which

sets the mass of the Higgs particle to zero, m� � 0.
Because of the absence of the quartic Higgs self-
interaction the classical static ’t Hooft-Polyakov solution
can be found explicitly [34]:

 �a�
ra

gr2H��gr�; Aai ��aij
rj

gr2 �1�K��gr��; Aa0�0;

(55)

where

 K��� �
�

sinh�
; H��� � � coth�� 1: (56)

The chromoelectric field of the HP monopole is zero,
Fa0i 
 0, and the chromomagnetic field Bci � �ijkF

c
jk=2, is

 Bci �
rcri

gr4 �1� K
2 �HK� �

	ci

gr2 HK; (57)

The corresponding ‘‘condensate’’ of the chromomagnetic
field tends to a finite value in the monopole center, r! 0:

 B HP�r� 

g2

4

�Bc�r��2

�
1

4
r4 ��1� K
2��gr��2 � 2H2��gr�K2��gr��;

(58)
 

BHP�r� � B�0�HP  �1�O���gr�
2��;

B�0�HP �
�4g4

12

for r! 0:

(59)

Let us take for a moment this illustrative example of the
hedgehog configuration seriously. The QCD counterpart of
the field �a is an octet quark-antiquark composite field �a.
We do not expect the presence of the octet condensates h�ai
in vacuum of the Yang-Mills theory because such a con-
densate must inevitably break the color symmetry (see,
however, a discussion in Ref. [35]). On the other hand one
may expect [3] that the nonperturbative color-invariant
four-quark condensates [36] of the form h��a�2i should
stabilize the hedgehoglike configurations made of the
composite ‘‘Higgs’’ field �a in the confinement phase.

One can expect that the value of the condensate � in
Eqs. (58) and (59) should be of the order of a typical
dimensional quantity describing the chiral condensate,
�� jh �  ij1=3 � 0:2 . . . 0:3 GeV, which, in turn, is of the
order of the QCD scale parameter �QCD. One can think of
� as of the condensate outside the core. The gauge cou-
pling g can be associated with the QCD running coupling.
Then Eq. (59) predicts that the chromomagnetic field in-
side the embedded monopole should be ‘‘soft’’:

 B mon�r� � g
4�r�QCD� �4

QCD:

In particular, this relation implies the absence of the hard
ultraviolet divergences of the energy density inside the
monopole cores contrary to the case of the Abelian
(Dirac) monopoles [32,37].

We perform the fit of the numerical data for the corre-
lation function (50) by
 

ffit;HP
S � 2��1� K2�x��2 � 2K2�x�H2�x��;

x � g��HPa=2�  �a=2;
(60)

which can be obtained from Eqs. (52) and (58) by identi-
fication r � a=2. The function K is given in Eq. (56), and
instead of the Georgi-Glashow coupling g we take the one-
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loop running coupling constant of the SU(2) Yang-Mills
theory

 g�2��a� �
11

12
2 log
1

�a
: (61)

The fitting parameters are the HP scale parameter �HP and
the condensate parameter �.

Examples of the correlation function fS at � � 0 and
� � 235 MeV are shown in Figs. 10(a) and 10(b) for scalar
and chirally invariant monopoles, respectively. The excess
of the chromomagnetic energy for the scalar and axial
monopoles coincide with each other within error bars.
The examples of the fits of the excess energy by the
function (60) are shown by the solid lines. One can see
that the fitting formula (56), (60), and (61)—which is
resembling the ’t Hooft-Polyakov monopole configuration
in the Bogomol’ny limit (55) and (56)—emulates our
numerical data relatively well. The fitting is better near
the continuum limit, a! 0. However at relatively large
distances, a * 0:13 fm, the data and the best fit function
show some noticeable difference which makes �2=d:o:f �
3 . . . 5 for these fits.

The best fit parameters �HP and � obtained in our fits by
the function (60) come with relatively large errors. For
example, for scalar monopoles at � � 0 we have �HP �
17�26� MeV and � � 136�14� MeV, while at � �
235 MeV we get �HP � 28�31� MeV and � �
98�12� MeV. The corresponding numbers for the invariant
monopoles are: in the � � 0 case we obtain �HP �
30�36� MeV and � � 72�17� MeV, while for � �
235 MeV we get �HP � 24�20� MeV and � �
75�10� MeV. Thus the values of the parameter �HP can
not be defined well due to quite weak dependence of the
logarithm function (61) on the value of its argument.
Moreover, the value of �HP is very small what makes g�
1 in all our fits. On the other hand the fit quantitatively
confirms that the values for the condensate � is of the order
of the QCD scale, ���QCD. The effective size of the ‘‘HP
monopole’’ core, 1=mA � 1=�g��, can be estimated to be
of the order of 1 fm for all values of �. Since this value is
unrealistically large we conclude that the fact that the HP

fitting formula (60) works relatively well is only a mani-
festation of the ‘‘softness’’ of the gluonic action inside the
core of the monopole. Quantum corrections to the HP
monopole fields may be important.

In order to get prescription-independent result on the
scaling of the average action excess we fit the available
data by the powerlike fitting function

 ffit;power
S �a� � �a=h�4�	; (62)

where the scale h and the ‘‘anomalous’’ exponent 	 are the
fitting parameters. If the action density is independent on
the distance to the monopole center (or, in other words, if
the core of the embedded monopoles is structureless) then
we would naively expect the vanishing anomalous expo-
nent, 	 � 0. If 	 � 0 then one can expect some structure
of the monopole core.

The example of the fits (62) at � � 0 and � � 235 MeV
are shown in Figs. 10(a) and 10(b) by the dotted lines. As
one can see from these Figures, the HP monopole fit (60)
and the simple power fit (62) are practically indistinguish-
able from each other. Note that both fits are two-parametric
ones.

The best fit parameters for the power function (62) are
shown in Figs. 11(a) and 11(b) as functions of � for all
studied types of the quark monopoles. We find that both h
and 	 parameters are almost independent on the Dirac
eigenvalue �. Moreover, these parameters for different
types of the quark monopole are quite close to each other.
This result suggests that the gluonic structure of the em-
bedded monopoles seems to be independent on the value of
�. The typical values of the fitting parameters are concen-
trating around central values hS;A � 1:6 fm, hI � 2 fm
and 	S;A;I � 0:7 with, however, relatively large error bars.

In order to get an impression on the quality of the
powerlike scaling (62) we plot in Figs. 12(a) and 12(b)
the scaling function fS multiplied by the factor a��4�	�

with 	 � 1=2 for the three different values of the lattice
coupling constant �. Figs. 12(a) and 12(b) clearly show
that the quantity fS�a�a

�4:5 is independent of the lattice
spacing a for the embedded monopoles of all three types.
Since the fits of by the power (62) and the HP-inspired (60)
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FIG. 10 (color online). The excess of the chromomagnetic action (50) at (a) the scalar and (b) the chirally invariant monopoles at
� � 0 and � � 235 MeV. The solid and the dotted lines refer to the fits Eq. (60) and (62), respectively.
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functions are practically indistinguishable at our data sets
(as one can see from examples plotted in Figs. 10(a) and
10(b)], the scaling of our data with the HP-type energy
excess (60) should be as remarkable as it is plotted in
Figs. 12 for the power-profile excess (62).

It is interesting to point out that despite noticeably
different scaling (32) of the scalar/axial and chirally in-
variant monopole densities towards continuum limit, the
excess of the action density at the positions of these
monopoles scales essentially in the same way.

Since the monopole cores are ‘‘soft’’ we do not expect a
fine-tuning [37] between the energy and entropy of these
monopoles (at least, in the studied case of the pure SU(2)
Yang-Mills theory). On the other hand, the embedded
monopoles does not scale as particle like objects, therefore
the investigation of the energy-entropy balance in the case
of the embedded monopoles in the quenched case may be a
complicated issue.

A cautionary remark here is that the monopoles are
detected with the help of the operators (12) which implic-
itly depend on the lattice spacing a. If the monopole has a
corelike structure of the size of the lattice spacing then the
ability of the numerical procedure to ‘‘detect’’ a lattice
monopole within the lattice cube should be very sensitive
to the size of the ‘‘detector’’ (i.e. to the lattice spacing). In
order to get physically reliable results on the monopole

density and the monopole correlations one should probably
study the scaling of the extended (blocked) monopoles
[38].

Summarizing, both scalar, axial and invariant embedded
monopoles are locally correlated with the magnetic part of
the gluonic action. The excess of the action at fixed lattice
spacing a (or, equivalently, at fixed �) is a slowly increas-
ing function of the Dirac eigenvalue �. The average action
excess on the scalar and axial monopoles coincide with
each other and is approximately 2 times higher than the
excess of the action on the invariant monopoles. The
positive value of fS�a� indicates that the action density
near the monopole is increased compared to the average
density. Thus the embedded monopole has a chromomag-
netic core. On the other hand, the positive value of the
anomalous scaling exponent 	 indicates that the excess of
the chromomagnetic action decreases as one approaches
the center of the monopole core. Concretely, the chromo-
magnetic condensate vanishes in the center of the em-
bedded monopoles as

 B mon�r� � r
	; 	� 0:5 . . . 1: (63)

Thus, the embedded monopoles possess ‘‘chromomagneti-
cally’’ empty cores.
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FIG. 12 (color online). The local excess (50) of the Yang-Mills action at the position of the (a) scalar and (b) invariant monopoles,
scaled by the power function, fS�a�a��4�	�, with the anomalous scaling exponent 	 � 1=2. The three values of the lattice coupling �
are shown.
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FIG. 11 (color online). The best fit parameters (a) h and (b) 	 of the fit function (62) vs the Dirac eigenvalue � for the scalar, axial,
and chirally invariant embedded monopoles.
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VI. CONCLUSIONS

We study basic properties of the embedded QCD mono-
poles in the pure SU(2) Yang-Mills theory. The monopole
trajectories are found with the help of the low-lying eigen-
modes of the overlap Dirac operator. These modes are then
treated as c-valued quark fields, the behavior of which
emulates the basic chiral properties of the QCD vacuum.

The embedded monopoles are explicitly gauge-
invariant, and the magnetic charge of the monopole is
quantized and conserved. Basically, the embedded QCD
monopoles are the gauge-invariant hedgehogs in the quark-
antiquark condensates (therefore we also call these mono-
poles as ‘‘quark monopoles’’).

We give the lattice definitions of the embedded mono-
poles of scalar, axial and chirally invariant types. We find
that the scaling of the scalar and axial monopole densities
towards the continuum limit is the same as the scaling of
the stringlike objects. The scaling of the chirally invariant
monopoles corresponds to the one of the membranelike
objects. This result may indicate that the monopole trajec-
tories are correlated with higher-dimensional (stringlike
and membranelike) objects in the SU(2) Yang-Mills the-
ory. The ‘‘scalar/axial string,’’ for example, may be a
border of the ‘‘chirally invariant membrane.’’ We also
observe a difference in the scaling properties of the mono-
poles corresponding to the nonzero and to the zero Dirac
eigenvalues.

The embedded QCD monopoles were suggested [3] to
be related to the restoration of the chiral symmetry in the
high-temperature phase since their cores should contain the
chirally symmetric vacuum. Our numerical study supports
this suggestion since the monopole density is anticorre-
lated with the density of the Dirac eigenmodes. In particu-
lar, at low Dirac eigenvalues—which are relevant to the
chiral symmetry breaking due to the Banks-Casher rela-
tion—the density of the embedded monopoles is high in
the chirally invariant (high-temperature) phase and is rela-
tively low in the chirally broken (low-temperature) phase.

We find that the embedded monopoles have gluonic
cores, which are more pronounced for the chirally invariant
monopoles compared to the scalar/axial monopoles. On
average, the chromomagnetic energy near the monopole
trajectories is higher compared to the chromomagnetic
energy far from the monopole core. However, our scaling
analysis suggests that at the very center of the embedded
QCD monopole, the excess of the chromomagnetic energy
reduces back to the vacuum expectation value. Therefore a
typical monopole core is a bump in the chromomagnetic
energy which takes its maximum value at a certain finite
distance from the monopole center. Outside this bump—
towards the monopole center and/or far from the monopole
core—the energy density diminishes to its vacuum expec-
tation value. This structure is similar to the structure of the
‘t Hooft-Polyakov monopoles if one attributes to the

asymptotic freedom the suppression of the chromomag-
netic gluon condensate in the monopole center.

Finally, we would like to remark that one can not ex-
clude a possibility that the properties of the embedded
monopoles in the full QCD may drastically be different
from the quenched case. On the other hand the quenched
theory mimics chiral instability of the full QCD to develop
a chiral condensate at low temperatures. Therefore our
results support the suggestion that the quark monopoles
are tightly related to the chiral symmetry restoration also in
the case of the real QCD.

ACKNOWLEDGMENTS

S. M. M. acknowledges an initial assistance with overlap
fermions given to him by the DESY group lead by
Professor G. Schierholz. M. N. Ch. is thankful to the mem-
bers of Department of Theoretical Physics of Uppsala
University for kind hospitality and a stimulating environ-
ment. The authors are grateful to F. V. Gubarev for noticing
particularities of the Euclidean fermions. The work is
supported by a STINT Institutional Grant No. IG2004-2
025, the RFBR Grants No. 04-02-16079, 05-02-16306a,
05-02-17642, and Grants No. DFG 436 RUS 113/739/0,
MK-4019.2004.2.

Note Added.—When numerical calculations were com-
pleted we became aware that a similar procedure has been
applied earlier in SU(3) lattice gauge theory [40].

APPENDIX A: DETAILS OF NUMERICAL
SIMULATIONS

We simulate numerically the SU(2) lattice gauge theory
with the standard Wilson action, SP � ��1� �1=2�TrUP�,
where � is the SU(2) gauge coupling and UP is the SU(2)
plaquette variable constructed from the lattice link fields
U�x;��. We used various values of � at different lattice
sizes to check the scaling of the numerically calculated
observables towards the continuum limit. The parameters
of the numerical simulations are given in Table I.

The first 6 points in Table I correspond to the zero-
temperature (confinement) phase. The lattice geometries
and values of the lattice coupling � are tuned in order to
keep the lattice volume constant, V � 3:8 fm4. The point
with � � 3:5 has a little bigger volume, V � 3:92 fm4.

In order to have an impression about the behavior of the
quark monopoles in the high-temperature phase we study
one point at asymmetric lattice 163 	 4. At these lattices
the system is just above the finite-temperature critical point
with T � 1:15Tc.

In order to define the quark monopoles one may use
eigenmodes of the Dirac operator in the background of the
gauge field. In our lattice simulations we use the overlap
fermions which possess an exact chiral symmetry, enjoy
automatic O�a� improvement, and are not defaced by ex-
ceptional configurations [39]. The overlap Dirac operator
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is

 D �

a
�1�Dw=

��������������
DwD

y
w

q
� �


a
�1� �5sign�H��;

H � �5Dw;
(A1)

where Dw is the Wilson Dirac operator with negative mass
term and H is hermitian Wilson Dirac operator. The value

of  parameter is equal to 1.4. We have used the minimax
polynomial approximation to compute the sign function. In
order to improve the accuracy and performance about 100
lowest eigenmodes of H were projected out. The eigenval-
ues of D, which lies on the circle in the complex plain,
were stereographically projected onto the imaginary axis in
order to relate them with continuous eigenvalues of the
Dirac operator.
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